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Fumonisins are major mycotoxins found worldwide in maize and maize products. Because of their toxicity for both human
and animals, European Union regulations were created to fix the maximal fumonisin B1 and B2 content allowed in foods and
feeds. Unfortunately, directly measuring these mycotoxins by current analytical techniques is tedious and expensive and most
measurement methods do not lend themselves to online control. Alternative approaches to chemical analysis have been developed
and involve models that allow the mycotoxin contamination to be predicted based on environmental conditions and analysis by
near-infrared (NIR) spectroscopy. In the present work, we use NIR spectroscopy to determine the fumonisin and fungal contents of
117 samples of maize. The determination coefficient between fumonisin and fungal-biomass content was 0.44. We establish herein
a threshold for the number of CFUs for fungal biomass beyond which the fumonisin content is likely to exceed the European
regulatory level of 4000 𝜇g/kg. In addition, we determine the fungal content by using a NIR-spectroscopy model that allows us to
sort samples of maize. Upon calibration, the percentage of well-classified samples was 96%, which compares favorably to the 82%
obtained by independent verification.

1. Introduction

Fumonisins are the main mycotoxins produced by the fungi
Fusarium verticillioides and F. proliferatum, which are found
worldwide as contaminants of maize and maize byproducts
[1].

Fumonisin B1, the most toxic compound of the family, is
suspected to be related to the increase in esophageal cancers
in some areas (e.g., China and South Africa) [2, 3] and
to the rising rate of neural tube defects reported in North
and Central America [4, 5]. This compound is also hepatic
and nephrotoxic in many animal species [6]. Therefore, the
withdrawal of maize batches contaminated by this toxin is a
major food-safety concern.

For human and animal health, the hazard associated with
exposure to fumonisins led to the creation of European regu-
lations and recommendations that fix the maximal tolerable
fumonisin content in foods and feeds, respectively [7, 8].

Currently, the most commonly used methods to
determine fumonisin contamination are based on high-
performance liquid chromatography (HPLC) coupled with
fluorescence detection and/or mass spectrometry and/or
enzyme-linked immunosorbent assays [9]. However, these
methods depend directly on how representative the sample
is of the overall batch of feed or food. In fact, mycotoxin
contamination is generally heterogeneous, and characterizing
an entire batch of several tons of maize would require
preparing many subsamples to form a representative sample
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of the sanitary status of the entire lot. The cost and time
required for such an analytical method limit its use for rapid
screening of raw materials.

Thus, a dire need exists for alternative methods that
would enable real-time screening of maize batches vis-
à-vis their fumonisin content thereby to determine their
subsequent orientation toward human or animal feeding.
Toward this end, other specific grain parameters could be
used to indirectly predict fumonisin contamination. In fact,
because mycotoxins are secondary fungal metabolites, their
production is directly linked with fungal development [10].
Therefore, the assessment of fungal contamination may be
used to indirectly predict mycotoxin contamination; indeed,
previous studies demonstrate that both fungal counts and
ergosterol measurements could be used as indirect markers
to assess the risk of mycotoxin contamination [11, 12].

Near-infrared spectroscopy (NIR) is now commonly
used to verify various quality parameters of cereals [13].
As detailed elsewhere, the NIR absorption spectrum of a
substance is obtained from its optical parameters (reflectance,
transmission, etc.) in the NIR. The interpretation of these
spectra is based on the fact that molecules absorb specific
NIR frequencies depending on the characteristics of their
structure [14].

To date, two main factors have hindered attempts to
use NIRS to directly measure mycotoxin content in the
field: (1) mycotoxins are present in quantities too small (in
the order of parts per million) for direct detection. Their
detection is thus associated with a complex ensemble of
information related to the growth of the fungus on the cereal.
(2) The associated prediction errors are too high to satisfy
the European regulation EC number 1127/2007. For instance,
Vignola et al. [15] reported that 68% of the predicted values
lie within ±𝜎 (where 𝜎 is the standard error of prediction)
of the mean predicted value, and 95% lie within ±1.96𝜎. If
we consider, for example, 𝜎 = 3610 𝜇g/kg [16], then NIR
of an uncharacterized sample would predict a contamination
level of ±1.96 × 3610 𝜇g/kg. This would actually correspond
to 7000𝜇g/kg, whereas the European Union (EU) limit for
deoxynivalenol is 1750 𝜇g/kg (EC number 1881/2006/CE).
The details for each study and the associated standard errors
of prediction were published by Levasseur-Garcia [17].

However, some recent studies demonstrated that NIR
could be used to discriminate between fungal species grown
in culture media, and NIR has even been used to differentiate
between toxigenic and nontoxigenic isolates [18, 19]. There-
fore, the aim of the present study is to evaluate NIR as an
indirect method that uses fungal counts as indirect markers
to assess the risk of fumonisin contamination in maize.
For that, we characterized 117 samples of maize for fungal
and fumonisin contamination by using both conventional
methods and NIR.

2. Materials and Methods

2.1. General Procedure. Figure 1 shows the general procedure
for classifying maize according to fumonisin content.

Fungal count, ergosterol, and fumonisins 
contents

Infrared spectra

Step 1 Step 2

Rules to classifiy maize into two
categories of fumonisins (above or

Mathematical
preprocessing

Decision tree based on fungal count and
ergosterol content, to classify maize into two
categories of fumonisins (above or below the

Discriminant analysis
below the EU limit of 4000𝜇g/kg)

EU limit of 4000𝜇g/kg)

Figure 1: Procedure for classifying maize according to fumonisin
content.

This procedure involves two steps.The first step considers
only the benchmark values obtained in the laboratory: the
ergosterol content, the number of colony-forming units
(CFUs), and the fumonisin concentration. In this first step, a
sequence of rules is embedded in a decision tree to determine
whether the fumonisin content in a batch of maize is above
or below the European regulatory threshold for human
consumption (4000 𝜇g/kg) [8]. A decision tree is a method
of classification that uses a tree-like model. It is a flowchart-
like structure consisting of internal nodes, leaf nodes, and
branches. Each internal node represents a test, each outgoing
branch corresponds to a possible outcome of the test, and
each leaf node represents a class [20].

The second step is based onNIR.The spectra are first pro-
cessed bymathematical algorithms and then are used as input
into a discriminant analysis to automate the implementation
of the decision tree from Step 1.

Our objective is to evaluate the fungal count and the
ergosterol content as indirect indicators to efficiently predict
whether the fumonisin content of a batch of maize is greater
than or less than the EU limit. If this is possible, then rules
must be created that allow users in the field to classify maize
using fungal count and ergosterol content. In addition, these
rules must be automated according to NIR spectra from
maize samples.

Thus, the sequence of these two steps should constitute a
model that, based on the NIR spectra, allows maize samples
to be classified according to whether their fumonisin content
is above or below the EU regulatory limit.

2.2. Chemicals. All solvents (methanol, ethanol, toluene, and
acetonitrile) and reagents (O-phthalaldehyde, pyrogallol, and
potassium hydroxide) used for mycotoxin and ergosterol
measurements were analytic grade and were purchased from
Prolabo (Paris, France).

2.3. Maize Samples. A total of 117 samples of maize were
used in this study. Samples were harvested in 2007 in Italy,
Denmark, France, Hungary, The Netherlands, and Poland.
Each sample consisted of 1.5 kg of grains dried at 40∘C. Two
0.750 kg subsamples were drawn from each sample. One
subsample was used to quantify ergosterol, count CFUs, and
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identify the fungal species. The other subsample (0.150 kg)
was used for mycotoxin analysis and to collect the infrared
spectra.

2.4. Determination of Fumonisin B1 Content. Fumonisin B1
(FB1) was quantified by HPLC as described previously [21].
Briefly, FB1 was extracted and purified as described by Le
Bars et al. [22]; namely, by mixing with 100mL of methanol-
water solution (3 : 1) and grinding for 3min in a Warring
blender. After filtration by a fluted number 3 filter (Fioroni,
VWR, Fontenay Sous Bois, France), 10mL of the extract
was applied to Bond-Elut SAX cartridges (500mg, 2.8mL;
VWR, Fontenay Sous Bois, France) and eluted with 14mL
of acidified methanol (0.5% acetic acid). These extracts were
evaporated to dryness under a gentle stream of nitrogen and
then dissolved in methanol.

For HPLC quantification, 25 𝜇L of extract or 25 𝜇L
of standard was derivatized with a mixture of 25𝜇L of
borate buffer (pH 8.3), 25𝜇L of water, and 25 𝜇L of O-
phthaldialdehyde (15mM) and separated by HPLC with
an M2200 pump (ICS, Toulouse, France), a Prontosil C18,
5 𝜇m, 250 × 4mm column equipped with a precolumn (ICS,
Toulouse, France), and an 8450 fluorescence HPLC monitor
(Shimadzu, Kyoto, Japan). The HPLC used liquid-phase
NaH
2
PO
4
(0.1M, pH 3.3)/methanol (25/75 v/v), a 1mL/min

flow rate, a 10 𝜇L injection volume, andfluorescence detection
at the excitation (emission)wavelength 335 nm (440 nm).The
spectrawere quantified by comparing the peak areameasured
by a Pic3 data system from ICS (Toulouse, France) with a
standard calibration curve. The mean retention time was 7.5
and 17.5min for FB1 and FB2, respectively.The quantification
limits were 0.1 and 0.2 𝜇g/g for FB1 and FB2, respectively [23].

2.5. Fungal Contamination

2.5.1. Ergosterol Measurement. Ergosterol was quantified as
per Bailly et al. [24]. Fifteen grams of crushed grains were
mixed with 45mL of methanol, 15mL of ethanol, 60 𝜇L
of pyrogallol, and 6 g of potassium hydroxide in a 250mL
round-bottom flask. The mixture was refluxed with agitation
at 80∘C for precisely 30min and then quickly cooled in awater
bath to 20∘C.The extract was filtered through a GF/A 1.6 𝜇m
Whatman paper and the ergosterol was extracted from 15mL
of filtrate by petrol ether (2 × 30mL with 2min of strong
mechanical agitation) and washed with acid water (pH = 2.5,
2 × 30mL with 2min of strong mechanical agitation). The
petrol-ether extract was evaporated until no visible solvent
was present in the tube and then redissolved in 100 𝜇L of
a 98/2 v/v toluene/acetonitrile solution. Three 𝜇L of the
solution was placed on a silica support plate and separated by
migration in an 85/15 v/v toluene/acetonitrile solution. After
drying, the support plate was heated to 130∘C and held at this
temperature for 30min to make the ergosterol fluorescent. A
fluorodensitometer at 365 nm (Shimadzu CS930) was used
to quantify the ergosterol concentration. Each extract was
analyzed twice and was quantified by comparing with a
standard calibration curve obtained from the same plate that
was used for the samples.

2.5.2. Fungal Count and Identification. The fungal count of
the maize samples was done according to the AFNOR norm
[25]. Briefly, 20 g of crushed sample was mixed with 180mL
of tween 80 (0.05%) by mechanical agitation for 30min.
Decimal dilutions (10−1 to 10−5) were prepared in tween 80
(0.05%). One hundred 𝜇L of each dilution was inoculated in
Petri dishes containing a malt medium (2% agar, 2% malt,
and 50 ppm chloramphenicol) and a salted malt medium
(malt medium + 6% NaCl). Colony forming units (CFU)
were counted after 3 and 5 days of incubation at 25∘C, and
the results were expressed as number of CFU per gram of
sample.

To further identify the fungal species, mycelia were
planted out on potato dextrose agar (PDA) and grown at
25∘C.The identification was done bymacro- andmicroscopic
examination of the isolates according to Raper and Fennel for
Aspergillus [26] and according to Nelson et al. for Fusarium
[27].

2.6. Near-Infrared-Spectroscopy Procedure. A near-infrared
spectrometer (NIR Systems 6500, FOSS Tecator, Sweden) was
used in reflectance mode to collect reflectance spectra of
whole-maize samples over the spectral range 400–2498 nm.
Each spectrum was obtained by averaging 32 scans, and the
spectral resolution was 2 nm.

The spectra were collected at room temperature. Mea-
surements were repeated three times and averaged for each
sample. The spectra were used for multivariate analysis. The
117 samples were divided randomly into two sets: one set was
for calibration to develop the model (100 samples) and one
set (17 samples) was to test the model.

2.7. Statistical Analysis

Step 1.

(i) Pearson’s Correlation. Pearson-correlation coefficients
were used to find any significant relationships between the
quantitative variables. The level of dissimilarities was fixed
at ±0.5. Statistical analyses were done with XLSTAT version
2014.5.02 (Addinsoft, New York, USA).

(ii) Decision Tree. A chi-squared automatic interaction detec-
tor (CHAID) decision tree was used to construct a statis-
tical model from a given training dataset. In the CHAID
technique, the first step is to create categories from the
ergosterol content and fungal count. Next, a chi-squared test
is used to determine the best split with which we predict
whether, considering ergosterol content and fungal count, the
fumonisin content is greater than or less than the EU limit.
In the present work, we use the fumonisin content for human
consumption (i.e., 4000𝜇g/kg) [8].

The model was evaluated by using confusion matrices
[28]. Table 1 shows the confusion matrix for a two-class
classifier.

The prediction accuracy and classification error can
be calculated from the number of samples belonging to
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Table 1: Two-way confusion matrix.

Predicted by model
Negative (fumonisin content <4000 𝜇g/kg) Positive (fumonisin content >4000 𝜇g/kg)

Actual content
Negative (fumonisin content <4000 𝜇g/kg) 𝑎 𝑏

Positive (fumonisin content >4000 𝜇g/kg) 𝑐 𝑑

𝑎: number of correct negative predictions (maize samples with a mycotoxin content below the limit and properly classified); 𝑏: number of incorrect positive
predictions (maize samples with a mycotoxin content below the limit and improperly classified); 𝑐: number of incorrect negative predictions (maize samples
with a mycotoxin content above the limit and improperly classified), 𝑑: number of correct positive predictions (maize samples with a mycotoxin content above
the limit and properly classified).

the different categories indicated in Table 1 [20]. The predic-
tion accuracy is obtained as follows:

Accuracy = (𝑎 + 𝑑)

(𝑎 + 𝑏 + 𝑐 + 𝑑)
. (1)

The classification error is obtained from the confusionmatrix
as follows:

Error = (𝑏 + 𝑐)

(𝑎 + 𝑏 + 𝑐 + 𝑑)
. (2)

The best model is defined as the model with the highest
accuracy and the lowest error. Samples in groups 𝑎 and 𝑑
are properly classified, whereas samples in groups 𝑏 and 𝑐 are
not. Group 𝑏 containsmaize incorrectly predicted as positive.
These samples have mycotoxin content below the limit but
are improperly classified as being above the limit. Samples
in group 𝑐 have mycotoxin content above the limit and are
improperly classified as safe.

Step 2.

(i) Multiplicative Scatter Correction. The spectra were pre-
processed to remove the effects of light scattering and to
compensate for baseline offsets and bias [29]. Treating a
spectrum bymultiplicative scatter correction (MSC) involves
the following calculations:

𝑥org = 𝑏0 + 𝑏ref,1𝑥ref + 𝑒,

𝑥corr =
𝑥org − 𝑏0

𝑏ref,1
,

(3)

where 𝑏
𝑖
are the correction coefficients, 𝑒 is the unmodeled

part, 𝑥org is the original spectrum, 𝑥ref is the reference
spectrum, and 𝑥corr is the corrected spectrum.

Preprocessing the MSC was done by using the Unscram-
bler Multivariate Data Analysis (v. X; CAMO A/S, Oslo,
Norway).

(ii) Principal Component Analysis. After preprocessing, a
principal component analysis (PCA) was done to highlight
sample clustering and to compress the spectral data. A PCA
is an orthogonal transformation that converts the set of 1050
possibly correlated infrared variables (400–2498 nm, every
2 nm) into a set of linearly uncorrelated variables called
principal components (PCs). PCA is defined so that the first

Table 2: Fungal contamination of 117 maize samples.

Fungal species Mycoflora content (log CFU/g)
Min. Max. Mean Occurrence (%)

Fusarium (total) ND∗ 6.3 5.37 97
F. verticillioides ND 6.3 5.32 90
F. proliferatum ND 5 3.69 38
F. subglutinans ND 5.6 3.23 59
F. oxysporum ND 2.95 0.95 2
F. poae ND 2.6 0.48 1
F. equisiti ND 3 1.15 3
F. graminearum ND 2 0.48 3
Aspergillus ND 4.33 2.61 56
Mucor ND 3.78 2.66 56
Penicillium ND 4.78 3.54 71
Yeast ND 4.3 3.08 50
Acremonium ND 5.48 4.25 69
Cladosporium ND 4.3 3.06 90
∗NDmeans “not detected”.

PC accounts for the maximum possible variability in the
infrared spectra, with the subsequent principle components
accounting for less and less variability [30].

PCA was done by using the Unscrambler Multivariate
Data Analysis (v. X; CAMO A/S, Oslo, Norway).

(iii) Quadratic Discriminant Analysis. The quadratic dis-
criminant analysis is a nonlinear model that constructs a
nonlinear boundary between principal components (PCs)
and fumonisin class. For the decision tree, the model was
evaluated by using confusion matrices [20].

3. Results and Discussion

3.1. Fungal and Fumonisin Contamination of Maize Samples.
One hundred and seventeen maize samples were charac-
terized in terms of their fungal and fumonisin contamina-
tion. The fungal content was simultaneously determined by
counting CFUs, identifying fungal species and quantifying
ergosterol. The results are presented in Tables 2 and 3.

Themaize samplesweremainly contaminatedwith fungal
species belonging to the Fusarium genus, which were found
in 97% of the maize samples. F. verticillioides was the
most important species in terms of both occurrence and
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Table 3: Ergosterol and fumonisins content of 117 maize samples.

Min. Max. Mean Standard deviation Samples above limit∗

Ergosterol content (mg/kg) 2.1 7.5 4.6 1.1 85%
Fumonisins content (𝜇g/kg) 60 9850 2509 2418 26%
∗ICMFS or European regulation.
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Figure 2: Relationship between fungal count and fumonisins
contamination based on 117 samples of maize.

the number of CFUs, in agreement with reports for European
maize [31]. The average fungal count was far higher than
the maximum tolerance limits set by the International Com-
mission onMicrobiological Specification for Foods (ICMFS),
which is 10 000CFU/g [32, 33]. Only 15% of the samples had
fungal counts lower than the ICMSF limit.

Themean ergosterol content of the sampleswas 4.6mg/kg
with extreme values ranging from 2.1 to 7.5mg/kg, which are
typical values for this type of cereal [34, 35].

Table 3 summarizes the fumonisin content. FB1 was
detected in all samples at concentrations ranging from 60
to 9850 𝜇g/kg. Although such contamination is commonly
reported for European maize [35, 36], 26% of the sam-
ples exceeded European regulations for fumonisin content
(4000𝜇g/kg).

Step 1 (correlation between fumonisin and fungal contam-
ination). To reliably sort maize according to the indirect
markers of fumonisin contamination, we investigated the
correlation between fumonisin content andmarkers of fungal
contamination (i.e., ergosterol content and fungal count).
Figures 2 and 3 show the correlation obtained between
fumonisin content and fungal count or ergosterol respec-
tively.

The coefficient of determination between fumonisin con-
tent and mycoflora (ergosterol) content is 0.44 with 𝑃 >
0.01 (0.06 with 𝑃 = 0.006). In the two situations, no clear
regressions were obtained between the two variables. Thus,
the ergosterol content is not proportional to the mycotoxin
content. A weak fungal biomass combined with a relatively
high level of mycotoxins is possible, as is the opposite. Of
several other studies that focused on this subject, some
concluded that a correlation exists between these variables
[11, 37–41], whereas others either made no conclusion or
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Figure 3: Relationship between ergosterol and fumonisins contam-
ination based on 117 samples of maize.

concluded that no relationship exists, as is the case for the
present study [42–47]. This situation may be directly related
to the nature of the fungal flora present in the samples.
Specifically, the organization of the fungal membranes, the
physiology of the species, and especially the sporulation
(number and size of spores) may cause the ergosterol con-
centration to vary between fungal species, thereby leading to
a nonlinear relationship between mycotoxin and ergosterol
content. In the present study, the dominant species was
Fusarium verticillioides, which is characterized by numerous
small spores with weak ergosterol content. Such differences
in ergosterol content between fungal species may explain
the absence of a linear relationship between mycotoxin and
ergosterol content. Nevertheless, because mycotoxin synthe-
sis is directly related to fungal development, it is probable
that a threshold for ergosterol content could be established
whereby if the ergosterol content was below the threshold,
themycotoxin concentrationwould not exceed the regulatory
limit.

Decision Tree Based on Fungal Count and Ergosterol Content
to Classify Fumonisin Content of Maize as Either above
or below EU Limit of 4000 𝜇g/kg. We used the CHAID
algorithm to create a classification tree to separate maize
samples into two categories: one with a fumonisin content
greater than 4000 𝜇g/kg and one with a fumonisin content
less than this limit. We used ergosterol content and fungal
count as explanatory variables and fumonisin content as a
binary dependent variable (above or below the EU limit of
4000 𝜇g/kg).

After calculations, we used the software XLSTAT to
check the results of the stages in which the decision tree
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Figure 4: Binary decision tree obtained to predict fumonisin content (greater than or less than 4000𝜇g/kg) from ergosterol content and
fungal count.

Table 4: Confusion matrix for fumonisin contents with fungal count as sorting parameter.

From To
Fumonisin content <4000 𝜇g/kg Fumonisin content >4000 𝜇g/kg Total Well-classified samples

Calibration
Fumonisin content <4000 𝜇g/kg 35 15 50 71%
Fumonisin content >4000 𝜇g/kg 4 46 50 92%
Total 39 61 100 81%

Independent verification
Fumonisin content <4000 𝜇g/kg 10 1 11 91%
Fumonisin content >4000 𝜇g/kg 1 5 6 83%
Total 11 6 17 88%

is automatically created and select the most stable tree (i.e.,
the tree that gives the best purity and called accuracy). The
best split is the one that best separates the data into the two
groups (i.e., greater than and less than 4000 𝜇g/kg), where a
single class predominates in each group. The measure used
to evaluate a potential split is called “purity.” Thus, the best
split is the one that results in the greatest increase in purity of
the subsets. In addition, we automatically corrected the class
weights.

In Figure 4, intermediate node-division conditions are
given next to each node. This tree contains one decisive
node (node 1) and two final nodes, called leaves (nodes 2
and 3). For each node, a histogram gives an overview of

the distribution of the decision variable (i.e., the number of
maize samples with fumonisin content above or below the EU
threshold of 4000 𝜇g/kg).The purity is also indicated for each
node, and the splitting attribute is the fungal count. Even if
ergosterol was used as the explicative variable, it would not
be sufficiently explicative compared with fungal count. The
attribute used for splitting is 200 000CFU/g. The resulting
decision tree has a simple structure, and only a single question
needs to be asked to classify a maize sample; namely, is its
fungal count above or below 200 000 𝜇g/kg? The results of
applying this model are presented in Table 4.

Applying this detection method to 100 maize samples
resulted in 71% of the samples with fumonisin content below
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Figure 5: (a) Raw and (b) MSC infrared spectra of 117 maize samples.

the EU limit being properly recognized as such, with this
figure climbing to 92% for samples with a fumonisin content
above the EU limit. Independent verification by using the 17
control samples resulted in 91% and 83%, respectively.

The content threshold of 200 000CFU/g seems to be a
good benchmark with which we assess fumonisin content in
maize. The last step of this work, which we present in the
following section, involves using NIRS to rapidly predict the
CFU content of maize samples.

Step 2 (using NIRS to screen samples for risk of fumonisin
contamination).

(i) Infrared Spectra of 117 Maize Samples. Figure 5(a) shows
the raw NIR spectra and Figure 5(b) shows the same spectra
preprocessed by MSC.

Figure 5(a) shows that the infrared-reflectance peaks
are broad and overlap each other. In Figure 5(b), small
differences appear in the infrared preprocessed spectra in
three ranges: 400–900, 1500–1800, and 2300–2500 nm.These
differences are confirmedby the plot in Figure 6, which shows
the mean spectra of samples with fumonisin content above
and below the EU threshold of 4000𝜇g/kg.

Mycotoxins were present in the maize samples in quan-
tities too small (on the order of parts per million) to allow
direct detection [17].Thus, the variations between the spectra
shown in Figure 6 may be due to a complex ensemble of
information related to the growth of fungus on the cereal,
which is related notably with modifications of the protein or
carbohydrate level (starch, cellulose, etc.).

(ii) Principal Component Analysis.The entire spectrum (400–
2498 nm) was analyzed by PCA.The PCAmodel was built by
using twenty PCs. Figure 7 shows a bidimensional represen-
tation of PC 1 and PC 2, which together account for 92%of the
variance in the data. The first six PCs account for about 99%
of the total variance in the spectra (65%, 27%, 3%, 1%, 1%, and
1%, resp.). All samples were labelled by their fumonisin status
(i.e., above or below the EU regulatory threshold).
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Figure 6: NIR reflectance spectra for maize sample with fumonisin
content above (solid line) and below (dashed line) the EU threshold.

Figure 7 shows that the samples do not cluster within the
two categories and no obvious outliers appear.

Figure 8 shows the loadings of the first two PCs.
A higher loading means that the corresponding wave-

length carries greaterweight for explaining the variance in the
data. As shown in Figure 8, the wavelength ranges 400–600
and 1900–2500 nmare themost important for PC 1 because of
higher loading in these ranges. For PC 2, the most important
ranges are 400–600 and 1400–1900 nm.

The first six PCs are used as inputs for a discriminant
analysis to discriminate betweenmaize samples having fungal
counts greater than and less than 200 000CFU/g.

(iii) Discriminant Analysis. Starting from the six PCs of the
NIR spectra, which together represent 99.9% of the variance,
we used a quadratic discriminant analysis to determine if the
fungal count of the sample was above or below the threshold
of 200 000CFU/g. Using NIRS to predict the fungal count
category of the maize samples gave good results. Table 5
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Table 5: Results of discriminant analysis based on NIRS to sort maize samples according to their risk of contamination with fumonisins.

From To
Fumonisin content <4000 𝜇g/kg Fumonisin content >4000 𝜇g/kg Total Well-classified samples

Calibration
Fumonisin content <4000 𝜇g/kg 54 1 55 98%
Fumonisin content >4000 𝜇g/kg 3 42 45 93%
Total 57 43 100 96%

Independent verification
Fumonisin content <4000 𝜇g/kg 10 2 12 83%
Fumonisin content >4000 𝜇g/kg 1 4 5 80%
Total 11 6 17 82%
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Figure 7: Scatter plot of first two principal components (PC 1 and
PC 2) for all spectra. The variance explained by each principal
component is indicated in parentheses.
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Figure 8: Loading-vector plot of first two principal components
corresponding to the dataset constructed from the 117 maize
samples.

summarizes the results obtained by using this method to
sort maize samples according to their risk of fumonisin
contamination.

Upon calibration, we found that 96%of themaize samples
were properly classified, which compares favorably with the
82% properly classified by independent verification of the 17
control samples. In both cases, the number of false negatives
was low: 3 out of 57 samples (5%) for the proposed calibration
method and 1 out of 11 samples (9%) for the independent
verification.

Models with which we classify maize contaminated
by mycotoxins have been proposed by various authors.
Levasseur-Garcia et al. [48] summarize the main results for
classifying contaminated samples, with the targets being fun-
gus, mycotoxin, or both. These works deal with the presence
of Aspergillus, Fusarium, or Penicillium and the mycotoxins
aflatoxin, deoxynivalenol, and fumonisins in samples of
wheat, maize, or barley. Overall, the rate of proper classifi-
cation is good to excellent, which underlines the interest in
applying NIRS to the analysis of mycotoxin contamination in
grains. However, most works in this area were done on grains
that were individually scanned after artificial contamination,
which can modify the final level of contamination and/or
the interactions between grains, molds, and mycotoxins. The
present study was done on relatively large samples (150 g) that
were contaminated naturally and are therefore representative
of real situations found in the field. In addition, the only
study that details false negatives is that of Gordon [49],
which reports a 4% rate of false negatives. We could probably
decrease the rate of false negatives obtained in our work
by increasing the number of samples used to construct our
database.

Finally, these models may also allow industry to sort
maize according to whether it is destined for human or
animal consumption. Batches found to contain fumonisin
content greater than the threshold established for human
consumption (i.e., 4000𝜇g/kg) can be oriented toward ani-
mal consumption, which has a higher regulatory threshold.
Such sorting would improve food safety. The use of a rapid,
nondestructive method to inspect grain would also allow
grain to be sorted before being stocked in silos.
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4. Conclusions

In this work, we searched for correlations in maize samples
between mycotoxin content and markers of fungal con-
tamination. We used these correlations to establish indirect
markers of mycotoxin contamination, thereby allowing us to
predict fumonisin contamination and thus to sort the maize
samples accordingly.This study demonstrates that thresholds
exist for fungal count that can be used to screen samples
according to the risk of fumonisin contamination. In this
study, all maize samples that exceeded the EU regulatory
limit for fumonisin content (4000 𝜇g/kg) had a fungal count
over 200 000CFU/g. Therefore, we used this threshold in
an analysis by near-infrared spectroscopy (NIRS) to screen
samples for fumonisin contamination.

This study demonstrates the potential of NIRS as a rapid
method for screening maize samples according to their risk
of fumonisin contamination. The models developed herein
led to proper classification of 96% of the maize samples,
versus 82% proper classification obtained by independent
verification. Moreover, the number of false negatives (i.e.,
contaminated samples classified as safe) was low. Therefore,
NIRS is a promising alternative to the time-consuming ana-
lytical method that is currently used to determine mycotoxin
content. With results available within 1min, the proposed
method may prove useful for rapid first screening of maize
batches according to their risk of fumonisin contamination.
The ultimate goal is to develop this technology into a tool for
real-time screening of maize batches.
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