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Abstract

An asymptotic observer is a dynamical system taking as input the plant’s output and producing asymp-
totically an estimate of the plant’s state. It is commonly known that for an observer to exist, the plant
must be asymptotically detectable, namely the trajectories giving the same output must asymptotically
converge to one another. But unlike continuous-time and discrete-time systems, those notions are not
straightforward to define for a hybrid plant, since solutions do not share the same hybrid time domain.
In this paper, we propose to define observers and detectability for hybrid systems together, in a way
that ensures detectability remains necessary for the existence of an observer and such that standard def-
initions are recovered for continuous-time and discrete-time systems. We rely on the recent definition of
hybrid systems with hybrid inputs and use jump reparametrizations to define convergence and equality
of outputs.

Keywords: observer, hybrid systems, impulsive systems

1. Introduction

1.1. Context

For continuous-time (CT) and discrete-time (DT) systems, asymptotic observers are commonly de-
fined as dynamical systems taking as input the plant’s output and asymptotically producing an estimate
of the plant’s state. The existence of such an object then requires some intrinsic properties of the plant,
in particular that the plant be asymptotically detectable: the trajectories giving the same output must
asymptotically converge to one another [1]. However, those notions are not straightforward to define
for a hybrid plant, since they involve comparisons of hybrid solutions defined on different hybrid time
domains.

When the jump times of the plant are assumed to be known, the difficulties due to a possible mismatch
of the trajectories’ domains disappear since the observer can be synchronized with the plant ([2, 3, 4]).
Similarly, notions of detectability, observability and determinability reduce to comparing outputs with
the same time domain ([5, 6, 3]).

When the plant’s jump times are unknown, however, the observer should be a hybrid system which
does not necessarily jump at the same time as the plant. This difficulty is avoided in [7] thanks to
a change of coordinates transforming the jump map into the identity map and thus somehow making
the jumps disappear in the observer. As for [8], an extended system containing both the plant and the
observer is directly analyzed. In the particular setting of switched systems, the problem is handled by
estimating the switching signal, whose observability has been studied in [9, 10]. Some observer designs
exist based on the detection and identification of switches ([11, 12, 13, 14]).

In this paper, we aim at defining notions of detectability and observers for general hybrid systems,
building from recent definitions of hybrid systems with hybrid inputs ([15, 16]) and the literature of
hybrid reference tracking [17] and hybrid incremental stability [18, 19], where methods of comparison of
hybrid arcs were also introduced. In fact, there are many ways this could be done, and in order to come
up with reasonable definitions, we first need to think about the structural properties we want to ensure.
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1.2. Detectability and observers for CT systems

Consider a CT system
ẋ = f(x) , y = h(x) (1)

initialized in a set of interest X0. We usually define an observer as a dynamical system of the form

ż = F(z, y) , x̂ = T (z, y) (2)

initialized in a set Z0 and whose complete solutions, i.e. defined on [0,+∞), are asked to verify stability
and convergence properties. If z lives in the same space as x, we may directly take z = x̂, but that is
not necessarily the case for nonlinear systems, since we may need to change coordinates or add dynamics
to design the observer (see, e.g., high gain [20] or Luenberger observers [21]). The existence of such
an observer then intrinsically necessitates some detectability properties of the system: the output y
should somehow contain enough information to determine the plant’s state. The weakest observer and
detectability notions we may define are the following (see [1]).

Definition 1.1. The system (2) is an asymptotic observer of (1) on X0 if there exists a (known) set of
initial condition Z0 such that for any complete solution x of (1) initialized in X0, any maximal solution
z of (2) initialized in Z0 with input y = h(x) is also complete and verifies

lim
t→+∞

|x(t)− x̂(t)| = 0 .

Definition 1.2. The system (1) is asymptotically detectable on X0 if any pair of complete solutions xa
and xb of (1) initialized in X0 such that

h(xa(t)) = h(xb(t)) ∀t ∈ R≥0 (3)

verify
lim

t→+∞
|xa(t)− xb(t)| = 0 .

In other words, trajectories that have the same outputs converge to each other. As noticed for
instance in [1], this detectability property is necessary for the existence of an observer.

Theorem 1.3. If (1) admits an asymptotic observer on X0, then (1) is asymptotically detectable on
X0.

Proof Consider complete solutions xa and xb of (1) such that h(xa(t)) = h(xb(t)) for all t. Take a
maximal solution z of (2) initialized in Z0 with input y = h(xa). Then, by the definition of asymptotic
observer, z is complete and limt→+∞ |xa(t)− x̂(t)| = 0 with x̂ = T (z, h(xa)). But since h(xa) = h(xb), z
is also solution of (2) with input y = h(xb), and thus limt→+∞ |xb(t)− x̂(t)| = 0 with x̂ = T (z, h(xa)) =
T (z, h(xb)). It thus follows by triangular inequality that limt→+∞ |xa(t)− xb(t)| = 0. �

The same result can be obtained in the same way for DT systems.

Remark 1.4. Definitions 1.1 and 1.2 require only asymptotic convergence of x̂ − x or xa − xb to zero
for complete solutions. In other words, they only deal with attractivity. However, we may sometimes
want to require stronger properties of the observer (stability, finite-time convergence, tunable speed of
convergence, etc.) and whichever constraint we add in the observer, then imposes stronger properties
of the system that could be translated in a stronger notion of detectability with the same reasoning as
Theorem 1.3.
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1.3. Towards hybrid systems

Consider now a general hybrid system

H
{

ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D , y = h(x) (4)

with state x ∈ Rdx and output y ∈ Rdy . The solutions are now hybrid arcs (t, j) 7→ x(t, j) defined on a
hybrid time domain domx ⊆ R≥0 × N according to [22], with both continuous-time evolution in C and
discrete events in D (flows and jumps).

If we want to properly define notions of observers and detectability as it has been done for CT/DT
systems, we thus need to think about both definitions together in a way that ensures detectability is a
necessary condition for the existence of an observer, and both CT and DT detectability/observers are
recovered as particular cases when D = ∅ and C = ∅ respectively. The main difficulties are as follows:

• the observer should be a hybrid system taking as input the hybrid output of the plant, but the latter
has its own hybrid time domain that may differ from the observer solution’s: a more general notion
of solutions must be used;

• trajectories do not share a common time domain so that comparison between xa and xb for detectability,
or between x and x̂ for observers, is not straightforward;

• completeness can happen either in the time-horizon (if t goes to +∞) or the jump horizon (if j goes
to +∞) and at different times;

• asking for exact convergence of x̂ to x may be too restrictive around the jump times where an arbitrarily
small mismatch of jump times between x̂ and x leads to a significant error if G 6= Id.

A notion of solutions to hybrid systems with hybrid inputs was defined in [15, 16], relying on a
so-called jump reparametrization. This process, recalled in Section 2, enables to compare x̂ and x on a
common domain and thus to formulate a definition of asymptotic observers that resembles Definition
1.1. Note that more general notions of convergence will be allowed, with (x̂, x) required to converge to
a set A ⊂ Rdx × Rdx possibly larger than

A =
{

(x, x̂) ∈ Rdx × Rdx : x = x̂
}
. (5)

Then, in order to determine whether two hybrid outputs are equal as in Definition 1.2, we propose in
Section 3 an algorithm that enables to write two hybrid arcs on a common time domain and thus define
asymptotic detectability. Regarding the completeness condition, we will see that only complete solutions
sharing the same time horizon need be compared because only those are significant for the observer.

The link between these definitions and more intuitive extended systems composed of the plant and
the observer, or a duplication of the plant, is investigated in Section 4.

Finally, in Section 5, we show how those definitions enable to preserve the tight link between asymp-
totic detectability and observers exhibited in Theorem 1.3, namely we prove the following main result.

Theorem 1.5. Let A be a subset of Rdx × Rdx . Assume there exists an asymptotic observer for H on
X0 relative to A. Then H is asymptotically detectable on X0 relative to A.

1.4. Notations and preliminaries

We denote by R (resp. N) the set of real (resp. natural) numbers, and R≥0 := [0,+∞), R>0 =:
(0,+∞), and N>0 := N \ {0}. For a set S, cl(S) denotes its closure, int(S) its interior, and cardS its
cardinality (possibly infinite).

The set of maximal solutions to a hybrid system H initialized in X0 is denoted SH(X0), or SH(X0;u)
if H takes as input u. For a hybrid arc (t, j) 7→ φ(t, j) defined on a hybrid time domain domφ, we
denote domt φ (resp. domj φ) its projection on the time (resp. jump) axis, and for a positive integer j,
tj(φ) the time stamp associated to the jth jump (i.e., the only time satisfying (tj(φ), j) ∈ domφ and
(tj(φ), j − 1) ∈ domφ), and Ij(φ) the largest interval such that Ij(φ) × {j} ⊆ domφ. We define also
T (φ) = {tj(φ) : j ∈ domj φ ∩ N>0} as the set of jump times of φ, T (φ) = sup domt φ ∈ R≥0 ∪ {+∞}
the maximal time of the domain, J(φ) = sup domj φ ∈ N ∪ {+∞} the total number of jumps, and, for a
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time t in R≥0, Jt(φ) = {j ∈ N>0 : tj(φ) = t} the set of jump counters associated to the jumps occurring
at time t. It follows that cardJt(φ) is the number of jumps of φ occurring at time t. A hybrid arc φ
is said t-complete (resp. j-complete) if domt φ (resp. domj φ) is unbounded, and complete if domφ is
unbounded.

Finally, we will need to consider convergence to a subset A of Rdx × Rdx . For that, a map dA :
Rdx × Rdx → R≥0 defines a distance relative to A if for all (xa, xb, xc) ∈ Rdx × Rdx × Rdx ,

dA(xa, xb) = 0 ⇐⇒ (xa, xb) ∈ A (6a)

dA(xa, xb) = dA(xb, xa) (6b)

dA(xa, xb) ≤ dA(xa, xc) + dA(xc, xb) (6c)

2. Hybrid asymptotic observers

Inspired from (2), we define an observer as a hybrid system taking as input the plant’s output y and
producing as output an estimate x̂ of the plant’s state, namely

Ĥ
{

ż ∈ F(z, y) (z, y) ∈ Ĉ
z+ ∈ G(z, y) (z, y) ∈ D̂

, x̂ = T (z, y) (7)

with state z ∈ Rdz , such that “x̂ converges to x” in some sense. First, solutions to (7) must be defined
with care because the hybrid input y coming from the plant H has its own time domain and its jumps
have no reason to happen when (z, y) is in the jump set D̂. Therefore, their jumps are not necessarily
synchronized. Appropriate definitions have been given in [16] using jump reparametrizations, which we
briefly recall in the next section and in Appendix.

2.1. Reparametrization and definition of solutions
As in [15, 16], we define a j-reparametrization of a hybrid arc as follows.

Definition 2.1. Given a hybrid arc φ, a hybrid arc φr is a j-reparametrization of φ if there exists a
function ρ : N→ N such that

ρ(0) = 0 , ρ(j + 1)− ρ(j) ∈ {0, 1} ∀j ∈ N (8)

and
φr(t, j) = φ(t, ρ(j)) ∀(t, j) ∈ domφr . (9)

The hybrid arc φr is a full j-reparametrization of φ if

domφ =
⋃

(t,j)∈domφr

(t, ρ(j)) . (10)

We will say that ρ is a j-reparametrization map from φ to φr.

In other words, φr takes at each time t the same values as φ, but maybe associated to a different
jump index: initially φr(t, 0) = φ(t, 0) for all t ∈ I0(φr), and when φr jumps,

• either ρ(1) = 1 and φr(t, 1) = φ(t, 1) for all t ∈ I1(φr),

• or ρ(1) = 0 and φr(t, 1) = φ(t, 0) for all t ∈ I1(φr),

and so on. This means that if ρ(j + 1) = ρ(j) + 1, the jth jump of φr corresponds to an actual jump in
the domain of φ, and if ρ(j + 1) = ρ(j), φr exhibits a jump that φ does not exhibit and, necessarily,

φr(tj+1, j + 1) = φ(tj+1, ρ(j + 1)) = φ(tj+1, ρ(j))

= φr(tj+1, j)

namely, the jump is trivial. Therefore, φr is the same as φ, potentially with additional trivial jumps,
and, unless the parametrization is “full”, a shorter domain than that of φ.

[16, Definition 4] defines solutions to hybrid systems with hybrid inputs such as Ĥ. Such solutions
are pairs φ = (z, yr) where yr is a j-reparametrization of y that is defined on the same domain as z. An
algorithm to them is provided in [16] and can be summed up as the following. As long as the input y
does not jump, z evolves like a standard hybrid system, z flowing along F if φ is in Ĉ, and jumping with
G if φ is in D̂. In that latter case, a trivial jump is added to yr. On the other hand, when y jumps, z
can either jump according to G or be reset identically, depending on whether φ is in Ĉ, D̂ or both. The
precise jump logic is recalled in Appendix.
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2.2. Definition of asymptotic observer for H
We are now ready to define an observer. Consider a generic set A of Rdx × Rdx .

Definition 2.2. The hybrid system Ĥ is an asymptotic observer for H on X0 ⊆ Rdx relative to A if
there exist a distance function dA relative to A and a subset Z0 of Rdz such that for any complete plant
solution x ∈ SH(X0) with output y and any observer solution φ = (z, yr) ∈ SĤ(Z0; y) with output x̂ and
j-reparametrization map ρ from y to yr:

(a) φ is complete with domt φ = domt x;

(b) denoting xr the full j-reparametrization of x on the domain of φ defined by

xr(t, j) = x(t, ρ(j)) ∀(t, j) ∈ domφ ,

we have
lim

t+j→+∞
dA

(
x̂(t, j), xr(t, j)

)
= 0 . (11)

When A is the diagonal set (5), we just say “asymptotic observer for H on X0”.

Condition (a) ensures that the observer solution exists as long as the underlying plant solution x does.
In particular, the extra condition domt x = domt φ means that they both “achieve their completeness”
at the same time: either

• they are both t-complete;

• they both are Zeno with same Zeno time;

• T (x) ∈ domt x and they both jump an infinite number of times at the final time t = T (x) (eventually
discrete).

As for Condition (b), it traduces the intuitive idea of “x̂ converges to x” (in the sense of A), even if
x̂ and x do not share the same domain. This is done by reparametrizing x into xr, which is defined on
the domain of x̂.

The interest of the generic set A is to consider convergence of (x, x̂) to a set possibly larger than
simply (5). This is due to exact convergence of x̂ to x being in general difficult to obtain unless G = Id
or unless the jumps of the observer become perfectly synchronized with those of the plant after some
time. Indeed, if x̂ and x do not jump exactly at the same time and G 6= Id, it may not be possible to
make the estimation error x̂−x small: if x = x̂ before the jump, then x̂ ∈ G(x)∪G−1(x) after one jump
of either x or x̂. This is the so-called peaking phenomenon. In that case, denoting

G(x) =

{
G(x) if x ∈ D
∅ otherwise

, (12)

we can only hope for (x, x̂) to converge to

A =
{

(x, x̂) ∈ (C ∪D ∪G(D))2 :

x = x̂ or x ∈ G(x̂) or x̂ ∈ G(x)
}
, (13)

as in [8], or even

A =
{

(x, x̂) ∈ (C ∪D ∪G(D))2 :

∃k ∈ N : x ∈ Gk(x̂) or x̂ ∈ Gk(x)
}

when consecutive jumps are possible, as in [17]. More generally, we might be interested in estimating
only part of the state x, which can be captured by a proper choice of A.
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3. Hybrid asymptotic detectability

In order to define detectability in a way that extends Definition 1.2, we need to compare the outputs
of two hybrid solutions and decide whether they are “equal” in some sense.

3.1. Motivation

Methods to compare two hybrid solutions that do not share the same hybrid domain have been
developed in the literature. In [22, Definition 5.23], notions of ε or (ε, τ)-closeness were first introduced.
This distance is related to the graphical distance of the graphs of the hybrid arcs, namely hybrid arcs
are compared around a same jump index and “close in time”. It was used for instance in the context
of incremental stability ([23]), but was then observed to be too restrictive [18] and was consequently
relaxed in [18, Definition 4] or in [19, Definition 1] by allowing to compare solutions “close in time” but
maybe at different jump indexes.

In the context of detectability, we must wonder under which conditions on the outputs, we want to
require trajectories to converge to each other. Our approach is to think of detectability as a necessary
condition for the existence of an observer, similarly to CT and DT systems. Therefore, the question
becomes: which kind of outputs would the observer of Definition 2.2 not distinguish and thus produce
asymptotically the “same” estimate x̂? The corresponding trajectories would then necessarily have to
converge to each other, along a similar reasoning as in Theorem 1.3.

First, we notice that Definition 2.2 concerns only complete trajectories and the estimate x̂ produced
by the observer is complete with the same time horizon, i.e. with domt x = domt x̂. Therefore, in
comparing pairs of complete solutions (xa, xb) of H with “same output”, the only way we can exploit
the observer asymptotic convergence is if domt xa = domt xb.

Now we must define what we mean by “same output”. In the spirit of graphical distance of [22],
equality of outputs would require equality of the time domains. Of course, if two plant trajectories have
the same domain and same output, they will produce in the observer the same trajectories x̂ and should
be asked to converge to each other. This is however restrictive because the observer may not distinguish
either outputs being the same up to trivial jumps added to their domains. On the other hand, the spirit
of [18, Definition 4] would consider two outputs ya and yb “equal” if for all (t, j) ∈ dom ya,

∃j′ ∈ N : (t, j′) ∈ dom yb , ya(t, j) = yb(t, j
′)

and vice-versa. This time, this definition would be too broad since it does not respect the causality/order
of the jumps which indeed is seen by the observer. In particular, this definition would not apply to DT
systems.

All in all, we propose an intermediary definition based on an algorithm to reparametrize two hybrid
arcs onto a common time domain in order to compare them point-wise, while preserving the order and
simultaneity of the jumps.

3.2. Algorithm Rc
Two hybrid arcs xa and xb such that domxa 6= domxb can be reparametrized onto a common hybrid

time domain, constructed by:

- either preserving the time stamp of the hybrid arcs and, as time evolves, adding jumps whenever either
xa or xb jumps. When only one hybrid arc jumps, a trivial jump is added to the other; when both
jump, their jump is recorded simultaneously;

- or preserving the jump numbering and letting both hybrid arcs flow until they can both jump at the
same time. When one arc flows for a longer time than the other, the other arc is kept constant while
waiting for the other’s jump time.

Since in many applications, time is running and cannot be stopped, we choose to privilege time and
explore the first process as formalized in Algorithm 3.1. By preserving the order and simultaneity of the
jumps, this process also applies to discrete hybrid arcs.

Definition 3.1. Given two hybrid arcs xa and xb, we define the hybrid arc (xra, x
r
b) := Rc(xa, xb) by

Algorithm 3.1.
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Algorithm 3.1 (xra, x
r
b) = Rc(xa, xb)

1: j ← 0
2: tj ← 0
3: ja ← 0
4: jb ← 0
5: Ia ← {t ∈ R≥0 : (t, ja) ∈ domxa}
6: Ib ← {t ∈ R≥0 : (t, jb) ∈ domxb}
7: while Ia 6= ∅ and Ib 6= ∅ do
8: Tm,1 ← sup Ia
9: Tm,2 ← sup Ib

10: Tm ← min{Tm,1, Tm,2} . min{+∞,+∞} = +∞
11: if (Tm, ja) /∈ domxa or (Tm, jb) /∈ domxb then
12: xra(t, j)← xa(t, ja) ∀t ∈ [tj , Tm)
13: xrb(t, j)← xb(t, jb) ∀t ∈ [tj , Tm)
14: else
15: xra(t, j)← xa(t, ja) ∀t ∈ [tj , Tm]
16: xrb(t, j)← xb(t, jb) ∀t ∈ [tj , Tm]
17: end if
18: if Tm = Tm,1 then
19: ja ← ja + 1
20: end if
21: if Tm = Tm,2 then
22: jb ← jb + 1
23: end if
24: j ← j + 1
25: tj ← Tm
26: Ia ← {t ∈ R≥0 : (t, ja) ∈ domxa}
27: Ib ← {t ∈ R≥0 : (t, jb) ∈ domxb}
28: end while
29: return (xra, x

r
b)
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Example 3.2. Take two continuous hybrid arcs xa and xb defined on Da = Ia ×{0} and Db = Ib ×{0}
respectively, where Ia and Ib are intervals of R≥0 containing 0. Then, because neither xa nor xb has
jumps, Algorithm 3.1 gives the output in one iteration which is Rc(xa, xb) = (x1|D, x2|D) with D =
(Ia ∩ Ib)×{0}. Therefore, there is no loss of information if and only if Ia = Ib. Otherwise, one solution
is stopped by the other and the resulting hybrid arc has a domain that does not cover the original domains.

Example 3.3. Take two discrete hybrid arcs xa and xb defined on Da = {0} × {0, 1, ..., Ja} and Db =
{0}×{0, 1, ..., Jb} respectively. With Algorithm 3.1, Rc(xa, xb) = (x1|D, x2|D) with D = {0}×{0, 1, ..., J =
min{Ja, Jb}}. Therefore, all the information about xa and xb is kept if only if Ja = Jb.

Example 3.4. Take a continuous hybrid arc xa defined on Da = Ia × {0} and a discrete hybrid arc xb
defined on Db = {0} × {0, 1, ..., Jb}. Since Algorithm 3.1 completes all the jumps at a given time before
moving further in time, Rc(xa, xb) = (xr

a, x
r
b) is defined on D = {0} × {0, 1, ..., Jb} = Db by

xr
a(0, j) = xa(0, 0) ∀j ∈ {0, 1, ..., Jb} , xr

b ≡ xb

so that xr
a is blocked to its initial value.

We see from the above examples that Algorithm 3.1 preserves the time stamp, but changes the jump
numbering, and it stops whenever one of the arcs has reached the end of its domain. It thus gives pairs
(xr
a, x

r
b) defined on a common time domain which are j-reparametrizations of xa and xb, at least on the

“common” part of their domains. However, it can happen that xa ends earlier and “blocks” xb so that
xr
b does not contain all the information about xb, i.e., it is not a full j-reparametrization.

Lemma 3.5. Consider two complete hybrid arcs xa and xb such that domt xa = domt xb. Then, the
hybrid arc (xr

a, x
r
b) = Rc(xa, xb) is such that both xr

a and xr
b are full j-reparametrizations of xa and xb,

respectively.

3.3. A definition of asymptotic detectability

Let A be a subset of Rdx × Rdx . We finally obtain the following definition extending Definition 1.2.

Definition 3.6. The hybrid plant H is said to be asymptotically detectable on X0 relative to A if there
exists a distance function dA relative to A such that any pair of complete solutions xa, xb ∈ SH(X0)
verifying domt xa = domt xb and

h(xr
a(t, j)) = h(xr

b(t, j)) ∀(t, j) ∈ domφr

where (xr
a, x

r
b) := Rc(xa, xb), verify

lim
t+j→+∞

dA(xr
a(t, j), xr

b(t, j)) = 0 .

Note that the mention of A can be omitted if it is simply the diagonal set defined in (5).

Asymptotic detectability requires that any two solutions which are complete on the same “time
horizon” and have the “same” output (once put on a same domain via Rc), asymptotically converge
to each other (in the sense of A). Note that this definition enables to recover the standard notions of
asymptotic detectability of CT and DT systems, since in those cases, xa = xr

a and xb = xr
b.

4. Observers and detectability via extended systems

Before proceeding to the proof of Theorem 1.5, we exhibit the link between our definitions and
alternative definitions via extended systems, which will be useful for the proof.
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4.1. Observers

Instead of defining an observer as Ĥ in (7), a first idea could have been to define an observer directly
through an extended system of the form

Hext



(
ẋ
ż

)
∈
(

F (x)
F(z, h(x))

)
(x, z) ∈ C × Ĉ

(
x+

z+

)
∈ Gext(x, z) (x, z) ∈ D̂ext

x̂ = T (z, h(x))

(14)

with a jump map Gext and a jump set D̂ext to be defined. In doing that, we are facing three main
difficulties. First, a jump logic has to be designed in a way that does not assume synchronous jumps of z
and x since the jump times of the plant H are not necessarily known. Second, it is not straight-forward
to deduce from Hext the hybrid dynamics of z to be implemented as an observer algorithm with input
y and output x̂. Third, we would require something like: any complete solution of Hext initialized in
X0 ×Z0 verifies

lim
t+j→+∞

dA (x(t, j), x̂(t, j)) = 0 .

But a solution of Hext could be complete without browsing the whole underlying maximal solution of
H, for instance if the z-component induced Zeno or finite time escape earlier than x. This would not be
acceptable.

This being said, an extended system of the form (14) may be handy for design since it allows for
Lyapunov analysis. Actually, in [4, Section 4.1], solutions (z, yr) to Ĥ are proved to be such that (xr, z)
is solution to Hext with jump set

D̂ext =
{

(x, z) ∈ Rdx × Rdz : x ∈ D , (z, h(x)) ∈ cl(Ĉ) ∪ D̂
}

∪
{

(x, z) ∈ Rdx × Rdz : x ∈ cl(C) ∪D , (z, h(x)) ∈ D̂
}

and jump map

Gext(x, z) =

(
G(x)

Idz(z, h(x))

)
∪
(

Idx(x)
G(z, h(x))

)
∪
(

G(x)
G(z, h(x))

)
where G is defined in (12), and in the same spirit

G(z, h(x)) =

{
G(z, h(x)) if (z, h(x)) ∈ D̂
∅ otherwise

,

Idx(x) =

{
x if x ∈ cl(C)
∅ otherwise

, (15)

Idz(z, h(x)) =

{
z if (z, h(x)) ∈ cl(Ĉ)
∅ otherwise

.

Therefore, any analysis made on Hext would hold for solutions of Ĥ. However, the reverse is not true
because Hext has a larger set of solutions, see [16] for more details.

Lemma 4.1. Let A be a subset of Rdx ×Rdx and dA a distance relative to A. Assume any x ∈ SH(X0)
is t-complete. If each (x, z) ∈ SHext(X0 ×Z0) is t-complete and verifies

lim
t+j→+∞

dA (x(t, j), x̂(t, j)) = 0 ,

then Ĥ is an asymptotic observer for H on X0 relative to A.

Proof Consider x ∈ SH(X0) and φ = (z, yr) ∈ SĤ(Z0;h(x)). According to [4, Lemma 1], (xr, z) ∈
SHext

(X0 ×Z0). Therefore, φ is t-complete like x, and both items (a) and (b) of Definition 2.2 hold. �
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Remark 4.2. Similar extended systems have been introduced in the literature whenever it was needed
to compare hybrid arcs with different domains, for instance in the context of reference tracking [17] or
incremental stability [18]. The main difference with those references is that we allow here both x and
z to jump simultaneously with G and G, whereas in [17, 18] this kind of jump is decomposed into two
successive jumps. The main reason for allowing simultaneous jumps here is that we want to recover the
framework of DT systems with C = Ĉ = ∅. Then, thanks to the “simultaneous jump” part of Gext, it is
sufficient to allow trivial jumps only on the flow sets, as can be seen on the definition of Idi. In other
words, unlike in [18], x (resp. z) is forced to jump with G (resp. G) on D \ cl(C) (resp. D̂ \ cl(Ĉ)). Note
that it is however not possible to replace cl(C) by C in the definition of Id since x could flow from ∂C
at a time where z needs to jump, in which case a trivial jump of x should be allowed (and vice-versa).

4.2. Detectability

Similarly to Hext, we can prove that Rc(xa, xb) is solution to the extended hybrid system

Hr


(
ẋa
ẋb

)
∈
(
F (xa)
F (xb)

)
(x, z) ∈ C × C

(
x+
a

x+
b

)
∈ Gr(xa, xb) (xa, xb) ∈ Dr

(16)

where

Dr =
{

(xa, xb) ∈ Rdx × Rdx : xa ∈ D , xb ∈ cl(C) ∪D
}

∪
{

(xa, xb) ∈ Rdx × Rdx : xa ∈ cl(C) ∪D , xb ∈ D
}

Gr(xa, xb) =

(
G(xa)

Idx(xb))

)
∪
(

Idx(xb)
G(xb)

)
∪
(
G(xa)
G(xb))

)
with G and Id defined in (12) and (15). The process of duplicating H into Hr will be denoted Hr =:
Rc(H,H). We thus have the following lemma.

Lemma 4.3. Let A be a subset of Rdx ×Rdx and dA a distance relative to A. If each complete solution
φ = (xa, xb) ∈ SHr(X0 ×X0) such that

h(xa(t, j)) = h(xb(t, j)) ∀(t, j) ∈ domφ ,

verifies
lim

t+j→+∞
dA (xa(t, j), xb(t, j)) = 0 ,

then H is asymptotically detectable on X0 relative to A.

Note that this handy criterion for detectability is not equivalent to that of Definition 3.6. Indeed,
unless trajectories are t-complete, a complete trajectory of Hr could correspond to Rc(xa, xb) with xa
and xb not verifying domt xa = domt xb. In other words, we are asking convergence of trajectories that
do not need to converge in Definition 3.6 or for the existence of an observer.

More generally, even if the trajectories are t-complete, the jump map Gr allows xa and xb to jump

consecutively using first

(
G(xa)
xb

)
and then

(
xb

G(xb)

)
whenever xa and xb are in D ∩ cl(C), whereas xa

and xb solutions to H could be forced to jump from D ∩ cl(C) if no flow was possible from there. In
that case, this jump would be recorded simultaneously in Rc(xa, xb). Therefore, H could be detectable
relative to A defined in (5) without Hr verifying the assumption of Lemma 4.3 and the properties are
thus not equivalent. Note that they could become equivalent when delays in jumps do not matter in A,
namely for instance A defined in (13).
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5. Proof of Theorem 1.5

Consider complete solutions (xa, xb) ∈ SH(X0)×SH(X0) with H in (4) such that domt xa = domt xb
and φr := (xr

a, x
r
b) = Rc(xa, xb) verifies

h(xr
a(t, j)) = h(xr

b(t, j)) ∀(t, j) ∈ domφr .

According to Lemma 3.5, xr
a and xr

b are full reparametrizations of xa and xb. We denote T := T (xa) =
T (xb).

5.1. Solution φb to Ĥ with input yb = h(xb)

Consider a maximal solution φb = (zb, yb,cl) to Ĥ in (7) with zb(0, 0) ∈ Z0 and input yb = h(xb) and
denote ρb the j-reparametrization map from yb to yb,cl, which is full by Definition 2.2 and such that
domt xb = domt φb. Define the corresponding full j-reparametrization of xb with

xb,cl(t, j) = xb(t, ρb(j)) ∀(t, j) ∈ domφb (17)

which is such that
yb,cl(t, j) = h(xb,cl(t, j)) ∀(t, j) ∈ domφb .

5.2. From φb solution to Ĥ to φb,cl solution to H
ext

From [16, Lemma 1], φb,cl = (xb,cl, zb) ∈ SHext
(X0 × Z0) and satisfies all the so-called Converse

Conditions. At this point we have domt xa = domt xb = domt φb = domt φb,cl and all the hybrid arcs are
complete. Also, by definition of asymptotic observer,

lim
t+j→+∞

dA

(
x̂b(t, j), xb,cl(t, j)

)
= 0 (18)

with
x̂b(t, j) = T (zb(t, j), h(xb,cl(t, j))) ∀(t, j) ∈ domφb,cl .

5.3. Putting xa and φb,cl on a common domain : construction of φ̄

Consider now φ̄ = (x̄a, (x̄b, z̄)) = Rc(xa, (xb,cl, zb)). According to Lemma 3.5, x̄a and (x̄b, z̄) are full
j-reparametrizations of xa and (xb,cl, zb) respectively, so φ̄ is complete, domt φ̄ = domt xa, and there
exist full reparametrization maps ρa and ρb,cl : N→ N such that

x̄a(t, j) = xa(t, ρa(j)) ∀(t, j) ∈ dom φ̄ (19)

and

x̄b(t, j) = xb,cl(t, ρb,cl(j))

z̄(t, j) = zb(t, ρb,cl(j)) ∀(t, j) ∈ dom φ̄ (20)

Also, since it is a full j-reparametrization,

lim
t+j→+∞

dA

(
¯̂x(t, j), x̄b(t, j)

)
= 0 (21)

with
¯̂x(t, j) = T (z̄(t, j), h(x̄b(t, j))) ∀(t, j) ∈ dom φ̄ .

Now, since domxb,cl = dom zb, (x̄a, x̄b) = Rc(xa, xb,cl). Since xb,cl is a full j-reparametrization of xb
processing the jumps of xb consecutively, according to Lemma Appendix B.2, (x̄a, x̄b) is actually a full
j-parametrization of φr = (xr

a, x
r
b) = Rc(xa, xb), i.e. there exists a full reparametrization map ρr : N→ N

such that

x̄a(t, j) = xr
a(t, ρr(j))

x̄b(t, j) = xr
b(t, ρ

r(j)) ∀(t, j) ∈ dom φ̄ (22)
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It is therefore enough to show that

lim
t+j→+∞

dA

(
x̄a(t, j), x̄b(t, j)

)
= 0 (23)

to deduce
lim

t+j→+∞
dA

(
xr
a(t, j), xr

b(t, j)
)

= 0 ,

which will prove asymptotic detectability according to Definition 3.6.

For that, we are going to show that actually limt+j→+∞ dA

(
¯̂x(t, j), x̄a(t, j)

)
= 0, and use the trian-

gular inequality with (21) to obtain (23). To that end, it is crucial to notice that (22) implies

h(x̄a(t, j)) = h(x̄b(t, j)) ∀(t, j) ∈ dom φ̄ . (24)

5.4. From φ̄ solution to Rc(H,Hext), to φa,cl solution to Hext

Now, according to Lemma Appendix C.3, φ̄ = (x̄a, (x̄b, z̄)) is a maximal solution to Rc(H,Hext)
satisfying Conditions 1 and 2. But because of (24), (x̄b, (x̄a, z̄)) is actually also a maximal solution to
Rc(H,Hext) on dom φ̄. At this point, we would like to recover from (x̄a, z̄) a solution to Hext to reuse
the observer definition. For this, we need to check that (x̄a, z̄) verifies Condition 2 to apply the converse
part of Lemma Appendix C.3. For all t ∈ T (φ̄) ∩ int domt(φ̄) such that (x̄a, z̄) does not verify the
jump condition of Hcl for any j ∈ J t(φ̄), necessarily x̄a does not verify the jump condition of H and z̄
does not verify the jump condition of Ĥ. It means that t /∈ T (xa), and since t ∈ int domt(xa), xa ∈ C
by definition of solutions to H. Therefore, those jumps are necessarily triggered by x̄b and necessarily
(z̄, h(x̄a)) = (z̄, h(x̄b)) ∈ Ĉ by item 4.(a) of Definition Appendix A.1. Therefore, (x̄a, z̄) verifies Condition
2. We thus deduce from Lemma Appendix C.3 that there exists a solution φa,cl = (xa,cl, za) to Hext

and a reparametrization map ρa,cl : N→ N such that

x̄a(t, j) = xa,cl(t, ρa,cl(j))

z̄(t, j) = za(t, ρa,cl(j)) ∀(t, j) ∈ dom φ̄ (25)

and (x̄a, z̄) is a full j-reparametrization of (xa,cl, za) with domt φa,cl = domt φ̄. If this time domain is
unbounded, φa,cl is complete. If it is bounded, because x̄a is a full j-reparametrization of xa which
is complete, the number of jumps where (x̄a, z̄) jumps according to Hext is infinite. Therefore, by
construction φa,cl is j-complete. So in both cases, φa,cl is complete and domt φa,cl = domt φ̄.

5.5. From φa,cl solution to Hext to φa solution to Ĥ with input y′a
The last step is to come back from Hext to an observer solution, namely prove that there exists

x′a solution to H initialized in X0 such that (za, ya,cl) is solution to Ĥ with input y′a = h(x′a) where
ya,cl = h(xa,cl) and xa,cl is a full j-reparametrization of x′a. This is done by applying the converse part
of [16, Lemma 1]. For that, we need to show that φa,cl verifies all the so-called Converse Conditions
( ). First, Hcl has no input, so the conditions regarding nua don’t have to be checked (in particular
CC.2)). Then it is useful to recall that with the algorithm in the converse of Lemma Appendix C.3,
φa,cl is obtained from φ̄ only by removing the jumps where (x̄a, z̄) does not verify the jump condition of
Hcl. The existence of nxa

verifying the CC.1) is therefore guaranteed by the fact that the jumps of xa
where recorded successively in x̄a thanks to condition C1. Also, at a time t > 0 where nxa

≥ 1, either
φb,cl = (xb,cl, z) also jumped at that time, in which case CC.3) holds for φa,cl because it holds for φb,cl
and because the value of h(x̄a) corresponds to that of h(x̄b) at that jump; or φb,cl does not jump at

that time (cardJt(φb,cl) = 0) and (z̄, h(x̄a)) = (z̄, h(x̄b)) is necessarily in Ĉ since t > 0, so that there is
nothing to check in CC.3). Therefore, CC.3) holds. Then, at a time t in intφa,cl where nxa

= 0, xa,cl
is in C thanks to Condition 2 verified by x̄a, thus giving CC.4). Finally, if T ∈ domt φa,cl = domt xa,
because xa and φa,cl are complete, CC.5) holds (with nxa = +∞). Therefore, φa,cl = (xa,cl, za) verifies
all the converse conditions. Now, again, either domt xa,cl = domt x

′
a is unbounded and x′a is complete.

Or, domj xa,cl is unbounded and contains by construction the infinite number of jumps of xa. Therefore,
since x′a is built from xa,cl by only removing the jumps which does not verify the jump conditions of
H, x′a has an infinite number of jumps. It follows that x′a is necessarily complete. From the observer
definition, it thus follows that

lim
t+j→+∞

dA

(
x̂a(t, j), xa,cl(t, j)

)
= 0 ∀(t, j) ∈ domφa,cl (26)
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where
x̂a(t, j) = T (za(t, j), h(xa,cl(t, j))) . (27)

Since (x̄a, z̄) is a full j-reparametrization of (xa,cl, za), from (25) and (26)-(27), we then deduce that

lim
t+j→+∞

dA

(
T (z̄(t, j), h(x̄a(t, j))) , x̄a(t, j)

)
= 0

and with (24),

lim
t+j→+∞

dA

(
¯̂x(t, j) , x̄a(t, j)

)
= 0

By triangular inequality, using (6),

dA

(
x̄a(t, j), x̄b(t, j)

)
≤ dA

(
x̄a(t, j) , ¯̂x(t, j)

)
+ dA

(
¯̂x(t, j), x̄b(t, j)

)
and from (21), we finally obtain (23).

Remark 5.1. This proof, similarly to the proof of Theorem 1.3, heavily relies on a triangular inequality,
so property (6c) is crucial. This differs from [18] where the distance is only required to be definite (6a)
and symmetric (6b).

Appendix A. Definition of solutions to Ĥ

Definition Appendix A.1. Consider a hybrid arc y. A pair φ = (z, yr) is a solution to Ĥ in (7) with
input y and output x̂ if

1. dom z = dom yr(= domφ)

2. yr is a j-reparametrization of y with reparametrization map ρy, and with also cardJT (y)(φ) =
cardJT (y)(y) if this reparametrization is full.

3. for all j ∈ N such that Ij(φ) has nonempty interior,

(z(t, j), yr(t, j)) ∈ Ĉ ∀t ∈ int Ij(φ)

ż(t, j) ∈ F(z(t, j), yr(t, j)) for a.a. t ∈ Ij(φ)

4. for all t ∈ T (φ), denoting j0 = minJt(φ) and ny = card Jt(y), we have

(a) for all j ∈ Jt(φ) such that j < j0 + ny, we have ρy(j) = ρy(j − 1) + 1, and:
if j = j0 and t > 0,

- (z(t, j0 − 1), yr(t, j0 − 1)) ∈ Ĉ ∪ D̂
- z(t, j0) ∈ G0

e (z(t, j0 − 1), yr(t, j0 − 1))

else

- (z(t, j − 1), yr(t, j − 1)) ∈ cl(Ĉ) ∪ D̂
- z(t, j) ∈ Ge(z(t, j − 1), yr(t, j − 1))

with

G0
e (z, y) =


z if (z, y) ∈ Ĉ \ D̂
G(z, y) if (z, y) ∈ D̂ \ Ĉ
{z,G(z, y)} if (z, y) ∈ D̂ ∩ Ĉ

Ge(z, y) =


z if (z, y) ∈ cl(Ĉ) \ D̂
G(z, y) if (z, y) ∈ D̂ \ cl(Ĉ)

{z,G(z, y)} if (z, y) ∈ D̂ ∩ cl(Ĉ)

(b) for all j ∈ Jt(φ) such that j ≥ j0 + ny, we have ρy(j) = ρy(j − 1) and
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- (z(t, j − 1), yr(t, j − 1)) ∈ D̂
- z(t, j) ∈ G(z(t, j − 1), yr(t, j − 1))

5. for all (t, j) ∈ domφ, x̂(t, j) = T (z(t, j), yr(t, j)).

The solution φ is said to be maximal if there does not exist any other solution φ̃ such that

domφ ⊂ dom φ̃ , φ̃(t, j) = φ(t, j) ∀(t, j) ∈ domφ .

ny stands for the number of jumps of y at time t. If ny = 0, jumps of φ may happen only according

to condition 4b) along G if φ is in D̂. Otherwise, if ny > 1, the jumps of y are recorded consecutively
and φ jumps according to condition 4a):

- at the first jump happening at t > 0, φ must be in Ĉ∪D̂ and z is reset either trivially (via the identity)
or to a point in G(z, y) according to G0

e .

- for the remaining jumps of y at t > 0, or if t = 0, those conditions are relaxed with Ge, replacing Ĉ by
cl(Ĉ).

The difference between G0
e and Ge in Condition 4a) is that z is forced to jump according to G if φ

is in D̂ \ Ĉ instead of D̂ \ cl(Ĉ). This stricter condition at the first jump of y after an interval of flow
is to avoid the situation where φ would leave Ĉ after flow and then be allowed to flow again from the
same point after the jump of y; namely it prevents flows through a hole of Ĉ. This condition is already
enforced when the input does not jump (ny = 0) by conditions 3) and 4b). In other words, if φ leaves Ĉ

after an interval of flow, it either jumps according to G if it is in D̂ or dies. Hence the condition that φ
should be in Ĉ ∪ D̂ instead of cl(Ĉ) ∪ D̂ at the first jump of y. On the other hand, for the remaining
jumps of y or at t = 0, there is no reason to force x to jump with G on cl(Ĉ) \ Ĉ since y could possibly
flow into Ĉ. That is why G0

e is relaxed into Ge. This distinction disappears if Ĉ is closed. Note that
more generally, the solution stops if φ leaves cl(Ĉ) ∪ D̂.

Appendix B. Other properties of Rc

We first make more precise the definition of j-reparametrization.

Definition Appendix B.1. Given two hybrid arcs x and xr, xr is a (resp. full) j-reparametrization
with consecutive jumps of x with reparametrization map ρ if

- it is a (resp. full) j-reparametrization of x with reparametrization map ρ

- for any t ∈ T (xr), there exists an integer nx such that denoting j0 = minJ t(xr), for any j ∈ J t(xr),

ρ(j) =

{
ρ(j − 1) + 1 if j < j0 + nx
ρ(j − 1) if j ≥ j0 + nx .

In other words, the jumps of x are recorded consecutively in xr. This is ensured by Rc, so that
(xr
a, x

r
b) := Rc(xa, xb) are actually j-reparametrizations with consecutive jumps of xa and xb respectively.

Lemma Appendix B.2. Consider complete hybrid arcs xa, xb, xa,0 and xb,0 such that

domt xa = domt xb = domt xa,0 = domt xb,0 .

If xa, xb are full j-reparametrizations with consecutive jumps of xa,0 and xb,0 respectively, then, Rc(xa, xb)
is a full j-reparametrization of Rc(xa,0, xb,0).

Proof We denote T := T (xa) = T (xb) = T (xa,0, xb,0). There exist ρa,0, ρ2,0 verifying (8) such that

x1(t, j) = xa,0(t, ρa,0(j)) ∀(t, j) ∈ domx1 , xb(t, j) = xb,0(t, ρ2,0(j)) ∀(t, j) ∈ domxb (B.1)
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Denote φr = (xra, x
r
b) = Rc(xa, xb) and φr

0 = (xra,0, x
r
b,0) = Rc(xa,0, xb,0). xr

1 and xr
b are j-reparametrizations

with consecutive jumps of x1 and xb respectively, and xra,0 and xrb,0 are j-reparametrizations with con-
secutive jumps of xa,0 and xb,0 respectively: there exist ρr

1, ρr
2, ρra,0, ρr2,0 all verifying (8) such that

xr
1(t, j) = x1(t, ρr

1(j)) , xr
b(t, j) = xb(t, ρ

r
2(j)) ∀(t, j) ∈ domφr (B.2)

xra,0(t, j) = xa,0(t, ρra,0(j)) , xrb,0(t, j) = xb,0(t, ρr2,0(j)) ∀(t, j) ∈ domφr0 (B.3)

Combining (B.2) and (B.1), it follows that

xr
1(t, j) = xa,0(t, ρa,0 ◦ ρr

1(j)) , xr
b(t, j) = xb,0(t, ρ2,0 ◦ ρr

2(j)) ∀(t, j) ∈ domφr . (B.4)

We have to study two cases:

• Case 1 : T /∈ domt φ
r

• Case 2 : T ∈ domt φ
r and cardJT (xi) = cardJT (xi,0) = +∞ for i = a, b.

Now, by using the consecutive jumps properties of ρi,0 and ρr
i, we get that for all t ∈ T (φr), there

exist integers nxr
i

and nxi,0 , such that denoting j0 = minJt(φr), we have for all j ∈ Jt(φr),

ρr
i(j) =

{
ρr
i(j − 1) + 1 if j < j0 + nxr

i

ρr
i(j − 1) if j ≥ j0 + nxr

i

and

ρi,0 ◦ ρr
i(j) =

{
ρi,0 ◦ ρr

i(j − 1) + 1 if j < j0 + nxi,0

ρi,0 ◦ ρr
i(j − 1) if j ≥ j0 + nxi,0

.
(B.5)

In other words, xr
i is a j-reparametrization with consecutive jumps of xi,0. Besides, according to (B.4),

nxi,0
= cardJt(xi,0), except maybe at t = T where we could have nxi,0

≤ cardJT (xi,0) (if φr stopped
before browsing all the jumps of xi,0), but we know this is not possible because if T ∈ domt, all the arcs
jump an infinite number of times.

Similarly, by the consecutive jumps properties of ρr
i,0, we get that for all t ∈ T (φr

0), there exist integers
nxr

i,0
, such that denoting j′0 = minJt(φr

0), we have for all j′ ∈ Jt(φr
0),

ρr
i,0(j) =

{
ρr
i,0(j′ − 1) + 1 if j′ < j′0 + nxr

i,0

ρr
i,0(j′ − 1) if j′ ≥ j′0 + nxr

i,0

(B.6)

From (B.3), again, nxr
i,0

= cardJt(xi,0). Besides, for any t ∈ T (φr), t ∈ T (φr
0) if and only if

max{nxa,0
, nxb,0

} 6= 0. Indeed, nxa,0
= nxb,0

= 0 means that no jump of φr at time t correspond to any
jump of either xa,0 or xb,0 at time t. Because of the consecutiveness of the jumps in the reparametrization
of xr

i with respect to xi,0, this is equivalent to the fact that no jump occurs in neither of the xi,0, which
is equivalent to the fact that no jumps occurs at time t in φr

0. In other words, we conclude that for all t
in T (φr):

• either t /∈ T (φr
0), and nxa,0

= nxb,0
= 0

• or t ∈ T (φr
0), and nxi,0

= nxr
i,0

for i = a, b.

Now let us build recursively a function ρ̄ with :

- ρ̄(0) = 0

- for j in {1, · · · , J(φr)} ∩ N,

ρ̄(j) =

{
ρ̄(j − 1) + 1 if ρ1,0 ◦ ρr

1(j) = ρ1,0 ◦ ρr
1(j − 1) + 1 or ρ2,0 ◦ ρr

2(j) = ρ2,0 ◦ ρr
2(j − 1) + 1

ρ̄(j − 1) otherwise

ρ̄ verifies (8) and according to (B.5), we have for all t in domt φ
r and for all j ∈ Jt(φr)

ρ̄(j) =

{
ρ̄(j − 1) + 1 if j < j0 + max{nxa,0

, nxb,0
}

ρ̄(j − 1) if j ≥ j0 + max{nxa,0
, nxb,0

} . (B.7)

15



We would like to prove that

xr
1(t, j) = xr

a,0(t, ρ̄(j)) , xr
b(t, j) = xr

2,0(t, ρ̄(j)) ∀(t, j) ∈ domφr . (B.8)

Let us prove by induction for j in domj(φ
r) such that tj 6= T that

P(j) : Ij(φr) ⊆ Iρ̄(j)(φr
0) , ρi,0 ◦ ρr

1(j) = ρr
i,0 ◦ ρ̄(j) , i = a, b

Indeed, from (B.3) and (B.4), P(j) will directly imply that

∀t ∈ Ij(φr) , xr
1(t, j) = xr

a,0(t, ρ̄(j)) , xr
b(t, j) = xr

2,0(t, ρ̄(j))

which will give (B.8) for t < T . If t0 = T , there is nothing to check. Otherwise, we are going to browse
domt φ

r up to T , treating together all the jumps occuring at a common time. Start at t0 with j = 0 : P(0)
holds because for i ∈ {a, b}, ρ̄(0) = ρi,0 ◦ρr

i(0) = ρr
i,0 ◦ ρ̄(0) = 0 and I0(φr) ⊆ I0(xa,0)∩I0(xb,0) = I0(φr

0).
Consider the jumps occurring in φr at t0 starting from j0 = 1:

• either t0 /∈ T (φr
0), then nxa,0

= nxb,0
= 0, and recursively, for all j ∈ Jt0(φr), ρi,0 ◦ρr

i(j) = ρi,0 ◦ρr
i(j0−

1) = 0. Therefore also, ρ̄(j) = ρ̄(j0 − 1) = 0 and thus, ρr
i,0 ◦ ρ̄(j) = ρr

i,0 ◦ ρ̄(j0 − 1) = 0.

• either t0 ∈ T (φr
0), j′0 = 1 = ρ̄(j0), nxi,0

= nxr
i,0

: without loss of generality assume nxa,0
≤ nxb,0

, then

– for all j < j0 + nxa,0
, we have ρi,0 ◦ ρr

i(j) = ρi,0 ◦ ρr
i(j − 1) + 1, ρ̄(j) = ρ̄(j − 1) + 1, and thus also

ρr
i,0 ◦ ρ̄(j) = ρr

i,0 ◦ ρ̄(j − 1) + 1 with j′ = ρ̄(j).

– for all j0+nxa,0
≤ j < j0+nxb,0

, we have ρa,0◦ρr
1(j) = ρa,0◦ρr

1(j−1), ρ2,0◦ρr
2(j) = ρ2,0◦ρr

2(j−1)+1,
therefore ρ̄(j) = ρ̄(j− 1) + 1, and with j′ = ρ̄(j), we get ρr

a,0 ◦ ρ̄(j) = ρr
a,0 ◦ ρ̄(j− 1) and ρr

2,0 ◦ ρ̄(j) =
ρr

2,0 ◦ ρ̄(j − 1) + 1.

– for all j ≥ j0 + nxb,0
, we have ρi,0 ◦ ρr

i(j) = ρi,0 ◦ ρr
i(j − 1), ρ̄(j) = ρ̄(j − 1), and thus also

ρr
i,0 ◦ ρ̄(j) = ρr

i,0 ◦ ρ̄(j − 1).

Therefore, in all cases, ρi,0 ◦ ρr
i(j) = ρr

i,0 ◦ ρ̄(j) for all j ∈ Jt0(φr). Besides, since t0 6= T , there is a finite
number of jumps at that time. Up to the last jump, Ij(φr) = {t0} ⊆ Iρ̄(j)(φr

0). As for the last jump,
Ij(φr) is of non-empty interval (still because t0 6= T ), and by definition of the reparametrization,

Ij(φr) ⊆ Iρa,0◦ρr1(j)(xa,0) ∩ Iρ2,0◦ρr2(j)(xb,0) = Iρra,0◦ρ̄(xa,0) ∩ Iρr2,0◦ρ̄(xb,0) = Iρ̄(j)(φr
0) .

Therefore, P(j) holds for all j ∈ Jt0(φr). Moving along the successive jump times t ∈ T (φr), we manage
to browse domt(φ

r) up to T . Therefore, (B.8) holds for all (t, j) with t < T .
If T /∈ domt(φ

r) (Case 1), (B.8) is proved. If T ∈ domt(φ
r) (Case 2) and at t = T , nx1

= nxb
=

nxr
1

= nxr
b

= card JT (φr) = +∞, and the result follows in the same way.
We thus deduce that (B.8) holds i.e.

φr(t, j) = φr
0(t, ρ̄(j)) ∀(t, j) ∈ domφr

and φr is a j-reparametrization of φr
0. Remains to prove that this reparametrization is full. Since

domt φ
r = domt φ

r
0, all the values of φr

0 appear in φr except maybe those at the boundary of the time
domain, i.e those at time T , if T ∈ domt φ

r
0 = domt φ

r. But any jump occurring at time T in φr
0 is

present either in xa,0 or xb,0, and therefore in either xa or xb by full-reparametrization, and therefore in
φr by definition of Rc. �

Appendix C. Properties of Rc(Ha,Hb)

Similarly to the definition of Hr := Rc(H,H) in (16), we define Rc(Ha,Hb) such that Rc(xa, xb) is
solution to Rc(Ha,Hb) when xa (resp. xb) is solution to Ha (resp. Hb).

Definition Appendix C.1. Given two hybrid systems Ha = (Ca, Fa, Da, Ga) and Hb = (Cb, Fb, Db, Gb),
we define Rc(Ha,Hb) as the hybrid system

Hr


(
ẋa
ẋb

)
∈ F r(xa, xb) (xa, xb) ∈ Cr

(
x+
a

x+
b

)
∈ Gr(xa, xb) (xa, xb) ∈ Dr

(C.1)
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with
Cr = Ca × Cb , Dr =

(
Da × (cl(Cb) ∪Db)

)
∪
(

(cl(Ca) ∪Da)×Db

)
(C.2)

and

F r(xa, xb) =

(
Fa(xa)
Fb(xb)

)
∀(xa, xb) ∈ Cr (C.3)

Gr(xa, xb) =

(
Ga(xa)
Idb(xb)

)
∪
(

Ida(xa)
Gb(xb)

)
∪
(
Ga(xa)
Gb(xb)

)
∀(xa, xb) ∈ Dr (C.4)

where we have denoted for i in {1, 2}

Gi(xi) =

{
Gi(xi) if xi ∈ Di

∅ otherwise
, Idi(xi) =

{
xi if xi ∈ cl(Ci)
∅ otherwise

.

In the definition (C.4) of the jump map ofRc(Ha,Hb), we allow xa (resp. xb) to be reset trivially even
when both xa and xb are in their jump sets Da and Db, instead of making them jump simultaneously
with their jump map Gi. This is necessary because xi could be flowing Di intCi while the other jump
(unless no flow is possible there).

However, this introduces solutions (xr
a, x

r
b) to Hr that cannot be written as Rc(xa, xb) for any xa and

xb solutions to Ha and Hb. Indeed, when xa and xb jump simultaneously, Rc(xa, xb) jumps only once,
whereas it would be allowed by the definition of Hr that xr

a and xr
b jump according to Ga and Gb one

after the other. However, since the two hybrid systems are decoupled, the only addition is a trivial jump
in the state component that does not jump.

Therefore, before relating the solutions to Ha and Hb and Rc(Ha,Hb), we need the following defini-
tion.

Definition Appendix C.2. Consider a solution φr = (xr
a, x

r
b) to Rc(Ha,Hb). At a time t in T (φr)

and at a jump j ∈ J t(φr), we say that xr
i satisfies its jump condition if

xr
i(t, j − 1) ∈ Di and xr

i(t, j) ∈ Gi(xr
a(t, j − 1)) . (C.5)

We introduce the following conditions:

Condition 1. For any t in T (φr), there exist integers nxi
such that, for all j ∈ J t(φr), denoting

j0 = minJ t(φr),

- xr
i satisfies its jump condition if j < j0 + nxi .

- xr
i does not satisfy its jump condition if j ≥ j0 + nxi

.

Condition 2. for any t in T (φr) ∩ int domt(φ
r), if xr

i does not verify its jump condition for any j ∈
J t(φr), then xr

i(t, j) ∈ Ci for all j ∈ J t(φr).

Condition 1 is a consecutive jump condition that says that at each jump time of φr, xr
a and xr

b first jump
simultaneously according to their jump condition and then stay constant until the other has completed
all its jumps. In other words, they jump simultaneously and consecutively, but not alternatively.

Condition 2 requires that at each time t where xr
i never jumps according to its jump condition, xr

i is
in Ci. This condition automatically holds for xr

i when Ci is closed.
The following technical lemma relates the solutions to Ha and Hb and Rc(Ha,Hb).

Lemma Appendix C.3. Consider two hybrid systems Ha = (Ca, Fa, Da, Ga) and Hb = (Cb, Fb, Db, Gb).

- For any solutions xa to Ha and xb to Hb, the hybrid arc φr := (xr
a, x

r
b) := Rc(xa, xb) verifies

- φr is solution to the hybrid system Rc(Ha,Hb) on its domain domφr = Rc(domxa,domxb), and
φr is maximal for Rc(Ha,Hb) if xa is maximal for Ha and xb is maximal for Hb.

- Conditions 1 and 2 hold for both xr
a and xr

b.
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- Conversely, for any solution φr = (xr
a, x

r
b) to Rc(Ha,Hb), if xr

i satisfies Condition 2, there exists xi
solution to Hi such that

- domt(xi) = domt(φ
r) and

J(xi) = card
{
j ∈ N>0 ∩ domj φ

r : xr
i(tj , j − 1) ∈ Di , x

r
i(tj , j) ∈ Gi(xr

i(tj , j − 1))
}

- xr
i is a full j-reparametrization of xi.

Proof Take solutions xa to Ha and xb to Hb. The fact that Rc(xa, xb) is solution to Rc(Ha,Hb) follows
from the following points:

• flow intervals of Rc(xa, xb) are included in flow intervals of xa and xb.

• Rc(xa, xb) stops whenever either xa or xb stops, so in particular if xa (resp xb) jumps outside of
cl(Ca)∪Da (resp cl(Cb)∪Db). Therefore, Rc(xa, xb) remains in cl(Cr)∪Dr = cl(Ca)∪Da∪cl(Cb)∪Db

until it stops.

• Rc(xa, xb) jumps only when either xa or xb jumps, so when at least one xi is in Di and jumps according
to Gi. With the previous point, we deduce that the jumps of Rc(xa, xb) happen in Dr. Besides, xi
necessarily jumps according to Gi when in Di \ cl(Ci) so that trivial jumps happen only in cl(Ci).
Therefore, Rc(xa, xb) jumps according to Gr.

Also, Rc(xa, xb) browses the full domain of either xa or xb. If xa is maximal for Ha and xb is maximal for
Hb, then Rc(xa, xb) cannot be extended either and it is maximal for Rc(Ha,Hb). Also by construction,
at each time t in T (xa) ∩ T (xb), x

r
a and xr

b jump according to Ga and Gb respectively, until all possible
jumps of xa or xb have been processed, and afterwards stay constant if the solution carries on until all
remaining jumps have been processed. Therefore, Rc(xa, xb) satisfies Condition 1. As for Condition 2,
it follows from the fact that if the jump condition of xi is not verified at any jump of xr

i at a given time
t in the interior of the time domain, then those jumps happen in the interior of a flow interval of xi,
which is therefore in Ci by definition of solutions.

Conversely, take φr = (xr
a, x

r
b) solution to Rc(Ha,Hb). We build two hybrid arcs xa, xb in the

following way :

1. start with Da = Db = I0(φr) × {0}, xa ≡ xr
1|Da

and xb ≡ xr
2|Db

, ja = 0, jb = 0, ρ1(0) = 0 and

ρ2(0) = 0.

2. for j from 1 to J(φr) do (denoting tj = tj(φ
r) to simplify the notations) :

• if xr
a(tj , j − 1) ∈ Da and xr

a(tj , j) ∈ Ga(xr
a(tj , j − 1)), ja ← ja + 1

• if xr
b(tj , j − 1) ∈ Db and xr

b(tj , j) ∈ Gb(xr
b(tj , j − 1)), jb ← jb + 1

• Da ← Da ∪ (Ij(φr)× {ja})
• Db ← Db ∪ (Ij(φr)× {jb})
• xa(t, ja)← xr

a(t, j) for all t in Ij(φr)

• xb(t, jb)← xr
b(t, j) for all t in Ij(φr)

• ρ1(j)← ja

• ρ2(j)← jb

For i = a, b, xi thus built clearly verify the jump conditions of Hi. Besides, xi is absolutely continuous
during flow, solution to Fi almost everywhere, and more importantly xi is in Ci in the interior of the flow
intervals if Condition 2 holds. In that case, xi is therefore solution to Hi and ρi is the j-reparametrization
map from xi to xr

i. It is obviously a full j-reparametrization since the arc xi is only defined as long as
φr is. �
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