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RANDOM WALK ON THE SELF-AVOIDING TREE

CONG BANG HUYNH

Abstract. We consider a modified version of the biased random walk on a tree constructed
from the set of finite self-avoiding walks on the hexagonal lattice, and use it to construct
probability measures on infinite self-avoiding walk. Under theses probability measures, we
prove that the infinite self-avoiding walks have the Russo-Seymour-Welsh property of the
exploration curve of the critical Bernoulli percolation.

Keywords: Self-avoiding walk, Bernoulli percolation, random walk on tree.

1. Introduction

An n-step self-avoiding walk (SAW) (or a self-avoiding walk of length n) in a regular lattice
L (such as the integer lattice Z2, triangular lattice T, hexagonal lattice, etc) is a nearest
neighbor path γ = (γ0, γ1, . . . , γn) that visits no vertex more than once. Self-avoiding walks
were first introduced as a lattice model for polymer chains (see [4]); while they are very easy
to define, they are extremely difficult to analyze rigorously and there are still many basic open
questions about them (see [9], Chapter 1).

Let cn be the number of SAWs of length n starting at the origin. The connective constant
of L, which we will denote by µ, is defined by

cn = µn+o(n) when n→∞.
The existence of the connective constant is easy to establish from the sub-multiplicativity
relation cn+m ≤ cncm, from which one can also deduce that cn ≥ µn for all n; the existence
of µ was first observed by Hammersley and Morton [6]. Nienhuis [10] gave a prediction that
for all regular planar lattices, cn = µnnα+o(1) where α = 11

32
, and this prediction is known to

hold under the assumption of the existence of a conformally invariant scaling limit, see e.g. [7].

We are interested in defining a natural family of probability measures on the set SAW∞
of infinite self-avoiding walks. Such a family was constructed in [2] by using the biased
random walk with one parameter on a particular tree which is called the self-avoiding tree
(see Section 1.1 for the definition). In [2], the authors proved that under these measures, the
infinite self-avoiding walks almost surely visit the line Z×{0} infinitely many times. However
we don’t know whether the infinite self-avoiding walks visit the interval [n, 2n] × {0} with a
probability larger than a constant which do not depend on n.

In this paper, we construct a family of probability measures on the set SAW∞ by using
the biased random walk with a reinforcement which is called biased random walk with two
parameters. We prove that under these measures, the infinite self-avoiding walks visit the
interval [n, 2n]× {0} with a probability larger than a constant which do not depend on n.

Key words and phrases. Self-avoiding walk, effective conductance, random walk on tree.
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1.1. Background. In this paper, we will focus on the case of hexagonal lattice T∗+ := T∗ ∩
{y ≥ 0} (see Figure 4). Let TT∗

+
be the tree whose vertices are the finite self-avoiding walks in

T∗+ starting at the origin o := (0, 0), where two such vertices are adjacent when one walk is a
one-step extension of the other. We will call this tree the self-avoiding tree on T∗+. Formally,
denote by Ωn the set of self-avoiding walks of length n starting at the origin and V :=

⋃+∞
n=0 Ωn.

Two elements x, y ∈ V are adjacent if one path is an extension by one step of the other. We
then define TT∗

+
= (V,E). Denote by o its root.

Remark 1. Note that each infinite branch of TT∗
+
is an infinite self-avoiding walk in the lattice

T∗+.
Let T be an infinite, locally finite and rooted tree and denote by o its root. For any vertex

ν of T , denote by ν−1 its parent (we also say that ν is a child of ν−1), i.e. the neighbor of ν
with shortest distance from the root o. Denote by ∂(ν) the number of children of ν. In the
case ∂(ν) 6= 0, denote by ν1, · · · , ν∂(ν) its children. If a vertex has no child, it is called a leaf.
We define an order on V (T ) as follows: if ν, µ ∈ V (T ), we say that ν ≤ µ if the simple path
joining the root o to µ passes through ν. For each ν ∈ V (T ), we define the subtree of T rooted
at ν, denoted by T ν , where V (T ν) := {µ ∈ V (T ) : ν ≤ µ} and E(T ν) = E(T )|V (T ν)×V (T ν).
Note that ν is the root of T ν and T o = T .
1.2. Random walk on trees. Given an infinite, locally finite and rooted tree T and with
conductances (i.e positive numbers) assigned to the edges, we consider the random walk start-
ing at the root that can go from a vertex to its parent or children and whose transition
probabilities from a vertex are proportional to the conductances along the edges to be taken.

Let λ > 0 and we consider conductances λ−n on edges at distance n from the root. In this
cas, the ramdom walk is called biased random walk with one parameter λ and denoted by
RWλ. Note that the conductances decrease by a factor of λ as the distance increase 1, then
the relative weights at a vertex are as shown in Figure 1.

Let λ, η > 0 and we define a modified version of RWλ: if the relative weights at a vertex are
as shown in Figure 2, then the random walk is called biased random walk with two parameter
(λ, η), and denoted by RWλ,η.

Remark 2. Fix η ≥ 0 and by letting λ goes to infinity, we obtain a stochastic process X:
at each step, X uniformly chooses one of its children and returns never to its parent. This
stochatic process is called biased random walk with parameters ∞, and denoted by RW∞.

Let λ, η > 0 and consider the biased random walk RWλ,η on T . For (λ, η) such that the
biased random walk RWλ,η on T is transient, then almost surely, the random walk does not
visit Tk1 anymore after a sufficiently large time. We can then define the limit walk, as denoted
by ω∞λ,η in the following way:

ω∞λ,η(i) = xi ⇐⇒
{

xi ∈ Ti
∃n0, ∀n > n0 : Xn ∈ T xi

}
.

1Denote by Tk the set of vertices of T at distance k from the root.
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Figure 1. On the left: the relative weights at a vertex ν other than the root
for the biased random walk with one parameter λ. On the right: the relative
weights at the root for the biased random walk with one parameter λ.
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Figure 2. On the left: the relative weights at a vertex ν other than the root
for the biased random walk with parameter (λ, η). On the right: the relative
weights at the root for the biased random walk with parameter (λ, η).

Denote by Pλ,η the law of ω∞λ,η and we write ω∞∞ for the limit walk of RW∞.

1.3. Main results. Consider the self-avoiding tree TT∗
+
. We define an order on the children

of a vertex of TT∗
+
as in the following convention.

Convention: Let ν be a vertex of TT∗
+
at distance n from the root (i.e |v| = n) and assume

that ∂v = 2. By the construction of TT∗
+
, ν is a self-avoiding walk of length n starting at the

origin. Let α (resp. β) be the extension by one step of ν by choosing the left (resp. right)
neighbor of ν(n) (see Figure 3). We then define two children of the vertex ν in the tree TT∗

+

by letting: ν1 = α and ν2 = β.
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Figure 3. Two extensions α and β of ν

Let λ, η > 0 and consider the biased random walk with parameter (λ, η) on TT∗
+
. Note

that the limit walk ω∞λ,η is a (random) infinite self-avoiding walk and Pλ,η is a probability
measure on the set of infinite self-avoiding walks starting at the origin (denoted by SAW∞)
in the lattice T∗+. By the same argument used in ([2], Section 6.2) and Remark 2, we can see
that ω∞∞ (i.e λ =∞) can be interpreted as the exploration curve γ1/2 of the critical Bernoulli
percolation on the hexagonal lattice – see Section 2 for a formal definition of γ1/2. This is
very useful because every feature of the curve γ1/2 is also one for ω∞∞ and can therefore be
restated in terms of the biased walk on the self-avoiding tree. One of these properties is that
γ1/2+η reaches the interval [n, 2n] × {0} with a probability larger than a constant which do
not depend on n. This property is called RSW-property (see [12] and [11]).

In this paper, we prove that if η > 2 and λ is large enough, then the limit walk ω∞λ,η has
RSW-property:

Theorem 3. For all η > 2 and for all λ > 2η
η−2 : ∃c ∈]0, 1[,∀n ≥ 1, we have:

Pλ,η(ω∞λ,η ∩ ([n, 2n]× {0}) 6= ∅) ≥ c.

Recall that if T is a tree, we denote by T̃ the subtree obtained from T by recursively
erasing all its leaves; in terms of our dynamical self-avoiding walk model, this corresponds to
preventing the path from entering traps. The reader can easily check that the limit walk is the
same on these trees without leaves as in the original ones, it is sufficient to prove Theorem 3
in the case of T̃T∗

+
.

1.4. Open question. The main idea of the proof of Theorem 3 is a coupling between the
limit walk ω∞λ,η (η > 2) and the exploration curve of the critical Bernoulli percolation. In
the case of η ∈ [0, 2], we hope that there is a coupling between the limit walk ω∞λ,η and the
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exploration curve γ1/2 of the critical Bernoulli percolation on the hexagonal lattice. If this
coupling exists, we have the following result:

Conjecture 4. For all η ≥ 0, there exists λ0 > 0, for all λ > λ0: ∃c ∈]0, 1[,∀n ≥ 1, we have:

Pλ,η(ω∞λ,η ∩ ([n, 2n]× {0}) 6= ∅) ≥ c.

2. Exploration curve of Bernoulli percolation on the hexagonal lattice

Percolation theory was introduced by Broadbent and Hammersley in 1957 [3]. For p ∈ [0, 1],
a face of T∗+ is open with probability p or closed with probability 1− p, independently of the
others.

Let p ∈ [0, 1] and we define the exploration curve as follows. We divide the hexagonal faces
of the boundary ∂T∗+ into two parts: ∂−(T∗+) involves in the group on the left side of o and
∂+(T∗+) involves in the group on the right side of o (see Figure 4). We colored the hexagons
of ∂−(T∗+) in black and those of ∂+(T∗+) in white. Moreover, the colors of the hexagones in
T∗+ is chosen at random: black with probability p and white with probability 1− p, indepen-
dently of the others. We define the exploration curve γp starting at o which separates the
black component containing ∂−(T∗+) from the white component containing ∂+(T∗+). Then the
exploration curve γp is a self-avoiding walk using the vertices and edges of hexagonal lattice
T∗+. See Figure 4.

We can define this interface γp in an equivalent, dynamical way, informally described as
follows. At each step, γp looks at its three neighbors on the hexagonal lattice, one of which
is occupied by the previous step of γp. For the next step, γp randomly chooses one of these
neighbors that has not yet occupied by γp. If there is just one neighbor that has not yet been
occupied, then we choose this neighbor and if there are two neighbors, then we choose the
right neighbor with probability p and the left neighbor with probability 1− p.

We know that there exists pc = 1/2 such that for p < pc there is almost surely no infinite
cluster, while for p > pc there is almost surely an infinite cluster ([13], Theorem 4.9).

Lemma 5 ([12], [11]). Let p = 1/2, there exists a constant c ∈]0, 1[ such that for any n ≥ 1:

(2.1) Pp(γ1/2 ∩ ([n, 2n]× {0}) 6= ∅) ≥ c.

3. Proof of Theorem 3

3.1. The law of first steps of the limit walk. We consider the biased random walk RWλ,η

on T̃T∗
+
. Recall that ω∞λ,η is the associated limit walk and Pλ,η denotes its law.

Let k ∈ N∗ and y1, y2, . . . , yk be k elements of V (T̃T∗
+

) such that the path (o, y1, y2, . . . , yk)

in T̃T∗
+
is simple. For each λ such that RWλ,η on T̃T∗

+
is transient, the law of first k steps of

ω∞λ,η is defined by:

(3.1) ϕλ,η,k(y1, y2, . . . , yk) = Pλ,η
(
ω∞λ,η(0) = o, ω∞λ,η(1) = y1, ω

∞
λ,η(2) = y2, . . . , ω

∞
λ,η(k) = yk

)
.
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Figure 4. The hexagons on the right side of origin (i.e ∂+(T∗+)) are colored in
white and the hexagons on the left side of origin (i.e ∂−(T∗+)) are colored in
black.

Notation. Let ν be a vertex of the tree TT∗
+
and let µ be a vertex of (TT∗

+
)ν . Denote by

C̃(λ, η, (TT∗
+

)ν , µ) for the probability of the event that the random walk RWλ,η on (TT∗
+

)ν ,
started at the root (i.e X0 = ν), visits µ at its first step (i.e X1 = µ) and never returns to the
root. Finally, denote by C̃(λ, η, (TT∗

+
)ν) for the probability of the event that the random walk

RWλ,η on (TT∗
+

)ν , started at the root (i.e X0 = ν) and never returns to the root.

Lemma 6 ([2], Lemma 64). Let k ∈ N∗ and y1, y2, . . . , yk be k elements of V (T̃T∗
+

) such that
(o, y1, y2, . . . , yk) is a simple path starting at o of T̃T∗

+
. We then have

ϕλ,η,k(y1, y2, . . . , yk) =
C̃(λ, η, T̃T∗

+
, y1)

C̃(λ, η, T̃T∗
+

)
×
C̃(λ, η, (T̃T∗

+
)y1 , y2)

C̃(λ, η, (T̃T∗
+

)y1)
× · · · ×

C̃(λ, η, (T̃T∗
+

)yk−1 , yk)

C̃(λ, η, (T̃T∗
+

)yk−1)
.

Fix η ∈ [0, 1/2] and λ > 0 such that RWλ,η on T̃T∗
+
is transient. For each finite path ω of

T̃T∗
+
starting at o, such that ω|ω| has two children, we define:

(3.2) αω := P
(
ω∞λ,η(|ω|+ 1) = (ω|ω|)2

∣∣∣(ω∞λ,η)|[0,|ω|] = ω
)
.
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By using Lemma 6, we obtain:

(3.3) αω =
C̃(λ, η, (T̃T∗

+
)ω(|ω|), (ω|ω|)2)

C̃(λ, η, (T̃T∗
+

)ω(|ω|))
.

Denote by A the set of finite paths ω of T̃T∗
+
such that αω is well defined.

Lemma 7. For all η > 2 and for all λ > 2η
η−2 , we have:

(3.4) min
ω∈A

αω ≥ 1/2.

Proof. Fix η > 2 and λ > 2η
η−2 . Let ω ∈ A and consider (Xn)n≥0 be the random walk RWλ,η

on (T̃T∗
+

)ω(|ω|) started at its root ω(|ω|). We divide (T̃T∗
+

)ω(|ω|) into two sub-trees T1 and T2
presented in Figure 5. We then have:

C̃(λ, η, (T̃T∗
+

)ω(|ω|), (ω|ω|)2) ≥ P
(
X0 = ω|ω|;X1 = (ω|ω|)2) and ∀n ≥ 1 : Xn 6= ω|ω|

)
≥ λ+ η

2λ+ η
C̃(λ, η, T1).

(3.5)

Let N be the regular tree of degree 1 and denote by C̃(λ,N) for the probability of the event
that the random walk RWλ,0 on N, started at the root (i.e X0 = 0) and never returns to the
root. By Rayleigh’s monotonicity principle (see [8], page 35), we have:

(3.6) C̃(λ, η, T1) ≥ C̃(λ,N).

On the other hand, we have:

(3.7) C̃(λ,N) =
λ− 1

λ
.

Hence by (3.5), (3.6) and (3.7), we obtain:

(3.8) C̃(λ, η, (T̃T∗
+

)ω(|ω|), (ω|ω|)2) ≥
λ− 1

λ
× λ+ η

2λ+ η
.

Since λ > 2η
η−2 , by an simple computation we obtain:

(3.9)
λ− 1

λ
× λ+ η

2λ+ η
≥ 1/2.

By (3.8) and (3.9), we obtain:

(3.10) C̃(λ, η, (T̃T∗
+

)ω(|ω|), (ω|ω|)2) ≥ 1/2.

It is clear that C̃(λ, η, (T̃T∗
+

)ω(|ω|)) ≤ 1, hence we obtain:

αω ≥ C̃(λ, η, (T̃T∗
+

)ω(|ω|), (ω|ω|)2) ≥ 1/2,

this completes the proof of lemma. �
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ω|ω|

(ω|ω|)2(ω|ω|)1

T2T1

Figure 5.

3.2. Proof of Theorem 3. Consider the critical Bernoulli percolation on T∗+ with parameter
1/2. Given a configuration of percolation, we construct a random path γ∞λ,η starting at o =
(0, 0) by the following way. At step n, γ∞λ,η looks at its three neighbors on the hexagonal
lattice, one of which is occupied by the previous step of γ∞λ,η. For the next step, γ∞λ,η randomly
chooses one of these neighbors that has not yet occupied by γ∞λ,η. If there is just one neighbor
that has not yet been occupied, then we choose this neighbor. If there are two neighbors, then
we choose the right neighbor and the left neighbor by the following rule. Let h be the hexagon
which contains these neighbors and let γ be such that (γ∞λ,η)|[0,n] = γ:

• If h is black, we choose the right neighbor;
• If h is white, we have two possibilities:

(1) we choose the right neighbor with probability αγ−1/2
1−1/2 ≥ 0 (by Lemma 7);

(2) we choose the left neighbor with probability 1−αγ
1−1/2 .

γ∞
λ,η

γ1/2

Figure 6. The exploration curve γ1/2 is the red path and γ∞λ,η is the blue path.
At each step, if γ∞λ,η visits a black hexagon: it always chooses the right neighbor.
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Lemma 8. (γ∞λ,η) has the same law as (ω∞λ,η).

Proof. First, by the construction of γ∞λ,η and the definition of limit walk, we have:

P(γ∞λ,η(0) = o) = P(ω∞λ,η(0) = o) = 1.

Let n > 0 and denote by A the set of self-avoiding walk of length n starting at o which can
extend to infinity (i.e the set of vertices of T̃T∗

+
at distance n from the root). Assume that for

all γ ∈ A, we have:

(3.11) P
(
(γ∞λ,η)|[0,n] = γ

)
= P

(
(ω∞λ,η)|[0,n] = γ

)
.

Let γ be an element of A. We have two possibilities:
• If there is only one way to extend γ to a self-avoiding walk γ1 of length n+ 1 (i.e the
vertex γ of T̃T∗

+
has only one child γ1), we then have:

P
(
γ∞λ,η(n+ 1) = γ1

∣∣∣(γ∞λ,η)|[0,n] = γ
)

= P
(
ω∞λ,η(n+ 1) = γ1

∣∣∣(ω∞λ,η)|[0,n] = γ
)

= 1.

• If γ has two children γ1 and γ2, by the construction of γ∞λ,η, we have:

P
(
γ∞λ,η(n+ 1) = γ2

∣∣∣(γ∞λ,η)|[0,n] = γ
)

= 1/2 + (1− 1/2)
αγ − 1/2

1− 1/2

= αγ.

(3.12)

Hence by (3.3) and (3.12) we obtain:

P
(
γ∞λ,η(n+ 1) = γ2

∣∣∣(γ∞λ,η)|[0,n] = γ
)

= P
(
ω∞λ,η(n+ 1) = γ2

∣∣∣(ω∞λ,η)|[0,n] = γ
)

= αγ,

and

P
(
γ∞λ,η(n+ 1) = γ1

∣∣∣(γ∞λ,η)|[0,n] = γ
)

= P
(
ω∞λ,η(n+ 1) = γ1

∣∣∣(ω∞λ,η)|[0,n] = γ
)

= 1− αγ.

�

Lemma 9. We have the following inequality:

P
(
γ∞λ,η ∩ ([n, 2n]× {0}) 6= ∅

)
≥ P

(
γ1/2+η/2 ∩ ([n, 2n]× {0}) 6= ∅

)
.

Proof. This is intuitively clear: informally, by the construction of γ∞λ,η, the path γ∞λ,η always
stays on the right of γ1/2 (see Figure 6). A formal proof is easy but tedious to write, and is
therefore omitted here. �

Theorem 3 is a straightforward consequence of Lemma 5, Lemma 8 and Lemma 9.

Acknowledgments. I am grateful to Vincent Beffara for precious discussions.
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