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RANDOM WALK ON THE SELF-AVOIDING TREE

CONG BANG HUYNH

Abstract. We consider a modified version of the biased random walk on a tree constructed
from the set of finite self-avoiding walks on the hexagonal lattice, and use it to construct
probability measures on infinite self-avoiding walk. Under theses probability measures, we
prove that the infinite self-avoiding walks have the Russo-Seymour-Welsh property of the
exploration curve of the supercritical Bernoulli percolation.

Keywords: Self-avoiding walk, Bernoulli percolation, random walk on tree.

1. Introduction

1.1. Background. An n-step self-avoiding walk (SAW) (or a self-avoiding walk of length n)
in a regular lattice L (such as the integer lattice Z2, triangular lattice T, hexagonal lattice T∗,
etc) is a nearest neighbor path γ = (γ0, γ1, . . . , γn) that visits no vertex more than once.

In this paper, we will focus on the case of hexagonal lattice T∗+ := T∗ ∩ {y ≥ 0} (see Fig-
ure 3). Let a be a vertex of T∗+ and let b, c, d be three neighbors of a as Figure 1. In this
case, we say that c (resp. d) is the right (resp. left) neighbor of a with respect to the vector

−→
ba.

Let TT∗
+
be the tree whose vertices are the finite self-avoiding walks in T∗+ starting at the

origin o := (0, 0), where two such vertices are adjacent when one walk is a one-step extension
of the other. We will call this tree the self-avoiding tree on T∗+. Formally, denote by Ωn the
set of self-avoiding walks of length n starting at the origin and V :=

⋃+∞
n=0 Ωn. Two elements

x, y ∈ V are adjacent if one path is an extension by one step of the other. We then define
TT∗

+
= (V,E). Denote by o its root.

Remark 1. Note that each vertex (resp. an infinite branch) of TT∗
+
is a finite self-avoiding path

(resp. an infinite self-avoiding path). Moreover, it is easy to see that the number of vertices
at generation n of TT∗

+
is the number of self-avoiding walks of length n in T∗+.

For any vertex ν of TT∗
+
, denote by ν−1 its parent (we also say that ν is a child of ν−1),

i.e. the neighbor of ν with shortest distance from the root o. Denote by ∂(ν) the number of
children of ν. In the case ∂(ν) 6= 0, denote by ν1, · · · , ν∂(ν) its children.
We define an order on V (TT∗

+
) as follows: if ν, µ ∈ V (TT∗

+
), we say that ν ≤ µ if the simple

path joining o to µ passes through ν. For each ν ∈ V (TT∗
+

), we define the subtree of TT∗
+

rooted at ν, denoted by (TT∗
+

)ν , where V ((TT∗
+

)ν) := {µ ∈ V (TT∗
+

) : ν ≤ µ} and E((TT∗
+

)ν) =

E(TT∗
+

)|V ((TT∗+ )ν)×V ((TT∗+ )ν). Note that ν is the root of (TT∗
+

)ν and (TT∗
+

)o = T .

Key words and phrases. Self-avoiding walk, effective conductance, random walk on tree.
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Figure 1. c (resp. d) is the right (resp. left) neighbor of a with respect to the
vector ~ba.

o
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β(n + 1)

Figure 2. Two extensions α and β of ν

Convention: Let ν be a vertex of TT∗
+
at distance n from the root (i.e |v| = n) and assume

that ∂v = 2. By the construction of TT∗
+
, ν is a self-avoiding walk of length n starting at the

origin. Let α (resp. β) be the extension by one step of ν by choosing the left (resp. right)
neighbor of ν(n) (see Figure 2). We then define two children of the vertex ν in the tree TT∗

+

by letting: ν1 = α and ν2 = β.

1.2. Random walk on the self-avoiding tree. Let λ > 0 and η ∈ [0, 1/2] be such that

(1.1)
λ

1 + 2λ
− η ≥ 0

Define a Markov process X := (Xn)n≥0 on some probability space, taking the values in TT∗
+

with the transition probability defined by the following way.

P(X0 = o) = 1,



RANDOM WALK ON THE SELF-AVOIDING TREE 3

• If o has only one child o1 then P(X1 = o1) = 1 and if o has two children o1 and o2,
then

P(X1 = o1) =
λ− η(1 + 2λ)

2λ
; P(X1 = o2) =

λ+ η(1 + 2λ)

2λ
.

• If ∂(Xn) = 2, then

P (Xn+1 = (Xn)1|X0, · · · , Xn;Xn 6= o) =
λ

1 + 2λ
− η;(1.2)

P (Xn+1 = (Xn)2|X0, · · · , Xn;Xn 6= o) =
λ

1 + 2λ
+ η;(1.3)

P
(
Xn+1 = (Xn)−1|X0, · · · , Xn;Xn 6= o

)
=

1

1 + 2λ
.(1.4)

• If ∂(Xn) = 1, then

P (Xn+1 = (Xn)1|X0, · · · , Xn;Xn 6= o) =
λ

1 + λ
;(1.5)

P
(
Xn+1 = (Xn)−1|X0, · · · , Xn;Xn 6= o

)
=

1

1 + λ
.(1.6)

(1.7)

• If ∂(Xn) = 0 (i.e Xn have no child), then

P
(
Xn+1 = (Xn)−1|X0, · · · , Xn

)
= 1.(1.8)

The stochastic process X is called biased random walk with parameters (λ, η), and denoted
by RWλ,η.

Remark 2. • If η = 0, then X is the biased random walk with parameter λ.
• When the bias λ converges to ∞, we obtain a stochastic process which is called biased
random walk with parameters (∞, η), and denoted by RW∞,η.

Let λ ∈ [0,+∞] and η ∈ [0, 1/2] such that λ
1+2λ

− η ≥ 0 and consider the biased random
walk RWλ,η on TT∗

+
. For (λ, η) such that the biased random walk RWλ,η on TT∗

+
is transient,

then almost surely, the random walk does not visit (TT∗
+

)k
1 anymore after a sufficiently large

time. We can then define the limit walk, as denoted by ω∞λ,η in the following way:

ω∞λ,η(i) = xi ⇐⇒
{

xi ∈ (TT∗
+

)i
∃n0,∀n > n0 : Xn ∈ (TT∗

+
)xi

}
.

Denote by Pλ,η the law of ω∞λ,η.

1.3. Main results. Note that Pλ,η is a probability measure on the set of infinite self-avoiding
paths starting at the origin (denoted by SAW∞) in the lattice T∗. By the same argument
used in ([2], Section 6.2) and Remark 2, we can see that ω∞∞,η (i.e λ =∞) can be interpreted
as the exploration curve γ1/2+η of Bernoulli percolation on the hexagonal lattice. This is very
useful because every feature of the curve γ1/2+η is also one for ω∞∞,0 and can therefore be
restated interms of the biased walk on the self-avoiding tree. One of these properties is that

1Denote by (TT∗
+
)k the set of vertices of TT∗

+
at distance k from the root.
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γ1/2+η reaches the interval [n, 2n] × {0}2 with a probability larger than a constant which do
not depend on n. This property is called RSW-property (see [7] and [6] for the case η = 0;
see [1] for the case η > 0).

In this paper, we prove that if η > 0 and λ is large enough, then the limit walk ω∞λ,η has
RSW-property:

Theorem 3. For all η ∈]0, 1/2[ and for all λ > max
(

4/η; η
1−2η

)
: ∃ε > 0, c > 0,∀n ≥ 1, we

have:
Pλ,η(ω∞λ,η ∩ ([n, 2n]× {0}) 6= ∅) ≥ (1− cn−ε)3.

Recall that if T is a tree, we denote by T̃ the subtree obtained from T by recursively
erasing all its leaves; in terms of our dynamical self-avoiding walk model, this corresponds to
preventing the path from entering traps. The reader can easily check that the limit walk is the
same on these trees without leaves as in the original ones, it is sufficient to prove Theorem 3
in the case of T̃T∗

+
.

2. Exploration curve of Bernoulli percolation on hexagonal lattice

First, we review some definitions of percolation theory. Percolation was introduced by
Broadbent and Hammersley in 1957 [3]. For p ∈ [0, 1], we consider the triangular lattice
T, a site of T is open with probability p or closed with probability 1 − p, independently of
the others. This can also be seen as a random colouring (in black or white) of the faces of
hexagonal lattice T∗ dual of T.

We define the exploration curve as follows (see [2], section 6.2 for more detail). Let Ω be a
simply connected subgraph of the triangular lattice and A, B be two points on its boundary.
We can then divide the hexagonal cells of ∂Ω into two arcs, going from A to B in two direc-
tions (clockwise and counter-clockwise). These arcs will be denoted by B and W such that
A,B, B,W is in the clockwise direction. Assume that all of the hexagons in B are colored
in black and that all of the hexagons in W are colored in white. The color of the hexagonal
faces in Ω is chosen at random (black with probability p and white with probability 1 − p),
independently of the others. We define the exploration curve γp starting at A and ending at B
which separates the black component containing B from the white component containing W.
Then the exploration curve γp is a self-avoiding walk using the vertices and edges of hexagonal
lattice T∗.

We can define this interface γp in an equivalent, dynamical way, informally described as
follows. At each step, γp looks at its three neighbors on the hexagonal lattice, one of which
is occupied by the previous step of γp. For the next step, γp randomly chooses one of these
neighbors that has not yet occupied by γp. If there is just one neighbor that has not yet been
occupied, then we choose this neighbor and if there are two neighbors, then we choose the
right neighbor with probability p and the left neighbor with probability 1− p.

2Denote by ∂+(T∗
+) the set of hexagons on the right side of the origin. The subset of ∂+(T∗

+) which contains
the hexagons at the distance k from the origin (n ≤ k ≤ 2n) is denoted by [n, 2n]× {0}. See Figure 3.
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Figure 3. The hexagons on the right side of origin (i.e ∂+(T∗+)) are colored in
white and the hexagons on the left side of origin (i.e ∂−(T∗+)) are colored in
black.

We know that there exists pc = 1/2 such that for p < pc there is almost surely no infinite
cluster, while for p > pc there is almost surely an infinite cluster ([8], Theorem 4.9).

Now, we take Ω = T∗+. The hexagons on the boundary of Ω (∂Ω) and on the right of origin
(denoted by ∂+Ω) are colored in white and the hexagons on ∂Ω and on the left of origin (∂−Ω)
are colored in black. In this case, the exploration curve is an (random) infinite self-avoiding
walk. See Figure 3.

Now, we recall some results of Bernoulli percolation on the hexagonal lattice. We denote
A [2n, n] being the event that exists a path formed of black faces which is contained in the
rectangle [0, 2n]× [0, n] from {0} × [0, n] to {2n} × [0, n].

Lemma 4 ([1], Lemma 4.2). For any p > 1
2
, there exists ε = ε(p) > 0 and c = c(p) > 0 such

that for all n ≥ 1,

Pp(A [2n, n]) ≥ 1− cn−ε.
A simple consequence of Lemma 4 and FKG inequality [4] is the following result:

Lemma 5. Let p > 1
2
, there exists ε = ε(p) > 0 and c = c(p) > 0 such that for any n ≥ 1:

(2.1) Pp(γp ∩ ([n, 2n]× {0}) 6= ∅) ≥ (1− cn−ε)3.
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3. Proof of Theorem 3

3.1. The law of first steps of the limit walk. We consider the biased random walk RWλ,η

on T̃T∗
+
. Recall that ω∞λ,η is the associated limit walk and Pλ,η denotes its law.

Let k ∈ N∗ and y1, y2, . . . , yk be k elements of V (T̃T∗
+

) such that the path (o, y1, y2, . . . , yk)

in T̃T∗
+
is simple. For each λ such that RWλ,η on T̃T∗

+
is transient, the law of first k steps of

ω∞λ,η is defined by:

(3.1) ϕλ,η,k(y1, y2, . . . , yk) = Pλ,η
(
ω∞λ,η(0) = o, ω∞λ,η(1) = y1, ω

∞
λ,η(2) = y2, . . . , ω

∞
λ,η(k) = yk

)
.

Notation. Let ν be a vertex of the tree TT∗
+
and let µ be a vertex of (TT∗

+
)ν . Denote by

C̃(λ, η, (TT∗
+

)ν , µ) for the probability of the event that the random walk RWλ,η on (TT∗
+

)ν ,
started at the root (i.e X0 = ν), visits µ at its first step (i.e X1 = µ) and never returns to the
root. Finally, denote by C̃(λ, η, (TT∗

+
)ν) for the probability of the event that the random walk

RWλ,η on (TT∗
+

)ν , started at the root (i.e X0 = ν) and never returns to the root.

Lemma 6 ([2], Lemma 64). Let k ∈ N∗ and y1, y2, . . . , yk be k elements of V (T̃T∗
+

) such that
(o, y1, y2, . . . , yk) is a simple path starting at o of T̃T∗

+
. We then have

ϕλ,η,k(y1, y2, . . . , yk) =
C̃(λ, η, TT∗

+
, y1)

C̃(λ, η, TT∗
+

)
×
C̃(λ, η, (TT∗

+
)y1 , y2)

C̃(λ, η, (TT∗
+

)y1)
× · · · ×

C̃(λ, η, (TT∗
+

)yk−1 , yk)

C̃(λ, η, (TT∗
+

)yk−1)
.

Fix η ∈ [0, 1/2] and λ > 0 such that RWλ,η on TT+ is transient. For each finite path ω of
T̃T∗

+
starting at o, such that ω|ω| has two children, we define:

(3.2) αω := P
(
ω∞λ,η(|ω|+ 1) = (ω|ω|)2

∣∣∣(ω∞λ,η)|[0,|ω|] = ω
)
.

By using Lemma 6, we obtain:

(3.3) αω =
C̃(λ, η, (T̃T∗

+
)ω(|ω|), (ω|ω|)2)

C̃(λ, η, (T̃T∗
+

)ω(|ω|))
.

Denote by A the set of finite paths ω of T̃T∗
+
such that αω is well defined.

Lemma 7. For all η ∈]0, 1/2[ and for all λ > max
(

4/η; η
1−2η

)
, we have:

(3.4) min
ω∈A

αω ≥ 1/2 + η/2.

Proof. Fix η ∈]0, 1/2[ and λ > 4/η. Let ω ∈ A and consider (Xn)n≥0 be the random walk
RWλ,η on (T̃T∗

+
)ω(|ω|) started at its root ω(|ω|). We divide (T̃T∗

+
)ω(|ω|) into two sub-trees T1 and

T2 presented in Figure 4. We then have:
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C̃(λ, η, (T̃T∗
+

)ω(|ω|), (ω|ω|)2) ≥ P
(
X0 = ω|ω|;X1 = (ω|ω|)2) and ∀n ≥ 1 : Xn 6= ω|ω|

)
≥ λ+ η(1 + 2λ)

2λ
C̃(λ, η, T1)

≥
(

λ

1 + 2λ
+ η

)
C̃(λ, η, T1).

(3.5)

Let N be the regular tree of degree 1 and denote by C(λ,N) the effective conductance of
biased random walk on N started at the root with parameter λ. By Rayleigh’s monotonicity
principle (see [5], page 35), we have:

(3.6) C̃(λ, η, T1) ≥ C(λ,N).

On the other hand, we have:

(3.7) C(λ,N) =
λ− 1

λ
.

Hence by (3.5), (3.6) and (3.7), we obtain:

(3.8) C̃(λ, η, (T̃T∗
+

)ω(|ω|), (ω|ω|)2) ≥
λ− 1

λ

(
λ

1 + 2λ
+ η

)
Since λ > max

(
4/η; η

1−2η

)
, by an simple computation we obtain:

(3.9)
λ− 1

λ

(
λ

1 + 2λ
+ η

)
≥ 1/2 + η/2.

By (3.8) and (3.9), we obtain:

(3.10) C̃(λ, η, (T̃T∗
+

)ω(|ω|), (ω|ω|)2) ≥ 1/2 + η/2.

It is clear that C̃(λ, η, (T̃T∗
+

)ω(|ω|)) ≤ 1, hence we obtain:

αω ≥ C̃(λ, η, (T̃T∗
+

)ω(|ω|), (ω|ω|)2) ≥ 1/2 + η/2,

this completes the proof of lemma. �

3.2. Proof of Theorem 3. Consider the supercritical Bernoulli percolation on T∗+ with pa-
rameter 1/2 + η/2. Given a configuration of percolation, we construct a random path γ∞λ,η
starting at o = (0, 0) by the following way. At step n, γ∞λ,η looks at its three neighbors on
the hexagonal lattice, one of which is occupied by the previous step of γp. For the next step,
γ∞λ,η randomly chooses one of these neighbors that has not yet occupied by γp. If there is just
one neighbor that has not yet been occupied, then we choose this neighbor. If there are two
neighbors, then we choose the right neighbor and the left neighbor by the following rule. Let
h be the hexagon which contains these neighbors and let γ be such that (γ∞λ,η)|[0,n] = γ:

• If h is black, we choose the right neighbor;
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ω|ω|

(ω|ω|)2(ω|ω|)1

T2T1

Figure 4.

• If h is white, we have two possibilities:
(1) we choose the right neighbor with probability αγ−(1/2+η/2)

1−(1/2+η/2) ≥ 0 (by Lemma 7);
(2) we choose the left neighbor with probability 1−αγ

1−(1/2+η/2) .

γ1/2+η/2

γ∞
λ,η

Figure 5. The exploration curve γ1/2+η/2 is the red path and γ∞λ,η is the blue
path. At each step, if γ∞λ,η visits a black hexagon: it always chooses the right
neighbor.

Lemma 8. (γ∞λ,η) has the same law as (ω∞λ,η).

Proof. First, by the construction of γ∞λ,η and the definition of limit walk, we have:

P(γ∞λ,η(0) = o) = P(ω∞λ,η(0) = o) = 1.
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Let n > 0 and denote by A the set of self-avoiding walk of length n starting at o which can
extend to infinity (i.e the set of vertices of T̃T∗

+
at distance n from the root). Assume that for

all γ ∈ A, we have:

(3.11) P
(
(γ∞λ,η)|[0,n] = γ

)
= P

(
(ω∞λ,η)|[0,n] = γ

)
.

Let γ be an element of A. We have two possibilities:
• If there is only one way to extend γ to a self-avoiding walk γ1 of length n+ 1 (i.e the
vertex γ of T̃T∗

+
has only one child γ1), we then have:

P
(
γ∞λ,η(n+ 1) = γ1

∣∣∣(γ∞λ,η)|[0,n] = γ
)

= P
(
ω∞λ,η(n+ 1) = γ1

∣∣∣(ω∞λ,η)|[0,n] = γ
)

= 1.

• If γ has two children γ1 and γ2, by the construction of γ∞λ,η, we have:

P
(
γ∞λ,η(n+ 1) = γ2

∣∣∣(γ∞λ,η)|[0,n] = γ
)

= 1/2 + η/2 + (1− (1/2 + η/2))
αγ − (1/2 + η/2)

1− (1/2 + η/2)

= αγ.

(3.12)

Hence by (3.3) and (3.12) we obtain:

P
(
γ∞λ,η(n+ 1) = γ2

∣∣∣(γ∞λ,η)|[0,n] = γ
)

= P
(
ω∞λ,η(n+ 1) = γ2

∣∣∣(ω∞λ,η)|[0,n] = γ
)

= αγ,

and

P
(
γ∞λ,η(n+ 1) = γ1

∣∣∣(γ∞λ,η)|[0,n] = γ
)

= P
(
ω∞λ,η(n+ 1) = γ1

∣∣∣(ω∞λ,η)|[0,n] = γ
)

= 1− αγ.
�

Lemma 9. We have the following inequality:

P
(
γ∞λ,η ∩ ([n, 2n]× {0}) 6= ∅

)
≥ P

(
γ1/2+η/2 ∩ ([n, 2n]× {0}) 6= ∅

)
.

Proof. This is intuitively clear: informally, by the construction of γ∞λ,η, the path γ∞λ,η always
stays on the right of γ1/2+η/2 (see Figure 5). A formal proof is easy but tedious to write, and
is therefore omitted here. �

Theorem 3 is a straightforward consequence of Lemma 5, Lemma 8 and Lemma 9.
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