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Notions of observer and detectability are well established for continuous-time and discrete-time systems, and are known to be linked, since a system must be detectable to admit an observer. Unfortunately, defining such notions for a hybrid system is not straightforward because solutions do not share the same hybrid time domain. In this paper, we propose to define observers and detectability for hybrid systems, such that detectability is still necessary for the existence of an observer and such that standard definitions are recovered for continuous-time and discrete-time systems, when seen as special cases of hybrid systems. We rely on a recent definition of hybrid systems with hybrid inputs and use jump reparametrizations to define convergence and equality of outputs.

Introduction

Context

For continuous-time (CT) and discrete-time (DT) systems, asymptotic observers are commonly defined as dynamical systems taking the plant's output as input and whose state asymptotically converges to the plant's state. The existence of such an object then requires some intrinsic properties of the plant, in particular that the plant be asymptotically detectable: the trajectories giving the same output must asymptotically converge to one another [START_REF] Andrieu | Observability necessary conditions for the existence of observers[END_REF]. However, those notions are not straightforward to define for a hybrid plant, since they involve comparisons of hybrid solutions defined on different hybrid time domains.

When the jump times of the plant are assumed to be known, the difficulties due to a possible mismatch of the trajectories' domains disappear since the observer can be synchronized with the plant. Similarly, notions of detectability, observability and determinability reduce to comparing outputs with the same time domain ([2, 3, 4]). However, when the plant's jump times are unknown, the observer must be a hybrid system which does not necessarily jump at the same time as the plant. This difficulty is avoided in [START_REF] Kim | State estimation and tracking control for hybrid systems by gluing the domains[END_REF] thanks to a change of coordinates transforming the jump map into the identity map and thus somehow making the jumps disappear in the observer. As for [START_REF] Forni | Follow the bouncing ball : global results on tracking and state estimation with impacts[END_REF], an extended system containing both the plant and the observer is directly analyzed. In the particular setting of switched systems, the problem is handled by estimating the switching signal ( [START_REF] Balluchi | The design of dynamical observers for hybrid systems: Theory and application to an automotive control problem[END_REF][START_REF] Lee | On-line switching signal estimation of switched linear systems with measurement noise[END_REF][START_REF] Gómez-Gutiérrez | On the observer design problem for continuoustime switched linear systems with unknown switchings[END_REF][START_REF] Ping | Robust estimation algorithm for both switching signal and state of switched linear systems[END_REF]), whose observability has been studied in [START_REF] Vidal | Observability of linear hybrid systems[END_REF][START_REF] Küsters | Switch observability for switched linear systems[END_REF].

Apart from definitions of zero-detectability [START_REF] Sanfelice | Invariance principles for hybrid systems with connections to detectability and asymptotic stability[END_REF][START_REF] Cai | Output-to-state stability for hybrid systems[END_REF], we are not aware of general notions of (incremental) detectability and observers in the literature for general hybrid systems. This paper thus proposes to define such notions, building from recent definitions of hybrid systems with hybrid inputs [START_REF] Bernard | An algorithm to generate solutions to hybrid dynamical systems with inputs[END_REF][START_REF] Bernard | Hybrid dynamical systems with hybrid inputs: definition of solutions and applications to series interconnections[END_REF] and the literature of hybrid reference tracking [START_REF] Biemond | Tracking control for hybrid systems with state-triggered jumps[END_REF] and hybrid incremental stability [START_REF] Biemond | Incremental stability of hybrid dynamical systems[END_REF][START_REF] Biemond | On the graphical stability of hybrid solutions with non-matching jump times[END_REF], where methods for the comparison of hybrid solutions were also introduced.

Detectability and Observers for CT Systems

Consider a CT system ẋ = f (x) , y = h(x) [START_REF] Andrieu | Observability necessary conditions for the existence of observers[END_REF] initialized in a set of interest X 0 . We usually define an observer as a dynamical system of the form ż = F (z, y) , x = H(z, y)

initialized in a set Z 0 and whose complete solutions, i.e. solutions defined on R ≥0 , are asked to verify stability and convergence properties. If z lives in the same space as x, we may directly take x = z, but that is not necessarily the case for nonlinear systems. The existence of such an observer then intrinsically requires some detectability properties of the system (1): the output y should somehow contain enough information to uniquely determine the plant's state.

Definition 1.1. The system (2) is an asymptotic observer of (1) on X 0 if there exists a (known) set of initial conditions Z 0 such that for any complete solution x of (1) initialized in X 0 , any maximal solution z of (2) initialized in Z 0 with input y = h(x) is also complete and verifies lim t→+∞ |x(t) -x(t)| = 0.

Definition 1.2. The system (1) is asymptotically detectable on X 0 if any pair of complete solutions x a and x b of (1) initialized in X 0 such that

h(x a (t)) = h(x b (t)) ∀t ∈ R ≥0 (3) 
verifies lim t→+∞ |x a (t) -x b (t)| = 0.

In other words, trajectories that have the same outputs converge to each other. As shown for instance in [START_REF] Andrieu | Observability necessary conditions for the existence of observers[END_REF], this detectability property is necessary for the existence of an observer. Theorem 1.3. If system (1) admits an asymptotic observer on X 0 , then system (1) is asymptotically detectable on X 0 . Proof Consider complete solutions x a and x b of (1) such that h(x a (t)) = h(x b (t)) for all t ≥ 0. Take a maximal solution z of (2) initialized in Z 0 with input y = h(x a ). Then, by definition, z is complete and lim t→+∞ |x a (t) -x(t)| = 0 with x = H(z, h(x a )). But since h(x a ) = h(x b ), z is also solution of [START_REF] Xie | Necessary and sufficient conditions for controllability and observability of switched impulsive control systems[END_REF] with input y = h(x b ), and thus lim t→+∞ |x b (t) -x(t)| = 0 with x = H(z, h(x a )) = H(z, h(x b )). It thus follows by triangle inequality that lim t→+∞ |x a (t) -x b (t)| = 0.

A similar result can be obtained in the same way for DT systems.

Remark 1.4. Definitions 1.1 and 1.2 require only asymptotic convergence of x -x or x a -x b to zero for complete solutions. In other words, they only deal with attractivity. However, we may sometimes want to require stronger properties of the observer (stability, finite-time convergence, tunable speed of convergence, etc.) and whichever constraint we add in the observer, then imposes stronger properties of the system that could be translated in a stronger notion of detectability with the same reasoning as Theorem 1.3.

Towards Hybrid Systems

Consider now a general hybrid system

H ẋ ∈ f (x) x ∈ C x + ∈ g(x) x ∈ D , y = h(x) (4) 
with state x ∈ R dx and output y ∈ R dy . The solutions are now hybrid arcs (t, j) → x(t, j) defined on a hybrid time domain dom x ⊆ R ≥0 × N according to [START_REF] Goebel | Hybrid Dynamical Systems : Modeling, Stability and Robustness[END_REF], with both continuous-time evolution in C and discrete events in D (flows and jumps).

If we want to properly define notions of observers and detectability as it has been done for CT/DT systems, we need to think about both definitions together in a way that ensures that detectability is a necessary condition for the existence of an observer. Besides, both CT and DT detectability/observers should be recovered as particular cases when D = ∅ and C = ∅ respectively. The main difficulties are as follows:

• The observer should be a hybrid system taking the (hybrid) output of H as input, but the latter has its own hybrid time domain that may differ from the hybrid time domain of the observer's solution. Hence, a more general notion of solution must be used;

• Trajectories do not share a common time domain. This makes the comparison between x a and x b for detectability, or between x and x for observers, not straightforward;

• Completeness can happen either in the time-horizon (if t goes to +∞) or the jump horizon (if j goes to +∞) and at different times;

• Asking for exact convergence of x to x may be too restrictive around the jump times where an arbitrarily small mismatch of jump times between x and x leads to a significant error if g = Id, i.e., g is not the identity map.

A notion of solutions to hybrid systems with hybrid inputs was proposed in [START_REF] Bernard | An algorithm to generate solutions to hybrid dynamical systems with inputs[END_REF][START_REF] Bernard | Hybrid dynamical systems with hybrid inputs: definition of solutions and applications to series interconnections[END_REF], relying on a socalled jump reparametrization. This process, recalled in Section 2, enables to compare x and x on a common domain and thus to formulate a definition of asymptotic observers that resembles Definition 1.1. Note that more general notions of convergence will be allowed, with (x, x) required to converge to a set A ⊂ R dx × R dx possibly larger than

A = (x, x) ∈ R dx × R dx : x = x . (5) 
Then, in order to determine whether two hybrid outputs are "equal" as in Definition 1.2, we propose in Section 3 an algorithm that enables to write two hybrid arcs on a common time domain and thus define asymptotic detectability relative to A. Regarding the completeness condition, we will see that only complete solutions sharing the same time horizon need to be compared.

The link between these definitions and more intuitive extended systems is investigated in Section 4. Finally, in Section 5, we show that the proposed definitions preserve the tight link between asymptotic detectability and observers exhibited for CT systems in Theorem 1.3, namely, we prove the following main result.

Theorem 1.5. Let A be a nonempty subset of R dx ×R dx . If H admits an asymptotic observer on X 0 relative to A, then H is asymptotically detectable on X 0 relative to A.

Notations and Preliminaries

We denote by R (resp. N) the set of real (resp. natural) numbers, and R ≥0 := [0, +∞), R >0 := (0, +∞), and N >0 := N \ {0}. For a set S, cl(S) denotes its closure, int(S) its interior, and card S its cardinality (possibly infinite).

The set of maximal solutions to a hybrid system H initialized in X 0 is denoted S H (X 0 ), or S H (X 0 ; u) if H takes u as input. For a hybrid arc (t, j) → φ(t, j) defined on a hybrid time domain dom φ, we denote dom t φ (resp. dom j φ) its projection on the time (resp. jump) axis, and for a positive integer j, t j (φ) the time stamp associated to the jth jump (i.e., the only time satisfying (t j (φ), j) ∈ dom φ and (t j (φ), j -1) ∈ dom φ), and I j (φ) the largest interval such that I j (φ) × {j} ⊆ dom φ. We define also T (φ) = {t j (φ) : j ∈ dom j φ ∩ N >0 } as the set of jump times of φ, T (φ) = sup dom t φ ∈ R ≥0 ∪ {+∞} the maximal time of the domain, J(φ) = sup dom j φ ∈ N ∪ {+∞} the total number of jumps, and, for a time t in R ≥0 , J t (φ) = {j ∈ N >0 : t j (φ) = t} the set of jump counters associated to the jumps occurring at time t. It follows that card J t (φ) is the number of jumps of φ occurring at time t. A hybrid arc φ is said to be t-complete (resp. j-complete) if dom t φ (resp. dom j φ) is unbounded, complete if dom φ is unbounded, and Zeno if it is complete with sup dom t φ < ∞.

Finally, we will need to consider convergence to a subset A of R dx ×R dx . For that, a map d A : R dx ×R dx → R ≥0 defines a distance relative to A if for all x a , x b , x c in R dx ,

d A (x a , x b ) = 0 ⇐⇒ (x a , x b ) ∈ A (6a) d A (x a , x b ) = d A (x b , x a ) (6b) d A (x a , x b ) ≤ d A (x a , x c ) + d A (x c , x b ) (6c)

Hybrid Asymptotic Observers

Inspired from (2), we define an observer as a hybrid system taking the plant's output y as input and producing an estimate x of the plant's state as output, namely

Ĥ ż ∈ F (z, y) (z, y) ∈ Ĉ z + ∈ G(z, y) (z, y) ∈ D , x = H(z, y) (7) 
with state z ∈ R dz , such that "x converges to x" in some sense. First, solutions to (7) must be defined with care because the hybrid input y coming from the plant H has its own time domain and its jumps have no reason to happen when (z, y) is in the jump set D. Therefore, their jumps are not necessarily synchronized. Appropriate definitions have been given in [START_REF] Bernard | Hybrid dynamical systems with hybrid inputs: definition of solutions and applications to series interconnections[END_REF] which we briefly recall next.

Reparametrization and Definition of Solutions

Definition 2.1 ( [START_REF] Bernard | An algorithm to generate solutions to hybrid dynamical systems with inputs[END_REF][START_REF] Bernard | Hybrid dynamical systems with hybrid inputs: definition of solutions and applications to series interconnections[END_REF]). Given a hybrid arc φ, a hybrid arc φ r is a j-reparametrization of φ if there exists a function ρ : N → N such that

ρ(0) = 0 , ρ(j + 1) -ρ(j) ∈ {0, 1} ∀j ∈ N (8) φ r (t, j) = φ(t, ρ(j)) ∀(t, j) ∈ dom φ r . (9) 
The hybrid arc φ r is a full j-reparametrization of φ if

dom φ = (t,j)∈dom φ r (t, ρ(j)) . ( 10 
)
The map ρ is called j-reparametrization map from φ to φ r .

In other words, φ r takes at each time t the same values as φ, but maybe associated to a different jump index: initially φ r (t, 0) = φ(t, 0) for all t ∈ I 0 (φ r ), and when φ r jumps,

• either ρ(1) = 1 and φ r (t, 1) = φ(t, 1) for all t ∈ I 1 (φ r ),

• or ρ(1) = 0 and φ r (t, 1) = φ(t, 0) for all t ∈ I 1 (φ r ), and so on. This means that if ρ(j + 1) = ρ(j) + 1, the jth jump of φ r corresponds to an actual jump in the domain of φ, and if ρ(j + 1) = ρ(j), φ r exhibits a jump that φ does not exhibit and, necessarily,

φ r (t j+1 , j + 1) = φ(t j+1 , ρ(j + 1)) = φ(t j+1 , ρ(j)) = φ r (t j+1 , j)
namely, the jump is trivial. Therefore, as long as it is defined, φ r is the "same" as φ, modulo additional trivial jumps. If the whole hybrid arc φ is "contained" in φ r , then the parametrization is "full".

Extending the definition given in [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF] for solutions to hybrid systems with inputs that share the same time domain as the state, [START_REF] Bernard | Hybrid dynamical systems with hybrid inputs: definition of solutions and applications to series interconnections[END_REF]Definition 4] defines solutions to Ĥ as pairs φ = (z, y r ) where y r is a jreparametrization of y that is defined on the same domain as z. An algorithm to build φ is provided in [START_REF] Bernard | Hybrid dynamical systems with hybrid inputs: definition of solutions and applications to series interconnections[END_REF] and can be summed up as the following. As long as the input y does not jump, z evolves like in a standard hybrid system, z flowing according to F if φ is in Ĉ, and jumping according to G if φ is in D. In this case, a trivial jump is added to y r . On the other hand, when y jumps, z can either jump according to G or be reset identically, depending on whether φ is in Ĉ, D or both. The precise jump logic is recalled in Appendix.

Definition of Asymptotic Observer for H

Definition 2.2. Let A be a nonempty subset of R dx × R dx . The hybrid system Ĥ is an asymptotic observer for H on X 0 ⊆ R dx relative to A if there exist a distance function d A relative to A and a subset Z 0 of R dz such that for any complete plant solution x ∈ S H (X 0 ) with output y and any observer solution φ = (z, y r ) ∈ S Ĥ(Z 0 ; y) with output x and j-reparametrization map ρ from y to y r : (a) φ is complete with dom t φ = dom t x; (b) denoting x r the full j-reparametrization of x on the domain of φ defined by

x r (t, j) = x(t, ρ(j)) ∀(t, j) ∈ dom φ ,
we have lim

t+j→+∞ d A x(t, j), x r (t, j) = 0 . ( 11 
)
When A is the diagonal set (5), we just say "asymptotic observer for H on X 0 ".

Condition (a) ensures that the observer solution exists as long as the underlying plant solution x does. In particular, the extra condition dom t x = dom t φ means that they both "achieve their completeness" at the same time:

• either they are both t-complete;

• or they are both Zeno with same dom t .

As for Condition (b), it translates the intuitive idea of "x converges to x" (relative to A), even if x and x do not share the same domain. This is done by reparametrizing x into x r , which is defined on the domain of x.

When convergence of x to x is required, A can be chosen as the diagonal set [START_REF] Kim | State estimation and tracking control for hybrid systems by gluing the domains[END_REF]. However, the generic set A in Definition 2.2 allows to consider more general notions of convergence of (x, x). This is important because exact convergence of x to x is in general difficult to obtain unless g = Id or unless the jumps of the observer become perfectly synchronized with those of the plant after some time. Indeed, if x and x do not jump exactly at the same time and g = Id, it may not be possible to make the estimation error x -x small: if x = x before the jump, then x ∈ g(x) ∪ g -1 (x) after one jump of either x or x. This is the so-called peaking phenomenon. In that case, denoting

g(x) = g(x) if x ∈ D ∅ otherwise , (12) 
we can only expect (x, x) to converge to

A = (x, x) ∈ (C ∪ D ∪ g(D)) 2 : x = x or x ∈ g(x) or x ∈ g(x) , (13) 
as in [START_REF] Forni | Follow the bouncing ball : global results on tracking and state estimation with impacts[END_REF], or even

A = (x, x) ∈ (C ∪ D ∪ g(D)) 2 : ∃k ∈ N : x ∈ g k (x) or x ∈ g k (x)
when consecutive jumps are possible [START_REF] Biemond | Tracking control for hybrid systems with state-triggered jumps[END_REF]. More generally, we might be interested in estimating only part of the state x, which can be captured by a proper choice of A.

Hybrid Asymptotic Detectability

In order to define detectability in a way that extends Definition 1.2, we need to compare the outputs of two hybrid solutions and decide whether they are "equal" in some sense.

Motivation

Methods to compare hybrid arcs have been developed in the literature. In [START_REF] Goebel | Hybrid Dynamical Systems : Modeling, Stability and Robustness[END_REF]Definition 5.23], notions of ε and (ε, τ )-closeness were first introduced. This distance is related to the graphical distance of the graphs of the hybrid arcs, namely hybrid arcs are compared at the same jump index and "close in time." It was used in the context of incremental stability [START_REF] Li | Feedback Stabilization of Controlled Dynamical Systems[END_REF], but was then observed to be too restrictive [START_REF] Biemond | Incremental stability of hybrid dynamical systems[END_REF] and was consequently relaxed in [START_REF] Biemond | Incremental stability of hybrid dynamical systems[END_REF]Definition 4] or in [START_REF] Biemond | On the graphical stability of hybrid solutions with non-matching jump times[END_REF]Definition 1] by allowing to compare solutions "close in time" but maybe at different jump indexes.

In the context of detectability, we must decide under which conditions on the outputs we want to require trajectories to converge to each other. Our approach is to think of detectability as a necessary condition for the existence of an observer, similarly to CT and DT systems. Therefore, the question becomes: which pairs of outputs would the observer in Definition 2.2 not distinguish? The observer would then produce asymptotically the same estimate and the corresponding plant trajectories would thus have to converge to each other, along a similar reasoning as in Theorem 1.3.

First, we notice that Definition 2.2 concerns only complete trajectories and that the estimate x is also complete with the same time horizon. Therefore, in comparing pairs of complete solutions (x a , x b ) of H with the "same output", the only way we can exploit the observer asymptotic convergence is if dom t x a = dom t x b .

The meaning of "same output" should then be clarified. In the spirit of graphical distance [START_REF] Goebel | Hybrid Dynamical Systems : Modeling, Stability and Robustness[END_REF], equality of outputs would require equality of the time domains. Of course, if two plant trajectories have the same domain and same output, they will produce in the observer the same trajectories x and should be asked to converge to each other. This is however restrictive because the observer may not either be able to distinguish outputs that are the same up to trivial jumps added to their domains. On the other hand, the spirit of [START_REF] Biemond | Incremental stability of hybrid dynamical systems[END_REF]Definition 4] would consider two outputs y a and y b "equal" if for all (t, j) ∈ dom y a , ∃j ∈ N : (t, j ) ∈ dom y b , y a (t, j) = y b (t, j ) and vice-versa. This time, this definition would be too broad since it does not respect the causality/order of the jumps which indeed is seen by the observer. In particular, this definition would not apply to DT systems.

All in all, we propose an intermediate definition based on an algorithm that reparametrizes two hybrid arcs onto a common time domain in order to compare them pointwisely, while preserving the order and simultaneity of the jumps.

Algorithm R c

Two hybrid arcs x a and x b can be reparametrized onto a common hybrid time domain, constructed by either -preserving the time stamp and, as time evolves, adding jumps whenever either x a or x b jumps. When only one hybrid arc jumps, a trivial jump is added to the other; when both jump, their jumps are recorded simultaneously;

-or preserving the jump numbering and letting both hybrid arcs flow until they can both jump at the same time. When one arc flows for a longer time than the other, the other arc is kept constant while waiting for the other's jump time.

Given the role of time in applications, we explore the first process as formalized in Algorithm 3.1. By preserving the order and simultaneity of the jumps, this process also applies to discrete hybrid arcs. Definition 3.1. Given two hybrid arcs x a and x b , we define the reparametrized hybrid arcs

(x r a , x r b ) := R c (x a , x b ) by Algorithm 3.1. Algorithm 3.1 (x r a , x r b ) = R c (x a , x b ) 1: j ← 0, t j ← 0, j a ← 0, j b ← 0 2: I a ← {t ∈ R ≥0 : (t, j a ) ∈ dom x a } 3: I b ← {t ∈ R ≥0 : (t, j b ) ∈ dom x b } 4: while I a = ∅ and I b = ∅ do 5: T m,a ← sup I a 6: T m,b ← sup I b 7: T m ← min{T m,a , T m,b } min{+∞, +∞} = +∞ 8: if (T m , j a ) / ∈ dom x a or (T m , j b ) / ∈ dom x b then 9: x r a (t, j) ← x a (t, j a ) ∀t ∈ [t j , T m ) 10: x r b (t, j) ← x b (t, j b ) ∀t ∈ [t j , T m ) 11: else 12: x r a (t, j) ← x a (t, j a ) ∀t ∈ [t j , T m ] 13: x r b (t, j) ← x b (t, j b ) ∀t ∈ [t j , T m ] 14: end if 15:
ρ a (j) ← j a 16:

ρ b (j) ← j b 17:
if T m = T m,a then 18:

j a ← j a + 1 19: end if 20:
if T m = T m,b then 21:

j b ← j b + 1 22:
end if

23: j ← j + 1 24:
t j ← T m 25: 

I a ← {t ∈ R ≥0 : (t, j a ) ∈ dom x a } 26: I b ← {t ∈ R ≥0 : (t, j b ) ∈ dom x b } 27: end while 28: J ← sup dom j x r a 29: if J < +∞ then 30: ρ 1 (j) ← ρ 1 (J) ∀j ∈ N : j ≥ J 31: ρ 2 (j) ← ρ 2 (J) ∀j ∈ N : j ≥ J 32: end if 33: return (x r a , x r b ), ρ a ,
) = (x r a , x r b ) is defined on D = {0} × {0, 1, ..., J b } = D b by x r a (0, j) = x a (0, 0) ∀j ∈ {0, 1, ..., J b } , x r b ≡ x b so that x r
a is blocked to its initial value.

We see from those examples that Algorithm 3.1 preserves the time stamp, but changes the jump numbering, and it stops when one of the arcs has reached the end of its domain. It thus gives pairs (x r a , x r b ) defined on a common time domain which are j-reparametrizations of x a and x b , at least on the "common" part of their domains. However, it can happen that x a ends earlier and "blocks" x b so that x r b does not contain all the information about x b , i.e., it is not a full j-reparametrization. Lemma 3.5. Consider two complete hybrid arcs x a and x b such that dom t x a = dom t x b . Then, the hybrid arc

(x r a , x r b ) = R c (x a , x b
) is such that both x r a and x r b are full j-reparametrizations of x a and x b , respectively.

Proof Let's denote φ r = (x r a , x r b ). First note that Algorithm 3.1 browses in time the domains of x a and x b until at least one of them has been completely browsed, i.e. when I a or I b therein becomes empty. This means that dom t φ r = dom t x a ∩ dom t x b = dom t x a . Besides, a jump occurs in φ r only at times in dom t φ r where either x a or x b jumps. At such a time t j , φ r jumps as long as both x a and x b jump. Assume x a stops jumping before x b . Then, either x a flows for t > t j or x a stops.

• In the former case, I a contains the next interval of flow, T m = T m,a , j b stays constant, T m remains equal to t j and φ r carries on jumping as long as x b jumps.

• in the latter case, I a is empty and φ r stops.

In other words,

1. dom t φ r = dom t x a ∩ dom t x b , so that T r := T (φ r ) = min{T (x a ), T (x b )} 2. card J t (φ r ) = max card J t (x a ), card J t (x b ) for all t ∈ dom t φ r \ {T r } 3. card J T r (φ r ) =      card J T r (x a ) if T (x b ) > T r card J T r (x b ) if T (x a ) > T r min card J T r (x a ), card J T r (x b ) if T (x a ) = T (x b ) = T r
Consider now the functions ρ a : N → N and ρ b : N → N built in Algorithm 3.1. They clearly verify (8) and because they record j a and j b respectively, we have

x r a (t, j) = x a (t, ρ a (j)) ∀(t, j) ∈ dom x r a , x r b (t, j) = x b (t, ρ b (j)) ∀(t, j) ∈ dom x r b
This exactly means that x r a and x r b are j-reparametrizations of x a and x b . Now assume x a and x b are complete and dom t x a = dom t x b . Then, items 1,2,3 above imply that those parametrizations are full.

A Definition of Asymptotic Detectability

The following definition extends Definition 1.2.

Definition 3.6. Let A be a nonempty subset of R dx × R dx . The hybrid plant H is said to be asymptotically detectable on X 0 relative to A if there exists a distance function d A relative to A such that any pair of complete solutions x a , x b ∈ S H (X 0 ) verifying dom t x a = dom t x b and

h(x r a (t, j)) = h(x r b (t, j)) ∀(t, j) ∈ dom φ r (14) 
where

(x r a , x r b ) := R c (x a , x b ), verify lim t+j→+∞ d A (x r a (t, j), x r b (t, j)) = 0 . ( 15 
)
Note that the mention of A can be omitted if it is simply the diagonal set defined in [START_REF] Kim | State estimation and tracking control for hybrid systems by gluing the domains[END_REF].

Asymptotic detectability requires that any two solutions which are complete on the same "time horizon" and have the "same" output (once put on a same domain via R c ), asymptotically converge to each other (in the sense of A). This definition enables to recover the standard notions of asymptotic detectability of CT and DT systems, since in those cases, x a = x r a and x b = x r b .

Observers and Detectability via Extended Systems

Before proceeding to the proof of Theorem 1.5, we exhibit the link between our definitions and alternative definitions via extended systems, which will be useful for the proof.

Observers

Instead of defining an observer as Ĥ in [START_REF] Balluchi | The design of dynamical observers for hybrid systems: Theory and application to an automotive control problem[END_REF], a first idea could have been to define an observer directly through an extended system of the form

Ĥext                  ẋ ż ∈ f (x) F (z, h(x)) (x, z) ∈ C × Ĉ x + z + ∈ G ext (x, z) (x, z) ∈ Dext x = H(z, h(x)) (16) 
with a jump map G ext and a jump set Dext to be defined. In doing that, we are facing three main difficulties. First, a jump logic has to be designed in a way that does not assume synchronous jumps of z and x since the jump times of the plant H are not necessarily known. Second, it is not straightforward to deduce from Ĥext the hybrid dynamics of z to be implemented as an observer algorithm with input y and output x. Third, without any assumption about the domain of solutions to H, we would require something like: any complete solution of Ĥext initialized in X 0 × Z 0 verifies lim t+j→+∞ d A (x(t, j), x(t, j)) = 0. But a solution to Ĥext may be complete without browsing the whole underlying maximal solution of H, for instance if the z-component induced Zeno or finite time escape earlier than x. Therefore, x would not provide any estimate of x after a certain time, which is not acceptable. This being said, an extended system of the form ( 16) may be handy for design since it allows for Lyapunov analysis. Actually, in [23, Section 4.1], solutions (z, y r ) to Ĥ are shown to be such that (x r , z) is solution to Ĥext with jump set

Dext = (x, z) ∈ R dx × R dz : x ∈ D , (z, h(x)) ∈ cl( Ĉ) ∪ D ∪ (x, z) ∈ R dx × R dz : x ∈ cl(C) ∪ D , (z, h(x)) ∈ D and jump map G ext (x, z) = g(x) Id z (z, h(x)) ∪ Id x (x) G(z, h(x)) ∪ g(x) G(z, h(x))
where g is defined in [START_REF] Küsters | Switch observability for switched linear systems[END_REF], and in the same spirit

G(z, h(x)) = G(z, h(x)) if (z, h(x)) ∈ D ∅ otherwise , Id x (x) = x if x ∈ cl(C) ∅ otherwise , (17) 
Id z (z, h(x)) = z if (z, h(x)) ∈ cl( Ĉ) ∅ otherwise .
Therefore, any analysis made on Ĥext may hold for solutions of Ĥ. However, the reverse is not true because Ĥext has a larger set of solutions, see [START_REF] Bernard | Hybrid dynamical systems with hybrid inputs: definition of solutions and applications to series interconnections[END_REF] for more details.

Lemma 4.1. Let A be a nonempty subset of R dx × R dx and d A a distance relative to A. Assume any

x ∈ S H (X 0 ) is t-complete. If each (x, z) ∈ S Ĥext (X 0 × Z 0 ) is t-complete and verifies lim t+j→+∞ d A (x(t, j), x(t, j)) = 0 ,
then Ĥ is an asymptotic observer for H on X 0 relative to A.

Proof Consider x ∈ S H (X 0 ) and φ = (z, y r ) ∈ S Ĥ(Z 0 ; h(x)). According to [23, Lemma 1], (x r , z) ∈ S Ĥext (X 0 × Z 0 ). Therefore, φ is t-complete like x, and both items (a) and (b) of Definition 2.2 hold.

Remark 4.2. Similar extended systems have been introduced in the literature whenever it was needed to compare hybrid arcs with different domains, for instance in the context of reference tracking [START_REF] Biemond | Tracking control for hybrid systems with state-triggered jumps[END_REF] or incremental stability [START_REF] Biemond | Incremental stability of hybrid dynamical systems[END_REF]. The main difference is that we allow here both x and z to jump simultaneously with g and G, whereas in [START_REF] Biemond | Tracking control for hybrid systems with state-triggered jumps[END_REF][START_REF] Biemond | Incremental stability of hybrid dynamical systems[END_REF] this kind of jump is decomposed into two successive jumps. The main reason for allowing simultaneous jumps here is that we want to recover the framework of DT systems when C = Ĉ = ∅. Then, thanks to the "simultaneous jump" part of G ext , it is sufficient to allow trivial jumps only on the flow sets, as can be seen on the definition of Id i . In other words, unlike in [START_REF] Biemond | Incremental stability of hybrid dynamical systems[END_REF], x (resp. z) is forced to jump with g (resp. G) on D \ cl(C) (resp. D \ cl( Ĉ)). Note that it is however not possible to replace cl(C) by C in the definition of Id since x could flow from ∂C at a time where z needs to jump, in which case a trivial jump of x should be allowed (and vice-versa).

Detectability

Similarly to Ĥext , it can be proved that given

x a , x b ∈ S H (X 0 ), (x r a , x r b ) := R c (x a , x b ) is a solution to the extended hybrid system H r          ẋa ẋb ∈ f (x a ) f (x b ) (x a , x b ) ∈ C × C x + a x + b ∈ g r (x a , x b ) (x a , x b ) ∈ D r (18) 
where

D r = (x a , x b ) ∈ R dx × R dx : x a ∈ D , x b ∈ cl(C) ∪ D ∪ (x a , x b ) ∈ R dx × R dx : x a ∈ cl(C) ∪ D , x b ∈ D g r (x a , x b ) = g(x a ) Id x (x b )) ∪ Id x (x a ) g(x b ) ∪ g(x a ) g(x b ))
with g and Id defined in [START_REF] Küsters | Switch observability for switched linear systems[END_REF] and [START_REF] Biemond | Tracking control for hybrid systems with state-triggered jumps[END_REF]. The process of duplicating H into H r will be denoted H r =: R c (H, H).

Lemma 4.3. Let A be a nonempty subset of R dx × R dx and d A a distance relative to A.

If each complete solution φ = (x a , x b ) ∈ S H r (X 0 × X 0 ) such that h(x a (t, j)) = h(x b (t, j)) ∀(t, j) ∈ dom φ verifies lim t+j→+∞ d A (x a (t, j), x b (t, j)) = 0 ,
then H is asymptotically detectable on X 0 relative to A.

Note that this handy condition for detectability is sufficient but not necessary. Indeed, unless trajectories are t-complete, a complete trajectory of H r could correspond to R c (x a , x b ) with x a and x b not verifying dom t x a = dom t x b , which are not required to converge to each other in Definition 3.6, nor for the existence of an observer.

More generally, even if the trajectories are t-complete, the jump map g r allows x a and x b to jump consecutively using first g(x a )

x b and then x a g(x b ) whenever x a and x b are in D ∩ cl(C), whereas x a and

x b solutions to H are forced to jump from D ∩ cl(C) if no flow is possible from there. In that case, this jump would be recorded simultaneously in R c (x a , x b ). Therefore, H could be detectable relative to A defined in ( 5) without H r verifying the assumption of Lemma 4.3. Both properties are thus not equivalent. Note that they could become equivalent when delays in jumps do not matter in A, namely for instance A defined in [START_REF] Sanfelice | Invariance principles for hybrid systems with connections to detectability and asymptotic stability[END_REF].

Proof of Theorem 1.5

The proof follows the same ideas as those in the proof of Theorem 1.3, but requires extra technical steps to take care of the different hybrid time domains.

Consider complete solutions (x a , x b ) ∈ S H (X 0 ) × S H (X 0 ) with H in (4) such that dom t x a = dom t x b and φ

r := (x r a , x r b ) = R c (x a , x b ) verifies h(x r a (t, j)) = h(x r b (t, j)) ∀(t, j) ∈ dom φ r .
According to Lemma 3.5, x r a and x r b are full j-reparametrizations of x a and x b . We denote T := T (x a ) = T (x b ). 

x b,cl (t, j) = x b (t, ρ b (j)) ∀(t, j) ∈ dom φ b ( 19 
)
which is such that y b,cl (t, j) = h(x b,cl (t, j)) ∀(t, j) ∈ dom φ b . ). According to Lemma 3.5, xa and (x b , z) are full j-reparametrizations of x a and (x b,cl , z b ) respectively, so φ is complete, dom t φ = dom t x a , and there exist full reparametrization maps ρ a and ρ b,cl : N → N such that xa (t, j) = x a (t, ρ a (j)) ∀(t, j) ∈ dom φ [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF] and

From

xb (t, j) = x b,cl (t, ρ b,cl (j)) z(t, j) = z b (t, ρ b,cl (j)) ∀(t, j) ∈ dom φ (22) 
Also, since it is a full j-reparametrization, 

lim t+j→+∞ d A x(t, j), xb (t, j) = 0 (23) 
→ N such that xa (t, j) = x r a (t, ρ r (j)) xb (t, j) = x r b (t, ρ r (j)) ∀(t, j) ∈ dom φ (24)
It is therefore enough to show that lim

t+j→+∞ d A xa (t, j), xb (t, j) = 0 (25)
to deduce lim

t+j→+∞ d A x r a (t, j), x r b (t, j) = 0 ,
which will prove asymptotic detectability according to Definition 3.6.

For that, we are going to show that actually lim t+j→+∞ d A x(t, j), xa (t, j) = 0, and use the triangle inequality with [START_REF] Bernard | Observers for hybrid dynamical systems with linear maps and known jump times[END_REF] to obtain (25). To that end, it is crucial to notice that (24) implies

h(x a (t, j)) = h(x b (t, j)) ∀(t, j) ∈ dom φ . (26) 
5.4. From φ solution to R c (H, Ĥext ), to φ a,cl solution to Ĥext Now, according to Lemma Appendix C.3, φ = (x a , (x b , z)) is a maximal solution to R c (H, Ĥext ) satisfying Conditions 1 and 2. But because of (26), (x b , (x a , z)) is actually also a maximal solution to R c (H, Ĥext ) on dom φ. At this point, we would like to recover from (x a , z) a solution to Ĥext to reuse the observer definition. For this, we need to check that (x a , z) verifies Condition 2 to apply the converse part of Lemma Appendix C.3. For all t ∈ T ( φ) ∩ int dom t ( φ) such that (x a , z) does not verify the jump condition of H cl for any j ∈ J t ( φ), necessarily xa does not verify the jump condition of H and z does not verify the jump condition of Ĥ. It means that t / ∈ T (x a ), and since t ∈ int dom t (x a ), x a ∈ C by definition of solutions to H. Therefore, those jumps are necessarily triggered by xb and necessarily (z, h(x a )) = (z, h(x b )) ∈ Ĉ by item 4.(a) of Definition Appendix A.1. Therefore, (x a , z) verifies Condition 2. We thus deduce from Lemma Appendix C.3 that there exists a solution φ a,cl = (x a,cl , z a ) to Ĥext and a reparametrization map

ρ a,cl : N → N such that xa (t, j) = x a,cl (t, ρ a,cl (j)) z(t, j) = z a (t, ρ a,cl (j)) ∀(t, j) ∈ dom φ (27) 
and (x a , z) is a full j-reparametrization of (x a,cl , z a ) with dom t φ a,cl = dom t φ. If this time domain is unbounded, φ a,cl is complete. If it is bounded, because xa is a full j-reparametrization of x a which is complete, the number of jumps where (x a , z) jumps according to Ĥext is infinite. Therefore, by construction φ a,cl is j-complete. So in both cases, φ a,cl is complete and dom t φ a,cl = dom t φ.

5.5. From φ a,cl solution to Ĥext to φ a solution to Ĥ with input y a

The last step is to come back from Ĥext to an observer solution, namely prove that there exists x a solution to H initialized in X 0 such that (z a , y a,cl ) is solution to Ĥ with input y a = h(x a ) where y a,cl = h(x a,cl ) and x a,cl is a full j-reparametrization of x a . This is done by applying the converse part of [16, Lemma 1]. For that, we need to show that φ a,cl verifies all the so-called Converse Conditions ( ). First, H cl has no input, so the conditions regarding n ua don't have to be checked (in particular CC.2)). Then it is useful to recall that with the algorithm in the converse of Lemma Appendix C.3, φ a,cl is obtained from φ only by removing the jumps where (x a , z) does not verify the jump condition of H cl . The existence of n xa verifying the CC.1) is therefore guaranteed by the fact that the jumps of x a where recorded successively in xa thanks to condition C1. Also, at a time t > 0 where n xa ≥ 1, either φ b,cl = (x b,cl , z) also jumped at that time, in which case CC.3) holds for φ a,cl because it holds for φ b,cl and because the value of h(x a ) corresponds to that of h(x b ) at that jump; or φ b,cl does not jump at that time (card J t (φ b,cl ) = 0) and (z, h(x a )) = (z, h(x b )) is necessarily in Ĉ since t > 0, so that there is nothing to check in CC.3). Therefore, CC.3) holds. Then, at a time t in int φ a,cl where n xa = 0, x a,cl is in C thanks to Condition 2 verified by xa , thus giving CC.4). Finally, if T ∈ dom t φ a,cl = dom t x a , because x a and φ a,cl are complete, CC.5) holds (with n xa = +∞). Therefore, φ a,cl = (x a,cl , z a ) verifies all the converse conditions. Now, again, either dom t x a,cl = dom t x a is unbounded and x a is complete. Or, dom j x a,cl is unbounded and contains by construction the infinite number of jumps of x a . Therefore, since x a is built from x a,cl by only removing the jumps which does not verify the jump conditions of H, x a has an infinite number of jumps. It follows that x a is necessarily complete. From the observer definition, it thus follows that lim t+j→+∞ d A xa (t, j), x a,cl (t, j) = 0 (28) where xa (t, j) = H(z a (t, j), h(x a,cl (t, j))) .

Since (x a , z) is a full j-reparametrization of (x a,cl , z a ), from ( 27) and ( 28)-(29), we then deduce that lim t+j→+∞ d A H(z(t, j), h(x a (t, j))) , xa (t, j) = 0

5. for all (t, j) ∈ dom φ, x(t, j) = H(z(t, j), y r (t, j)).

The solution φ is said to be maximal if there does not exist any other solution φ such that dom φ ⊂ dom φ , φ(t, j) = φ(t, j) ∀(t, j) ∈ dom φ .

n y stands for the number of jumps of y at time t. If n y = 0, jumps of φ may happen only according to condition 4b) along G if φ is in D. Otherwise, if n y > 1, the jumps of y are recorded consecutively and φ jumps according to condition 4a):

-at the first jump happening at t > 0, φ must be in Ĉ ∪ D and z is reset either trivially (via the identity)

or to a point in G(z, y) according to G 0 e .

-for the remaining jumps of y at t > 0, or if t = 0, those conditions are relaxed with G e , replacing Ĉ by cl( Ĉ).

The difference between G 0 e and G e in Condition 4a) is that z is forced to jump according to G if φ is in D \ Ĉ instead of D \ cl( Ĉ). This stricter condition at the first jump of y after an interval of flow is to avoid the situation where φ would leave Ĉ after flow and then be allowed to flow again from the same point after the jump of y; namely it prevents flows through a hole of Ĉ. This condition is already enforced when the input does not jump (n y = 0) by conditions 3) and 4b). In other words, if φ leaves Ĉ after an interval of flow, it either jumps according to G if it is in D or dies. Hence the condition that φ should be in Ĉ ∪ D instead of cl( Ĉ) ∪ D at the first jump of y. On the other hand, for the remaining jumps of y or at t = 0, there is no reason to force x to jump with G on cl( Ĉ) \ Ĉ since y could possibly flow into Ĉ. That is why G 0 e is relaxed into G e . This distinction disappears if Ĉ is closed. Note that more generally, the solution stops if φ leaves cl( Ĉ) ∪ D.

Proof We denote T := T (x a ) = T (x b ) = T (x a,0 , x b,0 ). There exist ρ a,0 , ρ b,0 verifying (8) such that x 1 (t, j) = x a,0 (t, ρ a,0 (j)) ∀(t, j) ∈ dom x 1 , x b (t, j) = x b,0 (t, ρ b,0 (j)) ∀(t, j) ∈ dom x b (B.1) Denote φ r = (x r a , x r b ) = R c (x a , x b ) and φ r 0 = (x r a,0 , x r b,0 ) = R c (x a,0 , x b,0 ). x r 1 and x r b are j-reparametrizations with consecutive jumps of x 1 and x b respectively, and x r a,0 and x r b,0 are j-reparametrizations with consecutive jumps of x a,0 and x b,0 respectively: there exist ρ r 1 , ρ r b , ρ r a,0 , ρ r b,0 all verifying (8) such that

x r 1 (t, j) = x 1 (t, ρ r 1 (j)) , x r b (t, j) = x b (t, ρ r b (j)) ∀(t, j) ∈ dom φ r (B.2)
x r a,0 (t, j) = x a,0 (t, ρ r a,0 (j)) , x r b,0 (t, j) = x b,0 (t, ρ r b,0 (j))

∀(t, j) ∈ dom φ r 0 (B.3)
Combining (B.2) and (B.1), it follows that

x r 1 (t, j) = x a,0 (t, ρ a,0 • ρ r 1 (j)) , x r b (t, j) = x b,0 (t, ρ b,0 • ρ r b (j)) ∀(t, j) ∈ dom φ r . (B.4)
We have to study two cases:

• Case 1 : T / ∈ dom t φ r
• Case b : T ∈ dom t φ r and card J T (x i ) = card J T (x i,0 ) = +∞ for i = a, b. Now, by using the consecutive jumps properties of ρ i,0 and ρ r i , we get that for all t ∈ T (φ r ), there exist integers n x r i and n xi,0 , such that denoting j 0 = min J t (φ r ), we have for all j ∈ J t (φ r ),

ρ r i (j) = ρ r i (j -1) + 1 if j < j 0 + n x r i ρ r i (j -1) if j ≥ j 0 + n x r i and ρ i,0 • ρ r i (j) = ρ i,0 • ρ r i (j -1) + 1 if j < j 0 + n xi,0 ρ i,0 • ρ r i (j -1) if j ≥ j 0 + n xi,0 . (B.5)
In other words, x r i is a j-reparametrization with consecutive jumps of x i,0 . Besides, according to (B.4), n xi,0 = card J t (x i,0 ), except maybe at t = T where we could have n xi,0 ≤ card J T (x i,0 ) (if φ r stopped before browsing all the jumps of x i,0 ), but we know this is not possible because if T ∈ dom t , all the arcs jump an infinite number of times.

Similarly, by the consecutive jumps properties of ρ r i,0 , we get that for all t ∈ T (φ r 0 ), there exist integers n x r i,0 , such that denoting j 0 = min J t (φ r 0 ), we have for all j ∈ J t (φ r 0 ),

ρ r i,0 (j) = ρ r i,0 (j -1) + 1 if j < j 0 + n x r i,0 ρ r i,0 (j -1) if j ≥ j 0 + n x r i,0 (B.6)
From (B.3), again, n x r i,0 = card J t (x i,0 ). Besides, for any t ∈ T (φ r ), t ∈ T (φ r 0 ) if and only if max{n xa,0 , n x b,0 } = 0. Indeed, n xa,0 = n x b,0 = 0 means that no jump of φ r at time t correspond to any jump of either x a,0 or x b,0 at time t. Because of the consecutiveness of the jumps in the reparametrization of x r i with respect to x i,0 , this is equivalent to the fact that no jump occurs in neither of the x i,0 , which is equivalent to the fact that no jumps occurs at time t in φ r 0 . In other words, we conclude that for all t in T (φ r ): • either t / ∈ T (φ r 0 ), and n xa,0 = n x b,0 = 0 • or t ∈ T (φ r 0 ), and n xi,0 = n x r i,0 for i = a, b. Now let us build recursively a function ρ with :

-ρ(0) = 0 -for j in {1, • • • , J(φ r )} ∩ N, ρ(j) = ρ(j -1) + 1 if ρ 1,0 • ρ r 1 (j) = ρ 1,0 • ρ r 1 (j -1) + 1 or ρ b,0 • ρ r b (j) = ρ b,0 • ρ r b (j -1) + 1 ρ(j -1) otherwise Appendix C. Properties of R c (H a , H b )
Similarly to the definition of H

r := R c (H, H) in (18), we define R c (H a , H b ) such that R c (x a , x b ) is solution to R c (H a , H b ) when x a (resp. x b ) is solution to H a (resp. H b ). Definition Appendix C.1. Given two hybrid systems H a = (C a , f a , D a , g a ) and H b = (C b , f b , D b , g b ), we define R c (H a , H b ) as the hybrid system H r          ẋa ẋb ∈ f r (x a , x b ) (x a , x b ) ∈ C r x + a x + b ∈ g r (x a , x b ) (x a , x b ) ∈ D r (C.1) with C r = C a × C b , D r = D a × (cl(C b ) ∪ D b ) ∪ (cl(C a ) ∪ D a ) × D b (C.2) and f r (x a , x b ) = f a (x a ) f b (x b ) ∀(x a , x b ) ∈ C r (C.3) g r (x a , x b ) = g a (x a ) Id b (x b ) ∪ Id a (x a ) g b (x b ) ∪ g a (x a ) g b (x b ) ∀(x a , x b ) ∈ D r (C.4)
where we have denoted for i in {1, b}

g i (x i ) = g i (x i ) if x i ∈ D i ∅ otherwise , Id i (x i ) = x i if x i ∈ cl(C i ) ∅ otherwise .
In the definition (C.4) of the jump map of R c (H a , H b ), we allow x a (resp. x b ) to be reset trivially even when both x a and x b are in their jump sets D a and D b , instead of making them jump simultaneously with their jump map g i . This is necessary because x i could be flowing D i int C i while the other jump (unless no flow is possible there).

However, this introduces solutions (x r a , x r b ) to H r that cannot be written as R c (x a , x b ) for any x a and x b solutions to H a and H b . Indeed, when x a and x b jump simultaneously, R c (x a , x b ) jumps only once, whereas it would be allowed by the definition of H r that x r a and x r b jump according to g a and g b one after the other. However, since the two hybrid systems are decoupled, the only addition is a trivial jump in the state component that does not jump.

Therefore, before relating the solutions to H a and H b and R c (H a , H b ), we need the following definition.

Definition Appendix C.2. Consider a solution φ r = (x r a , x r b ) to R c (H a , H b ).
At a time t in T (φ r ) and at a jump j ∈ J t (φ r ), we say that x r i satisfies its jump condition if

x r i (t, j -1) ∈ D i and x r i (t, j) ∈ g i (x r a (t, j -1)) . (C.5)
We introduce the following conditions:

Condition 1. For any t in T (φ r ), there exist integers n xi such that, for all j ∈ J t (φ r ), denoting j 0 = min J t (φ r ), -x r i satisfies its jump condition if j < j 0 + n xi .

-x r i does not satisfy its jump condition if j ≥ j 0 + n xi .

Condition 2. for any t in T (φ r ) ∩ int dom t (φ r ), if x r i does not verify its jump condition for any j ∈ J t (φ r ), then x r i (t, j) ∈ C i for all j ∈ J t (φ r ).

Condition 1 is a consecutive jump condition that says that at each jump time of φ r , x r a and x r b first jump simultaneously according to their jump condition and then stay constant until the other has completed all its jumps. In other words, they jump simultaneously and consecutively, but not alternatively.

Condition 2 requires that at each time t where x r i never jumps according to its jump condition, x r i is in C i . This condition automatically holds for x r i when C i is closed. The following technical lemma relates the solutions to H -For any solutions x a to H a and x b to H b , the hybrid arc φ r := (x r a , x r b ) := R c (x a , x b ) verifies -φ r is solution to the hybrid system R c (H a , H b ) on its domain dom φ r = R c (dom x a , dom x b ), and φ r is maximal for R c (H a , H b ) if x a is maximal for H a and x b is maximal for H b .

-Conditions 1 and 2 hold for both x r a and x r b .

-Conversely, for any solution φ r = (x r a , x r b ) to R c (H a , H b ), if x r i satisfies Condition 2, there exists x i solution to H i such that -dom t (x i ) = dom t (φ r ) and J(x i ) = card j ∈ N >0 ∩ dom j φ r : x r i (t j , j -1) ∈ D i , x r i (t j , j) ∈ g i (x r i (t j , j -1))

-x r i is a full j-reparametrization of x i .

Proof Take solutions x a to H • R c (x a , x b ) jumps only when either x a or x b jumps, so when at least one x i is in D i and jumps according to g i . With the previous point, we deduce that the jumps of R c (x a , x b ) happen in D r . Besides, x i necessarily jumps according to g i when in D i \cl(C i ) so that trivial jumps happen only in cl(C i ). Therefore, R c (x a , x b ) jumps according to g r . Also, R c (x a , x b ) browses the full domain of either x a or x b . If x a is maximal for H a and x b is maximal for H b , then R c (x a , x b ) cannot be extended either and it is maximal for R c (H a , H b ). Also by construction, at each time t in T (x a ) ∩ T (x b ), x r a and x r b jump according to g a and g b respectively, until all possible jumps of x a or x b have been processed, and afterwards stay constant if the solution carries on until all remaining jumps have been processed. Therefore, R c (x a , x b ) satisfies Condition 1. As for Condition 2, it follows from the fact that if the jump condition of x i is not verified at any jump of x r i at a given time t in the interior of the time domain, then those jumps happen in the interior of a flow interval of x i , which is therefore in C i by definition of solutions.

Conversely, take φ r = (x r a , x r b ) solution to R c (H a , H b ). We build two hybrid arcs x a , x b in the following way :

1. start with D a = D b = I 0 (φ r ) × {0}, x a ≡ x r 1|Da and x b ≡ x r b|D b , j a = 0, j b = 0, ρ 1 (0) = 0 and ρ b (0) = 0.

2. for j from 1 to J(φ r ) do (denoting t j = t j (φ r ) to simplify the notations) :

• if x r a (t j , j -1) ∈ D a and x r a (t j , j) ∈ g a (x r a (t j , j -1)), j a ← j a + 1 • if x r b (t j , j -1) ∈ D b and x r b (t j , j) ∈ g b (x r b (t j , j -1)), j b ← j b + 1 • D a ← D a ∪ (I j (φ r ) × {j a })

• D b ← D b ∪ (I j (φ r ) × {j b })
• x a (t, j a ) ← x r a (t, j) for all t in I j (φ r ) • x b (t, j b ) ← x r b (t, j) for all t in I j (φ r ) • ρ 1 (j) ← j a

• ρ b (j) ← j b For i = a, b, x i thus built clearly verify the jump conditions of H i . Besides, x i is absolutely continuous during flow, solution to f i almost everywhere, and more importantly x i is in C i in the interior of the flow intervals if Condition 2 holds. In that case, x i is therefore solution to H i and ρ i is the j-reparametrization map from x i to x r i . It is obviously a full j-reparametrization since the arc x i is only defined as long as φ r is.

ρ b Example 3 . 2 .

 32 Take two continuous hybrid arcs x a and x b defined on D a = I a × {0} and D b = I b × {0} respectively, where I a and I b are intervals of R ≥0 containing 0. Then, because neither x a nor x b has jumps, Algorithm 3.1 gives the output in one iteration which is R c (x a , x b ) = (x 1|D , x 2|D ) with D = (I a ∩ I b ) × {0}. Therefore, there is no loss of information if and only if I a = I b . Otherwise, one solution is stopped by the other and the resulting hybrid arc has a domain that does not cover the original domains. Example 3.3. Take two discrete hybrid arcs x a and x b defined on D a = {0} × {0, 1, ..., J a } and D b = {0} × {0, 1, ..., J b } respectively. With Algorithm 3.1, R c (x a , x b ) = (x a|D , x b|D ) with D = {0} × {0, 1, ..., J = min{J a , J b }}. Therefore, all the information about x a and x b is kept if only if J a = J b . Example 3.4. Take a continuous hybrid arc x a defined on D a = I a × {0} and a discrete hybrid arc x b defined on D b = {0} × {0, 1, ..., J b }. Since Algorithm 3.1 completes all the jumps at a given time before moving further in time, R c (x a , x b

5. 1 .

 1 Solution φ b to Ĥ with input y b = h(x b ) Consider a maximal solution φ b = (z b , y b,cl ) to Ĥ in (7) with z b (0, 0) ∈ Z 0 and input y b = h(x b ) and denote ρ b the j-reparametrization map from y b to y b,cl , which is full by Definition 2.2 and such that dom t x b = dom t φ b . Define the corresponding full j-reparametrization of x b with

5 . 3 .

 53 φ b solution to Ĥ to φ b,cl solution to Ĥext From [16, Lemma 1], φ b,cl = (x b,cl , z b ) ∈ S Ĥext (X 0 ×Z 0 ) and satisfies all the so-called Converse Conditions. At this point we have dom t x a = dom t x b = dom t φ b = dom t φ b,cl and all the hybrid arcs are complete. Also, by definition of asymptotic observer, lim t+j→+∞ d A xb (t, j), x b,cl (t, j) = 0 (20) with xb (t, j) = H(z b (t, j), h(x b,cl (t, j))) ∀(t, j) ∈ dom φ b,cl . Putting x a and φ b,cl on a common domain : construction of φ Consider now φ = (x a , (x b , z)) = R c (x a , (x b,cl , z b )

  withx(t, j) = H(z(t, j), h(x b (t, j))) ∀(t, j) ∈ dom φ . Now, since dom x b,cl = dom z b , (x a , xb ) = R c (x a , x b,cl ). Since x b,cl is a full j-reparametrization of x b processing the jumps of x b consecutively, according to Lemma Appendix B.2, (x a , xb ) is actually a full j-parametrization of φ r = (x r a , x r b ) = R c (x a , x b ), i.e. there exists a full reparametrization map ρ r : N

  a and H b and R c (H a , H b ). Lemma Appendix C.3. Consider two hybrid systems H a = (C a , f a , D a , g a ) and H b = (C b , f b , D b , g b ).

  a and x b to H b . The fact that R c (x a , x b ) is solution to R c (H a , H b ) follows from the following points: • flow intervals of R c (x a , x b ) are included in flow intervals of x a and x b . • R c (x a , x b ) stops whenever either x a or x b stops, so in particular if x a (resp x b ) jumps outside of cl(C a )∪D a (resp cl(C b ) ∪ D b ). Therefore, R c (x a , x b ) remains in cl(C r ) ∪ D r = cl(C a ) ∪ D a ∪ cl(C b ) ∪ D b until it stops.

and with (26), lim t+j→+∞ d A x(t, j) , xa (t, j) = 0 By triangle inequality, using [START_REF] Forni | Follow the bouncing ball : global results on tracking and state estimation with impacts[END_REF], d A xa (t, j), xb (t, j) ≤ d A xa (t, j) , x(t, j) + d A x(t, j), xb (t, j) and from [START_REF] Bernard | Observers for hybrid dynamical systems with linear maps and known jump times[END_REF], we finally obtain (25).

Remark 5.1. This proof, similarly to the proof of Theorem 1.3, heavily relies on a triangle inequality, so property (6c) is crucial. This differs from [START_REF] Biemond | Incremental stability of hybrid dynamical systems[END_REF] where the distance is only required to be definite (6a) and symmetric (6b).

Appendix A. Definition of solutions to Ĥ Definition Appendix A.1. Consider a hybrid arc y. A pair φ = (z, y r ) is a solution to Ĥ in [START_REF] Balluchi | The design of dynamical observers for hybrid systems: Theory and application to an automotive control problem[END_REF] with input y and output x if

2. y r is a j-reparametrization of y with reparametrization map ρ y , and with also card J T (y) (φ) = card J T (y) (y) if this reparametrization is full.

3. for all j ∈ N such that I j (φ) has nonempty interior, (z(t, j), y r (t, j)) ∈ Ĉ ∀t ∈ int I j (φ) ż(t, j) ∈ F (z(t, j), y r (t, j)) for almost all t ∈ I j (φ)

4. for all t ∈ T (φ), denoting j 0 = min J t (φ) and n y = card J t (y), we have (a) for all j ∈ J t (φ) such that j < j 0 + n y , we have ρ y (j) = ρ y (j -1) + 1, and: if j = j 0 and t > 0,

We first make more precise the definition of j-reparametrization.

Definition Appendix B.1. Given two hybrid arcs x and x r , x r is a (resp. full) j-reparametrization with consecutive jumps of x with reparametrization map ρ if -it is a (resp. full) j-reparametrization of x with reparametrization map ρ -for any t ∈ T (x r ), there exists an integer n x such that denoting j 0 = min J t (x r ), for any j ∈ J t (x r ),

In other words, the jumps of x are recorded consecutively in x r . This is ensured by R c , so that (x r a , x r b ) := R c (x a , x b ) are actually j-reparametrizations with consecutive jumps of x a and x b respectively. Lemma Appendix B.2. Consider complete hybrid arcs x a , x b , x a,0 and x b,0 such that dom t x a = dom t x b = dom t x a,0 = dom t x b,0 .

If x a , x b are full j-reparametrizations with consecutive jumps of x a,0 and x b,0 respectively, then, R c (x a , x b ) is a full j-reparametrization of R c (x a,0 , x b,0 ). ρ verifies [START_REF] Lee | On-line switching signal estimation of switched linear systems with measurement noise[END_REF] and according to (B.5), we have for all t in dom t φ r and for all j ∈ J t (φ r )

We would like to prove that

Let us prove by induction for j in dom j (φ r ) such that t j = T that P(j) :

Indeed, from (B.3) and (B.4), P(j) will directly imply that ∀t ∈ I j (φ r ) , x r 1 (t, j) = x r a,0 (t, ρ(j)) , x r b (t, j) = x r b,0 (t, ρ(j))

which will give (B.8) for t < T . If t 0 = T , there is nothing to check. Otherwise, we are going to browse dom t φ r up to T , treating together all the jumps occuring at a common time. Start at t 0 with j = 0 : P(0) holds because for i ∈ {a, b}, ρ(0) = ρ i,0 • ρ r i (0) = ρ r i,0 • ρ(0) = 0 and I 0 (φ r ) ⊆ I 0 (x a,0 ) ∩ I 0 (x b,0 ) = I 0 (φ r 0 ). Consider the jumps occurring in φ r at t 0 starting from j 0 = 1:

∈ T (φ r 0 ), then n xa,0 = n x b,0 = 0, and recursively, for all j ∈ J t0 (φ r ),

= ρ(j -1) + 1, and thus also ρ r i,0 • ρ(j) = ρ r i,0 • ρ(j -1) + 1 with j = ρ(j). for all j 0 + n xa,0 ≤ j < j 0 + n x b,0 , we have ρ a,0 • ρ r 1 (j) = ρ a,0 • ρ r 1 (j -1), ρ b,0 • ρ r b (j) = ρ b,0 • ρ r b (j -1) + 1, therefore ρ(j) = ρ(j -1) + 1, and with j = ρ(j), we get ρ r a,0 • ρ(j) = ρ r a,0 • ρ(j -1) and ρ r b,0 • ρ(j) = ρ r b,0 • ρ(j -1) + 1. for all j ≥ j 0 + n x b,0 , we have ρ i,0 • ρ r i (j) = ρ i,0 • ρ r i (j -1), ρ(j) = ρ(j -1), and thus also ρ r i,0 • ρ(j) = ρ r i,0 • ρ(j -1).

Therefore, in all cases, ρ i,0 • ρ r i (j) = ρ r i,0 • ρ(j) for all j ∈ J t0 (φ r ). Besides, since t 0 = T , there is a finite number of jumps at that time. Up to the last jump, I j (φ r ) = {t 0 } ⊆ I ρ(j) (φ r 0 ). As for the last jump, I j (φ r ) is of non-empty interval (still because t 0 = T ), and by definition of the reparametrization,

Therefore, P(j) holds for all j ∈ J t0 (φ r ). Moving along the successive jump times t ∈ T (φ r ), we manage to browse dom t (φ r ) up to T . Therefore, (B.8) holds for all (t, j) with t < T .

, and the result follows in the same way. We thus deduce that (B.8) holds i.e.

φ r (t, j) = φ r 0 (t, ρ(j)) ∀(t, j) ∈ dom φ r and φ r is a j-reparametrization of φ r 0 . Remains to prove that this reparametrization is full. Since dom t φ r = dom t φ r 0 , all the values of φ r 0 appear in φ r except maybe those at the boundary of the time domain, i.e those at time T , if T ∈ dom t φ r 0 = dom t φ r . But any jump occurring at time T in φ r 0 is present either in x a,0 or x b,0 , and therefore in either x a or x b by full-reparametrization, and therefore in φ r by definition of R c .