
On some Equivalent Theorems:
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C. AMROUCHE Chérif AMROUCHE, University of PAU



Outline

I. Recall of Some Classical Theorems

II. First Equivalence Theorem: De Rham, Lions, Necas

III. The Divergence Operator

IV. Second Equivalence Theorem: Lions, Poincaré
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I. Recall of Some Classical Theorems

In this work, we assume that Ω is a bounded open connected of
RN , N ≥ 2, with Lipschitz-continuous boundary.

The notation X′ <,>X denotes a duality pairing between a
topological space X and its dual X ′.

We shall use bold characters for the vector fields or the vector
spaces and the non-bold characters for the scalars.

The letter C denotes a constant that not necessarily the same
at its various occurrences.
We set

V (Ω) = {ϕ ∈ H 1
0(Ω); div ϕ = 0 in Ω}.
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I.1 The Classical J.L. Lions Lemma

We know that

f ∈ L2(Ω) =⇒ f ∈ H−1(Ω) and ∇f ∈ H−1(Ω).

The classical Lions Lemma asserts that the reciprocal holds:

Theorem 1 (Classical Lions Lemma)

We have the following property

f ∈ H−1(Ω) and ∇f ∈ H−1(Ω) =⇒ f ∈ L2(Ω).

G. Duvaut – J.L. Lions (1972) where Ω is C∞ (see also L.
Tartar (1978))
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I.2 Necas Inequalities

Theorem 2 (Necas Inequality)

i) For any f ∈ L2(Ω), we have

‖f‖L2(Ω) ≤ C(‖f‖H−1(Ω) + ‖∇f‖H−1(Ω)) (1)

ii) More generally, for any integer m and any 1 < p <∞, we
have for all f ∈Wm, p(Ω),

‖f‖Wm, p(Ω) ≤ C(‖f‖Wm−1, p(Ω) + ‖∇f‖Wm−1, p(Ω)) (2)

J. Necas (1965)
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I.3 Korn’s Inequality, Duvaut-Lions (1972)
Setting

eij(v) =
∂vi

∂xj
+
∂vj

∂xi
.

Theorem 3 (Korn’s Inequality)

∀v ∈ H 1(Ω), ‖v‖H 1(Ω) ≤ C(‖v‖L2(Ω) + ‖e(v)‖L2(Ω)) (3)

Proof. To prove this inequality, it suffices to prove that

(v ∈ L2(Ω) and e(v) ∈ L2(Ω)) =⇒ ∇v ∈ L2(Ω)

and then to use the Banach Theorem. Let us consider v ∈ L2(Ω) and
e(v) ∈ L2(Ω). Thanks to the following relation

∂

∂xj
(
∂vk

∂xi
) =

∂eik

∂xj
+
∂eij

∂xk
−
∂ejk

∂xi
.

we deduce that

∇
∂vk

∂xi
∈ H−1(Ω).

Because ∂vk
∂xi
∈ H−1(Ω), the classical Lions Lemma implies that ∂vk

∂xi
∈ L2(Ω).
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Remark. There exist different proofs, that do not use Lions
Lemma, of the Korn inequality:

J. Gobert (1962): Proof uses Calderon-Zygmund singular
integrals

V.A Kondrat’ev – O.A. Oleinik (1988): Proof uses integral
inequalities with (dist(·,Γ))2 as a weight and
hypoellipticity of ∆.
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I.4 De Rham’s Theorem
It is clear that if q ∈ L2(Ω), then ∇q ∈ H−1(Ω) and

∀v ∈ V (Ω), < ∇q , v >= 0.

We will prove later that the divergence operator

div : H 1
0 (Ω)/V (Ω) 7→ L2

0(Ω)

is an isomorphism. So, by duality, we deduce that

Theorem 4 (De Rham in H−1(Ω), First Version)

The operator
grad : L2(Ω)/R 7→ V (Ω)◦ (4)

where
V (Ω)◦ = {f ∈ H−1(Ω); ∀v ∈ V (Ω), < f , v >= 0}.

is an isomorphism.
That means that for any f ∈ H−1(Ω) satisfying

∀v ∈ V (Ω), < f , v >= 0,

there exists π ∈ L2(Ω), unique up to an additive constant, such that

f = ∇π.
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Theorem 5 (Stokes Equations)

For any f ∈ H−1(Ω), there exists a unique solution

(u , π) ∈ H 1
0(Ω)× L2

0(Ω)

to the Stokes equations

−∆u +∇π = f and div u = 0 in Ω. (5)

Proof. Using Lax-Milgram Lemma, there exists a unique u ∈ V (Ω) satisfying the
following variational formulation:

Find u ∈ V (Ω) such that

∀v ∈ V (Ω),

∫
Ω
∇u : ∇v =< f , v > (6)

Consequently we have

∀v ∈ V (Ω), < −∆u − f , v >= 0.

Finally, by De Rham’s Theorem, there exists π ∈ L2(Ω), unique up an additive
constant, such that

−∆u +∇π = f in Ω.
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We can improve the previous De Rham Theorem (see
Amrouche-Girault, Czech. Math. Journ., 1994).
Setting

V(Ω) = {v ∈ D(Ω); div v = 0 in Ω} ,

we have

Theorem 6. (De Rham in H−1(Ω) Second Version)

Let f ∈ H−1(Ω) satisfying

∀v ∈ V(Ω), < f , v >= 0,

Then there exists π ∈ L2(Ω), unique up to an additive constant,
such that

f = ∇π.
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Proof. i) Firstly, we prove the algebraical and topological following indentity:{
u ∈ L2

loc(Ω); ∇u ∈ H−1(Ω)
}

= L2(Ω).

ii) Therefore, it suffices to proof the existence of π in L2
loc(Ω). To this end,

consider an increasing sequence (Ωk)k of Lipschitz-continuous, connected open
sets such that

Ωk ⊂ Ω, ∪kΩk = Ω.

Take any function v ∈ V (Ωk) and let us extend it by zero outside Ωk. Then the
extended function, still denoted by v belongs to V (Ω). Then, for all sufficiently
small ε > 0, we have:

ρε ? v ∈ D(Ω), div (ρε ? v) = 0.

As ρε ? v ∈ V(Ω), the assumption on f yields:

< f , v >= lim
ε→0

< f , ρε ? v >= 0.

De Rham’s Theorem first version applied in Ωk to f |Ωk
implies that there exists

πk ∈ L2(Ωk) such that f|Ωk
= ∇πk. And since πk+1 − πk is constant in Ωk, this

constant can be choose so that πk+1 = πk in Ωk, and hence f = ∇π with

π ∈ L2(ω) for any proper subset ω of Ω, i.e π ∈ L2
loc(Ω).
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Remark We have proved that the following properties are
equivalent:
(i) The operator div is onto: div : H 1

0 (Ω)/V (Ω) 7→ L2
0(Ω)

is an isomorphism.
(ii) First Version of De Rham’s Theorem
(iii) Second Version of De Rham’s Theorem
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II. First Equivalence Theorem:
De Rham, Lions, Necas

Theorem 7 (Lions-Necas-De Rham and Divergence operator)

The followings are equivalent:
(i) The operator div is onto: div : H 1

0 (Ω)/V (Ω) 7→ L2
0(Ω) is an isomorphism.

(ii) First Version of De Rham’s Theorem: For any f ∈ H−1(Ω) satisfying

∀v ∈ V (Ω), < f , v >= 0,

there exists π ∈ L2(Ω), unique up to an additive constant, such that f = ∇π.
(iii) Second Version of De Rham’s Theorem: Let f ∈ H−1(Ω) satisfying

∀v ∈ V(Ω), < f , v >= 0.

Then there exists π ∈ L2(Ω), unique up to an additive constant, such that f = ∇π.
(iv) Classical Lions Lemma: L2(Ω) = {q ∈ H−1(Ω); ∇q ∈ H−1(Ω)}.
(v) Necas Inequality:

∀q ∈ L2(Ω), ‖q‖L2(Ω) ≤ C(‖q‖H−1(Ω) + ‖∇q‖H−1(Ω)) (7)

(vi) General Lions Lemma: L2(Ω) = {q ∈ D′(Ω); ∇q ∈ H−1(Ω)}.
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Sketch of Proof of Theorem 1 . According to the previous
remark, we know that the the properties (i), (ii) and (iii) are
equivalent.
1. Implication (i) =⇒ (iv). We deduce from point (i) that
the operator

div : V (Ω)⊥ 7→ L2
0(Ω) (8)

is an isomorphism and by duality that

grad : L2(Ω)/R 7→ V (Ω)◦ (9)

is also an isomorphism, where the polar set V (Ω)◦ is defined by

V (Ω)◦ = {f ∈ H−1(Ω); ∀v ∈ V (Ω), < f , v >= 0}.

C. AMROUCHE Chérif AMROUCHE, University of PAU



Let now

q ∈ H−1(Ω) such that ∇q ∈ H−1(Ω).

Using the density of D(Ω) in

H 1
0(div; Ω) = {v ∈ H 1

0(Ω); div v ∈ H1
0 (Ω)},

we deduce that for all v ∈ V (Ω):

H−1(Ω) < ∇q , v >H 1
0(Ω) = − H−1(Ω) < q , div v >H1

0 (Ω)= 0.

So ∇q ∈ V (Ω)◦ and then

∇q = ∇p with some p in L2(Ω),

which proves the point ii), since

q = p+ C ∈ L2(Ω), for some constant C.
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2. Implication (iv) =⇒ (v). The space

E(Ω) = {f ∈ H−1(Ω); ∇f ∈ H−1(Ω)},

endowed with the graph norm is complete. The canonical
injection

Id : L2(Ω) 7→ E(Ω)

is one-to-one, (clearly) continuous and onto by the classical
Lions Lemma. Therefore, by Banach open mapping Theorem,
the inverse Id−1 is also continuous and then we deduce the
Necas inequality

∀f ∈ L2(Ω), ‖f‖L2(Ω) ≤ C(‖f‖H−1(Ω) + ‖∇f‖H−1(Ω)) (10)
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3. Implication (v) =⇒ (i). Recall firstly the Peetre-Tartar Theorem. Let
E1, E2, E3 be three Banach spaces, A ∈ L(E1; E2) and B ∈ L(E1; E3) a compact
operator such that

∀u ∈ E1, ‖u‖E1
' ‖Au‖E2

+ ‖Bu‖E3
.

Then the mapping
A : E1/KerA 7→ R(A)

is an isomorphism and R(A) is a closed subspace of E2. Observe that the Necas
inequality implies that

∀f ∈ L2(Ω), ‖f‖L2(Ω) ' ‖f‖H−1(Ω) + ‖∇f‖H−1(Ω) (11)

Because the injection of L2(Ω) in H−1(Ω) is compact, we can apply the
Peetre-Tartar Theorem, with

A = ∇, B = Id, E1 = L2(Ω), E2 = H−1(Ω), E3 = H−1(Ω),

to deduce that the operator

grad : L2(Ω)/R 7→ V (Ω)◦ (12)

is an isomorphism and by duality

div : V (Ω)⊥ 7→ L2
0(Ω) (13)

is also an isomorphism, which proves the point i).
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4. Implication (iv) ⇐⇒ (vi). It is clear that the general
Lions Lemma implies the classical Lions Lemma. Conversely,
suppose that the classical Lions Lemma holds. Let q ∈ D′(Ω)
such that ∇q ∈ H−1(Ω). Then

∀v ∈ V(Ω), < ∇q , v >= 0.

Because the classical Lions Lemma is equivalent to the second
version of De Rham’s Theorem, there exists π ∈ L2(Ω) such
that ∇q = ∇π. Since q = π + C, we deduce that q ∈ L2(Ω).
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II. The divergence operator

Theorem 8

Let Ω be a bounded, connected open subset of Rn, with n ≥ 2
and with a Lipschitz-continuous boundary.
i) The following operator

div : H 1
0 (Ω)/V (Ω) 7→ L2

0(Ω) (14)

is an isomorphism.
ii) Moreover the operator

div : D(Ω) 7→ D(Ω) ∩ L2
0(Ω) (15)

is onto

Proof. This result is due to Bogovskii (1979) with a very short proof. The
following more complete proof is inspired by the proof given in the book of P.
Galdi (1994).
To get (14), we will prove that for any f ∈ L2

0(Ω), there exists a vector field
u ∈ H 1

0 (Ω) such that div u = f and satisfying the inequality

‖u‖H 1(Ω) ≤ C‖f‖L2(Ω). (16)
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First step. We suppose that Ω is starlike with respect to some
open ball B contained it in. In this case, the vector u := Rf is
constructed explicitly.
i) Construction of R. Suppose f ∈ D(Ω) and let f̃ ∈ D(Rn)

its extension by 0 outside of Ω, with n ≥ 2. Let θ a fixed
function satisfying

θ ∈ D(Rn), 0 ≤ θ ≤ 1, with supp θ ⊂ B and

∫
Rn
θ = 1.

Consider the function t 7→ tnf̃(y + t(x− y)), with t ∈ R and
(x, y) ∈ Rn × Rn. Then

d

dt
(tnf̃)(y + t(x− y)) = tn−1∇x · ((x− y)f̃(y + t(x− y)).

Multiplying this relation by θ(y) and integrating with respect y
in Ω and with respect t on ]1,∞[. Then,

f(x) = −
∫

Ω

∫ ∞
1

θ(y)tn−1∇x · ((x− y)f̃(y + t(x− y))dt dy.
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The following vector field

x ∈ Ω, u(x) = −
∫
Rn

(x− y)θ(y)

∫ ∞
1

tn−1f̃(y + t(x− y))dt dy.

(17)
satisfies, as we will prove later,

div u = f in Ω.

Setting successively z = y + t(x− y), t = (r − 1)/r, s = 1− r
and after changing z into y and s into t, we obtain

x ∈ Ω, u(x) =

∫
Rn

(x− y)f(y)

∫ ∞
1

tn−1θ(y + t(x− y))dt dy.

(18)
Setting finally r = t|x− y|, we have also

u(x) := Rf(x) =

∫
Ω

x− y
|x− y|n

f(y)

∫ ∞
|x−y|

θ(y+r
x− y
|x− y|

)rn−1dr dy.

(19)
We verify then that supp Rf is compact and Rf is C∞(Ω).

C. AMROUCHE Chérif AMROUCHE, University of PAU



ii) Proof of div Rf = f . We observe first that

u(x) = lim
ε→0

∫
|x−y|≥ε

f̃(y)K (x, y) dy,

where

K (x, y) = (x−y)

∫ ∞
1

tn−1θ(y+t(x−y))dt =
x− y
|x− y|n

∫ ∞
|x−y|

θ(y+r
x− y
|x− y|

)rn−1dr.

Then

∂ui

∂xj
(x) = lim

ε→0
[

∫
|x−y|≥ε

f̃(y)
∂Ki

∂xj
(x, y) dy +

∫
|x−y|=ε

f̃(y)
xj − yj
|x− y|

Ki(x, y) dσy ]

(20)
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and

lim
ε→0

∫
|x−y|=ε

f̃(y)
xj − yj
|x− y|

Ki(x, y) dσy = f̃(x)

∫
Ω

(xj − yj)(xi − yi)
|x− y|2

θ(y) dσy (21)

Besides, we have

∂Ki

∂xj
(x, y) = δij

∫ ∞
1

tn−1θ(y + t(x− y))dt+ (xi − yi)
∫ ∞

1
tn

∂θ

∂xj
(y + t(x− y))dt

=
δij

|x− y|n

∫ ∞
0

θ(x+ r
x− y
|x− y|

)(|x− y|+ r)n−1dr

+
xi − yi
|x− y|n

∫ ∞
0

∂θ

∂xj
(x+ r

x− y
|x− y|

)(|x− y|+ r)ndr. (22)
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From this relations, we deduce that

∇x ·K (x, y) = n

∫ ∞
1

tn−1θ(y + t(x− y)) +

∫ ∞
1

tn
∂θ

∂t
(y + t(x− y))

= −θ(x)

and

divu(x) = −θ(x)

∫
Ω
f(y)dy + f(x) = f(x)

because by assumption the integral of f is equal to 0.
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iii) We will prove now that

R : L2
0(Ω) 7→ H 1

0(Ω)

is continuous, that means that

‖∇Rf‖L2(Ω) ≤ C‖f‖L2(Ω). (23)

Thanks to the Newton’s binôme formula, we have the following
decomposition:

∂Ki

∂xj
(x, y) = Kij(x, x− y) +Gij(x, y),

where

Kij(x, x− y) =
δij

|x− y|n

∫ ∞
0

θ(x+ r
x− y
|x− y|

)rn−1dr +

+
xi − yi
|x− y|n+1

∫ ∞
0

∂θ

∂xj
(x+ r

x− y
|x− y|

)rndr

: =
kij(x, x− y)

|x− y|n
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and Gij satisfies the following estimate:

|Gij(x, y)| ≤ Cδ(Ω)n−1/|x− y|n−1,

with C = C(θ, n).

We deduce from (20)-(22) that

∂(Rf)i
∂xj

(x) =

∫
Ω
Kij(x, x− y)f(y)dy +

∫
Ω
Gij(x, y)f(y)dy +

+ f(x)

∫
Ω

(xj − yj)(xi − yi)
|x− y|2

θ(y) dy

: = J1f(x) + J2f(x) + J3f(x).
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It is clear that |J3f(x)| ≤ |f(x)| and then

‖J3f‖L2(Ω) ≤ ‖f‖L2(Ω).

We have also

|J2f(x)| ≤ Cδ(Ω)n−1
∣∣ ∫

Rn

f̃(y)

|x− y|n−1
dy
∣∣.

That means that

|J2f(x)| ≤ Cδ(Ω)n−1|I1f̃(x)|,

where I1f̃ is the Riesz potential of order 1. Hence

‖J2f‖L2(Ω) ≤ Cδ(Ω)n−1‖I1f̃‖L2(Rn).
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Recall now that for any ϕ ∈ D(Rn),

‖∇I1ϕ‖L2(Rn) ≤ C‖ϕ‖L2(Rn)

and by duality, for any ϕ ∈ D(Rn) such that
∫
Rn ϕ = 0,

‖I1ϕ‖L2(Rn) ≤ C‖ϕ‖W−1,2
0 (Rn)

where W−1,2
0 (Rn) is the dual space of

W 1,2
0 (Rn) = {v ∈ D′(Rn);

v

ω
∈ L2(Rn)∇v ∈ L2(Rn)}

with

ω = 1+|x| if n ≥ 3 and ω = (1+|x|)ln(2+|x|) if n = 2.

Applying the previous inequality to f̃ , because Ω is bounded,
we get

‖I1f̃‖L2(Rn) ≤ C‖f̃‖W−1,2
0 (Rn)

≤ C‖f‖L2(Ω).

Finally, concerning the estimate of J1f , we need the following
lemma due to Calderon-Zygmund.

C. AMROUCHE Chérif AMROUCHE, University of PAU



Lemma (Calderon-Zygmund)

Let be K(x, y) = N(x, x− y), where N is homogeneous of degre
−n in y and
i) for any x, ∫

|y|=1
N(x, y)dy = 0,

ii) there exist q > 0 and C > 0 such that

∀x,
∫
|y|=1

|N(x, y)|qdy ≤ C,

then the operator defined by

Kf(x) =

∫
Rn
K(x, y)f(y)dy

is continuous from Lp(Rn) into Lp(Rn) , for any p such that
q/(q − 1) ≤ p <∞.
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Applying this lemma with N(x, y) = Kij(x, y). It is clear that
Kij(x, y) is homogeneous of degre −n in y and∫
|z|=1

Kij(x, z)dz =

∫
|z|=1

∫ ∞
0

(
δijθ(x+ rz)rn−1drdσz +

+ zi
∂θ

∂xj
(x+ rz)rn

)
drdσz

=

∫
Rn

(
δijθ(x+ y) + yi

∂θ

∂xj
(x+ y)

)
dy = 0

Finally, the property ii) is satisfied by using the fact that supp
θ ⊂ B and Ω is bounded, that finishes the proof of the
continuity property (23) and the first step of the proof of
Theorem 1.
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Second step. We know that every bounded Lipschitz domain
Ω is the union of a finite number of bounded domains, each of
which is starlike with respect to an open ball. Thanks to a
partition of unity subordinated to this covering, we extend the
result of the step 1 to the case where Ω is a bounded Lipschitz
domain.
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Third step. We have prove that

∀f ∈ D(Ω) ∩ L2
0(Ω), ∃u ∈ D(Ω) such that div u = f

with the inequality

‖u‖H 1(Ω) ≤ C‖f‖L2(Ω).

Let us consider now f ∈ L2
0(Ω) only. And let ψ ∈ D(Ω) fixed

with
∫

Ω ψ = 1 and

fk ∈ D(Ω) such that fk → f in L2(Ω).

Setting

Fk = fk − ψ
∫

Ω
fk

then
Fk ∈ D(Ω) ∩ L2

0(Ω), Fk → f in L2(Ω)

C. AMROUCHE Chérif AMROUCHE, University of PAU



and there exists uk ∈ D(Ω)n satisfying

div uk = Fk,

with
uk → u ∈ H 1

0(Ω) and div u = f.

Moreover
‖u‖H 1(Ω) ≤ C‖f‖L2(Ω).

C. AMROUCHE Chérif AMROUCHE, University of PAU



We are now in position to give some extensions.

Theorem 9.

For any integer m ≥ 1, the following operator

div : H m+1
0 (Ω)/Vm+1 7→ Hm

0 (Ω) ∩ L2
0(Ω) (24)

is an isomorphism, where

Vm+1 =
{
v ∈ H m+1

0 (Ω); div v = 0
}
.
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Proof. We give here a sketch of the proof and we consider only
the case m = 1, the same raisoning being avalaible for m ≥ 2.
We will use here the same arguments as in the point iii) of the
first theorem concerning the divergence operator defined on
H 1

0(Ω) and we would like to prove the following estimate:

∀f ∈ H1
0 (Ω) ∩ L2

0(Ω), ‖ ∂
2Rf

∂xk∂xj
‖L2(Ω) ≤ C‖f‖H1(Ω)

for any 1 ≤ j, k ≤ n.
Rewriting the relation (19) under the form

Rf(x) =

∫
Rn

z

|z|n
f̃(x− z)

∫ ∞
0

θ(x+ s
z

|z|
)(|z|+ s)n−1ds dy,

we obtain

∂Rf

∂xj
(x) =

∫
Rn

z

|z|n
∂f̃

∂xj
(x− z)

∫ ∞
0

θ(x+ s
z

|z|
)(|z|+ s)n−1ds dy

+

∫
Rn

z

|z|n
f̃(x− z)

∫ ∞
0

∂θ

∂xj
(x+ s

z

|z|
)(|z|+ s)n−1ds dy

= : g1(x) + g2(x).
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Estimate of ‖∂g1
∂xk
‖L2(Ω)n

As below, we prove that

‖∂g1

∂xk
‖L2(Ω) ≤ C‖

∂f

∂xj
‖L2(Ω).

Estimate of ‖∂g2
∂xk
‖L2(Ω)n

We remark that g2 is the same form as Rf , with the difference
that θ is replaced by ∂θ

∂xj
. Note that we does’nt use the property∫

B θ = 1 to find the estimate of the point iv). That means that
with the same raisonning, we obtain

‖∂g2

∂xk
‖L2(Ω) ≤ C‖f‖L2(Ω).

Hence we have established the result for f ∈ D(Ω) ∩ L2
0(Ω) and

proceeding as in the step 3 of the proof of the first theorem
concerning the divergence operator defined on H 1

0(Ω), we
extend this one to the case where f ∈ H1

0 (Ω) ∩ L2
0(Ω).
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Corollary 10. (De Rham in H−m−1(Ω) First Version)

Let m a positve integer and f ∈ H−m−1(Ω) satisfying

∀v ∈ Vm+1, < f , v >= 0.

Then there exists π ∈ H−m(Ω), unique up to an additive
constant, such that f = ∇π.
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Using then the densité of V(Ω) in Vm+1, we can prove the
following theorem:

Theorem 11. (De Rham in H−m−1(Ω), Second Version)

Let m a positve integer and f ∈ H−m−1(Ω) satisfying the
following property:

∀v ∈ V(Ω), < f , v >= 0.

Then there exists π ∈ H−m(Ω), unique up an additive constant,
such that

f = ∇π.
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As application, we can give a new proof of De Rham’s theorem.

Theorem 12 (Original De Rham).

Let f ∈ D′(Ω) satisfying the following property:

∀v ∈ V(Ω), < f , v >= 0.

Then there exists π ∈ D′(Ω), unique up an additive constant,
such that

f = ∇π.

Proof. It is an immediate consequence of the fact that we have
prove that the divergence operator

div : D(Ω)/V(Ω) 7→ D(Ω) ∩ L2
0(Ω).

is bijective.
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Theorem 13 (General Lions Lemma)

For any integer m and any 1 < p <∞,

f ∈ D′(Ω) and ∇f ∈W −m−1, p(Ω) =⇒ f ∈W−m−1, p(Ω).

G. Geymonat – P. Suquet (1986): m = 0

W. Borchers – H. Sohr (1990): m ≥ 0

C. Amrouche – V. Girault (1994): for any integer m
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IV. Second Equivalence Theorem:
Korn, Lions, Poincaré

Recall first the original Poincaré Lemma:

Let Ω a bounded open simply connected of R3 and let

f ∈ C1(Ω) such that curl f = 0.

Then
f = grad χ with χ ∈ C2(Ω).
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Theorem 14 (Equivalence Lions-Poincaré).

i) Suppose that Ω is simply-connected. Then the general J.L.
Lions lemma implies that the following Weak version of
Poincaré’s lemma holds: Assume that

f ∈ H−1(Ω) with curl f = 0 in H−2(Ω). (25)

Then there exists a scalar potential χ in L2(Ω), uniquely
determined up to the addition of a constant, such that

f = grad χ in Ω and ‖χ‖L2(Ω) ≤ C‖f ‖H−1(Ω). (26)

ii) Conversely, the weak Poincaré Lemma on any
simply-connected domain in RN implies that J.L. Lions Lemma
holds on any domain in RN .
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Proof. i) To prove that the general J.L. Lions lemma implies
the weak version of Poincaré’s lemma, let

f ∈ H−1(Ω) be such that curl f = 0 in Ω.

We know that there exists a unique

(u , π) ∈ H 1
0(Ω)× L2

0(Ω)

such that

−∆u +∇p = f and divu = 0 in Ω. (27)

Hence
∆(curl u) = 0 in Ω

so that the hypoellipticity of the polyharmonic operator ∆
implies that

curl u ∈ C∞(Ω).
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Since divu = 0, we deduce that

∆u = −curl curl u ∈ C∞(Ω).

Now ∆u is a smooth irrotational vector field and by the
classical Poincaré theorem, there exists q ∈ C∞(Ω) such that

∇q = ∆u = ∇p− f in H−1(Ω).

The distribution p̃ defied by p̃ = p− q satisfies

∇p̃ = f ∈ H−1(Ω).

Consequently, p̃ ∈ L2(Ω) by the general J.L. Lions Lemma.

ii) The converse is immediate. Indeed, suppose that the weak
version of Poincaré’s Lemma holds and let

f ∈ (D(Ω))′ such that ∇f ∈ H−1(Ω).

Because curl (∇f ) = 0 in Ω, there exists χ ∈ L2(Ω) satisfying

∇f = ∇χ.

Then f = χ+ C and f ∈ L2(Ω).
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V. The curl operator

Let us introduce the following space:

G = {v ∈ D(Ω); curl v = 0},

where we suppose here that Ω is a Lipschitzian bounded
domain of R3.

Theorem 11.

Let f ∈ D′(Ω) satisfying the following property:

∀v ∈ G, < f , v >= 0. (28)

Then there exists ψ ∈ D′(Ω) with div ψ = 0 and such that

f = curlψ.
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Proof. Note that the condition (28) implies that

div f = 0,

which is a necessary condition for that

f = curlψ.

To prove the result is equivalent to prove that the following
operator

curl : D(Ω)/G 7→ V(Ω)⊥K τ (Ω)

is bijective, where

K τ (Ω) = {v ∈ L2(Ω); div v = 0, curl v = 0 in Ω and v · n = 0 on Γ}.

Recall that

K τ (Ω) = {0} when Ω is simply connected.
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We will use here the same ideas as in the proof of Theorem 2.

Construction of the operator T.

Let f ∈ V(Ω) satisfying the following property:

∀v ∈ K τ (Ω),

∫
Ω
f · v = 0.

Instead of the operator R, we set

Tf (x) :=

∫
Ω
f (y)× x− y

|x− y|3

∫ ∞
|x−y|

θ(y + r
x− y
|x− y|

)rn−1dr dy,

(29)
where Ω is starlike with respect to some open ball B contained
it in and supp θ ⊂ B. Then, we verify that

f = curlTf and f = curlTf ∈ D(Ω).

And we finish the proof for general Lipschitzian bounded
domain as in Theorem 2.
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Thank you for your attention!
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