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I. Introduction and motivation

Let us consider in a bounded cylindrical domain 2 x (0,7") the
following Navier-Stokes equations

%";—Au—i—u-Vu—i-VW:f, divu=0 in Qx(0,7),
u(O)ZUO in Q)

where the unknowns w and 7 stand respectively for the velocity
field and the pressure of a fluid occupying a domain 2. Given
data are the external force f and the initial velocity ug. To
study Navier-Stokes equations it is necessary to add appropriate
boundary conditions.
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o The Navier-Stokes equations are more studied, since the
famous works of Jean Leray (1933, 1934), with a Dirichlet
boundary condition which is not always realistic since it
does not reflect the behavior of the fluid on or near the
boundary.

o In the applications and in particular in the
electromagnetism problems, it is possible to find problems
where it is necessary to consider others boundary
conditions. This boundary conditions (BC) are also used to
simulate flows near rough walls, such as in aerodynamics,
in weather forecasts and in hemodynamics, as well as
perforated walls. BC involving the pressure, such as for
example in cases of pipes, hydraulic gears using pomps,
containers, etc ...
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H. Navier has suggested in 1824 a type of boundary conditions
based on a proportionality between the tangential components
of the normal dynamic tensor and the velocity

u-n =0, 2vDu-n|_ +au,=0 on I'x(0,7) (1)
where v is the viscosity and « > 0 is the coefficient of friction

and ]
Du = §(Vu + VauTl)

denotes the deformation tensor associated to the velocity field
u. Observe that if « tends to infinity, we get formally

u=20 on T.

The Navier boundary conditions are often used to simulate
flows near rough walls as well as perforated walls.

Such slip boundary conditions are used in the Large Eddy
Simulations (LES) of turbulent flows.
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Using the following relation

2D(v)n], = —curlv x n —2Av onT,

where A is an operator of order 0 defined by

one can observe that in the case of a flat boundary and when
a = 0 the conditions (37) may be replaced by

u-n=0, curlu xn =0 on I'x (0,T). (2)

We call them Navier-type boundary conditions.
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We are interested here, in a first part, by the stationary case for
the Stokes equations:

—Au+Vr=§f in Q,
divu =0 in Q,

with one of the following boundary conditions:

uxn=gxmn and T =my onT, (3)
u-n=g and curlu xn=hxn onl, (4)
u-n=g and 2[D(u)n|.+aour=h onl. (5)
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We will study, in a second part, the case of stationary
Navier-Stokes equations:

Find w,m, a1, ...,ar,, with a; € R

—Au+u-Vu+Vr=f and V-u=0 in Q,
uxXn=gxn on I,

m=mo on I'gand m = mg + o only, i=1,...,1,
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where we suppose that 2 is an open set possibly multiply
connected sufficiently regular with a boundary I' possibly non
connected. We denote

J
r=Jr, =%
4 hef

with I'; the connected components of I' and ¥; a finite number
of cuts such that

J
=0\
j=1

is simply connected.
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Some works concerning the stationary Stokes and Navier-Stokes
equations with non Dirichlet boundary conditions:
e Scadilov-Solonnikov, 1973
o Conca-Murat-Pironneau, 1994
Neustupa-Penel, 2007
e Maruzic, 2007
Beirao da Veiga, 2009
Berselli, 2009
Mitrea-Monniaux, 2009
Amrouche-Seloula, 2011-2013
Amrouche-Rejaiba, 2014

e 6 6 o o
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Considering for example the case of the Stokes equations with the homogeneous
boundary conditions

(SO) —Au+Vr=f and divu=0 in{,
T u-n=0, and curluxn=0 onl.

Because these BC, we write

—Awu = curlcurlu — Vdivu
For the variational formulation, we will consider the following spaces:
V ={v e L*(), curlv € L}(Q), divv =0, v-n =0 on T},
HZ(div, Q) = {v € L3(Q), divv € L?(Q), v-n =0 on '}.

The Stokes problem (S2) is then equivalent to

Find w € V such that
VveV, [yecurlu-curlvde = (f, v)q.

We note that [HZ(div, Q)] — H~1(Q).
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Questions:

@ The bilinear form is it coercive to apply the Lax-Milgram
lemma, ?

We will see that if  is simply connected, we have:
VveV, |[v]giq < Cllcurlv|pzq,.

o What happens if €2 is not simply connected 7

e Can we find generalized solution in W P(Q) with
l<p<oo?

(]

Can we find strong solution in W *P(Q) with 1 < p < oo ?

(]

Can we find very weak solution in LP(Q) with 1 < p < 0o ?
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We need the following spaces, for 1 < p < oco:

HP?(curl,Q) ={v € L?(Q); curl v € LP(Q)}, HP(div,Q) = {v € LP(Q); div v € LP(Q)}

XP(Q) = HP(curl,Q) N HP(div, ),

and their subspaces:
HP(curl,Q) = {v € HP(curl,Q); v x n =0 sur I'},

HP(div,Q) = {ve HP(div,Q); v-n=0sur '},
X)) ={veX?PQ)svxn=0surT}, XP(Q)={veXP(Q);v -n=0surTl}
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II. Sobolev’s inequalities for vector fields

Lemma (Sobolev’s inequalities)

i) Any function v € W 1P(Q) with v x n = 0 satisfies:
I
IV olle () < C(lldivollze (@) + lleurl ollpaa) + > v - n, Dryl).  (6)
g=I
ii) Any function v € W L'P(Q) with v - n = 0 satisfies:
J
IV ollze () < C(lldivoll o) + lleurl ollpea) + > (v =, s, 1), (7)
j=1

v

W. Von Wahl (1992) (I =0, i.e I' is connected and J = 0, 7.e 2 is simply

connected).
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Idea of the proof of (6):

@ We consider the following double layer potential:

1

d ’
o g e

Ta@) =5 [ 2@ 5

where T': LP(I') — W LP(T) is continuous and then compact from LP(T")
into LP(T).

The Fredholm alternative implies that the dimension of Ker(Id + T) is
finite. In fact, we have the following characterization of the kernel Ker

(Id + T) which is spanned by the traces of the functions V qlN - n for

1 <14 < I, where qZN is solution of:

—Ag¥N =0 inQ, ¢¥ =0 onTly, ¢V =constant on I,

(On qlY, 1)FO =-1 and (Onql, 1>Fk =0, 1<kE<I.
Note that

(Pn)

KX (Q)={we XX (Q); curlw =0, divw =0 in Q}

is spanned by V qu for1<i<I
and K () = {0} if I = T, that means that I is connected.
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Thanks to the theorem of the open map we have for all v € W 1'P(Q):

I

o nllo@) < CUIId+T)(v-n)llLew) + Y [(v-n,r,]) (8)
i=1

We write the following integral representation: for any v € W P(Q) with
vXxn=0onl:

Id+T)(v-n) = 7% (grad/Q ﬁdivy v(y) dy) ‘n

_ % (mt/g ﬁroty v(y)dy) -n 9)
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@ Using the traces theorem, we prove that:

[Ud+ D) mlry < C([erad [~ divy o) dy
Q

|z -yl W LP(Q)

+ H rot/s; |a;iy|r0ty v(y) dwal,pm)).

@ Using the Calderén-Zygmund inequalities, we get:
[(Zd+T)(v - n)llLery < C (IdivollLe(q) + llrot vlze (o)) -

@ From (8), we deduce:

I

v nllem@ < C(ldivollLe o) + [[rot vl ey + > (v n, r,|). (10)
i=1
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@ Moreover, from (9) we have:

1
: < (I - [ d/ di dy|
loonll oz < (IT@ oI ooy, Herad] o divy ow)ay| s,

1
+ Hrot/irot v d 1 s
ooy "t (v) wal ;,p<r))

()

and by the traces theorem:

1
. < . = di
oonl s € Ol nli + [laraa [ divg viw) ay

3=

WL (Q)

+ Hrot/Q ﬁrotyv(y)dwal’p(m).

@ Using again the Calderén-Zygmund inequalities and (10), we obtain:
I

flv- nl\wlﬁ,pm < C(lldiv o[l Lr (o) + Irot vl o) + D (v, ). (11)

=1
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_1
@ Asve W' »’P ('), by the traces theorem, there exists u € W 1'P(Q) such that:

v=u suwl' and |ullwipg <Clol 1, .
wo P(T)
Because v x n =0 on I', we have v|r = (v - n)n. Using then (11), we get

< Clov-
Hu”leP(Q) = [lv "||W1_%,p(r)

IN

I
C(1ldiv vl o) + Irot vl oy + > 1w -n, Dryl).  (12)
=1

@ Asu—ve Wol’p(ﬂ), we know that for any function w belonging to Wol’p(ﬂ), we
have the following integral representaion integrale:

1 1 1 1
w=—grad — | —— divy w(y)dy + rot — / —— roty w(y)dy.
ar Jo Jo— vl i Jo o=yl
Thanks to the Calderén-Zygmund inequalities, we have
IV wle (o) < C(lldiv wlrq) + lIrot w1 (q))- (13)
@ Applying (13) to v —u € VVol’p(Q)7 we obtain:

IV (v—w)llgpq) < C(Hdiv V|| zp (@) +Idiv |l z» () +llrot v||gp o) +[Irot UHLP(Q))'
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Idea of the proof of (7):

We use the same ideas with the following linear integral
operator

RX(z) = 217r/rcur1( AlE) ) X ndog.
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Because the embeddings X §.(Q) < LP(Q) and X 2(Q) < LP(Q) are compact, by
using Peetre-Tartar Theorem and the previous inequality, we deduce the following
Poincaré’s type inequalities:

Corollary (Poincaré’s Inequalities)

i) We have v € X §(Q) — W 1P(Q) and for any v € X {(Q)
I
1o llw 1.0y < C(lldiv ollzo (@) + lleurl ollpagay + > v - n, Dry ).

=1

ii) We have v € X2(Q) — W bP(Q) and for any v € X2 (Q)
J

1o w1002 < C(l1divollo) + lleurl vl + > 10 », s ).
j=1
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Regularity properties

The previous results can be extended to the case of
inhomogeneous boundary conditions :

o Let Q of class C1! and

v e LP(Q), curlve LP(Q), dive e LP(Q)

with
v-nE Wl_%’p(f‘) or vXmneE Wl_%’p(f‘).
Then
ve Wh(Q).
Moreover

V| wiroy < CUlv|| ey +llcurl vl geoy+||div vl ey +v-ml| 501 2
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o Let Q of class C%>! and
veIP(Q), curlve WP(Q), dive e W'P(Q)
with
v-n e WQ_%"D(F) or vXmne Wz_%’p(I‘).

Then
v e WH(Q),

with the corresponding estimates.
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III. LP-Theory for Vector Potentials

To study the Stokes problems, we need some results concerning
the vector potentials and the inf-sup conditions.

Theorem (Tangential vector potentials)

u € HP(div, Q) satisfies: divu =0 inQ, (u-mn, 1>Fi: 0, 0<:i:<I,
iff there exists a vector potential ¥ dans X P(2) such that

u =curly and divy =0in , (14)
P-n=0 onT, (15)
(- m, 1)y =0, 1< < (16)

This function is unique and moreover, we have

1¥llw 1.00) < Cllwllze @)

v
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Remark: If
u € LP(Q) and divu =0,

the condition
(u-m, =0, 0<i<I,

is necessary and sufficient for the existence of vector potential
satisfying (14) and (15). While the condition (16)

(p-n, 1)y, =0,1<;5<J

ensures the uniqueness of ¥». When this last condition is not
satisfied, the vector potential ¥ exits up an additive vector
function of the the following corresponding kernel:

KP(Q) ={w e XE(Q); curlw =0, divw =0 in Q}.
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To characterize this kernel, let us introduce the following space
0={re H'(Q°); [r]; = constant, 1 < j < J}.

For each 1 < j < J, there exists a unique solution qJT € HY(Q°),
up to an additive constant, satisfying

Vr € 0, / Vq;fF-Vr:[r]j
QO

where [x]; is the jump of x through ¥;.
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In fact, we have

Ot =0 on I,

(nal 1) =bj 1Sk <,
2k
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Let us consider any extension to L?(f2) of quT which is denoted
by g?z;d q;‘-F. It is easy to verify that
div g;;d qu =0, curl g;;d qu =0

and thanks to the regularity results of vector fields, we deduce
first that -
grad qu c H'(Q),

and then by boostrap argument that
gradq! € W?(Q),
Moreover, K ¥ () is spanned by
g?a/dq;‘-r, j=1...,J

Remark that K7.(Q) = {0} if J =0 (i.e Q is simply connected).



Theorem (Inf-Sup condition in Banach spaces)

Let X and M be two reflexive Banach spaces and X’ and M’ their dual spaces.
Let a be the continuous bilinear form defined on X x M, let A € £(X; M’) and
A’ € L(M; X') be the operators defined by

Yo e X, Yw € M, a(v,w) = < Av,w > = < v, A'w >

and V = Ker A. The following statements are equivalent:
i) There exist 8 > 0 such that

inf sup _a(,w) > B. a7)
weM yex [vllx [lwlla
w#0 =0

ii) The operator A : X/V +— M’ is an isomophism and 1/3 is the continuity

constant of AL,
iii) The operator A’ : M — X’V is an isomophism and 1/8 is the continuity
constant of (A’)~1.
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Remark

As consequence, if the Inf-Sup condition (17) is satisfied, then we have the
following properties:

i) Because A’ : M +— X’1V is an isomophism, then for any f € X', satisfying the
compatibility condition
YoeV, < fv>=0,

there exists a unique w € M such that
1
Yo € X, a(v,w) =< f,v> and HWHMSE”fo“ (18)

ii) Because A : X/V +— M’ is an isomophism, then for any g € M/, Jv € X,
unique up an additive element of V/, such that:

1
Vw e M, a(v,w) = <g,w> and |[|x/v < B”g”M’
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We define the space
VE(Q) = {w e X5(2); divw =0inQand (w-n, 1)s, =0, 1 <j < J},
which is a Banach space for the norm || - || x»(q)-

Using some classical Helmholtz decomposition and the previous
tangential vector potential, we can deduce:

Lemma (Inf Sup Condition)

The following Inf-Sup Condition holds: there exists a constant
B > 0, such that

Jocurl§ - curl p da

inf sup > 3. (19)
pevr @ eevh@ I€llx@llelyr o
@#0 £#0
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Theorem (Normal vector potentials)

u € LP(Q) satisfies:
u-n=0onI and divu=0 inQ, (u-n,l)zj:[), 0<j<J,

iff there exists a vector potential ¥ in X P(€2) such that

u =curly and divy =0in Q, (20)
WYxn=0 onl, (21)
(-, L)y, =0, 1<i< 1. (22)

This function is unique and moreover, we have:

1Yllw1p@) < Cllulle o)
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Remark : For
u e LP(Q), with dive=0 inQ and w-mn=0onT,
the condition
(u-n, 1>2j: 0, forl<j<J,

is necessary and sufficient for the existence of the vector
potential v satisfying (20) and (21). The condition

(-m,1)p =0, for0<i<I

ensures the uniqueness of .
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Idea of the proof

@ We use the Inf-Sup condition (19) to solve the problem:

Find ¢ € W 1'P(Q) such that:

—A€E=0 and divéeé =0 in €,
(P) & n=0,curlé xn=19y,xn onl,
(§-n, s, =0,

where 1) is the tangential vector potential.

@ The required vector potential is given by:

I
Y =y —curl€ — Z((t{:o —curlg) - n, 1)r, grad q;‘:\“

i=1
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We define now the space
VE(Q) ={we X (Q); divw =0inQ and (w-n, L)p, =0, 1 <i < T},
which is a Banach space for the norm || - || x»(q)-

Using a Helmholtz decomposition and the previous normal
vector potential, we can deduce:

Lemma (Inf Sup Condition)

The following Inf-Sup Condition holds: there exists a constant
B > 0, such that

Jocurlé - curlpdz

inf sup > B. (23)
pevr @ eevi @ I8llxz @ el yr
©#0 £#0
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IV. Stokes stationary problem with normal
boundary conditions

—-Au+Vrn=f in Q,

divu =0 in €,
(Sr)

u-n=g, curlu xn=hxn onl,

(u-n, L), =0, 1<5<J
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IV. Stokes stationary problem with normal
boundary conditions

—-Au+Vrn=f in Q,

divu =0 in €,
(Sr)

u-n=g, curlu xn=hxn onl,

(u-n, L), =0, 1<5<J

@ We solve the pressure 7 : because divp(z X n) = curl z - n, we have

Ar=divfinQ, 2% =f.n+divp(hxn)onT

T
on

C. AMROUCHE Chérif AMROUCHE, University of PAU



IV. Stokes stationary problem with normal
boundary conditions

—-Au+Vrn=f in Q,

divu =0 in €,
(Sr)

u-n=g, curlu xn=hxn onl,

(u-n, L), =0, 1<5<J

@ We solve the pressure 7 : because divp(z X n) = curl z - n, we have

Ar=divfinQ, 2% =f.n+divp(hxn)onT

n

@ Weset F =f — Vx. Then, u is a solution of the following elliptic problem:

—Au=F in Q,

divu =0 in Q,
(Er)

u-n=g, curlu xn=hxn onl,

(u-n, s, =0, 1<5<J
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IV. Stokes stationary problem with normal
boundary conditions

—-Au+Vrn=f in Q,

divu =0 in €,
(Sr)

u-n=g, curlu xn=hxn onl,

(u-n, L), =0, 1<5<J

@ We solve the pressure 7 : because divp(z X n) = curl z - n, we have

Ar=divfinQ, 2% =f.n+divp(hxn)onT

n

@ Weset F =f — Vx. Then, u is a solution of the following elliptic problem:

—Au=F in Q,

divu =0 in Q,
(Er)

u-n=g, curlu xn=hxn onl,

(u-n, s, =0, 1<5<J

@ To solve the Stokes problem (St), we are reduced to solve the problem (Er).
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e Contrarly to the Stokes problem with Dirichlet boundary
condition, it appears that when

divf=0 inQ and f-n=divp(hxn)=0 onT,

the pressure m can be constant.

@ In the case of the Stokes problem with Dirichlet, even if
divf=0 inQ and f-n=0 onl,

we have Awu -n # 0 on I' and then 7 is non constant.
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Study of the elliptic problem :

—Au=f in Q,

divu =0 in Q,
(Er)

u-n=g, curlu xn=hxn onl,

(u-n,1)s, =0, 1<j5<J
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Proposition (Weak and Strong solutions of (E 1))

o —dL —dk
1) Let f € LP(Q) withdivf =0in Q, g€ W' #P(I") and h € W~ #»*(I)
satisfying the following compatibility condition:

VveK%l(Q), /f-vder(th,v) =0,
Q

w B Pmxwr? (r)
f-n+divir (h xn) =0 onT,

/gda:(].
Iy

Then, the problem (E 1) has a unique solution u € W 1'P(Q) satisying the
estimate:

lullw o) < CI1F @ + 19l 1-1/maey + 1B X 0l -1/m0(r) )-

ii) If g € W2-1/2P(I') and h € W '~1/P:P(T), then the solution u belongs to
W 2:P(Q).
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Theorem (Weak and strong solution of (Sr))

i) Let f, g, h with:
’ 1
feHE [@iv, Q), ge WD), he W BP(ID),

’
verifying the compatibility conditions: for any v in K% (92):

; 4 / h 3 / =0.
(f 'U>(H(§’ (div, )/ x B (div, Q) + (hxn v>W_%'p(F)><W%’p @

/gda’ = 0.
r

Then, the Stokes problem (S7) has a unique solution
(u, ™) € W LP(Q) x LP(Q)/R satisfying the estimate:

s llw oy Himloe) < (171 grg g,y 190 1o g HlBRIL 2 )

i) If f € LP(Q), g € W2=L/PP(T), h € W 1=1/PP(I") then the solution (u, )

of the problem (S7) given previously belongs to W 2P(Q) x W LP(Q).

with'divu = v in O

Remark: We can consider the case of the problem (S X
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Very weak solution for (St)

Let f, x, g, and h with

Fe(TP (), x € LP(Q), g€ WHPP(D), h e W —1/Pe(D),

with TP (Q) = {Lp e HY (div, Q); dive € W7 (Q)} and satisfying the
compatibility conditions:

VQOEKQE (Q)v <f7 90>(Tp’(9))/pr’<Q)+<thv ‘P)FZO-

/Qxdw = (g, r.

Then, the Stokes problem (S7) has exactly one solution w € L?(2) and
m € W —LP(Q)/R. Moreover, there exists a constant C' > 0 depending only on p
and 2 such that:

lullze @) + I7llw 1o r < C(Hf Iz oy HIxIze@)+lglly 17000y +
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Helmholtz Decomposition for vector fields in L”(()

For any vector field v € LP(2), we have the first following
decomposition:
v=2z+Vyx+curlu,

o z € KX () is unique,
o y € W,P(Q) is unique,

o u € WHP(Q) is the unique solution, up to an additive element
of the kernel K7(€2), of the problem :

—Au=curlv and diveu =0 in{,
u-n=0, (curlu—v)xn=0 onl.
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Helmholtz Decomposition for vector fields in L”({)

For any vector field v € LP(2), we have the second following
decomposition:
v=2z+Vy+curlu,

o z € K(9) is unique,
o y € W1P(Q) is unique up an additive constant,

o u € WP(Q) is the unique solution, up to an additive element
of the kernel K X (), of the problem :

—Au=curlv and divu=0 in
uxn =0, on I'.
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V. Stokes Equations with Pressure Boundary Condition

—Au+Vr=f in Q,

divu =0 in
(Sn)

UXn=gxmn, T =T on I,

(u-n, )y, =0, 1<i<I.

@ The pressure can be found independently of the velocity as a solution of the
Dirichlet problem:
Anr=divf in Q, 7w=m9 on T

@ The velocity is a solution of the following system:

—Au=F in Q,

divu =0 in Q,
(EN)

UXn=gxmn on I,

(w-n, )y, =0, forall 1 <i<1,
where F =f -V
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Remarks:
@ The condition div F = 0 in € is necessary to solve (En).

@ The condition divu =0 in 2 <= divu = 0 on I on the one hand. On the other
hand, since

o
divu:divruT+Ku-n+8—u-n sur T,
n

where K denotes the mean curvature of I', the condition divu = 0 on T is itself
equivalent, if 4 X n = 0 on I', to the Fourier-Robin condition:

4]
Ku-nJr—u-n:O on I
on

That means that the problem (Ep) is equivalent to the following:

—Au=F in Q,
uxn=0 on I’

7]
Ku-'n,Jr—u-n:O on I
aon
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Using the Inf-Sup condition, we deduce the following theorem

Theorem (Weak and Strong solutions for (Sy))

i) Let f, g, mo with

fe (Hopl(curl’ Q), ge W 1/PP(D), 7o e W1-1/PP(T),

satisfying the compatibility condition:

VvEK]I\’,l(Q), (f,v>gf/7r0v~nd0':07 (24)
T
with <.’ >Q - <.7 >[H0p/ (curl,Q)]’XHopl(curl,Q).

Then, the Stokes problem (S n) has a unique solution
(u, 7) € W LP(Q) x W LP(Q) and satisfies the estimate:

lullwiv@) +I7llwire < C(

”f ”(Hénl(curl, Q) + ”g X n”wlfl/p,P(F) P

+ ||7r0HW1—1/p,p(r)>~

ii) If f € LP(Q) and g € W 2=1/PP(T"), then u € W 2P(Q).
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Question:

What happens if the previous compatibility condition is not
satisfied?

Variant of the system (Sy) :

Find (u, 7, ¢) such that:

—Au+Vr=Ff and divu=0 in{Q,
(Sh) UXN=9gXn onl,
N

m=m9 only and mw=myg+¢ onlj, 1<i<T
(u-n, L)r, =0, 1<i<I,

where ¢ = (Ci)lgigl-
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Theorem (Weak and Strong solutions for (S}))

Let f, g and mp such that:

feHY (curl, Q), ge WIYPPM) moewl-l/ee(D),

Then, the problem (S};) has a unique solution u € W 1'P(Q), 7 € W 1:P(Q) and
constants ci, ..., cy satisfying the estimate:

lwllw 1.0 0) + 17l 10 @) < C(IFI +lglly 1-1/p,2 + 170l 1-1/5,5)

/
[H[f) (curl, )]/
and where c1,...,cy are given by

ci=(f, Va)a — (m0, Vg - n)r. (25)

In particular, if f € LP(Q2) and g € W 271/PP(T), then u € W 2P(Q).

Remark :

@ Observe that if we suppose that the compatibility condition (24) is verified, we
have that: ¢; =0 for all s = 1,...,I. Then, we have reduced to solve the problem
(8’y) without the constant ¢; and (S'y) is anything other then (S y).
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The assumption on f in the previous theorem can be weakened
by considering the space defined for all 1 < 7, p < oc:

H ;" (curl, Q) = {p € L"(Q); curly € LP(Q), pxn =0onT}.
which is a Banach space for the norm

el ?curt, o) = lellzr @) + [curle| zr o).

We can prove that
D(Q) is dense in Hg/’p/ (curl, Q)

and its dual space can be characterized as:
[Hor/’p,(curl, Q) ={F +curly; FeL(Q), ¥ LP(Q)}.
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Theorem (Second Version for Weak solutions for (S4))

Let f, g and 7 such that
fe [Hg/,p/(curl’ Q)]/, gxmne Wl_l/pyp(l—‘)’ 7o € I/Vl—l/r,r(l—\)7

with

r<p and < -+

S|
W =

1
p
Then, the problem (S};) has a unique solution

we WHP(Q), meWwWb"(Q)

and constants cy, ..., cy satisfying the estimate:

lullw o+ lrlhw i@ < CUF g o e o

+ g x nllwlfl/p,p(p) + ||7ro||W 171/%7'(1*))7

and ci,...,cy are given by (25), where we replace the duality brackets on £ by

{nda={( >[H,’p,(curl, Q) xH P (curl, Q)
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Theorem (Very weak solutions for (Sy))
Let f, g, and my with

f e [HY (curl, Q)), g € W PP(T), my e W HeP(T),

and satisfying the compatibility conditions (24). Then, the
Stokes problem (S ) has exactly one solution

u € LP(Q) and we LP(Q)/R.

Moreover, there exists a constant C' > 0 depending only on p
and (2 such that:

lullzr @) + |7l r)r < C(Hf ||[H§'(Cur17m],+H 9llw—1mery +

+ 7ol -1/mmgry )
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. To study the case of Navier boundary conditions:
u-n=0 and [D(u)n|_ =h,
it suffices to observe that
2D(v)n|, = —curlv x n —2Av onT,

where A is an operator of order 0 defined by

and to use the results obtained with the Navier type boundary
conditions.
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VI. Oseen and Navier-Stokes Problem with Pressure
Boundary Condition

We are interested to study the following problem:
Find u, ¢ and a € RY satisfying:

—Au+4+u-Vu+Vg=f and divu=x inQ,
uXn=g onI',

NS
N'S) qg=qo onT'pand ¢ =qo + onTy, i=1,...,1,

Jp,u-ndoe=0,i=1,...,1,

@ Note that « is a supplementary unknown Stokes which depends in fact on u

@ If we take x = 0 and g = 0, unlike the Navier-Stokes problem with Dirichlet
boundary conditions de Dirichlet, the property: [o(u -V u) - udz = 0 does not
hold.

@ But, we have

1
u-Vu:curluXu+5V|u|2
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We rewrite then (NS) under the following form:

—Au+tcurlu xu+Vr=f in{,

divu =y in €,
(NSnw) uxn=g onT,
m=mg sur [getmr=mg+a; only, i=1,...,1,

friu~nda:O, i=1,...,1,
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Remarks.

o We can search directely weak solutions u € H'(Q) and
7 € L*(Q) of the system (NS ) by using a fixed point method.

o We can then obtain solutions u € W 17(Q) for p > 2 thanks to
the Stokes problem theory.

e The case p < 2 to study the (NS y) system is more
complicated.
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Remarks.

o We can search directely weak solutions u € H'(Q) and
7 € L*(Q) of the system (NS ) by using a fixed point method.

We can then obtain solutions w € W (Q) for p > 2 thanks to
the Stokes problem theory.

The case p < 2 to study the (NS ) system is more
complicated.

e For this reason, we will study the Oseen problem (OSy).
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Study of problem (OSy)

—Au+tcurlaxu+Var=Ff inQ,

divu =0 in €,
(OS N) uxn=0 on T,
T =m0+ ¢ onl;, 0=1,...,1,

\friu-ndazo, i=1,...,1,

where we have take y = 0 and g = 0. We suppose also that

curla € L3/%(Q)
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We introduce the following Hilbert space:

V= {veHl(Q); divo=0inQ vxn=0onT

and friv-nzo, 1§i§[}

1/2
v (/ ]curlv\Q)
Q

is a norm on V y equivalent to the full norm of H *(Q).

and recall that
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Before establishing the result of existence of a weak solution for the problem
(OSn), we will see in what functional space it is reasonable to take w9 and to
find the pressure 7w appearing in (OSy), knowing that we are first interesting to
velocity fields in

we HY(Q) with fe L%%(Q).

With a such vector u, we have
curla x u € L%5(Q) — H ~1(Q).

Since Au € H ~1(Q), we deduce from the first equation in (OSy) that
V€ H~1(Q). Then the pressure 7 belongs to L?(£2). Furthermore,

—An=divf —div(curla X u) in Q,

so that A7 € W ~1:6/5(Q) and the trace of w on I belongs to H ~1/2(T") so that
we must assume that
mo € HY2(I).
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Theorem

Let

feL%5Q), moeH Y?T) and aeD/(Q) suchthat curlae L3?(Q).
Then, the problem:

Find (u, T, ¢) € Vv x L2(Q) x RIHL satisfying (OSy) with (m, 1)r =0 (26)

is equivalent to the problem: Find uw € V) such that

Vve Vy, /curlu-curlvdw+/(curla>< u)~v:/f~vdx—<7ro,v~n)p
Q Q Q

(27)
and find constants cy, . ..,cy satisfying Z{:o c¢; mes'; + (mo, 1)r = 0 and such
that for any i =1,...,1:

ci—coz/‘f‘VqZNdm—/(curlax w) - Vg de— (7o, V¢V - nr. (28)
Q Q
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Using the Lax Milgram theorem and some regularity result of
the Laplacian, we prove the following theorem.

Theorem

Let fe LS/5(Q), curla € L*2(Q) and mo € H~'/2(T'), then the
problem (57) has a unique solution

(u, m, ) € HY(Q) x L?(Q) x R with (7, 1)r = 0 and we have
the following estimates:

lullgrs@y < CI Al + Imollg-oy)s  (29)

7l z2() < C(1+ |lcurl aHL3/2(Q)) (HfHLG/a(Q) + 7ol g -1/2(r))

(30)
where ¢ = (co, . ..,cr). Moreover, if mg € W Y68/5(1) and Q is
C2>', then u € W>5/5(Q) and = € W 1/5(0Q).

v
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Remark

Even if the pressure m change in ™ — co, the system (OSyN) is equivalent to the
following type-Oseen problem:

—Au+curlaxu+Var=f and divu=0 in Q,
uxn=0 on I,
m=m9 onlg, and w=7mg+a; t=1,...,1I, onT}y,

fF’iu-nda:O, i=1,...,1,

where the unknowns constants satisfy for any i =1,...,1:

ai:/‘f-VqZNd:vf/(curlaX u)-VqZNdzf(ﬁg,VqZN-n)p.
Q Q

But, it is clear that the new pressure m does not satisfy the condition (w, 1)r = 0.
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Remark

If we suppose that
fe [H(curl, Q)), curlae L¥?(Q) and mpe H-V2(D),

then the problems (26) and (27)-(28) are again equivalent, with
the difference that we use here the duality brackets between
[H()G’Q(curl7 2)]) and Hg’Q(curl, Q) in place of the integral on
in the right hand side of (27) and the density of Dy () x D()
i the space

M = {(u, 1) € HA(Q)xL*(Q); —Au+Vr e [H(curl, Q)]

It is easy now to extend the previous theorem to the case where
o fe [H(?’2(curl, ),

e the divergence operator does not vanish
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Theorem
Let f€ [HP?(curl, Q)], curla € L3/2(Q), x € W 16/5(Q), 7o € H1/2(T") and
g€ HY?(T"). Then the problem

—Au+curlax u+Vr=f and divu=yx in €,
uXn=gxn on I

y , ? (31)
m=m9 onlp, and w=mo+a4, i=1,...,1 only,

Jp u-nde =0, i=1,...,1,

has a unique solution (u, w, &) € H(Q) x L?(Q) x R! werifying the estimate:
lullgi) < C<||fH[H[§i,2(curLQ)]/ + 7ol gr-1/2¢py + (1 + lleurl afl ;3/2 ) X

x (bl s @y + 1 9lm1r2my)),

Imlze@) < C(L+ leurlal gasaay) (112 et ey + 170l rr—1/20y +

+ (1 + [|curl a||L3/2(Q)) X (”XHW 1,6/5(Q) T Il 9”H1/2(F))>7
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In the rest of this talk, we suppose that
Q is ¢t

and we are interested in the study of strong solutions
u € W2P(Q) for the system (OSy) when p > 6/5.

When p < 3, because the embedding W 2P (2) < W LP*(Q), the
term curla x w € LP(Q2) and we can use the regularity results
on the Stokes problem. But this is not more the case when

D> % and that curl a belongs only to L3/2(Q).

We give in the following theorem the good conditions to ensure
the existence of strong solutions.
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Let p > 6/5,
feLPQ), moe W' V/PP(T), curla € L°(Q)
with 3 3 3 3 3
szgifp<§7 s=pifp>§, S=§+EifP=§: (32)

for € > 0 arbitrary. Then the solution (u, 7) given by the previous theorem
belongs to W 2:P(Q) x W LP(Q) and satisfies the estimate:

lullw 2.0 @) + I7llw 100 < C(1+ lleurlalizs o)) (Ifllze (@) + Tl 1-1/0.0 (1)) -
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In the following theorem, we prove the existence of Generalized
Solutions with p > 2.

Theorem

Let
p>2 felH P (curl, Q), xeW'T(Q) and ge W!~1/PP(D),

We suppose that mp € W l’l/T*T(F) and curl a € L*(2) with % = i + % and s
satisfies:

3 3
5:5 if 2<p<3, s:§+aifp:3 and s=r if p > 3,

for some arbitrary € > 0. Then the problem (31) has a unique solution
(u, m, @) € WhP(Q) x W L7 (Q) x R satisfying the estimate

lullwir) +  I7llw 1) < C(1+llcurlal|gs ) =

2
) (”'f”[HOT/’p/(curl,Q)]/

+ 9l s 1/m2ry + 170l 11 /ey + Xl 2mc2) (33)
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e Generalized Solutions (p < 2):

Using a duality argument, we obtain the following result :

Theorem

We suppose that p < 2. Soit f € [H; P (curl, Q)]’, curla € L*(f2) and
mo € W1=1/77(T) with

. 3 9+ 6c 3 3p . 3
=1 ! if — = fp=— dr= f = 2 34
r +€ i p<27 T 9+261 p=g andr 317 i 2<p< , (34)
3p 3 3 3 3 . 3
=(14€)——————ifp<=, s=-+cif p== and s== if = <p<2,
(+E)4p—3—e’(3—p) fp<g, s 2—‘1—61 p=gends=g if o <p

(35)
where €, € > 0 are arbitrary. Problem (OS ) has a unique solution
(u, m, @) € WLHP(Q) x W L7 (Q) x R! satisfying the estimate:

lullw 1.0(0) < C(1 + [[curlaf zs (o) Q(HfH[HOr’,p’(wﬂ’Q)], + llmollw 1-1/r. ()

Il 1.may < O+ lleurl allps @) (15 g o ey iy + I0llw 1-1/7me0)
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The Navier-Stokes problem (NSy)

(—Au+curluxu+Vr=Ff inQ,
divu =y in €,
(NS ) Juxn=4g on I,
m=myonl;and m=my+¢ onljy,
\fFiu-ndazO, r=1,...,1,
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In the search of a proof of the existence of generalized solution
for the Navier-Stokes equations (NS ), we consider the case of
small enough data.
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Theorem

Let
fe [Hg/’p/(cul‘l, Q)]/, = W1,T(9)7 ge Wl—l/PqP(FL 7o € Wl—l/r,r(r)

with 5
>— and r=
=3

i) There exists a constant o1 > 0 such that, if
1057”11 3+ 8l w372,y + ol 1277y < 00,
then, there exists a solution
(u, m, ¢) € WHP(Q) x W1T(Q) x R

to problem (N'S ) verifying the estimate

el w2y < OO gy e, ey HIX Ly 8l a1y 0l 12/




ii) Moreover, there exists a constant ag €]0, 1] such that this solution is unique, if

£

[Hgl'p,(curl,ﬂ)]/ + lIxllw 1r) t+ ”g”Wl—l/p,p([‘) + ||7T0HW 1—1/7,r(T) < ag.
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Let us consider in a bounded cylindrical domain € x (0,7") the
following linearised evolution Stokes problem

{%’;—Au—i—Vw:f, divu =0 in Qx(0,7),
u(0) = ug in Q,

(36)
where the unknowns w and 7 stand respectively for the velocity
field and the pressure of a fluid occupying a domain 2. Given
data are the external force f and the initial velocity wyg.
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To study Stokes Problem (36) it is necessary to add appropriate
boundary conditions. Note that this problem is often studied
with Dirichlet boundary condition, which is not always realistic
since it does not reflect the behavior of the fluid on or near the
boundary.

H. Navier has suggested in 1824 a type of boundary conditions
based on a proportionality between the tangential components
of the normal dynamic tensor and the velocity

u-n =0, 2vDu-n| +aur, =0 on I'x(0,7) (37)

where v is the viscosity and a > 0 is the coefficient of friction
and Du = %(Vu + Vu”) denotes the deformation tensor
associated to the velocity field u.
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Using the following relation
2D(v)n]. = —curlv x n —2Av onT,

T

where A is an operator of order 0 defined by

one can observe that in the case of a flat boundary and when
a = 0 the conditions (37) may be replaced by

u-n=0, curlu x n =0 on I'x (0,7). (38)

We call them Navier-type boundary conditions.
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Some works concerning the evolutionary Stokes and
Navier-Stokes equations with non Dirichlet boundary
conditions:

e Yudovitch, 1964 (in 2D)

e Miyakawa, 1980 (Neumann BC)
e Saal, 2006 (Robin BC)

e Shimada, 2007 (Robin BC)

e Mitrea-Monniaux, 2009

e Al Baba-Amrouche, 2014
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Our purpose is to obtain a semi-group theory for the Stokes
operator with Navier or Navier type-boundary conditions on
LP-spaces as it is well known for Dirichlet conditions.
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Analyticity results

Because if
divu=0 inQ and curluxn=0 onl,

then
Au-n=0 onl.

This means that we will study the Laplacian operator with
Navier type boundary conditions:

Gu _ Au = f, divue =0 in Qx(0,7),
u-n=20, curlu xn =0 on I'x (0,7),
u(0) = ug in Q.
(39)

To solve Stokes Problem (36) we use weak-Neumann problem:
div (grad 7(t) — f(t)) =0 in Q, (gradn(t)— f(t))m=0 onI.
(40)



Analyticity results

We define the Laplacian operator with Navier-type boundary
condition by

A Dy(A) C LE () — LE (), (41)
where

L2.(Q) = {feLp(Q); divf=0inQ f-n=0on r}
(42)
and

D,(A) = {ve L (Q) : Ave L, (),
and curlv xn =0 on F} (43)
with
curlv xn =0 on I' inthesense W1=1/PP(T),
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Analyticity results

e The Laplacian operator defined above is a densely defined
operator:

D,(A) isdensein LP ()
e Suppose that Q is of class C*!, then
D,(A) = {u e W2P(Q); dive = 0in Q,

v-n=0, curlvxnzoonf} (44)

C. AMROUCHE Chérif AMROUCHE, University of PAU



Analyticity results

Let 0 < 0 < 7/2 and let ¥y be the sector
Yy = {/\ e C |arg | < 7T—0}.

Definition. Let X be a Banach space. We say that a linear
densely defined operator A : D(A) C X — X is sectorial if
there exists a constant M > 0 such that

M

Ve 297 ||R()‘7 A)HE(X) < W’

(45)

where R(\, A) = (AT — A)~L.
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Analyticity results

An operator A generates a bounded analytic semi-group if and
only if A is sectorial.

However, it is not always easy to prove that an operator is
sectorial in the sense of the previous definition. However, it is
suffices to prove in the half plane

{Ae C*; ReA > w}, forsome w > 0.

Proposition
Let A : D(A) € X —— X be a linear densely defined operator,
let w >0 and M > 0 such that

M

YAEC, ReAzw, RO, Allee) < 7

Then A is sectorial. )
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Analyticity results

Let us consider now the problem:

(46)

Au—Au=f, divu =0 in Q,
u-n =0, curlu xn =0 on T,

where A € ¥, with € € |0, 7 be fixed and f € Lb _(€2).
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Analyticity results

Existence and Resolvent estimate

Theorem

Let A € 3. and let f € LY (Q), with 1 <p < .

o The Problem (46) has a unique solution u € W1P(Q).
Moreover if Q is of class C>' then u € W2P(Q).

o In addition for Re\ > 0, i.e. for e =m/2, the solution u
satisfies the estimate

C(Q,p
fulzro) < S Sl (47)

o The Laplacian operator with Navier-type boundary
conditions generates a bounded analytic semi-group on

L7, ().
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Analyticity results

Sketch of the proof

We first recall some properties:

o For all v € D,(A) and for any ¢ € W' (2) such that
divip =01in Q and ¢ - n =0 on I', we have the following
Green-Formula:

—/A'v-cpdx = /curlv~curlcpda:, (48)
Q Q

where
— Av = —grad(divv) + curlcurlw. (49)
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Analyticity results

Existence

The proof is done in three steps:
(i) For p = 2: Consider the space

V2(Q) = {v e L*(Q): curlv € LA(Q),
divo=0inQ, v - n=0 onr} (50)
which is a Hilbert space for the norm:

[ollyzg) = (1032 + leurlolbag)?  (5D)
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Analyticity results

Now consider the variational problem: find uw € VZ(Q) such
that for any v € VZ(Q)

a(u,v) = / f-oduz, (52)
Q
where

a(u,v):)\/u-ﬁdx+/curlu~curl@dx. (53)
Q Q
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Analyticity results

For the coercivity, observe that since A\ € Y. there exists a
constant C. > 0 such that

Va,b>0, IAa + b > Co(|A\|a + b). (54)
As a result:
la(u,u)| = ‘)\ HuHig(Q) + chrlu\|ig(m|
> (N ulz ) + leurluf 2 )
> Ce min(lM,l)lluH@g(Qy

Using Lax-Milgram lemma, we get the existence of a unique
solution

u € ViQ)— H(Q)
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Analyticity results

Existence

(ii) For 2 < p < 6: We use the Sobolev imbedding
H'(Q) — L5(Q) and we write our problem in the form

{ —Au=F, V-u=0 in , (55)

u-n=0 curluxn=0 on I,

where

F=7f—\ue LP(Q).

Thanks to (Amrouche-Seloula, 2011), the solution w belongs to
WP(Q) (to W2P(Q) if Q is of class C>1)
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Existence

(iii) For p > 6: Because the Sobolev imbedding
Who(Q) — L®(Q)

we have again

F=f—\uc L(Q).

(iv) For p < 2: The existence of solution is proved by a
duality argument.
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Resolvent estimate

(i) For p = 2: The resolvent estimate is immediate, we
multiply the first equation of Problem (46) by w and we

integrate both sides.
(ii) For p > 2: Multiplying the first equation of Problem (46)

by |u|P~2 @ and integrating both sides one gets

-2
A/|u]pdx—|—/|u|p_2|Vu|2dm+4p2/|V|u!p/2|2d:c

4 a'u,
(p—2) Z/|up Re 3 o )Im(am )dx
90U, _ _ _
- /F|u\p 2(an)_r-uda+/9\u|p 2f-adx. (56)
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Next using the fact that Q is of class C*! and

curlvxn = V. (v-n) — ( ) Z(as 'v.,-) T on I,
J

J=1

we can easily verify that

’/Flu\pz(gz)T.qua‘ < C1(Q) /1“’u|pda'
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We split formula (56) in to parts: the real and the imaginary
part and we study each part separately.
_ p—2
Re A Juls o +/Q|up 2 yvuy2dx+4p2/Q|V|uyp/2\2dx
< ) [ [uPdo + [ Flpolullsly (57
and

-2
Al < 25 [ 1l [V uf dat ) [ updas

+ 1 fllze@lullg) (58)
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Now putting together (57) and (58) one has
Al lul® 2 vultde + 4222 [ v up2a
Al lellze o) + A " Vulfde + 475 Q| P77 d

p—2 - -
< 22 [ur VP da+20@) [ ul do 2 ool

Using, for any € > 0, the following inequality, with w = |u|P/?,

/|w|2d0 < 5/|Vw|2dx + C’E/ lw*d z, (60)
T Q Q
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Applying formula (60) to w = |u[?/? and substituting in (59)
one gets

_ p—2
Nl + [ 2 [V ufae + 4222 [ 9 jupPae

-2
< p/\u|p—2|vu|2dx+201(9)[g/ |V|u|p/2]2dx+05/ uf
2 Jo Q Q

+2 H-f”Lp(Q)Hu”I]j_';gQ)’

We chose ¢ > 0 such that e C1(Q2) = p;f. As a result the

constant C. in (61) depends on p and . Then by setting
C. = C5(92, p) one has
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one gets after computation

- p—2
IMllllzp o) + / |ul? Q\Vu\de+2—2/ IV [ulP/2|? da

< C5(Q,p) [lullzp (g +E2 / ulP"?Vul? dz + 21 f e llulfaig),  (62)
where
C3(Q,p) = 2C1(Q)C2(Q, p). (63)
We define
)\O = 203(va)7 (64)
and we consider only the case
IAl > Xo.
One has then
A
\ | ||u|| Q)—l— / |u|P~ 2‘Vu|2dz + 2— / |V‘u\p/2\2dx

<22 |u|P*2|Vu|2dx 20l il

To obtain estimates, we consider the case 2 < p < 4 and then the case p >-4.
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Remark: The Stokes operator with Navier-type boundary
conditions generates also a bounded analytic semi-group on
LY (Q) for all 1 < p < oo.

We observe also the following estimates:

Corollary

Let A € C* such that ReA >0, let 1 <p < oo, f € LY (Q) and
let u € WHP(Q) be the unique solution of Problem (46). In
addition, suppose that ) is of class C*' then w satisfies the

estimates C(Q )
leurl | zro) < J\TJ\D T (65)
and Y
+
[ullw2rg) < C(Qap)WHfHLP(Q)- (66)
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Sketch of the proof.

Let us introduce the following space
0= {re H'(Q°); [r]; = constant, 1 < j < J}.

For each 1 < j < J, there exists a unique solution ¢j € HY(Q°),
up to an additive constant, satisfying

Vr € 0, / Vg -Vr =1Irl;
QO

where [x]; is the jump of x through ¥;.
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In fact, we have

_Aq; =0 in QO,
anq; =0 on F,
[qﬂk = constant, 1<k < J, (67)

[&Lqﬂkzo; 1<k<J,
( (Ong], V), = O, 1< k<
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Let us consider any extension to L?(f) of Vg7 which is denoted

by g?a/d qj. 1t is easy to verify that

div g?a/d q; =0, curl g?a/d q =0

and thanks to the regularity results of vector fields, we deduce
first that -
grad g € H'(Q),

and then by boostrap argument that

grad ¢ € W'?(Q),
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Next, set

J
uU=1u— Zu n, 1ggradqj
7=1

Using the Gagliardo-Nirenberg inequality we have

~n1/2
W2p(Q H HLP(Q)

leurlu| gy = [eurl | gy @) < C(2,p) [|aly,
But thanks to Amrouche-Seloula we know that
[wlly2r) < Cp)[AU[ly2r )
Then
leurlulgo) < C(Q,p) [AUll 01Tl g

1/2
= C(Q,p) | Aull i) @] gy

C. AMROUCHE Chérif AMROUCHE, University of PAU



Analyticity results

Moreover we know that
lallzr) < C(Q2,p) lullLr @)
Finally it is clear that
[Aullze) < [ = Aullpr) < (C(Q2,p) + 1) [ fllLr)-

As a consequence we deduce estimate (65).
Notice that, since

lullw2r) = [ullr@) + [AullLr@)

one has estimate (66).
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We can also consider the Lapalce equations with tangential
boundary conditions:

Ay — S .
{)\u u=f, divu=0 in £, (68)

uxn=0, on I’

and we have the following result
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Existence and Resolvent estimate

Theorem

Let A € 3. and let f € LE(Q), with 1 < p < co.

o The Problem (68) has a unique solution u € W1P(Q).
Moreover if Q is of class C%1 then u € WP(Q).

e In addition for ReX > 0, i.e. for e =7/2, the solution u
satisfies the estimate

c(Q,p
fulzrio) < 2 Sl (69)

o The Laplacian operator with tangential boundary conditions
generates a bounded analytic semi-group on LE(Q).
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