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I. Introduction and motivation

Let us consider in a bounded cylindrical domain Ω× (0, T ) the
following Navier-Stokes equations{

∂u
∂t −∆u + u · ∇u+ ∇π = f , divu = 0 in Ω× (0, T ),

u(0) = u0 in Ω,

where the unknowns u and π stand respectively for the velocity
field and the pressure of a fluid occupying a domain Ω. Given
data are the external force f and the initial velocity u0. To
study Navier-Stokes equations it is necessary to add appropriate
boundary conditions.
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The Navier-Stokes equations are more studied, since the
famous works of Jean Leray (1933, 1934), with a Dirichlet
boundary condition which is not always realistic since it
does not reflect the behavior of the fluid on or near the
boundary.

In the applications and in particular in the
electromagnetism problems, it is possible to find problems
where it is necessary to consider others boundary
conditions. This boundary conditions (BC) are also used to
simulate flows near rough walls, such as in aerodynamics,
in weather forecasts and in hemodynamics, as well as
perforated walls. BC involving the pressure, such as for
example in cases of pipes, hydraulic gears using pomps,
containers, etc ...
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H. Navier has suggested in 1824 a type of boundary conditions
based on a proportionality between the tangential components
of the normal dynamic tensor and the velocity

u · n = 0, 2 ν [Du · n]τ + αuτ = 0 on Γ× (0, T ) (1)

where ν is the viscosity and α ≥ 0 is the coefficient of friction
and

Du =
1

2
(∇u+∇uT )

denotes the deformation tensor associated to the velocity field
u. Observe that if α tends to infinity, we get formally

u = 0 on Γ.

The Navier boundary conditions are often used to simulate
flows near rough walls as well as perforated walls.
Such slip boundary conditions are used in the Large Eddy
Simulations (LES) of turbulent flows.
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Using the following relation

[2D(v)n ]τ = −curl v × n − 2Λv on Γ,

where Λ is an operator of order 0 defined by

Λv =

2∑
k=1

(
vτ ·

∂n

∂sk

)
τ k,

one can observe that in the case of a flat boundary and when
α = 0 the conditions (1) may be replaced by

u · n = 0, curlu× n = 0 on Γ× (0, T ). (2)

We call them Navier-type boundary conditions.
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We are interested here, in a first part, by the stationary case for
the Stokes equations:

−∆u +∇π = f in Ω,

divu = 0 in Ω,

with one of the following boundary conditions:

u × n = g × n and π = π0 on Γ, (3)

u · n = g and curlu × n = h × n on Γ, (4)

u · n = g and 2 [D(u)n ]τ + αuτ = h on Γ. (5)
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We will study, in a second part, the case of stationary
Navier-Stokes equations:

Find u , π, α1, . . . , αI ,, with αi ∈ R


−∆u + u · ∇u +∇π = f and ∇ · u = 0 in Ω,

u × n = g × n on Γ,

π = π0 on Γ0 and π = π0 + αi on Γi, i = 1, . . . , I,
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where we suppose that Ω is an open set possibly multiply
connected sufficiently regular with a boundary Γ possibly non
connected. We denote

Γ =

I⋃
i=0

Γi, Σ =

J⋃
j=1

Σj

with Γi the connected components of Γ and Σj a finite number
of cuts such that

Ω◦ = Ω \
J⋃
j=1

Σj

is simply connected.
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Some works concerning the stationary Stokes and Navier-Stokes
equations with non Dirichlet boundary conditions:

Scadilov-Solonnikov, 1973

Conca-Murat-Pironneau, 1994

Neustupa-Penel, 2007

Maruzic, 2007

Beirao da Veiga, 2009

Berselli, 2009

Mitrea-Monniaux, 2009

Amrouche-Seloula, 2011-2013

Amrouche-Rejaiba, 2014
...
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Considering for example the case of the Stokes equations with the homogeneous
boundary conditions

(S0
T )

{
−∆u +∇π = f and div u = 0 in Ω,

u · n = 0, and curlu × n = 0 on Γ.

Because these BC, we write

−∆u = curl curlu −∇ div u

For the variational formulation, we will consider the following spaces:

V = {v ∈ L2(Ω), curl v ∈ L2(Ω), div v = 0, v · n = 0 on Γ},

H 2
0 (div, Ω) = {v ∈ L2(Ω), div v ∈ L2(Ω), v · n = 0 on Γ}.

The Stokes problem (S0
T ) is then equivalent to

{
Find u ∈ V such that

∀ v ∈ V ,
∫
Ω curlu · curl v dx = 〈f , v〉Ω.

We note that [H 2
0 (div, Ω)]′ ↪→ H−1(Ω).
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Questions:

The bilinear form is it coercive to apply the Lax-Milgram
lemma ?

We will see that if Ω is simply connected, we have:

∀v ∈ V , ‖v‖H 1(Ω) ≤ C‖curl v‖L2(Ω).

What happens if Ω is not simply connected ?

Can we find generalized solution in W 1,p(Ω) with
1 < p <∞ ?

Can we find strong solution in W 2,p(Ω) with 1 < p <∞ ?

Can we find very weak solution in Lp(Ω) with 1 < p <∞ ?
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We need the following spaces, for 1 < p <∞:

H p(curl,Ω) = {v ∈ Lp(Ω); curl v ∈ Lp(Ω)} , H p(div,Ω) = {v ∈ Lp(Ω); div v ∈ Lp(Ω)}

X p(Ω) = H p(curl,Ω) ∩H p(div,Ω),

and their subspaces:

H p
0 (curl,Ω) = {v ∈ H p(curl,Ω); v × n = 0 sur Γ} ,

H p
0 (div,Ω) = {v ∈ H p(div,Ω); v · n = 0 sur Γ} ,

X p
N (Ω) = {v ∈ X p(Ω); v × n = 0 sur Γ} , X p

T (Ω) = {v ∈ X p(Ω); v · n = 0 sur Γ}
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II. Sobolev’s inequalities for vector fields

Lemma (Sobolev’s inequalities)

i) Any function v ∈W 1,p(Ω) with v × n = 0 on Γ satisfies:

‖∇ v‖Lp(Ω) ≤ C
(
‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

I∑
i=1

|〈v · n , 1〉Γi
|
)
. (6)

ii) Any function v ∈W 1,p(Ω) with v · n = 0 on Γ satisfies:

‖∇ v‖Lp(Ω) ≤ C
(
‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

J∑
j=1

|〈v · n , 1〉Σj
|
)
. (7)

W. Von Wahl (1992) (I = 0, i.e Γ is connected and J = 0, i.e Ω is simply

connected).
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Idea of the proof of (6):
We consider the following double layer potential:

T λ(x ) = −
1

2π

∫
Γ
λ(ξ)

∂

∂n
|x − ξ|−1 dσξ,

T : Lp(Γ) −→W 1,p(Γ) is continuous and then compact from Lp(Γ) into
Lp(Γ). The Fredholm alternative implies that the dimension of Ker(Id+ T )
is finite(equal to I) and thanks to the theorem of the open map we have for
all v ∈W 1,p(Ω):

‖v · n‖Lp(Γ) ≤ C
(
‖(Id+ T )(v · n)‖Lp(Γ) +

I∑
i=1

|〈v · n , 1〉Γi
|
)

(8)

We write the following integral representation: for any v ∈W 1,p(Ω) with
v × n = 0 on Γ:

(Id+ T )(v · n) = −
1

2π

(
grad

∫
Ω

1

|x − y |
divy v(y) dy

)
· n

−
1

2π

(
rot

∫
Ω

1

|x − y |
roty v(y) dy

)
· n (9)
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Using the traces theorem, we prove that:

‖(Id+ T )(v · n)‖Lp(Γ) ≤ C
(∥∥∥grad∫

Ω

1

|x − y |
divy v(y) dy

∥∥∥
W 1,p(Ω)

+
∥∥∥ rot∫

Ω

1

|x − y |
roty v(y)dy

∥∥∥
W 1,p(Ω)

)
.

Using the Calderón-Zygmund inequalities, we get:

‖(Id+ T )(v · n)‖Lp(Γ) ≤ C
(
‖div v‖Lp(Ω) + ‖rot v‖Lp(Ω)

)
.

From (8), we deduce:

‖v · n‖Lp(Γ) ≤ C
(
‖div v‖Lp(Ω) + ‖rot v‖Lp(Ω) +

I∑
i=1

|〈v · n , 1〉Γi
|
)
. (10)
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Moreover, from (9) we have:

‖v · n‖
W

1− 1
p
,p

(Γ)
≤

(
‖T (v · n)‖

W
1− 1

p
,p

(Γ)
+
∥∥∥grad∫

Ω

1

|x − y |
divy v(y) dy

∥∥∥
W

1− 1
p
,p

(Γ)

+
∥∥∥rot∫

Ω

1

|x − y |
roty v(y) dy

∥∥∥
W

1− 1
p
,p

(Γ)

)
,

and by the traces theorem:

‖v · n‖
W

1− 1
p
,p

(Γ)
≤ C

(
‖v · n‖Lp(Γ) +

∥∥∥grad∫
Ω

1

|x − y |
divy v(y) dy

∥∥∥
W 1,p(Ω)

+
∥∥∥ rot∫

Ω

1

|x − y |
roty v(y)dy

∥∥∥
W 1,p(Ω)

)
.

Using again the Calderón-Zygmund inequalities and (10), we obtain:

‖v ·n‖
W

1− 1
p
,p

(Γ)
≤ C

(
‖div v‖Lp(Ω) +‖rot v‖Lp(Ω) +

I∑
i=1

|〈v ·n , 1〉Γi
|
)
. (11)
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As v ∈W
1− 1

p
,p

(Γ), by the traces theorem, there exists u ∈W 1,p(Ω) such
that:

v = u sur Γ and ‖u‖W 1,p(Ω) ≤ C‖v‖
W

1− 1
p
,p

(Γ)
.

Because v × n = 0 on Γ, we have v |Γ = (v · n)n . Using then (11), we get

‖u‖W 1,p(Ω) ≤ C‖v · n‖
W

1− 1
p
,p

(Γ)

≤ C
(
‖div v‖Lp(Ω) + ‖rot v‖Lp(Ω) +

I∑
i=1

|〈v · n , 1〉Γi
|
)
. (12)

As u − v ∈W 1,p
0 (Ω), we know that for any function w belonging to

W 1,p
0 (Ω), we have the following integral representaion integrale:

w = −grad
1

4π

∫
Ω

1

|x − y |
divy w(y) dy + rot

1

4π

∫
Ω

1

|x − y |
roty w(y) dy .

Thanks to the Calderón-Zygmund inequalities, we have

‖∇w‖Lp(Ω) ≤ C
(
‖divw‖Lp(Ω) + ‖rotw‖Lp(Ω)

)
. (13)

Applying (13) to v − u ∈W 1,p
0 (Ω), we obtain:

‖∇ (v−u)‖Lp(Ω) ≤ C
(
‖div v‖Lp(Ω)+‖div u‖Lp(Ω)+‖rot v‖Lp(Ω)+‖rotu‖Lp(Ω)

)
.

Finally, we deduce the required estimate by using (12).
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Idea of the proof of (7):

We use the same ideas with the following linear integral
operator

Rλ(x ) =
1

2π

∫
Γ

curl (
λ(ξ)

|x − ξ|
)× n dσξ.

C. AMROUCHE Chérif AMROUCHE, University of PAU



Because the embeddings X p
N (Ω) ↪→ Lp(Ω) and X p

T (Ω) ↪→ Lp(Ω) are compact, by
using Peetre-Tartar Theorem and the previous inequality, we deduce the following
Poincaré’s type inequalities:

Corollary (Poincaré’s Inequalities)

i) We have v ∈ X p
N (Ω) ↪→W 1,p(Ω) and for any v ∈ X p

N (Ω)

‖ v ‖W 1,p(Ω) ≤ C
(
‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

I∑
i=1

|〈v · n , 1〉Γi
|
)
.

ii) We have v ∈ X p
T (Ω) ↪→W 1,p(Ω) and for any v ∈ X p

T (Ω)

‖ v ‖W 1,p(Ω) ≤ C
(
‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

J∑
j=1

|〈v · n , 1〉Σj
|
)
.
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Regularity properties

The previous results can be extended to the case of
inhomogeneous boundary conditions :

Let Ω of class C 1,1 and v ∈ X p(Ω) with

v · n ∈W 1− 1
p
,p

(Γ) or v × n ∈W 1− 1
p
,p

(Γ).

Then
v ∈W 1,p(Ω).

Moreover

‖v‖W 1,p(Ω) ≤ C
(
‖v‖Lp(Ω)+‖curl v‖Lp(Ω)+‖div v‖Lp(Ω)+‖v ·n‖

W
1− 1

p ,p(Γ)

)
or

‖v‖W 1,p(Ω) ≤ C
(
‖v‖Lp(Ω)+‖curl v‖Lp(Ω)+‖div v‖Lp(Ω)+‖v×n‖

W
1− 1

p ,p(Γ)

)
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Let Ω of class C 2,1 and

v ∈ Lp(Ω), curl v ∈W 1,p(Ω), div v ∈W 1,p(Ω)

with

v · n ∈W 2− 1
p
,p

(Γ) or v × n ∈W 2− 1
p
,p

(Γ).

Then
v ∈W 2,p(Ω),

with the corresponding estimates.
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III. Lp-Theory for Vector Potentials

To study the Stokes problems, we need some results concerning
the vector potentials and the inf-sup conditions.

Theorem (Tangential vector potentials)

u ∈ H p(div, Ω) satisfies: div u = 0 in Ω, 〈u · n , 1〉Γi
= 0, 0 ≤ i ≤ I,

iff there exists a vector potential ψ in X p(Ω) such that

u = curlψ and divψ = 0 in Ω, (14)

ψ · n = 0 on Γ, (15)

〈ψ · n , 1〉Σj
= 0, 1 ≤ j ≤ J. (16)

This function is unique and moreover, we have

‖ψ‖W 1,p(Ω) ≤ C‖u ‖Lp(Ω).

For p = 2, see : C. Amrouche, C. Bernardi, M. Dauge, V. Girault [1998].
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Remark: If
u ∈ L p(Ω) and divu = 0,

the condition
〈u · n , 1〉Γi= 0, 0 ≤ i ≤ I,

is necessary and sufficient for the existence of vector potential ψ
satisfying (14) and (15). While the condition (16)

〈ψ · n , 1〉Σj = 0, 1 ≤ j ≤ J

ensures the uniqueness of ψ. When this last condition is not
satisfied, the vector potential ψ exits up an additive vector
function of the the following corresponding kernel:

K p
T (Ω) = {w ∈ X p

T (Ω); curlw = 0, divw = 0 in Ω}.
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To characterize this kernel, let us introduce the following space

Θ =
{
r ∈ H 1(Ω◦); [ r ]j = constant, 1 ≤ j ≤ J

}
.

For each 1 ≤ j ≤ J , there exists a unique solution qTj ∈ H1(Ω◦),
up to an additive constant, satisfying

∀r ∈ Θ,

∫
Ω◦
∇qTj · ∇r = [r]j

where [χ]j is the jump of χ through Σj .

C. AMROUCHE Chérif AMROUCHE, University of PAU



In fact, we have



−∆qTj = 0 in Ω◦,

∂n q
T
j = 0 on Γ,[

qTj

]
k

= constant and [ ∂n q
T
j ]k = 0, 1 ≤ k ≤ J,〈

∂n q
T
j , 1

〉
Σk

= δj k, 1 ≤ k ≤ J.
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Let us consider any extension to L2(Ω) of ∇qTj which is denoted

by g̃rad qTj . It is easy to verify that

div g̃rad qTj = 0, curl g̃rad qTj = 0

and thanks to the regularity results of vector fields, we deduce
first that

g̃rad qTj ∈H1(Ω),

and then by boostrap argument that

g̃rad qTj ∈W 1,p(Ω),

Moreover, K p
T (Ω) is spanned by

g̃rad qTj , j = 1, . . . , J.

Remark that K p
T (Ω) = {0} if J = 0 (i.e Ω is simply connected).
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Theorem (Inf-Sup condition in Banach spaces)

Let X and M be two reflexive Banach spaces and X ′ and M ′

their dual spaces. Let a be the continuous bilinear form defined
on X ×M , let A ∈ L(X; M ′) and A′ ∈ L(M ; X ′) be the
operators defined by

∀v ∈ X, ∀w ∈M, a(v, w) = < Av,w > = < v,A′w >

and V = KerA. The following statements are equivalent:
i) There exist β > 0 such that

inf
w∈M
w 6=0

sup
v∈X
v 6=0

a(v, w)

‖v‖X ‖w‖M
≥ β. (17)

ii) The operator A : X/V 7→M ′ is an isomophism and 1/β is

the continuity constant of A−1.
iii) The operator A′ : M 7→ X ′⊥V is an isomophism and 1/β is
the continuity constant of (A′)−1.
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Remark

As consequence, if the Inf-Sup condition (17) is satisfied, then
we have the following properties:

i) Because A′ : M 7→ X ′⊥V is an isomophism, then for any
f ∈ X ′, satisfying the compatibility condition

∀v ∈ V, < f, v > = 0,

there exists a unique w ∈M such that

∀v ∈ X, a(v, w) = < f, v > and ‖w‖M ≤
1

β
‖f‖X′ . (18)

ii) Because A : X/V 7→M ′ is an isomophism, then for any
g ∈M ′, ∃v ∈ X, unique up an additive element of V , such that:

∀w ∈M, a(v, w) = < g,w > and ‖v‖X/V ≤
1

β
‖g‖M ′
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We define the space

V p
T (Ω) = {w ∈ X p

T (Ω); divw = 0 in Ω and 〈w · n , 1〉Σj
= 0, 1 ≤ j ≤ J},

which is a Banach space for the norm ‖ · ‖X p(Ω).

Using some classical Helmholtz decomposition and the previous
tangential vector potential, we can deduce:

Lemma (Inf Sup Condition)

The following Inf-Sup Condition holds: there exists a constant
β > 0, such that

inf
ϕ∈V p′

T (Ω)
ϕ6=0

sup
ξ∈V p

T (Ω)
ξ 6=0

∫
Ω curl ξ · curlϕdx

‖ξ‖X p
T (Ω)‖ϕ‖X p′

T (Ω)

≥ β. (19)
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Theorem (Normal vector potentials)

u ∈ L p(Ω) satisfies:

u · n = 0 on Γ and div u = 0 in Ω, 〈u · n , 1〉Σj
= 0, 0 ≤ j ≤ J,

iff there exists a vector potential ψ in X p(Ω) such that

u = curlψ and divψ = 0 in Ω, (20)

ψ × n = 0 on Γ, (21)

〈ψ · n , 1〉Γi
= 0, 1 ≤ i ≤ I. (22)

This function is unique and moreover, we have:

‖ψ‖W 1,p(Ω) ≤ C‖u ‖Lp(Ω).
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Remark : For

u ∈ L p(Ω), with divu = 0 in Ω and u · n = 0 on Γ,

the condition

〈u · n , 1〉Σj= 0, for 1 ≤ j ≤ J,

is necessary and sufficient for the existence of the vector
potential ψ satisfying (20) and (21). The condition

〈ψ · n , 1〉Γi = 0, for 0 ≤ i ≤ I

ensures the uniqueness of ψ.
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Idea of the proof

We use the Inf-Sup condition (19) to solve the problem:

Find ξ ∈W 1,p(Ω) such that:

(P)


−∆ ξ = 0 and div ξ = 0 in Ω,

ξ · n = 0, curl ξ × n = ψ0 × n on Γ,

〈ξ · n , 1〉Σj
= 0,

where ψ0 is the tangential vector potential.

The required vector potential is given by:

ψ = ψ0 − curl ξ −
I∑
i=1

〈(ψ0 − curl ξ) · n , 1〉Γi
grad qNi
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We define now the space

V p
N (Ω) = {w ∈ X p

N (Ω); divw = 0 in Ω and 〈w · n , 1〉Γi
= 0, 1 ≤ i ≤ I},

which is a Banach space for the norm ‖ · ‖X p(Ω).

Using a Helmholtz decomposition and the previous normal
vector potential, we can deduce:

Lemma (Inf Sup Condition)

The following Inf-Sup Condition holds: there exists a constant
β > 0, such that

inf
ϕ∈V p′

N (Ω)
ϕ6=0

sup
ξ∈V p

N (Ω)
ξ 6=0

∫
Ω curl ξ · curlϕ dx

‖ξ‖X p
N (Ω)‖ϕ‖X p′

N (Ω)

≥ β. (23)
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IV. Stokes stationary problem with normal
boundary conditions

(ST )


−∆u +∇π = f in Ω,

div u = 0 in Ω,

u · n = g, curlu × n = h × n on Γ,

〈u · n , 1〉Σj
= 0, 1 ≤ j ≤ J.

We solve the pressure π :

∆π = div f in Ω, ∂ π
∂ n

= f · n + divΓ(h × n) on Γ

We set F = f −∇π. Then, u is a solution of the following elliptic problem:

(ET )


−∆u = F in Ω,

div u = 0 in Ω,

u · n = g, curlu × n = h × n on Γ,

〈u · n , 1〉Σj
= 0, 1 ≤ j ≤ J.

To solve the Stokes problem (ST ), we are reduced to solve the problem (ET ).
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IV. Stokes stationary problem with normal
boundary conditions

(ST )
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Contrarly to the Stokes problem with Dirichlet boundary
condition, it appears that when

div f = 0 in Ω and f · n = divΓ(h × n) = 0 on Γ,

the pressure π can be constant.

In the case of the Stokes problem with Dirichlet, even if

div f = 0 in Ω and f · n = 0 on Γ,

we have ∆u · n 6= 0 on Γ and then π is non constant.
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Study of the elliptic problem :

(ET )


−∆u = f in Ω,

divu = 0 in Ω,

u · n = g, curlu × n = h × n on Γ,

〈u · n , 1〉Σj = 0, 1 ≤ j ≤ J.
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Proposition (Weak and Strong solutions of (ET ))

i) Let f ∈ Lp(Ω) with div f = 0 in Ω, g ∈W 1− 1
p
,p

(Γ) and h ∈W
− 1

p
,p

(Γ)
satisfying the following compatibility condition:

∀v ∈ K p′

T (Ω),

∫
Ω
f · v dx + 〈h × n , v〉

W
− 1

p
,p

(Γ)×W
1
p
,p′

(Γ)
= 0,

f · n + divΓ (h × n) = 0 on Γ,∫
Γ
g dσ = 0.

Then, the problem (ET ) has a unique solution u ∈W 1,p(Ω) satisying the
estimate:

‖u ‖W 1,p(Ω) ≤ C
(
‖ f ‖Lp(Ω) + ‖ g ‖W 1−1/p,p(Γ) + ‖h × n ‖W −1/p,p(Γ)

)
.

ii) If g ∈W 2−1/p,p(Γ) and h ∈W 1−1/p,p(Γ), then the solution u belongs to

W 2,p(Ω).
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Theorem (Weak and strong solution of (ST ))

i) Let f , g, h with:

f ∈ (H p′

0 (div, Ω))′, g ∈W 1− 1
p
,p

(Γ), h ∈W
− 1

p
,p

(Γ),

verifying the compatibility conditions: for any v in K p′

T (Ω):

〈 f , v 〉
(H

p′
0 (div,Ω))′×H

p′
0 (div,Ω)

+ 〈h × n , v〉
W
− 1

p
,p

(Γ)×W
1
p
,p′

(Γ)
= 0.∫

Γ
g dσ = 0.

Then, the Stokes problem (ST ) has a unique solution
(u , π) ∈W 1,p(Ω)× Lp(Ω)/R satisfying the estimate:

‖u ‖W 1,p(Ω)+‖π‖Lp(Ω) ≤
(
‖ f ‖

(H
p′
0 (div,Ω))′

+‖g‖
W

1− 1
p
,p

(Γ)
+‖h×n‖

W
− 1

p
,p

(Γ)

)
.

ii) If f ∈ Lp(Ω), g ∈W 2−1/p,p(Γ), h ∈W 1−1/p,p(Γ) then the solution (u , π)

of the problem (ST ) given previously belongs to W 2,p(Ω)×W 1,p(Ω).

Remark: We can consider the case of the problem (ST ) with div u = χ in Ω,

where χ ∈ Lp(Ω) satisfying
∫
Γ g dσ = 〈χ, 1〉Γ.
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Very weak solution for (ST )

Let f , χ, g, and h with

f ∈ (T p′ (Ω))′, χ ∈ Lp(Ω), g ∈W−1/p,p(Γ), h ∈W −1−1/p,p(Γ),

with T p′ (Ω) =
{
ϕ ∈ H p′

0 (div, Ω); divϕ ∈W 1,p′

0 (Ω)
}

and satisfying the

compatibility conditions:

∀ϕ ∈ K p′

T (Ω), 〈f , ϕ〉
(T p′ (Ω))′×T p′ (Ω)

+ 〈h × n , ϕ〉Γ = 0.∫
Ω
χd x = 〈g, 1〉Γ.

Then, the Stokes problem (ST ) has exactly one solution u ∈ L p(Ω) and
π ∈W −1,p(Ω)/R. Moreover, there exists a constant C > 0 depending only on p
and Ω such that:

‖u‖Lp(Ω) + ‖π‖W −1,p(Ω)/R ≤ C
(
‖ f ‖

(T p′ (Ω))′ +‖χ‖Lp(Ω)+‖g‖W −1/p,p(Γ) +

+ ‖h × n‖W −1−1/p,p(Γ)

)
.
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Helmholtz Decomposition for vector fields in Lp(Ω)

For any vector field v ∈ Lp(Ω), we have the first following
decomposition:

v = z +∇χ+ curlu ,

z ∈ K p
N (Ω) is unique,

χ ∈W 1,p
0 (Ω) is unique,

u ∈W 1,p(Ω) is the unique solution, up to an additive
element of the kernel K p

T (Ω), of the problem :{
−∆u = curl v and divu = 0 in Ω,

u · n = 0, (curlu − v)× n = 0 on Γ.
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Helmholtz Decomposition for vector fields in Lp(Ω)

For any vector field v ∈ Lp(Ω), we have the second following
decomposition:

v = z +∇χ+ curlu ,

z ∈ K p
T (Ω) is unique,

χ ∈W 1,p(Ω) is unique up an additive constant,

u ∈W 1,p(Ω) is the unique solution, up to an additive
element of the kernel K p

N (Ω), of the problem :{
−∆u = curl v and divu = 0 in Ω,

u × n = 0, on Γ.
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V. Stokes Equations with Pressure Boundary Condition

(SN )


−∆u +∇π = f in Ω,

div u = 0 in Ω,

u × n = g × n , π = π0 on Γ,

〈u · n , 1〉Γi
= 0, 1 ≤ i ≤ I.

The pressure can be found independently of the velocity as a solution of the
Dirichlet problem:

∆π = div f in Ω, π = π0 on Γ

The velocity is a solution of the following system:

(EN )


−∆u = F in Ω,

div u = 0 in Ω,

u × n = g × n on Γ,

〈u · n , 1〉Γi
= 0, for all 1 ≤ i ≤ I,

where F = f −∇π
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Remarks:

The condition divF = 0 in Ω is necessary to solve (EN ).

The condition divu = 0 in Ω ⇐⇒ divu = 0 on Γ on the
one hand. On the other hand, since

divu = divΓ uτ +Ku · n +
∂ u

∂ n
· n sur Γ,

where K denotes the mean curvature of Γ, the condition
divu = 0 on Γ is itself equivalent, if u ×n = 0 on Γ, to the
Fourier-Robin condition:

Ku · n +
∂ u

∂ n
· n = 0 on Γ.

That means that the problem (EN ) is equivalent to the
following: 

−∆u = F in Ω,

u × n = 0 on Γ

Ku · n +
∂ u

∂ n
· n = 0 on Γ.
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Using the Inf-Sup condition, we deduce the following theorem

Theorem (Weak and Strong solutions for (SN ))

i) Let f , g , π0 with

f ∈ (H p′

0 (curl, Ω))′, g ∈W 1−1/p,p(Γ), π0 ∈W 1−1/p,p(Γ),

satisfying the compatibility condition:

∀v ∈ K p′

N (Ω), 〈 f , v 〉Ω −
∫

Γ
π0 v · n dσ = 0, (24)

with 〈·, ·〉Ω = 〈·, ·〉
[H

p′
0 (curl ,Ω)]′×H

p′
0 (curl ,Ω)

.

Then, the Stokes problem (SN ) has a unique solution
(u , π) ∈W 1,p(Ω)×W 1,p(Ω) and satisfies the estimate:

‖u ‖W 1,p(Ω) + ‖π ‖W 1,p(Ω) ≤ C
(
‖ f ‖

(H
p′
0 (curl,Ω))′

+ ‖g × n‖W 1−1/p,p(Γ) +

+ ‖π0‖W 1−1/p,p(Γ)

)
.

ii) If f ∈ Lp(Ω) and g ∈W 2−1/p,p(Γ), then u ∈W 2,p(Ω).
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Question:

What happens if the previous compatibility condition is not
satisfied?

Variant of the system (SN ) :

Find (u , π, c) such that:

(S ′N )


−∆u +∇π = f and divu = 0 in Ω,

u × n = g × n on Γ,

π = π0 on Γ0 and π = π0 + ci on Γi, 1 ≤ i ≤ I
〈u · n , 1〉Γi = 0, 1 ≤ i ≤ I,

where c = (ci)1≤i≤I .
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Theorem (Weak and Strong solutions for (S ′N ))

Let f , g and π0 such that:

f ∈ [H p′

0 (curl, Ω)]′, g ∈W 1−1/p,p(Γ), π0 ∈W 1−1/p,p(Γ).

Then, the problem (S′N ) has a unique solution u ∈W 1,p(Ω), π ∈W 1,p(Ω) and
constants c1, . . . , cI satisfying the estimate:

‖u‖W 1,p(Ω)+‖π‖W 1,p(Ω) ≤ C
(
‖f ‖

[H
p′
0 (curl,Ω)]′

+‖g‖W 1−1/p,p +‖π0‖W 1−1/p,p

)
,

and where c1, . . . , cI are given by

ci = 〈f , ∇ qNi 〉Ω − 〈π0, ∇ qNi · n〉Γ. (25)

In particular, if f ∈ Lp(Ω) and g ∈W 2−1/p,p(Γ), then u ∈W 2,p(Ω).

Remark :

Observe that if we suppose that the compatibility condition (24) is verified,
we have that: ci = 0 for all i = 1, . . . , I. Then, we have reduced to solve the
problem (S′N ) without the constant ci and (S′N ) is anything other then
(SN ).
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The assumption on f in the previous theorem can be weakened
by considering the space defined for all 1 < r, p <∞:

H r, p
0 (curl, Ω) = {ϕ ∈ Lr(Ω); curlϕ ∈ Lp(Ω), ϕ×n = 0 on Γ}.

which is a Banach space for the norm

‖ϕ‖H r, p
0 (curl,Ω) = ‖ϕ‖Lr(Ω) + ‖curlϕ‖Lp(Ω).

We can prove that

D(Ω) is dense in H r′, p′

0 (curl, Ω)

and its dual space can be characterized as:

[H r′, p′

0 (curl, Ω)]′ = {F + curlψ; F ∈ Lr(Ω), ψ ∈ Lp(Ω)}.
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Theorem (Second Version for Weak solutions for (S ′N ))

Let f , g and π0 such that

f ∈ [H r′,p′

0 (curl, Ω)]′, g × n ∈W 1−1/p,p(Γ), π0 ∈W 1−1/r,r(Γ),

with

r ≤ p and
1

r
≤

1

p
+

1

3
.

Then, the problem (S′N ) has a unique solution

u ∈W 1,p(Ω), π ∈W 1,r(Ω)

and constants c1, . . . , cI satisfying the estimate:

‖u‖W 1,p(Ω) + ‖π‖W 1,r(Ω) ≤ C
(
‖ f ‖

[H
r′,p′
0 (curl,Ω)]′

+ ‖g × n‖W 1−1/p,p(Γ) + ‖π0‖W 1−1/r,r(Γ)

)
,

and c1, . . . , cI are given by (25), where we replace the duality brackets on Ω by

〈 ·, · 〉Ω = 〈 ·, · 〉
[H

r′,p′
0 (curl,Ω)]′×H

r′,p′
0 (curl,Ω)

.
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Theorem (Very weak solutions for (SN ))

Let f , g , and π0 with

f ∈ [H p′

0 (curl, Ω)]′, g ∈W −1/p,p(Γ), π0 ∈W −1/p,p(Γ),

and satisfying the compatibility conditions (24). Then, the
Stokes problem (SN ) has exactly one solution

u ∈ L p(Ω) and π ∈ Lp(Ω)/R.

Moreover, there exists a constant C > 0 depending only on p
and Ω such that:

‖u‖Lp(Ω) + ‖π‖Lp(Ω)/R ≤ C
(
‖ f ‖

[H p′
0 (curl,Ω)]′

+‖ g ‖W −1/p,p(Γ) +

+ ‖π0‖W −1/p,p(Γ)

)
.
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Remark. To study the case of Navier boundary conditions:

u · n = 0 and [D(u)n ]τ = h ,

it suffices to observe that

[2D(v)n ]τ = −curl v × n − 2Λv on Γ,

where Λ is an operator of order 0 defined by

Λw =

2∑
k=1

(
wτ ·

∂n

∂sk

)
τ k,

and to use the results obtained with the Navier type boundary
conditions.
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VI. Oseen and Navier-Stokes Problem with Pressure
Boundary Condition

We are interested to study the following problem:
Find u , q and α ∈ RI satisfying:

(NS)


−∆u + u · ∇u +∇ q = f and div u = χ in Ω,

u × n = g on Γ,

q = q0 on Γ0 and q = q0 + αi on Γi, i = 1, . . . , I,∫
Γi

u · n dσ = 0, i = 1, . . . , I,

Note that α is a supplementary unknown Stokes which depends in fact on u

If we take χ = 0 and g = 0, unlike the Navier-Stokes problem with Dirichlet

boundary conditions de Dirichlet, the property:
∫
Ω(u · ∇u) · u dx = 0 does

not hold.

But, we have

u · ∇u = curlu × u +
1

2
∇|u |2
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We rewrite then (NS) under the following form:

(NS N )



−∆u + curlu × u +∇π = f in Ω,

divu = χ in Ω,

u × n = g on Γ,

π = π0 sur Γ0 et π = π0 + αi on Γi, i = 1, . . . , I,∫
Γi
u · n dσ = 0, i = 1, . . . , I,
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Remarks.

We can search directely weak solutions u ∈ H 1(Ω) and
π ∈ L2(Ω) of the system (NS N ) by using a fixed point
method.

We can then obtain solutions u ∈W 1,p(Ω) for p > 2
thanks to the Stokes problem theory.

The case p < 2 to study the (NS N ) system is more
complicated.

For this reason, we will study the Oseen problem (OSN ).
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Study of problem (OSN)

(OS N )



−∆u + curla × u +∇π = f in Ω,

divu = 0 in Ω,

u × n = 0 on Γ,

π = π0 + ci on Γi, 0 = 1, . . . , I,∫
Γi
u · n dσ = 0, i = 1, . . . , I,

where we have take χ = 0 and g = 0. We suppose also that

curla ∈ L3/2(Ω)
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We introduce the following Hilbert space:

V N =
{
v ∈ H 1(Ω); div v = 0 in Ω, v × n = 0 on Γ

and
∫

Γi
v · n = 0, 1 ≤ i ≤ I

}
and recall that

v 7→
(∫

Ω
|curl v |2

)1/2

is a norm on V N equivalent to the full norm of H 1(Ω).
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Before establishing the result of existence of a weak solution for the problem
(OSN ), we will see in what functional space it is reasonable to take π0 and to
find the pressure π appearing in (OSN ), knowing that we are first interesting to
velocity fields in

u ∈ H 1(Ω) with f ∈ L6/5(Ω).

With a such vector u , we have

curla × u ∈ L 6/5(Ω) ↪→ H −1(Ω).

Since ∆u ∈ H −1(Ω), we deduce from the first equation in (OSN ) that
∇π ∈ H −1(Ω). Then the pressure π belongs to L2(Ω). Furthermore,

−∆π = div f − div (curla × u) in Ω,

so that ∆π ∈W −1,6/5(Ω) and the trace of π on Γ belongs to H −1/2(Γ) so that
we must assume that

π0 ∈ H −1/2(Γ).
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Theorem

Let

f ∈ L 6/5(Ω), π0 ∈ H −1/2(Γ) and a ∈ D′(Ω) such that curla ∈ L 3/2(Ω).

Then, the problem:

Find (u, π, c) ∈ VN × L2(Ω)× RI+1 satisfying (OSN ) with 〈π, 1〉Γ = 0 (26)

is equivalent to the problem: Find u ∈ VN such that

∀ v ∈ VN ,

∫
Ω
curlu · curl vdx +

∫
Ω

(curla× u) · v =

∫
Ω
f · v d x− 〈π0, v · n〉Γ

(27)

and find constants c0, . . . , cI satisfying
∑I
i=0 ci mes Γi + 〈π0, 1〉Γ = 0 and such

that for any i = 1, . . . , I:

ci − c0 =

∫
Ω
f · ∇ qNi dx−

∫
Ω

(curla× u) · ∇ qNi dx− 〈π0, ∇ qNi · n〉Γ. (28)
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Using the Lax Milgram theorem and some regularity result of
the Laplacian, we prove the following theorem.

Theorem

Let f ∈ L6/5(Ω), curla ∈ L3/2(Ω) and π0 ∈ H −1/2(Γ), then the
problem (56) has a unique solution
(u, π, c) ∈ H 1(Ω)×L2(Ω)×RI+1 with 〈π, 1〉Γ = 0 and we have
the following estimates:

‖u‖H 1(Ω) ≤ C
(
‖ f ‖L6/5(Ω) + ‖π0‖H −1/2(Γ)

)
, (29)

‖π‖L2(Ω) ≤ C
(
1 + ‖curla ‖L3/2(Ω)

)(
‖ f ‖L6/5(Ω) + ‖π0‖H −1/2(Γ)

)
,

(30)
where c = (c0, . . . , cI). Moreover, if π0 ∈W 1/6,6/5(Γ) and Ω is
C 2,1, then u ∈W 2,6/5(Ω) and π ∈W 1,6/5(Ω).
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Remark

Even if the pressure π change in π − c0, the system (OSN ) is equivalent to the
following type-Oseen problem:


−∆u + curla× u +∇π = f and div u = 0 in Ω,

u× n = 0 on Γ,

π = π0 on Γ0, and π = π0 + αi, i = 1, . . . , I, on Γi,∫
Γi

u · n dσ = 0, i = 1, . . . , I,

where the unknowns constants satisfy for any i = 1, . . . , I:

αi =

∫
Ω
f · ∇ qNi dx−

∫
Ω

(curla× u) · ∇ qNi dx− 〈π0, ∇ qNi · n〉Γ.

But, it is clear that the new pressure π does not satisfy the condition 〈π, 1〉Γ = 0.
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Remark

If we suppose that

f ∈ [H 6,2
0 (curl, Ω)]′, curla ∈ L3/2(Ω) and π0 ∈ H−1/2(Γ),

then the problems (26) and (27)-(28) are again equivalent, with
the difference that we use here the duality brackets between
[H 6,2

0 (curl, Ω)]′ and H 6,2
0 (curl, Ω) in place of the integral on Ω

in the right hand side of (27) and the density of Dσ(Ω)×D(Ω)
in the space

M =
{

(u, π) ∈ H 1
σ (Ω)×L2(Ω); −∆u +∇π ∈ [H 6,2

0 (curl, Ω)]′
}
.

It is easy now to extend the previous theorem to the case where

f ∈ [H 6,2
0 (curl, Ω)]′,

the divergence operator does not vanish

the boundary conditions are nonhomogeneous.

C. AMROUCHE Chérif AMROUCHE, University of PAU



Theorem

Let f ∈ [H 6,2
0 (curl, Ω)]′, curla ∈ L3/2(Ω), χ ∈W 1,6/5(Ω), π0 ∈ H−1/2(Γ) and

g ∈ H 1/2(Γ). Then the problem


−∆u + curla× u +∇π = f and div u = χ in Ω,

u× n = g× n on Γ,

π = π0 on Γ0, and π = π0 + αi, i = 1, . . . , I on Γi,∫
Γi

u · n dσ = 0, i = 1, . . . , I,

(31)

has a unique solution (u, π, α) ∈ H 1(Ω)× L2(Ω)× RI verifying the estimate:

‖u‖H 1(Ω) ≤ C
(
‖ f ‖

[H
6,2
0 (curl,Ω)]′

+ ‖π0‖H−1/2(Γ) +
(
1 + ‖curla‖L3/2(Ω)

)
×

×
(
‖χ‖W 1,6/5(Ω) + ‖ g ‖H 1/2(Γ)

))
,

‖π‖L2(Ω) ≤ C
(
1 + ‖curla‖L3/2(Ω)

)(
‖ f ‖

[H
6,2
0 (curl,Ω)]′

+ ‖π0‖H−1/2(Γ) +

+
(
1 + ‖curla‖L3/2(Ω)

)
×
(
‖χ‖W 1,6/5(Ω) + ‖ g ‖H 1/2(Γ)

))
,

where α = (α1, . . . , αI). Moreover, if f ∈ L6/5(Ω), π0 ∈W 1/6,6/5(Γ),

g ∈W 7/6,6/5(Γ) and Ω is C 2,1, then u ∈W 2,6/5(Ω) and π ∈W 1,6/5(Ω).
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In the rest of this talk, we suppose that

Ω is C 2,1

and we are interested in the study of strong solutions
u ∈W 2,p(Ω) for the system (OSN ) when p ≥ 6/5.

When p < 3
2 , because the embedding W 2,p(Ω) ↪→W 1,p∗(Ω), the

term curla × u ∈ Lp(Ω) and we can use the regularity results
on the Stokes problem. But this is not more the case when
p ≥ 3

2 and that curla belongs only to L3/2(Ω).

We give in the following theorem the good conditions to ensure
the existence of strong solutions.
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Theorem

Let p ≥ 6/5,

f ∈ Lp(Ω), π0 ∈W 1−1/p,p(Γ), curla ∈ Ls(Ω)

with

s =
3

2
if p <

3

2
, s = p if p >

3

2
, s =

3

2
+ ε if p =

3

2
, (32)

for ε > 0 arbitrary. Then the solution (u , π) given by the previous theorem
belongs to W 2,p(Ω)×W 1,p(Ω) and satisfies the estimate:

‖u‖W 2,p(Ω) + ‖π‖W 1,p(Ω) ≤ C
(
1 + ‖curla‖Ls(Ω)

)(
‖f ‖Lp(Ω) + ‖π0‖W 1−1/p,p(Γ)

)
.
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In the following theorem, we prove the existence of Generalized
Solutions with p > 2.

Theorem

Let

p > 2, f ∈ [H r′,p′

0 (curl, Ω)]′, χ ∈W 1,r(Ω) and g ∈W 1−1/p,p(Γ).

We suppose that π0 ∈W 1−1/r,r(Γ) and curla ∈ Ls(Ω) with 1
r

= 1
p

+ 1
3

and s

satisfies:

s =
3

2
if 2 < p < 3, s =

3

2
+ ε if p = 3 and s = r if p > 3,

for some arbitrary ε > 0. Then the problem (31) has a unique solution
(u, π, α) ∈W 1,p(Ω)×W 1,r(Ω)× RI satisfying the estimate

‖u‖W 1,p(Ω) + ‖π‖W 1,r(Ω) ≤ C
(
1 + ‖curla‖Ls(Ω)

)2(‖f‖
[H

r′,p′
0 (curl,Ω)]′

+

+ ‖g‖W 1−1/p,p(Γ) + ‖π0‖W 1−1/r,r(Γ) + ‖χ‖W 1,r(Ω)

)
(33)

where α = (α1, . . . , αI).
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Generalized Solutions (p < 2):
Using a duality argument, we obtain the following result :

Theorem

We suppose that p < 2. Soit f ∈ [H r′,p′

0 (curl, Ω)]′, curla ∈ Ls(Ω) and

π0 ∈W 1−1/r,r(Γ) with

r = 1 + ε′ if p <
3

2
, r =

9 + 6ε

9 + 2ε
if p =

3

2
and r =

3p

3 + p
if

3

2
< p < 2, (34)

s = (1+ε′)
3p

4p− 3− ε′(3− p)
if p <

3

2
, s =

3

2
+ε if p =

3

2
and s =

3

2
if

3

2
< p < 2,

(35)
where ε, ε′ > 0 are arbitrary. Problem (OSN ) has a unique solution
(u , π, α) ∈W 1,p(Ω)×W 1,r(Ω)× RI satisfying the estimate:

‖u‖W 1,p(Ω) ≤ C(1 + ‖curla‖Ls(Ω))
2(‖ f ‖

[H
r′,p′
0 (curl,Ω)]′

+ ‖π0‖W 1−1/r,r(Ω)),

‖π‖W 1,r(Ω) ≤ C(1 + ‖curla‖Ls(Ω))
3(‖ f ‖

[H
r′,p′
0 (curl,Ω)]′

+ ‖π0‖W 1−1/r,r(Ω))
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The Navier-Stokes problem (NSN)

(NS N)



−∆u + curlu × u +∇ π = f in Ω,

divu = χ in Ω,

u × n = g on Γ,

π = π0 on Γi and π = π0 + ci on Γi, i = 1, . . . , I,∫
Γi
u · n dσ = 0, i = 1, . . . , I,
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In the search of a proof of the existence of generalized solution
for the Navier-Stokes equations (NS N ), we consider the case of
small enough data.
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Theorem

Let

f ∈ [H r′,p′

0 (curl, Ω)]′, χ ∈W 1,r(Ω), g ∈W 1−1/p,p(Γ), π0 ∈W 1−1/r,r(Γ)

with

p >
3

2
and r =

3p

3 + p
.

i) There exists a constant α1 > 0 such that, if

‖ f ‖
[H

r′,p′
0 (curl,Ω)]′

+ ‖χ‖W 1,r(Ω) + ‖g‖W 1−1/p,p(Γ) + ‖π0‖W 1−1/r,r(Γ) ≤ α1,

then, there exists a solution

(u, π, c) ∈W 1,p(Ω)×W 1,r(Ω)× RI

to problem (NS N ) verifying the estimate

‖u‖W 1,p(Ω) ≤ C
(
‖f‖

[H
r′,p′
0 (curl,Ω)]′

+‖χ‖W 1,r(Ω)+‖g‖W 1−1/p,p(Γ)+‖π0‖W 1−1/r,r(Γ)

)
,

with ci = 〈f, ∇ qNi 〉Ωr′, p′
+
∫
Γ (χ− π0)∇ qNi · n−

∫
Ω(curlu× u) · ∇qNi .
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ii) Moreover, there exists a constant α2 ∈]0, α1] such that this solution is unique, if

‖ f ‖
[H

r′,p′
0 (curl,Ω)]′

+ ‖χ‖W 1,r(Ω) + ‖g‖W 1−1/p,p(Γ) + ‖π0‖W 1−1/r,r(Γ) ≤ α2.
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