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Abstract

Notions of observer and detectability are well established for continuous-time and discrete-time systems, and
are known to be linked, since a system must be detectable to admit an observer. Unfortunately, defining
such notions for a hybrid system is not straightforward because solutions do not share the same hybrid
time domain. In this paper, we propose to define observers and detectability for hybrid systems, such
that detectability is still necessary for the existence of an observer and such that standard definitions are
recovered for continuous-time and discrete-time systems, when seen as special cases of hybrid systems. We
rely on a recent definition of hybrid systems with hybrid inputs and use jump reparametrizations to define
convergence and equality of outputs.
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1. Introduction

1.1. Context

For continuous-time (CT) and discrete-time (DT) systems, asymptotic observers are commonly defined
as dynamical systems taking the plant’s output as input and whose state asymptotically converges to the
plant’s state. The existence of such an object then requires some intrinsic properties of the plant, in particular
that the plant be asymptotically detectable: the trajectories giving the same output must asymptotically
converge to one another [1]. However, those notions are not straightforward to define for a hybrid plant,
since they involve comparisons of hybrid solutions defined on different hybrid time domains.

When the jump times of the plant are assumed to be known, the difficulties due to a possible mismatch
of the trajectories’ domains disappear since the observer can be synchronized with the plant. Similarly,
notions of detectability, observability and determinability reduce to comparing outputs with the same time
domain ([2, 3, 4]). However, when the plant’s jump times are unknown, the observer must be a hybrid
system which does not necessarily jump at the same time as the plant. This difficulty is avoided in [5] thanks
to a change of coordinates transforming the jump map into the identity map and thus somehow making the
jumps disappear in the observer. As for [6], an extended system containing both the plant and the observer
is directly analyzed. In the particular setting of switched systems, the problem is handled by estimating the
switching signal ([7, 8, 9, 10]), whose observability has been studied in [11, 12].

Apart from definitions of zero-detectability [13, 14], we are not aware of general notions of (incremental)
detectability and observers in the literature for general hybrid systems. This paper thus proposes to define
such notions, building from recent definitions of hybrid systems with hybrid inputs [15, 16] and the literature
of hybrid reference tracking [17] and hybrid incremental stability [18, 19], where methods for the comparison
of hybrid solutions were also introduced.
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1.2. Detectability and Observers for CT Systems

Consider a CT system
ẋ = f(x) , y = h(x) (1)

initialized in a set of interest X0. We usually define an observer as a dynamical system of the form

ż = F (z, y) , x̂ = H(z, y) (2)

initialized in a set Z0 and whose complete solutions, i.e. solutions defined on R≥0, are asked to verify
stability and convergence properties. If z lives in the same space as x, we may directly take x̂ = z, but that
is not necessarily the case for nonlinear systems. The existence of such an observer then intrinsically requires
some detectability properties of the system (1): the output y should somehow contain enough information
to uniquely determine the plant’s state.

Definition 1.1. The system (2) is an asymptotic observer of (1) on X0 if there exists a (known) set of
initial conditions Z0 such that for any complete solution x of (1) initialized in X0, any maximal solution z
of (2) initialized in Z0 with input y = h(x) is also complete and verifies limt→+∞ |x(t)− x̂(t)| = 0.

Definition 1.2. The system (1) is asymptotically detectable on X0 if any pair of complete solutions xa
and xb of (1) initialized in X0 such that

h(xa(t)) = h(xb(t)) ∀t ∈ R≥0 (3)

verifies limt→+∞ |xa(t)− xb(t)| = 0.

In other words, trajectories that have the same outputs converge to each other. As shown for instance
in [1], this detectability property is necessary for the existence of an observer.

Theorem 1.3. If system (1) admits an asymptotic observer on X0, then system (1) is asymptotically
detectable on X0.

Proof Consider complete solutions xa and xb of (1) such that h(xa(t)) = h(xb(t)) for all t ≥ 0. Take a
maximal solution z of (2) initialized in Z0 with input y = h(xa). Then, by definition, z is complete and
limt→+∞ |xa(t) − x̂(t)| = 0 with x̂ = H(z, h(xa)). But since h(xa) = h(xb), z is also solution of (2) with
input y = h(xb), and thus limt→+∞ |xb(t) − x̂(t)| = 0 with x̂ = H(z, h(xa)) = H(z, h(xb)). It thus follows
by triangle inequality that limt→+∞ |xa(t)− xb(t)| = 0. �

A similar result can be obtained in the same way for DT systems.

Remark 1.4. Definitions 1.1 and 1.2 require only asymptotic convergence of x̂ − x or xa − xb to zero for
complete solutions. In other words, they only deal with attractivity. However, we may sometimes want to
require stronger properties of the observer (stability, finite-time convergence, tunable speed of convergence,
etc.) and whichever constraint we add in the observer, then imposes stronger properties of the system that
could be translated in a stronger notion of detectability with the same reasoning as Theorem 1.3.

1.3. Towards Hybrid Systems

Consider now a general hybrid system

H
{

ẋ ∈ f(x) x ∈ C
x+ ∈ g(x) x ∈ D , y = h(x) (4)

with state x ∈ Rdx and output y ∈ Rdy . The solutions are now hybrid arcs (t, j) 7→ x(t, j) defined on a
hybrid time domain domx ⊆ R≥0 × N according to [20], with both continuous-time evolution in C and
discrete events in D (flows and jumps).
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If we want to properly define notions of observers and detectability as it has been done for CT/DT
systems, we need to think about both definitions together in a way that ensures that detectability is a
necessary condition for the existence of an observer. Besides, both CT and DT detectability/observers
should be recovered as particular cases when D = ∅ and C = ∅ respectively. The main difficulties are as
follows:

• The observer should be a hybrid system taking the (hybrid) output of H as input, but the latter has its
own hybrid time domain that may differ from the hybrid time domain of the observer’s solution. Hence,
a more general notion of solution must be used;

• Trajectories do not share a common time domain. This makes the comparison between xa and xb for
detectability, or between x and x̂ for observers, not straightforward;

• Completeness can happen either in the time-horizon (if t goes to +∞) or the jump horizon (if j goes to
+∞) and at different times;

• Asking for exact convergence of x̂ to x may be too restrictive around the jump times where an arbitrarily
small mismatch of jump times between x̂ and x leads to a significant error if g 6= Id, i.e., g is not the
identity map.

A notion of solutions to hybrid systems with hybrid inputs was proposed in [15, 16], relying on a so-
called jump reparametrization. This process, recalled in Section 2, enables to compare x̂ and x on a common
domain and thus to formulate a definition of asymptotic observers that resembles Definition 1.1. Note that
more general notions of convergence will be allowed, with (x̂, x) required to converge to a set A ⊂ Rdx ×Rdx
possibly larger than

A =
{

(x, x̂) ∈ Rdx × Rdx : x = x̂
}
. (5)

Then, in order to determine whether two hybrid outputs are “equal” as in Definition 1.2, we propose in
Section 3 an algorithm that enables to write two hybrid arcs on a common time domain and thus define
asymptotic detectability relative to A. Regarding the completeness condition, we will see that only complete
solutions sharing the same time horizon need to be compared.

The link between these definitions and more intuitive extended systems is investigated in Section 4.
Finally, in Section 5, we show that the proposed definitions preserve the tight link between asymptotic

detectability and observers exhibited for CT systems in Theorem 1.3, namely, we prove the following main
result.

Theorem 1.5. Let A be a nonempty subset of Rdx×Rdx . If H admits an asymptotic observer on X0 relative
to A, then H is asymptotically detectable on X0 relative to A.

1.4. Notations and Preliminaries

We denote by R (resp. N) the set of real (resp. natural) numbers, and R≥0 := [0,+∞), R>0 := (0,+∞),
and N>0 := N \ {0}. For a set S, cl(S) denotes its closure, int(S) its interior, and cardS its cardinality
(possibly infinite).

The set of maximal solutions to a hybrid system H initialized in X0 is denoted SH(X0), or SH(X0;u)
if H takes u as input. For a hybrid arc (t, j) 7→ φ(t, j) defined on a hybrid time domain domφ, we
denote domt φ (resp. domj φ) its projection on the time (resp. jump) axis, and for a positive integer
j, tj(φ) the time stamp associated to the jth jump (i.e., the only time satisfying (tj(φ), j) ∈ domφ and
(tj(φ), j − 1) ∈ domφ), and Ij(φ) the largest interval such that Ij(φ) × {j} ⊆ domφ. We define also
T (φ) = {tj(φ) : j ∈ domj φ ∩ N>0} as the set of jump times of φ, T (φ) = sup domt φ ∈ R≥0 ∪ {+∞} the
maximal time of the domain, J(φ) = sup domj φ ∈ N ∪ {+∞} the total number of jumps, and, for a time t
in R≥0, Jt(φ) = {j ∈ N>0 : tj(φ) = t} the set of jump counters associated to the jumps occurring at time
t. It follows that cardJt(φ) is the number of jumps of φ occurring at time t. A hybrid arc φ is said to be
t-complete (resp. j-complete) if domt φ (resp. domj φ) is unbounded, complete if domφ is unbounded, and
Zeno if it is complete with sup domt φ <∞.
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Finally, we will need to consider convergence to a subsetA of Rdx×Rdx . For that, a map dA : Rdx×Rdx →
R≥0 defines a distance relative to A if for all xa, xb, xc in Rdx ,

dA(xa, xb) = 0 ⇐⇒ (xa, xb) ∈ A (6a)

dA(xa, xb) = dA(xb, xa) (6b)

dA(xa, xb) ≤ dA(xa, xc) + dA(xc, xb) (6c)

2. Hybrid Asymptotic Observers

Inspired from (2), we define an observer as a hybrid system taking the plant’s output y as input and
producing an estimate x̂ of the plant’s state as output, namely

Ĥ
{

ż ∈ F (z, y) (z, y) ∈ Ĉ
z+ ∈ G(z, y) (z, y) ∈ D̂

, x̂ = H(z, y) (7)

with state z ∈ Rdz , such that “x̂ converges to x” in some sense. First, solutions to (7) must be defined with
care because the hybrid input y coming from the plant H has its own time domain and its jumps have no
reason to happen when (z, y) is in the jump set D̂. Therefore, their jumps are not necessarily synchronized.
Appropriate definitions have been given in [16] which we briefly recall next.

2.1. Reparametrization and Definition of Solutions

Definition 2.1 ([15, 16]). Given a hybrid arc φ, a hybrid arc φr is a j-reparametrization of φ if there
exists a function ρ : N→ N such that

ρ(0) = 0 , ρ(j + 1)− ρ(j) ∈ {0, 1} ∀j ∈ N (8)

φr(t, j) = φ(t, ρ(j)) ∀(t, j) ∈ domφr . (9)

The hybrid arc φr is a full j-reparametrization of φ if

domφ =
⋃

(t,j)∈domφr

(t, ρ(j)) . (10)

The map ρ is called j-reparametrization map from φ to φr.

In other words, φr takes at each time t the same values as φ, but maybe associated to a different jump
index: initially φr(t, 0) = φ(t, 0) for all t ∈ I0(φr), and when φr jumps,

• either ρ(1) = 1 and φr(t, 1) = φ(t, 1) for all t ∈ I1(φr),

• or ρ(1) = 0 and φr(t, 1) = φ(t, 0) for all t ∈ I1(φr),

and so on. This means that if ρ(j + 1) = ρ(j) + 1, the jth jump of φr corresponds to an actual jump in the
domain of φ, and if ρ(j + 1) = ρ(j), φr exhibits a jump that φ does not exhibit and, necessarily,

φr(tj+1, j + 1) = φ(tj+1, ρ(j + 1)) = φ(tj+1, ρ(j))

= φr(tj+1, j)

namely, the jump is trivial. Therefore, as long as it is defined, φr is the “same” as φ, modulo additional
trivial jumps. If the whole hybrid arc φ is “contained” in φr, then the parametrization is “full”.

Extending the definition given in [21] for solutions to hybrid systems with inputs that share the same
time domain as the state, [16, Definition 4] defines solutions to Ĥ as pairs φ = (z, yr) where yr is a j-
reparametrization of y that is defined on the same domain as z. An algorithm to build φ is provided in [16]
and can be summed up as the following. As long as the input y does not jump, z evolves like in a standard
hybrid system, z flowing according to F if φ is in Ĉ, and jumping according to G if φ is in D̂. In this case, a
trivial jump is added to yr. On the other hand, when y jumps, z can either jump according to G or be reset
identically, depending on whether φ is in Ĉ, D̂ or both. The precise jump logic is recalled in Appendix.
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2.2. Definition of Asymptotic Observer for H

Definition 2.2. Let A be a nonempty subset of Rdx ×Rdx . The hybrid system Ĥ is an asymptotic observer
for H on X0 ⊆ Rdx relative to A if there exist a distance function dA relative to A and a subset Z0

of Rdz such that for any complete plant solution x ∈ SH(X0) with output y and any observer solution
φ = (z, yr) ∈ SĤ(Z0; y) with output x̂ and j-reparametrization map ρ from y to yr:

(a) φ is complete with domt φ = domt x;

(b) denoting xr the full j-reparametrization of x on the domain of φ defined by

xr(t, j) = x(t, ρ(j)) ∀(t, j) ∈ domφ ,

we have
lim

t+j→+∞
dA

(
x̂(t, j), xr(t, j)

)
= 0 . (11)

When A is the diagonal set (5), we just say “asymptotic observer for H on X0”.

Condition (a) ensures that the observer solution exists as long as the underlying plant solution x does.
In particular, the extra condition domt x = domt φ means that they both “achieve their completeness” at
the same time:

• either they are both t-complete;

• or they are both Zeno with same domt.

As for Condition (b), it translates the intuitive idea of “x̂ converges to x” (relative to A), even if x̂ and
x do not share the same domain. This is done by reparametrizing x into xr, which is defined on the domain
of x̂.

When convergence of x̂ to x is required, A can be chosen as the diagonal set (5). However, the generic
set A in Definition 2.2 allows to consider more general notions of convergence of (x, x̂). This is important
because exact convergence of x̂ to x is in general difficult to obtain unless g = Id or unless the jumps of
the observer become perfectly synchronized with those of the plant after some time. Indeed, if x̂ and x do
not jump exactly at the same time and g 6= Id, it may not be possible to make the estimation error x̂ − x
small: if x = x̂ before the jump, then x̂ ∈ g(x)∪ g−1(x) after one jump of either x or x̂. This is the so-called
peaking phenomenon. In that case, denoting

g(x) =

{
g(x) if x ∈ D
∅ otherwise

, (12)

we can only expect (x, x̂) to converge to

A =
{

(x, x̂) ∈ (C ∪D ∪ g(D))2 : x = x̂ or x ∈ g(x̂) or x̂ ∈ g(x)
}
, (13)

as in [6], or even

A =
{

(x, x̂) ∈ (C ∪D ∪ g(D))2 : ∃k ∈ N : x ∈ gk(x̂) or x̂ ∈ gk(x)
}

when consecutive jumps are possible [17]. More generally, we might be interested in estimating only part
of the state x, which can be captured by a proper choice of A.

3. Hybrid Asymptotic Detectability

In order to define detectability in a way that extends Definition 1.2, we need to compare the outputs of
two hybrid solutions and decide whether they are “equal” in some sense.
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3.1. Motivation

Methods to compare hybrid arcs have been developed in the literature. In [20, Definition 5.23], notions
of ε and (ε, τ)-closeness were first introduced. This distance is related to the graphical distance of the graphs
of the hybrid arcs, namely hybrid arcs are compared at the same jump index and “close in time.” It was
used in the context of incremental stability [22], but was then observed to be too restrictive [18] and was
consequently relaxed in [18, Definition 4] or in [19, Definition 1] by allowing to compare solutions “close in
time” but maybe at different jump indexes.

In the context of detectability, we must decide under which conditions on the outputs we want to require
trajectories to converge to each other. Our approach is to think of detectability as a necessary condition
for the existence of an observer, similarly to CT and DT systems. Therefore, the question becomes: which
pairs of outputs would the observer in Definition 2.2 not distinguish? The observer would then produce
asymptotically the same estimate and the corresponding plant trajectories would thus have to converge to
each other, along a similar reasoning as in Theorem 1.3.

First, we notice that Definition 2.2 concerns only complete trajectories and that the estimate x̂ is also
complete with the same time horizon. Therefore, in comparing pairs of complete solutions (xa, xb) of H with
the “same output”, the only way we can exploit the observer asymptotic convergence is if domt xa = domt xb.

The meaning of “same output” should then be clarified. In the spirit of graphical distance [20], equality
of outputs would require equality of the time domains. Of course, if two plant trajectories have the same
domain and same output, they will produce in the observer the same trajectories x̂ and should be asked to
converge to each other. This is however restrictive because the observer may not either be able to distinguish
outputs that are the same up to trivial jumps added to their domains. On the other hand, the spirit of [18,
Definition 4] would consider two outputs ya and yb “equal” if for all (t, j) ∈ dom ya,

∃j′ ∈ N : (t, j′) ∈ dom yb , ya(t, j) = yb(t, j
′)

and vice-versa. This time, this definition would be too broad since it does not respect the causality/order
of the jumps which indeed is seen by the observer. In particular, this definition would not apply to DT
systems.

All in all, we propose an intermediate definition based on an algorithm that reparametrizes two hybrid
arcs onto a common time domain in order to compare them pointwisely, while preserving the order and
simultaneity of the jumps.

3.2. Algorithm Rc
Two hybrid arcs xa and xb can be reparametrized onto a common hybrid time domain, constructed by

either

- preserving the time stamp and, as time evolves, adding jumps whenever either xa or xb jumps. When only
one hybrid arc jumps, a trivial jump is added to the other; when both jump, their jumps are recorded
simultaneously;

- or preserving the jump numbering and letting both hybrid arcs flow until they can both jump at the same
time. When one arc flows for a longer time than the other, the other arc is kept constant while waiting
for the other’s jump time.

Given the role of time in applications, we explore the first process as formalized in Algorithm 3.1. By
preserving the order and simultaneity of the jumps, this process also applies to discrete hybrid arcs.

Definition 3.1. Given two hybrid arcs xa and xb, we define the reparametrized hybrid arcs (xr
a, x

r
b) :=

Rc(xa, xb) by Algorithm 3.1.
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Algorithm 3.1 (xr
a, x

r
b) = Rc(xa, xb)

1: j ← 0, tj ← 0, ja ← 0, jb ← 0
2: Ia ← {t ∈ R≥0 : (t, ja) ∈ domxa}
3: Ib ← {t ∈ R≥0 : (t, jb) ∈ domxb}
4: while Ia 6= ∅ and Ib 6= ∅ do
5: Tm,a ← sup Ia
6: Tm,b ← sup Ib
7: Tm ← min{Tm,a, Tm,b} . min{+∞,+∞} = +∞
8: if (Tm, ja) /∈ domxa or (Tm, jb) /∈ domxb then
9: xr

a(t, j)← xa(t, ja) ∀t ∈ [tj , Tm)
10: xr

b(t, j)← xb(t, jb) ∀t ∈ [tj , Tm)
11: else
12: xr

a(t, j)← xa(t, ja) ∀t ∈ [tj , Tm]
13: xr

b(t, j)← xb(t, jb) ∀t ∈ [tj , Tm]
14: end if
15: ρa(j)← ja
16: ρb(j)← jb
17: if Tm = Tm,a then
18: ja ← ja + 1
19: end if
20: if Tm = Tm,b then
21: jb ← jb + 1
22: end if
23: j ← j + 1
24: tj ← Tm
25: Ia ← {t ∈ R≥0 : (t, ja) ∈ domxa}
26: Ib ← {t ∈ R≥0 : (t, jb) ∈ domxb}
27: end while
28: J ← sup domj x

r
a

29: if J < +∞ then
30: ρ1(j)← ρ1(J) ∀j ∈ N : j ≥ J
31: ρ2(j)← ρ2(J) ∀j ∈ N : j ≥ J
32: end if
33: return (xr

a, x
r
b), ρa, ρb
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Example 3.2. Take two continuous hybrid arcs xa and xb defined on Da = Ia × {0} and Db = Ib × {0}
respectively, where Ia and Ib are intervals of R≥0 containing 0. Then, because neither xa nor xb has jumps,
Algorithm 3.1 gives the output in one iteration which is Rc(xa, xb) = (x1|D, x2|D) with D = (Ia ∩ Ib)× {0}.
Therefore, there is no loss of information if and only if Ia = Ib. Otherwise, one solution is stopped by the
other and the resulting hybrid arc has a domain that does not cover the original domains.

Example 3.3. Take two discrete hybrid arcs xa and xb defined on Da = {0} × {0, 1, ..., Ja} and Db =
{0} × {0, 1, ..., Jb} respectively. With Algorithm 3.1, Rc(xa, xb) = (xa|D, xb|D) with D = {0} × {0, 1, ..., J =
min{Ja, Jb}}. Therefore, all the information about xa and xb is kept if only if Ja = Jb.

Example 3.4. Take a continuous hybrid arc xa defined on Da = Ia × {0} and a discrete hybrid arc xb
defined on Db = {0} × {0, 1, ..., Jb}. Since Algorithm 3.1 completes all the jumps at a given time before
moving further in time, Rc(xa, xb) = (xr

a, x
r
b) is defined on D = {0} × {0, 1, ..., Jb} = Db by

xr
a(0, j) = xa(0, 0) ∀j ∈ {0, 1, ..., Jb} , xr

b ≡ xb

so that xr
a is blocked to its initial value.

We see from those examples that Algorithm 3.1 preserves the time stamp, but changes the jump num-
bering, and it stops when one of the arcs has reached the end of its domain. It thus gives pairs (xr

a, x
r
b)

defined on a common time domain which are j-reparametrizations of xa and xb, at least on the “common”
part of their domains. However, it can happen that xa ends earlier and “blocks” xb so that xr

b does not
contain all the information about xb, i.e., it is not a full j-reparametrization.

Lemma 3.5. Consider two complete hybrid arcs xa and xb such that domt xa = domt xb. Then, the hybrid
arc (xr

a, x
r
b) = Rc(xa, xb) is such that both xr

a and xr
b are full j-reparametrizations of xa and xb, respectively.

Proof Let’s denote φr = (xr
a, x

r
b). First note that Algorithm 3.1 browses in time the domains of xa and xb

until at least one of them has been completely browsed, i.e. when Ia or Ib therein becomes empty. This
means that domt φ

r = domt xa ∩ domt xb = domt xa. Besides, a jump occurs in φr only at times in domt φ
r

where either xa or xb jumps. At such a time tj , φ
r jumps as long as both xa and xb jump. Assume xa stops

jumping before xb. Then, either xa flows for t > tj or xa stops.

• In the former case, Ia contains the next interval of flow, Tm 6= Tm,a, jb stays constant, Tm remains equal
to tj and φr carries on jumping as long as xb jumps.

• in the latter case, Ia is empty and φr stops.

In other words,

1. domt φ
r = domt xa ∩ domt xb, so that T r := T (φr) = min{T (xa), T (xb)}

2. cardJ t(φr) = max
{

cardJ t(xa), cardJ t(xb)
}

for all t ∈ domt φ
r \ {T r}

3. cardJ T r

(φr) =


cardJ T r

(xa) if T (xb) > T r

cardJ T r

(xb) if T (xa) > T r

min
{

cardJ T r

(xa), cardJ T r

(xb)
}

if T (xa) = T (xb) = T r

Consider now the functions ρa : N→ N and ρb : N→ N built in Algorithm 3.1. They clearly verify (8) and
because they record ja and jb respectively, we have

xr
a(t, j) = xa(t, ρa(j)) ∀(t, j) ∈ domxr

a , xr
b(t, j) = xb(t, ρb(j)) ∀(t, j) ∈ domxr

b

This exactly means that xr
a and xr

b are j-reparametrizations of xa and xb.
Now assume xa and xb are complete and domt xa = domt xb. Then, items 1,2,3 above imply that those

parametrizations are full. �
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3.3. A Definition of Asymptotic Detectability

The following definition extends Definition 1.2.

Definition 3.6. Let A be a nonempty subset of Rdx ×Rdx . The hybrid plant H is said to be asymptotically
detectable on X0 relative to A if there exists a distance function dA relative to A such that any pair of
complete solutions xa, xb ∈ SH(X0) verifying domt xa = domt xb and

h(xr
a(t, j)) = h(xr

b(t, j)) ∀(t, j) ∈ domφr (14)

where (xr
a, x

r
b) := Rc(xa, xb), verify

lim
t+j→+∞

dA(xr
a(t, j), xr

b(t, j)) = 0 . (15)

Note that the mention of A can be omitted if it is simply the diagonal set defined in (5).

Asymptotic detectability requires that any two solutions which are complete on the same “time horizon”
and have the “same” output (once put on a same domain via Rc), asymptotically converge to each other
(in the sense of A). This definition enables to recover the standard notions of asymptotic detectability of
CT and DT systems, since in those cases, xa = xr

a and xb = xr
b.

4. Observers and Detectability via Extended Systems

Before proceeding to the proof of Theorem 1.5, we exhibit the link between our definitions and alternative
definitions via extended systems, which will be useful for the proof.

4.1. Observers

Instead of defining an observer as Ĥ in (7), a first idea could have been to define an observer directly
through an extended system of the form

Ĥext



(
ẋ
ż

)
∈
(

f(x)
F (z, h(x))

)
(x, z) ∈ C × Ĉ

(
x+

z+

)
∈ Gext(x, z) (x, z) ∈ D̂ext

x̂ = H(z, h(x))

(16)

with a jump map Gext and a jump set D̂ext to be defined. In doing that, we are facing three main difficulties.
First, a jump logic has to be designed in a way that does not assume synchronous jumps of z and x since the
jump times of the plant H are not necessarily known. Second, it is not straightforward to deduce from Ĥext

the hybrid dynamics of z to be implemented as an observer algorithm with input y and output x̂. Third,
without any assumption about the domain of solutions to H, we would require something like: any complete
solution of Ĥext initialized in X0×Z0 verifies limt+j→+∞ dA (x(t, j), x̂(t, j)) = 0. But a solution to Ĥext may
be complete without browsing the whole underlying maximal solution of H, for instance if the z-component
induced Zeno or finite time escape earlier than x. Therefore, x̂ would not provide any estimate of x after a
certain time, which is not acceptable.

This being said, an extended system of the form (16) may be handy for design since it allows for Lyapunov
analysis. Actually, in [23, Section 4.1], solutions (z, yr) to Ĥ are shown to be such that (xr, z) is solution to
Ĥext with jump set

D̂ext =
{

(x, z) ∈ Rdx × Rdz : x ∈ D , (z, h(x)) ∈ cl(Ĉ) ∪ D̂
}

∪
{

(x, z) ∈ Rdx × Rdz : x ∈ cl(C) ∪D , (z, h(x)) ∈ D̂
}
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and jump map

Gext(x, z) =

(
g(x)

Idz(z, h(x))

)
∪
(

Idx(x)
G(z, h(x))

)
∪
(

g(x)
G(z, h(x))

)
where g is defined in (12), and in the same spirit

G(z, h(x)) =

{
G(z, h(x)) if (z, h(x)) ∈ D̂
∅ otherwise

,

Idx(x) =

{
x if x ∈ cl(C)
∅ otherwise

, (17)

Idz(z, h(x)) =

{
z if (z, h(x)) ∈ cl(Ĉ)
∅ otherwise

.

Therefore, any analysis made on Ĥext may hold for solutions of Ĥ. However, the reverse is not true because
Ĥext has a larger set of solutions, see [16] for more details.

Lemma 4.1. Let A be a nonempty subset of Rdx × Rdx and dA a distance relative to A. Assume any
x ∈ SH(X0) is t-complete. If each (x, z) ∈ SĤext

(X0 ×Z0) is t-complete and verifies

lim
t+j→+∞

dA (x(t, j), x̂(t, j)) = 0 ,

then Ĥ is an asymptotic observer for H on X0 relative to A.

Proof Consider x ∈ SH(X0) and φ = (z, yr) ∈ SĤ(Z0;h(x)). According to [23, Lemma 1], (xr, z) ∈
SĤext

(X0 ×Z0). Therefore, φ is t-complete like x, and both items (a) and (b) of Definition 2.2 hold. �

Remark 4.2. Similar extended systems have been introduced in the literature whenever it was needed to
compare hybrid arcs with different domains, for instance in the context of reference tracking [17] or incre-
mental stability [18]. The main difference is that we allow here both x and z to jump simultaneously with g
and G, whereas in [17, 18] this kind of jump is decomposed into two successive jumps. The main reason for
allowing simultaneous jumps here is that we want to recover the framework of DT systems when C = Ĉ = ∅.
Then, thanks to the “simultaneous jump” part of Gext, it is sufficient to allow trivial jumps only on the flow
sets, as can be seen on the definition of Idi. In other words, unlike in [18], x (resp. z) is forced to jump
with g (resp. G) on D \ cl(C) (resp. D̂ \ cl(Ĉ)). Note that it is however not possible to replace cl(C) by C
in the definition of Id since x could flow from ∂C at a time where z needs to jump, in which case a trivial
jump of x should be allowed (and vice-versa).

4.2. Detectability

Similarly to Ĥext, it can be proved that given xa, xb ∈ SH(X0), (xr
a, x

r
b) := Rc(xa, xb) is a solution to the

extended hybrid system

Hr


(
ẋa
ẋb

)
∈
(
f(xa)
f(xb)

)
(xa, xb) ∈ C × C(

x+
a

x+
b

)
∈ gr(xa, xb) (xa, xb) ∈ Dr

(18)

where

Dr =
{

(xa, xb) ∈ Rdx × Rdx : xa ∈ D , xb ∈ cl(C) ∪D
}

∪
{

(xa, xb) ∈ Rdx × Rdx : xa ∈ cl(C) ∪D , xb ∈ D
}
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gr(xa, xb) =

(
g(xa)

Idx(xb))

)
∪
(

Idx(xa)
g(xb)

)
∪
(
g(xa)
g(xb))

)
with g and Id defined in (12) and (17). The process of duplicatingH intoHr will be denotedHr =: Rc(H,H).

Lemma 4.3. Let A be a nonempty subset of Rdx × Rdx and dA a distance relative to A. If each complete
solution φ = (xa, xb) ∈ SHr(X0 ×X0) such that

h(xa(t, j)) = h(xb(t, j)) ∀(t, j) ∈ domφ

verifies
lim

t+j→+∞
dA (xa(t, j), xb(t, j)) = 0 ,

then H is asymptotically detectable on X0 relative to A.

Note that this handy condition for detectability is sufficient but not necessary. Indeed, unless trajectories
are t-complete, a complete trajectory of Hr could correspond to Rc(xa, xb) with xa and xb not verifying
domt xa = domt xb, which are not required to converge to each other in Definition 3.6, nor for the existence
of an observer.

More generally, even if the trajectories are t-complete, the jump map gr allows xa and xb to jump

consecutively using first

(
g(xa)
xb

)
and then

(
xa
g(xb)

)
whenever xa and xb are in D ∩ cl(C), whereas xa and

xb solutions to H are forced to jump from D∩ cl(C) if no flow is possible from there. In that case, this jump
would be recorded simultaneously in Rc(xa, xb). Therefore, H could be detectable relative to A defined in
(5) without Hr verifying the assumption of Lemma 4.3. Both properties are thus not equivalent. Note that
they could become equivalent when delays in jumps do not matter in A, namely for instance A defined in
(13).

5. Proof of Theorem 1.5

The proof follows the same ideas as those in the proof of Theorem 1.3, but requires extra technical steps
to take care of the different hybrid time domains.

Consider complete solutions (xa, xb) ∈ SH(X0)×SH(X0) with H in (4) such that domt xa = domt xb and
φr := (xr

a, x
r
b) = Rc(xa, xb) verifies

h(xr
a(t, j)) = h(xr

b(t, j)) ∀(t, j) ∈ domφr .

According to Lemma 3.5, xr
a and xr

b are full j-reparametrizations of xa and xb. We denote T := T (xa) =
T (xb).

5.1. Solution φb to Ĥ with input yb = h(xb)

Consider a maximal solution φb = (zb, yb,cl) to Ĥ in (7) with zb(0, 0) ∈ Z0 and input yb = h(xb)
and denote ρb the j-reparametrization map from yb to yb,cl, which is full by Definition 2.2 and such that
domt xb = domt φb. Define the corresponding full j-reparametrization of xb with

xb,cl(t, j) = xb(t, ρb(j)) ∀(t, j) ∈ domφb (19)

which is such that
yb,cl(t, j) = h(xb,cl(t, j)) ∀(t, j) ∈ domφb .

11



5.2. From φb solution to Ĥ to φb,cl solution to Ĥext

From [16, Lemma 1], φb,cl = (xb,cl, zb) ∈ SĤext
(X0×Z0) and satisfies all the so-called Converse Conditions.

At this point we have domt xa = domt xb = domt φb = domt φb,cl and all the hybrid arcs are complete. Also,
by definition of asymptotic observer,

lim
t+j→+∞

dA

(
x̂b(t, j), xb,cl(t, j)

)
= 0 (20)

with
x̂b(t, j) = H(zb(t, j), h(xb,cl(t, j))) ∀(t, j) ∈ domφb,cl .

5.3. Putting xa and φb,cl on a common domain : construction of φ̄

Consider now φ̄ = (x̄a, (x̄b, z̄)) = Rc(xa, (xb,cl, zb)). According to Lemma 3.5, x̄a and (x̄b, z̄) are full
j-reparametrizations of xa and (xb,cl, zb) respectively, so φ̄ is complete, domt φ̄ = domt xa, and there exist
full reparametrization maps ρa and ρb,cl : N→ N such that

x̄a(t, j) = xa(t, ρa(j)) ∀(t, j) ∈ dom φ̄ (21)

and

x̄b(t, j) = xb,cl(t, ρb,cl(j))

z̄(t, j) = zb(t, ρb,cl(j)) ∀(t, j) ∈ dom φ̄ (22)

Also, since it is a full j-reparametrization,

lim
t+j→+∞

dA

(
¯̂x(t, j), x̄b(t, j)

)
= 0 (23)

with
¯̂x(t, j) = H(z̄(t, j), h(x̄b(t, j))) ∀(t, j) ∈ dom φ̄ .

Now, since domxb,cl = dom zb, (x̄a, x̄b) = Rc(xa, xb,cl). Since xb,cl is a full j-reparametrization of xb
processing the jumps of xb consecutively, according to Lemma Appendix B.2, (x̄a, x̄b) is actually a full
j-parametrization of φr = (xr

a, x
r
b) = Rc(xa, xb), i.e. there exists a full reparametrization map ρr : N → N

such that

x̄a(t, j) = xr
a(t, ρr(j))

x̄b(t, j) = xr
b(t, ρ

r(j)) ∀(t, j) ∈ dom φ̄ (24)

It is therefore enough to show that

lim
t+j→+∞

dA

(
x̄a(t, j), x̄b(t, j)

)
= 0 (25)

to deduce
lim

t+j→+∞
dA

(
xr
a(t, j), xr

b(t, j)
)

= 0 ,

which will prove asymptotic detectability according to Definition 3.6.

For that, we are going to show that actually limt+j→+∞ dA

(
¯̂x(t, j), x̄a(t, j)

)
= 0, and use the triangle

inequality with (23) to obtain (25). To that end, it is crucial to notice that (24) implies

h(x̄a(t, j)) = h(x̄b(t, j)) ∀(t, j) ∈ dom φ̄ . (26)
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5.4. From φ̄ solution to Rc(H, Ĥext), to φa,cl solution to Ĥext

Now, according to Lemma Appendix C.3, φ̄ = (x̄a, (x̄b, z̄)) is a maximal solution to Rc(H, Ĥext) satisfy-
ing Conditions 1 and 2. But because of (26), (x̄b, (x̄a, z̄)) is actually also a maximal solution to Rc(H, Ĥext)
on dom φ̄. At this point, we would like to recover from (x̄a, z̄) a solution to Ĥext to reuse the observer
definition. For this, we need to check that (x̄a, z̄) verifies Condition 2 to apply the converse part of Lemma
Appendix C.3. For all t ∈ T (φ̄) ∩ int domt(φ̄) such that (x̄a, z̄) does not verify the jump condition of Hcl
for any j ∈ J t(φ̄), necessarily x̄a does not verify the jump condition of H and z̄ does not verify the jump
condition of Ĥ. It means that t /∈ T (xa), and since t ∈ int domt(xa), xa ∈ C by definition of solutions
to H. Therefore, those jumps are necessarily triggered by x̄b and necessarily (z̄, h(x̄a)) = (z̄, h(x̄b)) ∈ Ĉ
by item 4.(a) of Definition Appendix A.1. Therefore, (x̄a, z̄) verifies Condition 2. We thus deduce from
Lemma Appendix C.3 that there exists a solution φa,cl = (xa,cl, za) to Ĥext and a reparametrization map
ρa,cl : N→ N such that

x̄a(t, j) = xa,cl(t, ρa,cl(j))

z̄(t, j) = za(t, ρa,cl(j)) ∀(t, j) ∈ dom φ̄ (27)

and (x̄a, z̄) is a full j-reparametrization of (xa,cl, za) with domt φa,cl = domt φ̄. If this time domain is
unbounded, φa,cl is complete. If it is bounded, because x̄a is a full j-reparametrization of xa which is

complete, the number of jumps where (x̄a, z̄) jumps according to Ĥext is infinite. Therefore, by construction
φa,cl is j-complete. So in both cases, φa,cl is complete and domt φa,cl = domt φ̄.

5.5. From φa,cl solution to Ĥext to φa solution to Ĥ with input y′a

The last step is to come back from Ĥext to an observer solution, namely prove that there exists x′a solution
to H initialized in X0 such that (za, ya,cl) is solution to Ĥ with input y′a = h(x′a) where ya,cl = h(xa,cl) and
xa,cl is a full j-reparametrization of x′a. This is done by applying the converse part of [16, Lemma 1]. For
that, we need to show that φa,cl verifies all the so-called Converse Conditions ( ). First, Hcl has no input, so
the conditions regarding nua

don’t have to be checked (in particular CC.2)). Then it is useful to recall that
with the algorithm in the converse of Lemma Appendix C.3, φa,cl is obtained from φ̄ only by removing the
jumps where (x̄a, z̄) does not verify the jump condition of Hcl. The existence of nxa

verifying the CC.1) is
therefore guaranteed by the fact that the jumps of xa where recorded successively in x̄a thanks to condition
C1. Also, at a time t > 0 where nxa ≥ 1, either φb,cl = (xb,cl, z) also jumped at that time, in which case
CC.3) holds for φa,cl because it holds for φb,cl and because the value of h(x̄a) corresponds to that of h(x̄b) at
that jump; or φb,cl does not jump at that time (cardJt(φb,cl) = 0) and (z̄, h(x̄a)) = (z̄, h(x̄b)) is necessarily

in Ĉ since t > 0, so that there is nothing to check in CC.3). Therefore, CC.3) holds. Then, at a time t in
intφa,cl where nxa = 0, xa,cl is in C thanks to Condition 2 verified by x̄a, thus giving CC.4). Finally, if
T ∈ domt φa,cl = domt xa, because xa and φa,cl are complete, CC.5) holds (with nxa = +∞). Therefore,
φa,cl = (xa,cl, za) verifies all the converse conditions. Now, again, either domt xa,cl = domt x

′
a is unbounded

and x′a is complete. Or, domj xa,cl is unbounded and contains by construction the infinite number of jumps
of xa. Therefore, since x′a is built from xa,cl by only removing the jumps which does not verify the jump
conditions of H, x′a has an infinite number of jumps. It follows that x′a is necessarily complete. From the
observer definition, it thus follows that

lim
t+j→+∞

dA

(
x̂a(t, j), xa,cl(t, j)

)
= 0 (28)

where
x̂a(t, j) = H(za(t, j), h(xa,cl(t, j))) . (29)

Since (x̄a, z̄) is a full j-reparametrization of (xa,cl, za), from (27) and (28)-(29), we then deduce that

lim
t+j→+∞

dA

(
H(z̄(t, j), h(x̄a(t, j))) , x̄a(t, j)

)
= 0

13



and with (26),

lim
t+j→+∞

dA

(
¯̂x(t, j) , x̄a(t, j)

)
= 0

By triangle inequality, using (6),

dA

(
x̄a(t, j), x̄b(t, j)

)
≤ dA

(
x̄a(t, j) , ¯̂x(t, j)

)
+ dA

(
¯̂x(t, j), x̄b(t, j)

)
and from (23), we finally obtain (25).

Remark 5.1. This proof, similarly to the proof of Theorem 1.3, heavily relies on a triangle inequality, so
property (6c) is crucial. This differs from [18] where the distance is only required to be definite (6a) and
symmetric (6b).

Appendix A. Definition of solutions to Ĥ

Definition Appendix A.1. Consider a hybrid arc y. A pair φ = (z, yr) is a solution to Ĥ in (7) with
input y and output x̂ if

1. dom z = dom yr(= domφ)

2. yr is a j-reparametrization of y with reparametrization map ρy, and with also cardJT (y)(φ) = cardJT (y)(y)
if this reparametrization is full.

3. for all j ∈ N such that Ij(φ) has nonempty interior,

(z(t, j), yr(t, j)) ∈ Ĉ ∀t ∈ int Ij(φ)

ż(t, j) ∈ F (z(t, j), yr(t, j)) for almost all t ∈ Ij(φ)

4. for all t ∈ T (φ), denoting j0 = minJt(φ) and ny = card Jt(y), we have

(a) for all j ∈ Jt(φ) such that j < j0 + ny, we have ρy(j) = ρy(j − 1) + 1, and:
if j = j0 and t > 0,

- (z(t, j0 − 1), yr(t, j0 − 1)) ∈ Ĉ ∪ D̂
- z(t, j0) ∈ G0

e(z(t, j0 − 1), yr(t, j0 − 1))

else

- (z(t, j − 1), yr(t, j − 1)) ∈ cl(Ĉ) ∪ D̂
- z(t, j) ∈ Ge(z(t, j − 1), yr(t, j − 1))

with

G0
e(z, y) =


z if (z, y) ∈ Ĉ \ D̂
G(z, y) if (z, y) ∈ D̂ \ Ĉ
{z,G(z, y)} if (z, y) ∈ D̂ ∩ Ĉ

Ge(z, y) =


z if (z, y) ∈ cl(Ĉ) \ D̂
G(z, y) if (z, y) ∈ D̂ \ cl(Ĉ)

{z,G(z, y)} if (z, y) ∈ D̂ ∩ cl(Ĉ)

(b) for all j ∈ Jt(φ) such that j ≥ j0 + ny, we have ρy(j) = ρy(j − 1) and

- (z(t, j − 1), yr(t, j − 1)) ∈ D̂
- z(t, j) ∈ G(z(t, j − 1), yr(t, j − 1))
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5. for all (t, j) ∈ domφ, x̂(t, j) = H(z(t, j), yr(t, j)).

The solution φ is said to be maximal if there does not exist any other solution φ̃ such that

domφ ⊂ dom φ̃ , φ̃(t, j) = φ(t, j) ∀(t, j) ∈ domφ .

ny stands for the number of jumps of y at time t. If ny = 0, jumps of φ may happen only according to

condition 4b) along G if φ is in D̂. Otherwise, if ny > 1, the jumps of y are recorded consecutively and φ
jumps according to condition 4a):

- at the first jump happening at t > 0, φ must be in Ĉ ∪ D̂ and z is reset either trivially (via the identity)
or to a point in G(z, y) according to G0

e.

- for the remaining jumps of y at t > 0, or if t = 0, those conditions are relaxed with Ge, replacing Ĉ by
cl(Ĉ).

The difference between G0
e and Ge in Condition 4a) is that z is forced to jump according to G if φ is in D̂\ Ĉ

instead of D̂ \ cl(Ĉ). This stricter condition at the first jump of y after an interval of flow is to avoid the
situation where φ would leave Ĉ after flow and then be allowed to flow again from the same point after the
jump of y; namely it prevents flows through a hole of Ĉ. This condition is already enforced when the input
does not jump (ny = 0) by conditions 3) and 4b). In other words, if φ leaves Ĉ after an interval of flow, it

either jumps according to G if it is in D̂ or dies. Hence the condition that φ should be in Ĉ ∪ D̂ instead of
cl(Ĉ) ∪ D̂ at the first jump of y. On the other hand, for the remaining jumps of y or at t = 0, there is no
reason to force x to jump with G on cl(Ĉ) \ Ĉ since y could possibly flow into Ĉ. That is why G0

e is relaxed
into Ge. This distinction disappears if Ĉ is closed. Note that more generally, the solution stops if φ leaves
cl(Ĉ) ∪ D̂.

Appendix B. Other properties of Rc

We first make more precise the definition of j-reparametrization.

Definition Appendix B.1. Given two hybrid arcs x and xr, xr is a (resp. full) j-reparametrization with
consecutive jumps of x with reparametrization map ρ if

- it is a (resp. full) j-reparametrization of x with reparametrization map ρ

- for any t ∈ T (xr), there exists an integer nx such that denoting j0 = minJ t(xr), for any j ∈ J t(xr),

ρ(j) =

{
ρ(j − 1) + 1 if j < j0 + nx
ρ(j − 1) if j ≥ j0 + nx .

In other words, the jumps of x are recorded consecutively in xr. This is ensured by Rc, so that (xr
a, x

r
b) :=

Rc(xa, xb) are actually j-reparametrizations with consecutive jumps of xa and xb respectively.

Lemma Appendix B.2. Consider complete hybrid arcs xa, xb, xa,0 and xb,0 such that

domt xa = domt xb = domt xa,0 = domt xb,0 .

If xa, xb are full j-reparametrizations with consecutive jumps of xa,0 and xb,0 respectively, then, Rc(xa, xb)
is a full j-reparametrization of Rc(xa,0, xb,0).
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Proof We denote T := T (xa) = T (xb) = T (xa,0, xb,0). There exist ρa,0, ρb,0 verifying (8) such that

x1(t, j) = xa,0(t, ρa,0(j)) ∀(t, j) ∈ domx1 , xb(t, j) = xb,0(t, ρb,0(j)) ∀(t, j) ∈ domxb (B.1)

Denote φr = (xra, x
r
b) = Rc(xa, xb) and φr

0 = (xra,0, x
r
b,0) = Rc(xa,0, xb,0). xr

1 and xr
b are j-reparametrizations

with consecutive jumps of x1 and xb respectively, and xra,0 and xrb,0 are j-reparametrizations with consecutive
jumps of xa,0 and xb,0 respectively: there exist ρr

1, ρr
b, ρ

r
a,0, ρrb,0 all verifying (8) such that

xr
1(t, j) = x1(t, ρr

1(j)) , xr
b(t, j) = xb(t, ρ

r
b(j)) ∀(t, j) ∈ domφr (B.2)

xra,0(t, j) = xa,0(t, ρra,0(j)) , xrb,0(t, j) = xb,0(t, ρrb,0(j)) ∀(t, j) ∈ domφr0 (B.3)

Combining (B.2) and (B.1), it follows that

xr
1(t, j) = xa,0(t, ρa,0 ◦ ρr

1(j)) , xr
b(t, j) = xb,0(t, ρb,0 ◦ ρr

b(j)) ∀(t, j) ∈ domφr . (B.4)

We have to study two cases:

• Case 1 : T /∈ domt φ
r

• Case b : T ∈ domt φ
r and cardJT (xi) = cardJT (xi,0) = +∞ for i = a, b.

Now, by using the consecutive jumps properties of ρi,0 and ρr
i, we get that for all t ∈ T (φr), there exist

integers nxr
i

and nxi,0 , such that denoting j0 = minJt(φr), we have for all j ∈ Jt(φr),

ρr
i(j) =

{
ρr
i(j − 1) + 1 if j < j0 + nxr

i

ρr
i(j − 1) if j ≥ j0 + nxr

i

and

ρi,0 ◦ ρr
i(j) =

{
ρi,0 ◦ ρr

i(j − 1) + 1 if j < j0 + nxi,0

ρi,0 ◦ ρr
i(j − 1) if j ≥ j0 + nxi,0

.
(B.5)

In other words, xr
i is a j-reparametrization with consecutive jumps of xi,0. Besides, according to (B.4),

nxi,0
= cardJt(xi,0), except maybe at t = T where we could have nxi,0

≤ cardJT (xi,0) (if φr stopped before
browsing all the jumps of xi,0), but we know this is not possible because if T ∈ domt, all the arcs jump an
infinite number of times.

Similarly, by the consecutive jumps properties of ρr
i,0, we get that for all t ∈ T (φr

0), there exist integers
nxr

i,0
, such that denoting j′0 = minJt(φr

0), we have for all j′ ∈ Jt(φr
0),

ρr
i,0(j) =

{
ρr
i,0(j′ − 1) + 1 if j′ < j′0 + nxr

i,0

ρr
i,0(j′ − 1) if j′ ≥ j′0 + nxr

i,0

(B.6)

From (B.3), again, nxr
i,0

= cardJt(xi,0). Besides, for any t ∈ T (φr), t ∈ T (φr
0) if and only if max{nxa,0

, nxb,0
} 6=

0. Indeed, nxa,0
= nxb,0

= 0 means that no jump of φr at time t correspond to any jump of either xa,0 or
xb,0 at time t. Because of the consecutiveness of the jumps in the reparametrization of xr

i with respect to
xi,0, this is equivalent to the fact that no jump occurs in neither of the xi,0, which is equivalent to the fact
that no jumps occurs at time t in φr

0. In other words, we conclude that for all t in T (φr):

• either t /∈ T (φr
0), and nxa,0 = nxb,0

= 0

• or t ∈ T (φr
0), and nxi,0

= nxr
i,0

for i = a, b.

Now let us build recursively a function ρ̄ with :

- ρ̄(0) = 0

- for j in {1, · · · , J(φr)} ∩ N,

ρ̄(j) =

{
ρ̄(j − 1) + 1 if ρ1,0 ◦ ρr

1(j) = ρ1,0 ◦ ρr
1(j − 1) + 1 or ρb,0 ◦ ρr

b(j) = ρb,0 ◦ ρr
b(j − 1) + 1

ρ̄(j − 1) otherwise
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ρ̄ verifies (8) and according to (B.5), we have for all t in domt φ
r and for all j ∈ Jt(φr)

ρ̄(j) =

{
ρ̄(j − 1) + 1 if j < j0 + max{nxa,0

, nxb,0
}

ρ̄(j − 1) if j ≥ j0 + max{nxa,0
, nxb,0

} . (B.7)

We would like to prove that

xr
1(t, j) = xr

a,0(t, ρ̄(j)) , xr
b(t, j) = xr

b,0(t, ρ̄(j)) ∀(t, j) ∈ domφr . (B.8)

Let us prove by induction for j in domj(φ
r) such that tj 6= T that

P(j) : Ij(φr) ⊆ Iρ̄(j)(φr
0) , ρi,0 ◦ ρr

1(j) = ρr
i,0 ◦ ρ̄(j) , i = a, b

Indeed, from (B.3) and (B.4), P(j) will directly imply that

∀t ∈ Ij(φr) , xr
1(t, j) = xr

a,0(t, ρ̄(j)) , xr
b(t, j) = xr

b,0(t, ρ̄(j))

which will give (B.8) for t < T . If t0 = T , there is nothing to check. Otherwise, we are going to browse
domt φ

r up to T , treating together all the jumps occuring at a common time. Start at t0 with j = 0 : P(0)
holds because for i ∈ {a, b}, ρ̄(0) = ρi,0 ◦ ρr

i(0) = ρr
i,0 ◦ ρ̄(0) = 0 and I0(φr) ⊆ I0(xa,0) ∩ I0(xb,0) = I0(φr

0).
Consider the jumps occurring in φr at t0 starting from j0 = 1:

• either t0 /∈ T (φr
0), then nxa,0

= nxb,0
= 0, and recursively, for all j ∈ Jt0(φr), ρi,0◦ρr

i(j) = ρi,0◦ρr
i(j0−1) =

0. Therefore also, ρ̄(j) = ρ̄(j0 − 1) = 0 and thus, ρr
i,0 ◦ ρ̄(j) = ρr

i,0 ◦ ρ̄(j0 − 1) = 0.

• either t0 ∈ T (φr
0), j′0 = 1 = ρ̄(j0), nxi,0

= nxr
i,0

: without loss of generality assume nxa,0
≤ nxb,0

, then

– for all j < j0 + nxa,0
, we have ρi,0 ◦ ρr

i(j) = ρi,0 ◦ ρr
i(j − 1) + 1, ρ̄(j) = ρ̄(j − 1) + 1, and thus also

ρr
i,0 ◦ ρ̄(j) = ρr

i,0 ◦ ρ̄(j − 1) + 1 with j′ = ρ̄(j).

– for all j0 +nxa,0 ≤ j < j0 +nxb,0
, we have ρa,0 ◦ρr

1(j) = ρa,0 ◦ρr
1(j−1), ρb,0 ◦ρr

b(j) = ρb,0 ◦ρr
b(j−1) + 1,

therefore ρ̄(j) = ρ̄(j − 1) + 1, and with j′ = ρ̄(j), we get ρr
a,0 ◦ ρ̄(j) = ρr

a,0 ◦ ρ̄(j − 1) and ρr
b,0 ◦ ρ̄(j) =

ρr
b,0 ◦ ρ̄(j − 1) + 1.

– for all j ≥ j0 + nxb,0
, we have ρi,0 ◦ ρr

i(j) = ρi,0 ◦ ρr
i(j − 1), ρ̄(j) = ρ̄(j − 1), and thus also ρr

i,0 ◦ ρ̄(j) =
ρr
i,0 ◦ ρ̄(j − 1).

Therefore, in all cases, ρi,0 ◦ ρr
i(j) = ρr

i,0 ◦ ρ̄(j) for all j ∈ Jt0(φr). Besides, since t0 6= T , there is a finite
number of jumps at that time. Up to the last jump, Ij(φr) = {t0} ⊆ Iρ̄(j)(φr

0). As for the last jump, Ij(φr)
is of non-empty interval (still because t0 6= T ), and by definition of the reparametrization,

Ij(φr) ⊆ Iρa,0◦ρr1(j)(xa,0) ∩ Iρb,0◦ρrb(j)(xb,0) = Iρra,0◦ρ̄(xa,0) ∩ Iρrb,0◦ρ̄(xb,0) = Iρ̄(j)(φr
0) .

Therefore, P(j) holds for all j ∈ Jt0(φr). Moving along the successive jump times t ∈ T (φr), we manage to
browse domt(φ

r) up to T . Therefore, (B.8) holds for all (t, j) with t < T .
If T /∈ domt(φ

r) (Case 1), (B.8) is proved. If T ∈ domt(φ
r) (Case b) and at t = T , nx1

= nxb
= nxr

1
=

nxr
b

= cardJT (φr) = +∞, and the result follows in the same way.
We thus deduce that (B.8) holds i.e.

φr(t, j) = φr
0(t, ρ̄(j)) ∀(t, j) ∈ domφr

and φr is a j-reparametrization of φr
0. Remains to prove that this reparametrization is full. Since domt φ

r =
domt φ

r
0, all the values of φr

0 appear in φr except maybe those at the boundary of the time domain, i.e those
at time T , if T ∈ domt φ

r
0 = domt φ

r. But any jump occurring at time T in φr
0 is present either in xa,0 or

xb,0, and therefore in either xa or xb by full-reparametrization, and therefore in φr by definition of Rc. �
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Appendix C. Properties of Rc(Ha,Hb)

Similarly to the definition of Hr := Rc(H,H) in (18), we define Rc(Ha,Hb) such that Rc(xa, xb) is
solution to Rc(Ha,Hb) when xa (resp. xb) is solution to Ha (resp. Hb).

Definition Appendix C.1. Given two hybrid systems Ha = (Ca, fa, Da, ga) and Hb = (Cb, fb, Db, gb),
we define Rc(Ha,Hb) as the hybrid system

Hr


(
ẋa
ẋb

)
∈ f r(xa, xb) (xa, xb) ∈ Cr

(
x+
a

x+
b

)
∈ gr(xa, xb) (xa, xb) ∈ Dr

(C.1)

with
Cr = Ca × Cb , Dr =

(
Da × (cl(Cb) ∪Db)

)
∪
(

(cl(Ca) ∪Da)×Db

)
(C.2)

and

f r(xa, xb) =

(
fa(xa)
fb(xb)

)
∀(xa, xb) ∈ Cr (C.3)

gr(xa, xb) =

(
g
a
(xa)

Idb(xb)

)
∪
(

Ida(xa)
g
b
(xb)

)
∪
(
g
a
(xa)

g
b
(xb)

)
∀(xa, xb) ∈ Dr (C.4)

where we have denoted for i in {1, b}

g
i
(xi) =

{
gi(xi) if xi ∈ Di

∅ otherwise
, Idi(xi) =

{
xi if xi ∈ cl(Ci)
∅ otherwise

.

In the definition (C.4) of the jump map of Rc(Ha,Hb), we allow xa (resp. xb) to be reset trivially even
when both xa and xb are in their jump sets Da and Db, instead of making them jump simultaneously with
their jump map gi. This is necessary because xi could be flowing Di intCi while the other jump (unless no
flow is possible there).

However, this introduces solutions (xr
a, x

r
b) to Hr that cannot be written as Rc(xa, xb) for any xa and

xb solutions to Ha and Hb. Indeed, when xa and xb jump simultaneously, Rc(xa, xb) jumps only once,
whereas it would be allowed by the definition of Hr that xr

a and xr
b jump according to ga and gb one after

the other. However, since the two hybrid systems are decoupled, the only addition is a trivial jump in the
state component that does not jump.

Therefore, before relating the solutions to Ha and Hb and Rc(Ha,Hb), we need the following definition.

Definition Appendix C.2. Consider a solution φr = (xr
a, x

r
b) to Rc(Ha,Hb). At a time t in T (φr) and

at a jump j ∈ J t(φr), we say that xr
i satisfies its jump condition if

xr
i(t, j − 1) ∈ Di and xr

i(t, j) ∈ gi(xr
a(t, j − 1)) . (C.5)

We introduce the following conditions:

Condition 1. For any t in T (φr), there exist integers nxi such that, for all j ∈ J t(φr), denoting j0 =
minJ t(φr),

- xr
i satisfies its jump condition if j < j0 + nxi .

- xr
i does not satisfy its jump condition if j ≥ j0 + nxi .
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Condition 2. for any t in T (φr)∩ int domt(φ
r), if xr

i does not verify its jump condition for any j ∈ J t(φr),
then xr

i(t, j) ∈ Ci for all j ∈ J t(φr).

Condition 1 is a consecutive jump condition that says that at each jump time of φr, xr
a and xr

b first jump
simultaneously according to their jump condition and then stay constant until the other has completed all
its jumps. In other words, they jump simultaneously and consecutively, but not alternatively.

Condition 2 requires that at each time t where xr
i never jumps according to its jump condition, xr

i is in
Ci. This condition automatically holds for xr

i when Ci is closed.
The following technical lemma relates the solutions to Ha and Hb and Rc(Ha,Hb).

Lemma Appendix C.3. Consider two hybrid systems Ha = (Ca, fa, Da, ga) and Hb = (Cb, fb, Db, gb).

- For any solutions xa to Ha and xb to Hb, the hybrid arc φr := (xr
a, x

r
b) := Rc(xa, xb) verifies

- φr is solution to the hybrid system Rc(Ha,Hb) on its domain domφr = Rc(domxa,domxb), and φr is
maximal for Rc(Ha,Hb) if xa is maximal for Ha and xb is maximal for Hb.

- Conditions 1 and 2 hold for both xr
a and xr

b.

- Conversely, for any solution φr = (xr
a, x

r
b) to Rc(Ha,Hb), if xr

i satisfies Condition 2, there exists xi
solution to Hi such that

- domt(xi) = domt(φ
r) and

J(xi) = card
{
j ∈ N>0 ∩ domj φ

r : xr
i(tj , j − 1) ∈ Di , x

r
i(tj , j) ∈ gi(xr

i(tj , j − 1))
}

- xr
i is a full j-reparametrization of xi.

Proof Take solutions xa to Ha and xb to Hb. The fact that Rc(xa, xb) is solution to Rc(Ha,Hb) follows
from the following points:

• flow intervals of Rc(xa, xb) are included in flow intervals of xa and xb.

• Rc(xa, xb) stops whenever either xa or xb stops, so in particular if xa (resp xb) jumps outside of cl(Ca)∪Da

(resp cl(Cb)∪Db). Therefore, Rc(xa, xb) remains in cl(Cr)∪Dr = cl(Ca)∪Da∪ cl(Cb)∪Db until it stops.

• Rc(xa, xb) jumps only when either xa or xb jumps, so when at least one xi is in Di and jumps according to
gi. With the previous point, we deduce that the jumps of Rc(xa, xb) happen in Dr. Besides, xi necessarily
jumps according to gi when in Di\cl(Ci) so that trivial jumps happen only in cl(Ci). Therefore, Rc(xa, xb)
jumps according to gr.

Also, Rc(xa, xb) browses the full domain of either xa or xb. If xa is maximal for Ha and xb is maximal for
Hb, then Rc(xa, xb) cannot be extended either and it is maximal for Rc(Ha,Hb). Also by construction, at
each time t in T (xa) ∩ T (xb), x

r
a and xr

b jump according to ga and gb respectively, until all possible jumps
of xa or xb have been processed, and afterwards stay constant if the solution carries on until all remaining
jumps have been processed. Therefore, Rc(xa, xb) satisfies Condition 1. As for Condition 2, it follows from
the fact that if the jump condition of xi is not verified at any jump of xr

i at a given time t in the interior of
the time domain, then those jumps happen in the interior of a flow interval of xi, which is therefore in Ci
by definition of solutions.

Conversely, take φr = (xr
a, x

r
b) solution to Rc(Ha,Hb). We build two hybrid arcs xa, xb in the following

way :

1. start with Da = Db = I0(φr)× {0}, xa ≡ xr
1|Da

and xb ≡ xr
b|Db

, ja = 0, jb = 0, ρ1(0) = 0 and ρb(0) = 0.

2. for j from 1 to J(φr) do (denoting tj = tj(φ
r) to simplify the notations) :
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• if xr
a(tj , j − 1) ∈ Da and xr

a(tj , j) ∈ ga(xr
a(tj , j − 1)), ja ← ja + 1

• if xr
b(tj , j − 1) ∈ Db and xr

b(tj , j) ∈ gb(xr
b(tj , j − 1)), jb ← jb + 1

• Da ← Da ∪ (Ij(φr)× {ja})
• Db ← Db ∪ (Ij(φr)× {jb})
• xa(t, ja)← xr

a(t, j) for all t in Ij(φr)

• xb(t, jb)← xr
b(t, j) for all t in Ij(φr)

• ρ1(j)← ja

• ρb(j)← jb

For i = a, b, xi thus built clearly verify the jump conditions of Hi. Besides, xi is absolutely continuous
during flow, solution to fi almost everywhere, and more importantly xi is in Ci in the interior of the flow
intervals if Condition 2 holds. In that case, xi is therefore solution to Hi and ρi is the j-reparametrization
map from xi to xr

i. It is obviously a full j-reparametrization since the arc xi is only defined as long as φr is.
�
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[9] D. Gómez-Gutiérrez, S. Celikovský, A. Ramı́rez-Treviño, and B. Castillo-Toledo. On the observer design problem for
continuoustime switched linear systems with unknown switchings. Journal of the Franklin Institute, 352(4):1595–1612,
2015.

[10] Z. Ping, C. Lee, and H. Shim. Robust estimation algorithm for both switching signal and state of switched linear systems.
International Journal of Control, Automation and Systems, 15(1):95–103, 2017.

[11] R. Vidal, A. Chiuso, S. Soatto, and S. Sastry. Observability of linear hybrid systems. In O. Maler and A. Pnueli, editors,
Hybrid Systems: Computation and Control, pages 526–539. Springer Berlin Heidelberg, 2003.
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