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1. Introduction

The main topic of this paper is to investigate the dynamical behavior of a scalar

variable u subject to a transport mechanism of hyperbolic type coupled with a

reaction process, driving the unknown u toward one among two different compet-

ing stable states. Restricting the attention to a one-dimensional environment and

denoting by v the flux of u, standard balance of mass provides the relation

ut − vx = f(u), (1.1)

dictating that the quantity u diffuses with flux v and grows/decays according to

the choice of the function f . The simplest structure for the reaction term f giving

raise to two competing stable states is referred to as a bistable form, meaning that

f is smooth and such that for some α ∈ (0, 1),

f(0) = f(α) = f(1) = 0, f ′(0), f ′(1) < 0, f ′(α) > 0,

f(u) > 0 in (−∞, 0) ∪ (α, 1), f(u) < 0 in (0, α) ∪ (1,+∞).
(1.2)

Equivalently, the function f can be considered as the derivative of a double-well

potential with wells centered at u = 0 and u = 1. A typical reaction function

satisfying (1.2) which is often found in the literature is the cubic polynomial

f(u) = κu(1− u)(u− α), κ > 0, α ∈ (0, 1). (1.3)

Reaction functions of bistable type arise in many models of natural phenomena, such

as kinetics of biomolecular reactions,40,38 nerve conduction,32,35 and electrothermal

instability,25 among others.

To complete the model, an additional relation has to be coupled with (1.1). The

standard approach is based on the use of Fick’s diffusion law, which consists in the

equality v = ux, so that one ends up with the semilinear parabolic equation

ut = uxx + f(u). (1.4)

Equation (1.4) has appeared in many different contexts and the nomenclature is

not uniform. It is known as the bistable reaction-diffusion equation,13 the Nagumo

equation in neurophysiological modeling,35,41 the real Ginzburg–Landau for the

variational description of phase transitions,36 and the Chafee-Infante equation,6

among others. In tribute to S. M. Allen and J. W. Cahn, who proposed it in con-

nection with the motion of boundaries between phases in alloys,3 we call it the

(parabolic) Allen–Cahn equation.

Equation (1.4) undergoes the same criticisms received by the standard linear

diffusion equation, mainly concerning the unphysical infinite speed of propagation

of disturbances (see discussion in Ref. 24). Thus, following the modification proposed

by Cattaneo,5 (see also Maxwell,34) for the heat equation, it is meaningful to couple

(1.1) with an equation stating that the flux v relaxes toward ux in a time-scale τ > 0,

namely

τvt + v = ux,
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usually named Maxwell–Cattaneo transfer law (for a complete discussion on its role

and significance in the modeling of heat conduction, see Refs. 26, 27). With this

choice, the couple density/flux (u, v) solves the hyperbolic system

ut = vx + f(u), τvt = ux − v. (1.5)

We are interested in studying the dynamics of solutions to system (1.5), which

we refer to as the Allen–Cahn model with relaxation. The corresponding Cauchy

problem is determined by initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R. (1.6)

It is to be observed that we can eliminate the variable v by a procedure known in

some references as Kac’s trick (cf. Refs. 23, 21, 28): differentiate the first equation

in (1.5) with respect to t, and the second with respect to x, to obtain the following

scalar second-order equation for the variable u,

τutt + (1− τf ′(u))ut = uxx + f(u), (1.7)

which we call the one-field equation determined by (1.5). The initial conditions

corresponding to (1.6) read

u(x, 0) = u0(x), ut(x, 0) = f(u0(x)) + v′0(x), x ∈ R.

Notice that Eq. (1.7) formally reduces to (1.4) in the singular limit τ → 0+.

We also observe that if we include a diffusion coefficient ν > 0,

ut = vx + f(u), τvt = νux − v,

then last system can be reduced to the form of (1.5) under the rescaling x 7→ x/
√
ν

and v 7→ v/
√
ν. Thus, we can consider the case ν = 1 without loss of generality.

The hyperbolic system (1.5) can be interpreted as a model for a reaction-diffusion

process. An intriguing issue is to compare the properties of the usual parabolic

reaction-diffusion equation (1.4) with the ones of its hyperbolic counterpart (1.5).

This paper pertains to one of the main hallmarks of the Allen–Cahn equation: the

presence of stable heterogeneous structures, describing the interaction between the

two stable states. Specifically, we examine traveling wave solutions to (1.5), i.e.

special solutions of the form

(u, v)(x, t) = (U, V )(ξ), ξ = x− ct, c ∈ R, (1.8)

with asymptotic conditions

(U, V )(±∞) = (U±, 0), where U− := 0, U+ := 1, (1.9)

with the aim of investigating their existence and stability from both an analytical

and numerical point of view.

Existence of traveling waves for systems of the form (1.5) with monos-

table/logistic reaction terms has been widely investigated.18,19,17 The situation for
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the bistable case is less explored, even if it is more or less known that, under rea-

sonable assumptions, there exist traveling fronts with a uniquely determined prop-

agation speed. For the sake of completeness, in Sec. 2 we give a self-contained proof

of the following existence result, which provides also some properties crucial to the

stability analysis.

Theorem 1.1. Let f be such that (1.2) holds and let τ satisfy

0 < τ < τm := 1/ sup
u∈[0,1]

|f ′(u)|. (1.10)

Then, there exists a unique value c∗ ∈ R for which system (1.5) possesses a traveling

wave propagating with speed c∗ and connecting the state (0, 0) to (1, 0). Moreover,

(a) the function U is monotone increasing;

(b) both components U and V are positive and converge to their asymptotic states

exponentially fast; and,

(c) the speed c∗ belongs to the interval (−1/
√
τ , 1/
√
τ) and depends continuously

with respect to τ ∈ (0, τm). Moreover, it converges to the speed of the (parabolic)

Allen–Cahn equation as τ → 0+.

The smallness assumption (1.10) on the relaxation parameter τ is not sharp

and arises as a consequence of the specific choices of the natural variables u and v,

which generates some obstruction in the course of the proof. A different choice of

unknowns could provide a more general result allowing a weaker requirement on τ .

We observe, however, that condition (1.10) is tantamount to the positivity of

the damping coefficient in Eq. (1.7), a condition which is usually imposed in order

to ensure that the solution is positive (hyperbolic equations may have negative

solutions even with positive initial conditions; cf. Ref. 20). The latter is an important

feature for a density solution, for example. Furthermore, although condition (1.10)

may seem a pure mathematical assumption, it relates the relaxation time τ with the

typical time scale, τreac = inf |u/f(u)| ∼ 1/ sup |f ′(u)|, associated to the reaction.

Passing to the stability issue, as for evolution problems on the whole real line

defined by autonomous partial differential equations, invariance with respect to

translations determines that any traveling wave belongs to a manifold of solutions

of the same type with dimension at least equal to one. Thus, small perturbations

of a given front are not expected to decay to the front itself, but to the manifold

generated by the traveling wave and, at best, to a specific element of such set.

Such property, called orbital stability, holds for the present case. More precisely, we

establish the following

Theorem 1.2. Let f ∈ C3 be such that (1.2) holds and τ ∈ [0, τm). Let (U, V ) be a

traveling wave of (1.5) satisfying (1.9) with speed c∗. Then, there exists ε > 0 such

that, for any initial data satisfying (u0, v0) − (U, V ) ∈ H1(R;R2) with |(u0, v0) −
(U, V )|

H1 < ε, the solution (u, v) to the Cauchy problem (1.5)–(1.6) satisfies for

any t > 0,

|(u, v)(·, t)− (U, V )(· − c∗t+ δ)|
H1 ≤ C|(u0, v0)− (U, V )|

H1 e
−θ t,
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for some shift δ ∈ R and constants C, θ > 0.

This statement is the final outcome of some intermediate fundamental steps

which are not detailed at this stage for the sake of simplicity of presentation. Ac-

tually, Theorem 1.2 is proved by following a well-estabilished approach based on

linearization, spectral analysis, linear and nonlinear stability. All of these steps are

developed in a complete way, altogether providing a sound rigorous basis to the

stability of propagation fronts for the Allen–Cahn model with relaxation. At this

point, we find it suitable to mention recent work by Rottmann-Matthes,48,49 who

proves that spectral stability implies orbital stability of traveling waves for a large

class of hyperbolic systems (which includes the Allen-Cahn model with relaxation

(1.5)), and provides numerical evidence of spectral stability with spectral gap for

the particular case of system (1.5) by approximating the spectrum of the linearized

operator around the wave with periodic boundary conditions, which reproduce the

point and essential spectrum on the unbounded domain accurately (cf. Ref. 51).

These numerical observations, however, do not constitute a proof of stability. Our

contribution is a self-contained study of the dynamics of traveling fronts for the

particular model (1.5) (which warrants note because of its importance in the theory

of hyperbolic diffusion), as well as a complete analysis of their stability.

Both the existence and the stability analyses are complemented with a numerical

study confirming the theoretical results and providing additional relevant informa-

tion on what should be expected beyond the boundaries of the proved statements.

In the first part, we numerically determine the values of the propagation speeds

and discuss their relation with the corresponding value in the case of the standard

Allen–Cahn equation. Interestingly enough, the model with relaxation exhibits in

some regimes fronts that are faster with respect to their corresponding parabolic

ones. At the end of the paper, we consider some numerical simulations relative to

perturbations of the traveling front, restricting the attention to the case of standard

and perturbed Riemann problems. The outcome is a strong numerical evidence that

the domain of attractivity of the wave is wider than what described by the stability

result of Theorem 1.2 (see Fig. 1, detailed description in Sec. 5). The algorithm used

in this part is based on a reformulation of (1.5), discretized by using a standard

finite-difference method with upwinding of the space derivatives.

Plan of the paper. This work is divided into four more sections. Sec. 2 deals with

the existence of the propagation fronts together with the estabilishment of their

main properties, which are essential for completing the stability arguments. It con-

tains the detailed proof of Theorem 1.1, and it is based on a phase-plane analysis

that takes advantage of a specific monotonicity property of the system under con-

sideration. The content of Sec. 3 is the spectral analysis of the linearized operator

around the front. The main result is Theorem 3.1, estabilishing the spectral stability

of the wave. The proof is based on a perturbation argument at τ = 0, combined

with a continuation procedure to show that the same spectral structure holds all
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Fig. 1. Random initial datum in (−`, `), ` = 25 (squares). Solution profiles for the Allen–Cahn

equation with relaxation at time t = 0.5 (dot), t = 7.5 (dash), t = 15 (continuous). For comparison,

in the small window, the solution to the parabolic Allen–Cahn equation. For details, see Sec. 5.

along the interval (0, τm). The first part of Sec. 4 deals with the linear stability

property. This is consequence of spectral stability because of the hyperbolic nature

of system (1.5) together with an additional resolvent estimate controling the behav-

ior at large frequencies. With such tools at hand, and following the classical ideas of

Sattinger developed for the parabolic setting,52 it is possible to prove the nonlinear

stability theorem, taking advantage of the presence of a spectral gap separating the

zero eigenvalue from the rest of the spectrum. That is the content of the final part

of the section. Finally, Sec. 5 is entirely devoted to the numerical approximation

of (1.5). The principal part of the system is diagonalized and a finite-difference

upwind approximation is considered. First, we analyze the Riemann problem con-

necting the two asymptotic states of the front. Such choice is used to compare the

asymptotic speed of propagation with the values determined in Sec. 2 and to show

the numerical evidence of convergence to the front. Then, as large perturbations of

the front, we consider initial data which are randomly chosen with some bias on the

values at the left and at the right, mimicking an initial configuration which vaguely

resembles the transition from u = 0 to u = 1. The large-time convergence to the

propagation front is evident from the numerical output.

Notations. We use lowercase boldface roman font to indicate column vectors (e.g.,

w), and with the exception of the identity matrix I we use upper case boldface

roman font to indicate square matrices (e.g., A). Elements of a matrix A (or vec-

tor w) are denoted Aij (or wj , respectively). Linear operators acting on infinite-

dimensional spaces are indicated with calligraphic letters (e.g., L and T ). For a
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complex number λ, we denote complex conjugation by λ and denote its real and

imaginary parts by Reλ and Imλ, respectively. Complex transposition of vectors

or matrices are indicated by the symbol ∗ (e.g., w∗ and A∗), whereas simple trans-

position is denoted by the symbol A>. For a linear operator L, its formal adjoint is

denoted by L∗. Given m ∈ N, the space Hm(R;Cn) is composed of vector functions

from R to Cn, where each component belongs to the Sobolev space Hm(R;C). It

is endowed with the standard scalar product. Finally, we denote derivatives with

respect to the indicated argument by ‘′’ (e.g., f ′(u), a′(x)). Partial or total deriva-

tives with respect to spatial and time variables (e.g. x and t) are indicated by lower

subscript. For the sake of simplicity, we sometimes use the symbol ∂ to indicate the

latter when appropriate.

2. Propagating fronts

Parabolic Allen–Cahn equation (1.4) supports traveling waves connecting the sta-

ble states u = 0 and u = 1. Also, the propagating speed and, up to translations,

the wave profile, are unique. For special forms of the reaction function f , existence

of the wave can be proved by determining explicit formulae for speed and profile.

For a general bistable f , the proof is based on a phase-plane analysis for the corre-

sponding nonlinear ordinary differential system. Uniqueness arises as consequence of

the fact that the heteroclinic orbit linking the asymptotic states is a saddle/saddle

connection.

For system (1.5), it is not anymore possible to find explicit traveling wave solu-

tions even for f of polynomial type. Phase-plane analysis, instead, is a more flexible

approach and it can be applied also in the case of the Allen–Cahn equation with

relaxation, as it is shown in the sequel. In Sec. 2.2, we also tackle the problem of

the numerical evaluation of the propagation speed in the case of a third-order poly-

nomial function f , analyzing the relation between the velocities of the hyperbolic

and the parabolic Allen–Cahn equations for different choices of the parameters α

and τ .

2.1. Existence of the traveling wave

Traveling waves of (1.5) are special solutions of the form (u, v)(x, t) = (U, V )(ξ)

where ξ = x − ct and c is a real parameter. The couple (U, V ) is referred to as

the profile of the wave and the value c as its propagation speed. Here, we are con-

cerned with traveling waves satisfying the asymptotic conditions (1.9), so that the

corresponding solution describes how the relaxation system resolves the transition

from one stable state to the other. In this respect, the value of the speed c is very

significant, since it describes how fast and in which direction the switch from value

u = 0 to value u = 1 is performed.

Existence of a traveling wave for (1.5) satisfying (1.9) can be deduced by the

fact that the ordinary differential equation for the profile, obtained by inserting
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the ansatz u(x, t) = U(x − ct) in the one-field equation (1.7), is convertible into

the corresponding equation arising in the case of reaction-diffusion models with

density-dependent diffusion. Then, one applies a general result proven by Engler,11

that relates the existence of traveling wave solutions of reaction-diffusion equations

with constant diffusion coefficients to the ones of the density-dependent diffusion

coefficient case. Considering such path too tangled, we prefer to give an explicit

proof of the existence by dealing directly with the system in the original form (1.5).

Substituting the form of the traveling wave solutions, we obtain the system of

ordinary differential equations

cUξ + Vξ + f(U) = 0, Uξ + cτVξ − V = 0, (2.1)

to be complemented with the asymptotic boundary conditions (1.9). The value c in

(2.1) is an unknown and its determination is part of the problem.

Proposition 2.1. Assume hypothesis (1.2) and let τ ∈ [0, τm). If (U, V ) is a solu-

tion to (2.1) satisfying the asymptotic conditions (1.9), then

(i) the velocity c has the same sign of −
´ 1
0
f(u) du;

(ii) there holds

c2τ < 1. (2.2)

Proof. (i) Multiplying the first equation in (2.1) by Uξ and using the second, we

obtain

0 = c |Uξ|2 + VξUξ + f(U)Uξ

= c |Uξ|2 + (Uξ + cτVξ)ξUξ + f(U)Uξ

= c |Uξ|2 + UξUξξ − cτ(cUξ + f(U))ξUξ + f(U)Uξ

= c(1− τf ′(U)) |Uξ|2 + (1− c2τ)UξUξξ + f(U)Uξ.

Thus, denoting by F a primitive of f , there holds(
1
2 (1− c2τ) |Uξ|2 + F (U)

)
ξ

+ c(1− τf ′(U)) |Uξ|2 = 0. (2.3)

Integrating in R, we infer the relation

c

ˆ
R
(1− τf ′(U)) |Uξ|2 dξ = F (0)− F (1) = −

ˆ 1

0

f(u) du.

Since τ < τm, then τf ′(u) < 1 for any u and part (i) follows.

(ii) The case c = 0 is obvious. Let us assume c < 0 (the opposite case being

similar). Integrating the equality (2.3) in (−∞, ξ), we get

1
2 (1− c2τ) |Uξ|2 = F (0)− F (U(ξ))− c

ˆ ξ

−∞
(1− τf ′(U)) |Uξ|2 dξ.

Choosing ξ such that U(ξ) ∈ (0, α), since F is strictly decreasing in (0, α), the

right-hand side is strictly positive and thus (2.2) holds.
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Condition (2.2) should be regarded as a subcharacteristic condition. Indeed,

it has a similar interpretation as the corresponding relation for hyperbolic systems

with relaxation: the equilibrium wave velocity cannot exceed the characteristic speed

of the perturbed wave equation (1.7).

Thanks to (2.2), we are allowed to introduce the independent variable η =

(1− c2τ)−1ξ, so that system (2.1) becomes

Uη = φ(U, V ) := cτf(U) + V, Vη = ψ(U, V ) := −f(U)− cV. (2.4)

Departing from a detailed description of the unstable and stable manifold of the

singular points (0, 0) and (1, 0), respectively, it is possible to show the existence of

a saddle/saddle connection between the asymptotic states required by (1.9). The

existence result is based on the analysis of the limiting regimes c→ ±1/
√
τ of the

system (2.4) and on their (monotone) variations for the values in between, using

the notion of a rotated vector field (cf. Ref. 45).

Proof of Theorem 1.1 1. The linearization of (2.4) at (Ū , 0) with f(Ū) = 0 is

described by the jacobian matrix calculated at (Ū , 0)

∂(φ, ψ)

∂(u, v)
=

(
cτf ′(Ū) 1

−f ′(Ū) −c

)
whose determinant is (1− c2τ)f ′(Ū). In particular, if f ′(Ū) < 0, the singular point

(Ū , 0) is a saddle. The eigenvalues are the roots of the polynomial

p(µ) = µ2 + c(1− τf ′(Ū))µ+ (1− c2τ)f ′(Ū)

and they are given by

µ±(Ū) = − 1
2c(1− τf

′(Ū))± 1
2

√
c2(1− τf ′(Ū))2 − 4f ′(Ū)

with corresponding eigenvectors r±(Ū) = (1, µ±(Ū)− cτf ′(Ū))>.

For later use, let us note that, as a consequence of (1.10),

µ+(0)− cτf ′(0) > −
√
τ f ′(0) and µ−(1)− cτf ′(1) <

√
τ f ′(1), (2.5)

for c ∈ (−1/
√
τ , 1/
√
τ). Indeed, for f ′(Ū) < 0, there holds

p
(
(cτ ±

√
τ)f ′(Ū)

)
=
√
τ

(
1√
τ
± c
)

(1− τf ′(Ū))f ′(Ū) < 0,

so that the values (cτ ±
√
τ)f ′(Ū) belong to the interval (µ−(Ū), µ+(Ū)).

2. Given c ∈ (−1/
√
τ , 1/
√
τ), let us denote by U0(c) the unstable manifold of

the singular point (0, 0) and by S1(c) the stable manifold of (1, 0). Also, let U+
0 (c)

be the intersection of U0(c) with the strip [0, α]× R and let S−1 (c) the intersection

of S1(c) with the strip [α, 1] × R. Such sets are graphs of appropriate solutions to

the first order equation

dV

dU
= − f(U) + cV

cτf(U) + V
. (2.6)
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Thanks to (2.5), U+
0 (c) lies above the graph of the function v = −

√
τf(u) in a

neighborhood of (0, 0). In addition, for u ∈ (0, α), there holds

(φ, ψ) · (
√
τ f ′(u), 1)

∣∣
v=−

√
τf(u)

= −
(
1− c

√
τ
)

(1− τf ′(u))f(u) > 0

showing that no trajectories may trespass the graph of the function v = −
√
τf(u)

for u ∈ (0, α). In particular, the set U+
0 (c) lies above the graph v = −

√
τf(u) and

hits the line u = α for a given value v0(c) ∈ (0,+∞). Similar considerations show

that S−1 (c) stays above the graph v =
√
τf(u) and touches the straight line u = α

for a given value v1(c) ∈ (0,+∞).

3. To determine how the unstable/stable manifolds change with the parameter

c, let us observe that

(φ, ψ, 0)> ∧ (∂cφ, ∂cψ, 0)> = det

 i j k

cτf(U) + V −f(U)− cV 0

τf(U) −V 0


=
(
τf(U)2 − V 2

)
k.

Thus, the vector field (φ, ψ) defining (2.4) rotates clockwise in the region {(u, v) :

v ≥
√
τ |f(u)|} as the parameter c increases. As a consequence, the curves describing

U+
0 (c) and S−1 (c) rotate clockwise when c increases and the functions c 7→ v0(c) and

c 7→ v1(c) are, respectively, strictly monotone decreasing and strictly monotone

increasing.

4. To conclude the existence of the orbit, we analyze the behavior of (2.4) in the

limiting regimes c→ ±1/
√
τ . For c = −1/

√
τ , the system reduces to

Uη = V −
√
τf(U), Vη =

1√
τ

(
V −

√
τf(U)

)
.

In particular, all the trajectories lie along straight lines of the form

v =
u√
τ

+ C, C ∈ R,

and converge, as t→ −∞, to the unique intersection between the invariant straight

line and the graph of the function
√
τf (see Fig. 2, depicting the (U, V ) plane for

the particular case of the cubic reaction function f). The unstable manifold U0(c)

of the singular point (0, 0) is the straight line v = u/
√
τ , while the center-stable

manifold S1(c) of (1, 0) is the graph of the function
√
τf . In particular, there holds

U0(−1/
√
τ)
∣∣
U=α

= α(1, 1/
√
τ ), S1(−1/

√
τ)
∣∣
U=α

= α(1, 0),

that gives

v0(−1/
√
τ) = α/

√
τ , v1(−1/

√
τ) = 0.

The situation for c = 1/
√
τ is similar, yielding

v0(1/
√
τ) = 0, v1(1/

√
τ) = (1− α)/

√
τ .
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Fig. 2. Plane (U, V ) in the case f(u) = u(1−u)(u−α)(0.5 +u), α = 0.4, τ = 1. The manifolds U+
0

and S−1 are represented for different choices of c ∈ (−1, 1). Note the monotonicity with respect to

the parameter c. For the choice c = 0.229 the two curves intersect at u = α = 0.4. The thin (red;
online version) lines on the bottom are the graphs of the functions ±

√
τ f .

The conclusion is at hand, since

(v1 − v0)(−1/
√
τ) = −α/

√
τ < 0 < (1− α)/

√
τ = (v1 − v0)(1/

√
τ),

implying, together with the monotonicity of v0 and v1, that there exists a unique

value c∗ such that v1(c∗) = v0(c∗), and then system (2.4) possesses a heteroclinic

orbit.

5. To verify the monotonicity of the component U , we note that from system

(2.4) one has Uη = cτf(U)+V . Let us suppose that c > 0. Assume, by contradiction,

that Uη(η∗) = 0 for some η∗ ∈ R. Therefore V∗ = −cτf(U∗), where V∗ = V (η∗),

U∗ = U(η∗). Since V is positive for all η ∈ R, this implies that f(U∗) < 0 and,

necessarily, that U∗ ∈ (0, α). The subcharacteristic condition (2.2), however, yields

0 < −cτf(U∗) < −
√
τf(U∗),

which is a contradiction with the fact that the trajectory (U, V ) lies above the

graph of the function v = −
√
τf(u) for u ∈ (0, α). The case c < 0 is analogous

and a similar argument for U∗ ∈ (α, 1) applies. Therefore, Uη never changes sign

along the trajectory. Since U connects U(−∞) = 0 with U(+∞) = 1, the function

is strictly increasing and Uη > 0 for all η ∈ R. The subcharacteristic condition

guarantees that the same statement holds for the original profile in the ξ variable,

that is, Uξ > 0.

6. Exponential decay of the profile is a consequence of the hyperbolicity of the

non-degenerate end-points (0, 0) and (1, 0). Indeed, rewriting system (2.1) (in the

original moving variable ξ) as

Uξ = (1− c2τ)−1(cτf(U) + V ), Vξ = −(1− c2τ)−1(τf(U) + cV ),
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and linearizing the right hand side around (Ū , 0), one readily notes that its eigen-

values are the same as the eigenvalues of the linearization of (2.4) at the same point

multiplied by a factor (1− c2τ)−1. The positive (unstable) eigenvalue at (0, 0) is

µu = 1
2 (1− c2τ)−1

(
− c(1− τf ′(0)) +

√
c2(1− τf ′(0))2 − 4f ′(0)

)
> 0,

and the orbit decays to (0, 0) as ξ → −∞ with exponential rate

|(U, V )(ξ)| ≤ C exp(µuξ).

Likewise, the negative (stable) eigenvalue at (1, 0) is

µs = 1
2 (1− c2τ)−1

(
− c(1− τf ′(1))−

√
c2(1− τf ′(1))2 − 4f ′(1)

)
< 0,

and the orbit decays to (1, 0) as ξ → +∞ with rate

|(U, V )(ξ)| ≤ C exp(−|µs|ξ).

Setting ν = ν(τ) := min{µu, |µs|} > 0, we find that∣∣∣∣ djdξj (U − U±, V )(ξ)

∣∣∣∣ ≤ C exp(−ν|ξ|), ξ ∈ R,

for some constant C > 0 and with j = 0, 1, 2.

7. Finally, we have to show continuity of the speed c∗ with respect to τ , as

stated in (c). To this aim, denoting explicitly the dependence on τ , let us consider

the function

δv(c, τ) := v0(c, τ)− v1(c, τ)

with v0 and v1 defined at Step 2. For any τ , the value c∗ is determined implicitly

by the equality δv(c, τ) = 0. Also, smooth dependence with respect to parameters c

and τ of the system (2.4) implies that the function δv is continuous with respect to

its variables. Moreover, since v0 is monotone decreasing and v1 monotone increasing

as functions of c (see the end of Step 3.), the function δv is monotone decreasing

with respect to c.

Fix τ0 ∈ (0, τm) and η > 0. Then, there holds

δv(c∗(τ0) + η, τ0) < δv(c∗(τ0), τ0) = 0 < δv(c∗(τ0)− η, τ0)

Since δv is continuous, for any τ in a neighborhood of τ0, there holds

δv(c∗(τ0) + η, τ) < 0 < δv(c∗(τ0)− η, τ),

which gives, for δv(τ, c∗(τ)) = 0 and the monotonicity of δv,

c∗(τ0)− η < c∗(τ) < c∗(τ0) + η.

The property relative to the limiting behavior as τ → 0 can be proved in the same

way, observing that the dependence of the differential system with respect to τ is

smooth and that the heteroclinic orbit relative to the classical Allen–Cahn case can

be obtained by the same procedure.
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Fig. 3. Graph of the map α 7→ cτ∗ for τ = 2 (dashed line), τ = 4 (dotted line), τ = 8 (continuous

line). The thin straight line corresponds to c0∗ (parabolic Allen–Cahn equation).

2.2. Numerics of the propagating speed

In the case of the Allen–Cahn equation (1.4) with f given by (1.3), it is possible to

determine an explicit form for the speed of the propagation front, namely

c0∗ :=

√
2

κ

(
α− 1

2

)
, (2.7)

and for the corresponding profile, which is given by a hyperbolic tangent. For the

Allen–Cahn system with relaxation, however, finding analogous explicit formulas

is awkward if not impossible. Some attempts to derive approximated expressions

applying a series expansion method have been performed in Refs. 1, 12, 53, with

very restricted success.

Here, fixed the reaction strength κ = 1, we address the problem of computing

numerically the value of cτ∗ , the speed of propagation corresponding to the relaxation

parameter τ > 0, and we discuss its dependency with respect to the parameters α, τ

and its relation with the limiting value c0∗.

To determine reliable approximations of the value cτ∗ , we first evaluate numeri-

cally the functions v0 = v0(c) and v1 = v1(c), defined in the proof of Theorem 1.1.

In view of that, we compute the solutions V0 = V0(U) and V1 = V1(U) to (2.6) with

initial conditions

V0(δ) = δ
(
µ+(0)− cτf ′(0)

)
, V1(1− δ) = −δ

(
µ−(1)− cτf ′(1)

)
,

for δ > 0 small (in the following computations, we actually choose δ = 10−8) and

we set

v0(c) := V0(α), v1(c) := V1(α).
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Table 1. Numerically computed speeds cτ∗ = cτ∗(α) for different values of α and τ . The column τ = 0

gives the values of the speed for the parabolic Allen–Cahn equation. The presence of parenthesis
indicates that condition (1.10) is not satisfied.

α τ =0 1 2 3 4 5 6 7 8

0.6 0.14 0.16 0.17 (0.20) (0.22) (0.25) (0.27) (0.30) (0.31)

0.7 0.28 0.31 0.33 0.35 (0.37) (0.38) (0.38) (0.37) (0.35)

0.8 0.42 0.44 0.46 0.46 0.45 (0.43) (0.41) (0.38) (0.35)

0.9 0.57 0.56 0.55 0.52 0.49 0.45 0.41 0.38 0.35

As explained in the proof of Theorem 1.1, the function c 7→ v0(c)− v1(c) is mono-

tone decreasing and it has a single zero, so that, by following a standard bisection

procedure, we find an approximated value for the unique zero cτ∗ of the difference

v0 − v1. Some of the numerically computed speeds for different values of α and τ

can be found in Table 1.

Applying a variational approach, explicit estimates from below and from above

for the value of the speed cτ∗ have been determined by Méndez et al.37 As already

noted by these authors, the estimate from below

cτ∗(α) ≥ cτlow(α) :=

√
2(α− 1/2)√

(1− 1
5 (1− 2α+ 2α2)τ)2 + 1

2τ(1− 2α)2
(2.8)

manifests an excellent agreement with the numerically computed values of the speed.

The value cτ∗ depends on both τ and α. For fixed τ , as a function of α alone, cτ∗
is oddly symmetric with respect to α = 1/2. Moreover, numerical simulations show

that cτ∗ is monotone increasing and S-shaped (see Fig. 3).

In some regimes of the parameter α (depending on the size of τ), the speed for

the hyperbolic model is larger than the one for the parabolic Allen–Cahn equation.

Such behavior is different with respect to the damped Allen–Cahn equation, obtained

by solely adding the inertial term τutt to Eq. (1.4),

τutt + ut = uxx + f(u),

(see Ref. 14 and the references therein). Indeed, for such equation, the traveling

wave equation can be directly reduced to the one of the parabolic case by a simple

rescaling of the independent variable. Such procedure furnishes an explicit relation

between the speed of propagation of the fronts with and without the inertial term,

that is

cτdamped =
c0∗√

1 + τ(c0∗)
2
.

From this relation, it is evident that such hyperbolic front is always slower with

respect to the corresponding parabolic one.

Coming back to the case of the Allen–Cahn equation with relaxation, the dis-

crepancy between cτ∗ and c0∗ is described by the function of the relative variation
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Fig. 4. Graph of the map α 7→ (cτ∗ − c0∗)/|c0∗| for α ∈ (0.5, 1) measuring the relative variation of

the speed passing from the parabolic Allen–Cahn equation to its hyperbolic counterpart: τ = 2

(dashed), τ = 4 (dotted), τ = 6 (continuous).

α 7→ (cτ∗− c0∗)/|c0∗|, whose behavior is depicted in Fig. 4 for different values of τ . For

large values of τ , the relative increase of the front can be particularly relevant (as

an example, about 150% for τ = 6 and values of α close to 0.5). The limiting value

of the relative variation as α → 1/2 can be approximated by using the estimate

(2.8), that gives

lim
α→1/2+

cτ∗ − c0∗
|c0∗|

≈ lim
α→1/2+

cτlow − c0∗
|c0∗|

=
τ

10− τ

in good agreement with the numerical values expressed in Fig. 4. It is worth noting

the presence of a singularity for τ → 10− that is outside the range of smallness

on the parameter τ that we are considering. We do consider the behavior for large

relaxation times τ a very interesting issue to be analyzed in detail in the future.

Complementary information is provided by the analysis of the value of cτ∗ as

a function of τ for fixed α (see Fig. 5). The numerical evidence shows that the

speed function has different monotonicity properties depending on the chosen value

α, passing through the monotone increasing case (α = 0.6), increasing-decreasing

(α = 0.7 and 0.8), monotone decreasing (α = 0.9).

It also worthwhile to observe the relation between the propagation speed cτ∗ and

the characteristic speed 1/
√
τ . As stated in Proposition 2.1, |cτ∗ | is always strictly

smaller than 1/
√
τ , as it is observed in Fig. 5, where the graph of the characteristic

speed is depicted by a thick (gray, in the online version) band, lying above the speed

curves for all of the values α. For large values of τ , the hyperbolic structure of the

principal part of (1.5) becomes crucial and the propagation speed of the front tends

to one of the characteristic values ±1/
√
τ (except for the case of zero speed).



November 26, 2015 10:34 WSPC/INSTRUCTION FILE LMPS

16 C. Lattanzio et al.

Fig. 5. Graph of the map τ 7→ cτ∗(α) for different values of α: continuous line α = 0.6, dashed

line α = 0.7, dash-dotted line α = 0.8, dotted line α = 0.9. The thick (gray; online version) band

corresponds to the graph of the characteristic speed τ 7→ 1/
√
τ ; as τ increases, the speed cτ∗(α)

tends to 1/
√
τ from below as a consequence of the emergent rôle of the principal part of the system

(1.5).

3. Linearization and spectral stability

This section is devoted to establishing both the equations for the perturbation of

the traveling wave and the corresponding spectral stability problem. For stability

purposes, it is often convenient to recast the system of equations (1.5) in a moving

coordinate frame. For fixed τ ∈ [0, τm), let c := c∗(τ) be the unique wave speed of

Theorem 1.1. Rescaling the spatial variables as x 7→ x− ct, we obtain the nonlinear

system

ut = cux + vx + f(u),

τvt = ux + cτvx − v.
(3.1)

From this point on and for the rest of the paper the variable x will denote the

moving (galilean) variable x − ct. With a slight abuse of notation, traveling wave

solutions to the original system (1.5) transform into stationary solutions (U, V )(x)

of the new system (3.1) and satisfy the “profile” equations

cUx + Vx + f(U) = 0, Ux + cτVx − V = 0, (3.2)

together with the asymptotic limits (1.9). Furthermore, the convergence is expo-

nential, ∣∣∂jx(U − U±, V )(x)
∣∣ ≤ C exp(−ν|x|), x ∈ R (3.3)

for some C, ν > 0 and j = 0, 1, 2. It is to be noted that Ux, Vx ∈ H1(R;R). Moreover,

by a bootstrapping argument and the second equation in (3.2), it is easy to verify

that Ux, Vx ∈ H2(R;R).
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3.1. Perturbation equations and the spectral problem

Consider a solution to the nonlinear system (3.1) of the form (u, v)(x, t)+(U, V )(x),

being u and v perturbation variables. Upon substitution (and using the profile

equations (3.2)) we arrive at the following nonlinear system for the perturbation:

ut = cux + vx + f(u+ U)− f(u),

τvt = ux + cτvx − v.
(3.4)

The standard strategy to prove stability of the traveling wave is based on linearizing

system (3.4) around the wave. The subsequent analysis can be divided into three

steps: the spectral analysis of the resulting linearized operator, the establishment of

linear stability estimates for the associated semigroup, and the nonlinear stability

under small perturbations to solutions to (3.4). Thus, we first linearize last system

around the profile solutions (U, V ). The result is

ut = cux + vx + f ′(U)u,

τvt = ux + cτvx − v.

Specializing these equations to perturbations of the form eλt(û, v̂), where λ ∈ C is

the spectral parameter and (û, v̂)(x) belongs to an appropriate Banach space X, we

obtain a naturally associated spectral problem

λû = cûx + v̂x + f ′(U)û,

λτ v̂ = ûx + cτ v̂x − v̂.

With a slight abuse of notation we denote again (û, v̂)> = (u, v)> ∈ X. Henceforth,

for each τ ∈ (0, τm) we are interested in studying the spectral problem

Lτ
(
u

v

)
= λ

(
u

v

)
,

(
u

v

)
∈ D ⊂ X, (3.5)

where Lτ denotes the first order differential operator determined by

Lτ = −B−1 (A ∂x + C(x)) , (3.6)

with domain D in X, and where

A =

(
−c −1

−1 −cτ

)
, B =

(
1 0

0 τ

)
, C(x) =

(
−a(x) 0

0 1

)
, (3.7)

and

a(x) := f ′(U).

In this analysis we choose the perturbation space as X = L2(R;C2), with dense

domain D = H1(R;C2), which corresponds to the study of stability under localized

perturbations. In this fashion, we obtain a family of closed, densely defined first

order operators in L2(R;C2), parametrized by τ ∈ (0, τm).
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It is to be observed that Lτ is not defined for τ = 0, where B becomes singular.

Formally, in the limit τ → 0+ system (3.4) can be written (after substitution) as

the scalar perturbation equation for the parabolic Allen-Cahn (or Nagumo) front:

ut = uxx + c0ux + f(U0 + u)− f(U0),

where U0 denotes the unique (up to translations) traveling wave solution to the

parabolic Allen-Cahn equation (1.4), traveling with speed c0 = c|τ=0. Its lineariza-

tion leads to the well-studied spectral problem for the operator L0 : H2(R;C) →
L2(R;C), defined by

L0u := uxx + c0ux + a(x)u = λu, u ∈ H2(R;C),

where a(x) = f ′(U0). The stability of the parabolic traveling front is a well-known

fact: it was first established by Fife and McLeod,13 using maximum principles. The

spectral analysis of the operator L0 can be found in Ref. 22 (p. 128–131), and in Ref.

29 (Chp. 2). The following proposition summarizes the spectral stability properties

of the parabolic front.

Proposition 3.1 (cf. Refs. 22, 29). There exists ω0 > 0 such that the spectrum

σ(L0) of the operator L0 can be decomposed as

σ(L0) = {0} ∪ σ(0)
− ,

where λ = 0 is an (isolated) eigenvalue with algebraic multiplicity equal to one

and eigenspace generated by U0
x ∈ L2(R;C), and σ

(0)
− is contained in the half-space

{λ ∈ C : Re λ ≤ −ω0}.

Since the operators Lτ have been defined on the appropriate spaces, the standard

definitions for the resolvent ρ(Lτ ) and spectrum σ(Lτ ) follow (see Refs. 9, 30, and

Sec. 3.2 below). Our goal is to establish the spectral stability for the family of

operators (3.6), for parameter values τ ∈ (0, τm), by proving a result analogous to

Proposition 3.1:

Theorem 3.1 (Spectral stability). For each τ ∈ (0, τm), there exists ω0(τ) > 0

such that the spectrum σ(Lτ ) of the operator Lτ can be decomposed as

σ(Lτ ) = {0} ∪ σ(τ)
− ,

where λ = 0 is an (isolated) eigenvalue with algebraic multiplicity equal to one and

eigenspace generated by (Ux, Vx) ∈ D(Lτ ), and σ
(0)
− is contained in the half-space

{λ ∈ C : Reλ ≤ −ω0(τ)}.

The approach to prove Theorem 3.1 is based on rewriting the spectral problem

as a first order system with the eigenvalue as a parameter. Then, applying a general

theorem for convergence of approximate flows,46 we show that the spectral stability

for τ = 0 persists for τ ∼ 0+. By a continuation argument, we extend the result to

the whole parameter domain τ ∈ (0, τm).
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3.2. Reformulation of the spectral problem

Set τ ∈ (0, τm). Component-wise the spectral problem (3.5) can be written as

cux + vx + (a(x)− λ)u = 0,

ux + cτvx − (1 + τλ)v = 0.
(3.8)

Just like for the original nonlinear Allen-Cahn model with relaxation (1.5), the v

variable can be eliminated to obtain a second order equation for u (a spectral version

of Kac’s trick): multiply the first equation by cτ , substract it from the second and

differentiate with respect to x. The result is the following second order spectral

equation,

(1− c2τ)uxx + c
(
1 + τ(2λ− a)

)
ux +

(
(1 + τλ)(a(x)− λ)− cτa′(x)

)
u = 0. (3.9)

Following Alexander, Gardner and Jones,2 we recast the scalar spectral equation

(3.9) as a first order system of the form

wx = Aτ (x, λ)w, (3.10)

where w = (u, ux)> and, for a = a(x) and a′ = a′(x),

Aτ (x, λ) :=
1

1− c2τ

(
0 1− c2τ

cτa′ + (1 + τλ)(λ− a) c(τa− 1− 2τλ)

)
. (3.11)

Observe that the coefficient matrices (3.11) can be written as

Aτ (x, λ) = Aτ
0(x) + λAτ

1(x) + λ2Aτ
2(x),

where

Aτ
0(x) := Aτ (x, 0) =

1

1− c2τ

(
0 1− c2τ

cτa′(x)− a(x) c(τa(x)− 1)

)
,

Aτ
1(x) :=

1

1− c2τ

(
0 0

1− τa(x) −2cτ

)
,

Aτ
2(x) :=

τ

1− c2τ

(
0 0

1 0

)
.

Since c = c(τ) is a continuous function of τ ∈ [0, τm), we conclude that Aτ (·, λ) is

a function from (τ, λ) ∈ [0, τm) × C to L∞(R;R2×2), continuous in τ and analytic

(second order polynomial) in λ.

It is a well-known fact (see Refs. 2, 50, and the references therein) that an

alternate but equivalent definition of the spectra and the resolvent sets associated

to the spectral problem (3.5) can be expressed in terms of the first order systems

(3.10). Consider the following family of linear, closed, densely defined operators

T τ (λ) : D = H1(R;C2)→ L2(R;C2),

T τw := wx −Aτ (x, λ)w, w ∈ H1(R;C2),
(3.12)

indexed by τ ∈ (0, τm), parametrized by λ ∈ C and with domain D = H1(R;C2),

which is independent of λ and τ . With a slight abuse of notation we call w ∈
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H1(R;C2) an eigenfunction associated to the eigenvalue λ ∈ C provided w is a

bounded solution to the equation

T τ (λ)w = 0.

More precisely, for each τ ∈ [0, τm) we define the resolvent ρ, the point spectrum

σpt and the essential spectrum σess of problem (3.8) as

ρ = {λ ∈ C : T τ (λ) is injective and onto, and T τ (λ)−1 is bounded },
σpt = {λ ∈ C : T τ (λ) is Fredholm with index zero and non-trivial kernel},
σess = {λ ∈ C : T τ (λ) is either not Fredholm or with non-zero index},

respectively. The whole spectrum is σ = σess ∪ σpt. Since each operator T τ (λ) is

closed, then ρ = C\σ (cf. Ref. 30). When λ ∈ σpt we call it an eigenvalue, and any

element in ker T τ (λ) is an eigenvector.

We call the reader’s attention to the fact that, unlike Eq. (3.5), the spectral

problem formulated in terms of the first order systems (3.10) is well defined for

τ = 0, with

A0(x, λ) =

(
0 1

λ− a(x) −c0

)
,

and where c0 = c(τ)
∣∣
τ=0

is the velocity of the parabolic front.

Remark 3.1. Suppose τ ∈ (0, τm). If we substitute λ = −1/τ into (3.8) we arrive

at the equation

(1− c2τ)ux − c(1 + τa(x))u = 0.

Taking the real part of the L2 product of last equation with u we obtain

0 =

ˆ
R
(1 + τa(x))︸ ︷︷ ︸

>0

)|u|2 dx ≥ 0,

inasmuch as Re 〈u, ux〉L2 = 0, and τ < τm = 1/ sup |f ′|. This implies that u = 0,

and hence v = 0, showing that λ = −1/τ does not belong to the point spectrum.

3.2.1. On algebraic and geometric multiplicities

In the stability of traveling waves literature, it is customary to analyze the spectrum

of a differential operator L of second (or higher) order, for which there is a natural

invertible transformation from the kernel of L − λ to the kernel of a first order

operator of the form (3.12). In such cases, the matrices (3.11) are linear in λ and

there is a natural correspondence between the Jordan block structures of L−λ and

those of the corresponding operators T (λ) (see, e.g., Ref. 50). Since we arrived at

systems (3.10) through a different transformation (Kac’s trick), we must show that
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such property remains in our case. For each τ ∈ (0, τm) and λ ∈ σpt, we call the

mapping,

K : ker(Lτ − λ) → ker T τ (λ),

K
(
u

v

)
:=

(
u

ux

)
= w,

(
u

v

)
∈ ker(Lτ − λ),

(3.13)

as the spectral Kac’s transformation. It is a one-to-one and onto map. Indeed, if

w1 = w2 ∈ ker T τ (λ) then u1 = u2 and ∂xu1 = ∂xu2 a.e., and the first equation

in (3.8) yields ∂xv1 = ∂xv2, whereas the second equation implies v1 = v2 a.e. Thus,

(u1, v1)> = (u2, v2)> ∈ ker(Lτ − λ). It is onto because for each w = (u, ux)> ∈
ker T τ (λ) clearly there exists(

u

v

)
=

(
u

(1 + τλ)−1
(
(1− c2τ)ux + cτ(λ− a(x))u

)) ∈ ker(Lτ − λ),

such that w = K(u, v)>. (Provided, of course, that λ 6= −1/τ . But −1/τ /∈ σpt
by Remark 3.1.) Since v satisfies the first equation of (3.8) we conclude that v ∈
H2(R;C) as well.

Proposition 3.2. Spectral Kac’s transformation (3.13) induces a one-to-one cor-

respondence between Jordan chains.

Proof. Suppose (ϕ,ψ)> ∈ ker(Lτ − λ). This is equivalent to the system

cϕx + ψx + (a(x)− λ)ϕ = 0, ϕx + cτψx − (1 + τλ)ψ = 0. (3.14)

If we take the next element in a Jordan chain, say (u, v)> ∈ H2(R;C2), solution to

(Lτ − λ)

(
u

v

)
=

(
ϕ

ψ

)
,

then we obtain the system

cux + vx + (a(x)− λ)u = ϕ, ux + cτvx − (1 + τλ)v = τψ. (3.15)

Multiply the first equation by cτ , substract from the second one, differentiate it,

and substitute vx from the first equation and ψx from the second in (3.14). The

result is the following scalar equation

(1− c2τ)uxx + c
(
1 + τ(2λ− a(x))

)
ux

+
{

(1 + τλ)(a(x)− λ)− cτa′(x)
}
u = (1 + 2τλ− τa(x))ϕ− 2cτϕx.

(3.16)

Written as a system for w1 := (u, ux)>, Eq. (3.16) is equivalent to

∂xw1 −Aτ (x, λ)w1 =
(
Aτ

1(x) + 2λAτ
2(x)

)( ϕ
ϕx

)
.

Generalizing this procedure, we observe that solutions to

(Lτ − λ)

(
uj
vj

)
=

(
uj−1
vj−1

)
,
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are in one-to-one correspondence with solutions to the equation T τ (λ)wj =

(∂λA
τ (x, λ))wj−1, where wj and (uj , vj)

> are related to each other through Kac’s

transformation. Hence, a Jordan chain for Lτ −λ induces a Jordan chain for T τ (λ)

with same block structure and length.

Consequently, we have the following definition.

Definition 3.1. Assume λ ∈ σpt. Its geometric multiplicity (g.m.) is the maximal

number of linearly independent elements in ker T τ (λ). Suppose λ ∈ σpt has g.m. =

1, so that ker T τ (λ) = span {w0}. We say λ has algebraic multiplicity (a.m.) equal to

m if we can solve T τ (λ)wj = (∂λA
τ (x, λ))wj−1, for each j = 1, . . . ,m−1, with wj ∈

H1, but there is no bounded H1 solution w to T τ (λ)w = (∂λA
τ (x, λ))wm−1. For

an arbitrary eigenvalue λ ∈ σpt with g.m. = l, the algebraic multiplicity is defined

as the sum of the multiplicities
∑l
kmk of a maximal set of linearly independent

elements in ker T τ (λ) = span {w1, . . . ,wl}.

Thanks to Proposition 3.2 and Definition 3.1 we readily obtain the following

Corollary 3.1. For each τ ∈ [0, τm), the sets σpt and σpt(Lτ ) (the latter defined

as the set of complex λ such that Lτ − λ is Fredholm with index zero and has a

non-trivial kernel) coincide, with same algebraic and geometric multiplicities.

3.3. The (translation invariance) eigenvalue λ = 0

Here, we prove that λ = 0 is an eigenvalue of Lτ for each τ ∈ (0, τm) (the eigenvalue

associated to translation invariance of the wave, with eigenfunction (Ux, Vx)>), and,

moreover, that it is simple.

Lemma 3.1. For each τ ∈ (0, τm), λ = 0 is an eigenvalue of Lτ with geometric

multiplicity equal to one, and with eigenspace generated by (Ux, Vx)> ∈ H2(R;C2).

Proof. Differentiate system (3.2) with respect to x to verify that (Ux, Vx) is a

solution to the spectral system (3.8) with λ = 0, that is,

cUxx + Vx + a(x)Vx = 0, Ux + cτVxx − Vx = 0. (3.17)

Due to exponential decay (3.3) of the wave, and solving for Uxx and Vxx in equa-

tions (3.17), we observe that (Ux, Vx)> ∈ H2(R;C2) = D(Lτ ). This shows that

(Ux, Vx)> belongs to kerLτ for each τ ∈ (0, τm). Thus, λ = 0 ∈ σpt(Lτ ). In view

of the equivalence established by Kac’s spectral transformation (Proposition 3.2),

this implies that

w0 =

(
Ux
Uxx

)
∈ ker T τ .

To analyze its multiplicity we observe that system (3.8) with λ = 0 is equivalent to

the following scalar equation (substitute λ = 0 in (3.9)):

Au := a0uxx + a1(x)ux + a2(x)u = 0, (3.18)
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where we have introduced the closed, densely defined auxiliary operator A : D(A) =

H2(R;C)→ L2(R;C), where a(x) = f ′(U(x)) as before, and with

a0 = 1− c2τ > 0, a1(x) = c(1− τa(x)), a2(x) = a(x)− cτa′(x).

Let us denote

φ := Ux ∈ H2(R;C).

Clearly, φ is a bounded solution to (3.18), and λ = 0 is an eigenvalue of A associated

to the eigenfunction φ.

We shall rewrite (3.18) in self-adjoint form by eliminating the first derivative.

To this aim, we introduce the new variable w as follows:

u(x) = z(x)w(x), z(x) = exp
(ˆ x

b(y) dy
)
. (3.19)

A direct calculation shows that

ux = (wx + wb)z, uxx = (wxx + 2bwx + (bx + b2)w)z.

Upon substitution,

Au =
(
a0wxx + (a1(x) + 2a0b)wx + (a0(bx + b2) + a1(x)b+ a2(x))w

)
z.

Choose b = −a1(x)/2a0. This yields

zx = −a1(x)

2a0
z, z(x) = exp

(
−
ˆ x

a1(y)/2a0 dy
)
,

and

Au =
(
Ãw
)
z = 0,

where the self-adjoint operator Ã : H2(R;C)→ L2(R;C) is defined as

Ãw := a0wxx + h(x)w, h(x) = a2(x)− 1
2a
′
1(x)− 1

4a
−1
0 a1(x)2.

Since z(x) > 0 for all x, this readily implies that Au = 0 if and only if w = uz−1 ∈
ker Ã.

Upon inspection, we observe that any decaying solution (at x = ±∞) to Ãw = 0

converges to zero exponentially with rate

∓ 1

2a0

√
(a±1 )2 − 4a0f ′(U±) . (3.20)

This is true, in particular, for ϕ = φ/z, because of the behavior at ±∞ of the

weight function z. In view of these observations, we conclude that there is a one-

to-one correspondence between L2 eigenfunctions of A and Ã, determined by the

change of variables (3.19).

Now suppose that u ∈ H2 is a solution to Au = 0. Therefore, it decays at

x = ±∞ with rate

−−a
±
1

2a0
∓ 1

2a0

√
(a±1 )2 − 4a0f ′(U±) .
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This implies that w = uz−1 is an L2 solution to Ãw = 0 which decays with rate

(3.20). Hence, the Wronskian determinant of these two solutions, viz. wϕx − ϕwx
goes to zero when x→ ±∞ and, moreover,

a0(wϕx − ϕwx)x = a0(wϕxx − ϕwxx) = h(x)wϕ− h(x)ϕw = 0,

implying that wϕx − ϕwx = 0 for all x ∈ R. Therefore, w and ϕ (and hence, u and

φ) are linearly dependent.

By the equivalence between solutions to the scalar equation (3.9) and solutions

to the first order system (3.10), we have shown that any bounded solution w to

wx = Aτ (x, 0)w is a multiple of w0, and consequently T τ (0) is Fredholm with

index zero, with non-trivial kernel spanned by w0. Whence, λ = 0 ∈ σpt with

geometric multiplicity equal to one. By Proposition 3.2, this implies, in turn, that

λ = 0 ∈ σpt(Lτ ) with geometric multiplicity equal to one, and with associated

eigenfunction (Ux, Vx)>.

Corollary 3.2. The adjoint equation

yx = −Aτ (x, 0)∗y, (3.21)

has a unique (up to constant multiples) bounded solution y0 = (ζ, η)> ∈ H1(R;C2)

where η ∈ H2(R;C) is the unique bounded solution to

A∗η = a0ηxx − a1(x)ηx + (a2(x)− a′1(x))η = 0, (3.22)

and A∗ : H2(R;C)→ L2(R;C) denotes the formal adjoint of the auxiliary operator

A.

Proof. Since T τ (0) is Fredholm with index zero and ker T τ (0) = span{w0}, by

an exponential dichotomies argument (see Remark 3.4 in Sandstede50), the adjoint

equation (3.21) has a unique bounded solution y0 ∈ H1(R;C2). Observing that

−Aτ (x, 0)∗ = −Aτ
0(x)> = (1− c2τ)−1

(
0 −(1− c2τ)

a(x)− cτa′(x) c(1− τa(x))

)>
= a−10

(
0 a2(x)

−a0 a1(x)

)
,

we arrive at the following system of equations for the components of y0:

ζx = a−10 a2(x)η, ηx = −ζ + a−10 a1(x)η.

Since the coefficients are bounded, by bootstrapping it is easy to verify that η ∈
H2(R;C). Thus, differentiate the second equation and substitute the first to arrive

at

a0ηxx − a1(x)ηx + (a2(x)− a′1(x))η = 0.

That the left hand side of last equation is A∗η follows from a direct calculation of

the formal adjoint.
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Lemma 3.2. For each τ ∈ (0, τm) the algebraic multiplicity of λ = 0 ∈ σpt(Lτ ) is

equal to one.

Proof. We define the quantity

Γ := 〈y0,A
τ
1(x)w0〉L2 =

ˆ +∞

−∞

(
ζ

η

)∗
Aτ

1(x)

(
φ

φx

)
dx. (3.23)

Substituting the expression for Aτ
1 we obtain

Γ = a−10

ˆ +∞

−∞
η
(
(1− τa(x))φ− 2cτφx

)
dx.

Let us suppose that (u1, v1)> ∈ H1(R;C), (u1, v1) 6= 0, is a non-trivial first element

of a Jordan chain for Lτ associated to λ = 0, that is, a solution to

Lτ
(
u1
v1

)
=

(
Ux
Vx

)
∈ kerLτ .

Hence, (u1, v1)> is a solution to system (3.15) with λ = 0. By substitution, this is

equivalent to Eq. (3.16) for u1 and with λ = 0, namely to

Au1 = (1− τa(x))Ux − 2cτUxx = (1− τa(x))φ− 2cτφx.

Apply the change of variables (3.19) to last equation to obtain

Au1 = z(Ãw1) = (1− τa(x))φ− 2cτφx,

where w1 = u1z
−1. Now, since z is real and Ã is self-adjoint, we obtain

Γ = a−10

ˆ +∞

−∞
zηÃw1 dx = a−10 〈zη, Ãw1〉L2 = a−10 〈Ã(zη), w1〉L2 .

Use Eq. (3.22) to compute

(zη)xx = −a−10 h(x)zη,

yielding Ã(zη) = a0(zη)xx + h(x)zη = 0. We conclude that Γ = 0.

Therefore, the contrapositive statement holds true: if Γ 6= 0 then there exists no

non-trivial first element of the Jordan chain. In other words, if we show that Γ 6= 0

then the algebraic multiplicity of λ = 0 is equal to one. To compute Γ we make the

observation that the unique bounded solution to A∗η = 0 is precisely η = z−2φ.

Indeed, by a direct calculation we get

ηx =
1

z2
(φx + a−10 a1(x)φ), and,

ηxx =
a−10 a1(x)

z2
(φx + a−10 a1(x)φ) +

1

z2
(φxx + a−10 a′1(x)φ+ a−10 a1(x)φx).

This yields

A∗η =
1

z2
(a0φxx + a1(x)φx + a2(x)φ) =

1

z2
Aφ = 0.
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Substituting in the expression for Γ, and since φ is real, after integration by parts

one gets

Γ = a−10

ˆ +∞

−∞
z−2φ((1− τa(x))φ− 2cτφx) dx

= a−10

ˆ +∞

−∞
z−2|φ|2(1− τa(x)) dx− 2cτa−10

ˆ +∞

−∞
z−3zx|φ|2 dx

= a−10 (1 + c2τa−10 )

ˆ +∞

−∞
|1− τa(x)|z−2|φ|2 dx,

because 1 − τa(x) > 0 for all x if τ ∈ (0, τm). Since φ 6≡ 0 a.e. we conclude that

Γ > 0 and the proof is complete.

Remark 3.2. It is well known that the integral

Γ = 〈y0, ((d/dλ)Aτ (x, λ))|λ=0w0〉L2 ,

known as a Melnikov integral, decides whether λ = 0 has higher algebraic multiplic-

ity: Γ is proportional, modulo a non-vanishing orientation factor, to the derivative of

the Evans function D′(0) at λ = 0 (see Definition (3.42) below); thus, if Γ 6= 0 then

the algebraic multiplicity is equal to one. See Sandstede,50 Sec. 4.2.1, for further

information.

3.4. Further properties of the point spectrum

Next, we use energy estimates to show that there are no purely imaginary eigenval-

ues different from zero.

Lemma 3.3. If λ is an eigenvalue for (3.8) and λ ∈ iR, then λ = 0.

Proof. Let λ ∈ iR be such that Eq. (3.9) is satisfied for some function u. Applying

the transformation (3.19) of the proof of Lemma 3.1, i.e. u(x) = w(x) z(x) with

z(x) = exp(−
´ x

b) and b = −a1/2a0, equation is transformed into

wxx + αλwx − β(x, λ)w = 0,

with

α =
2cτ

1− c2τ
,

β(x, λ) =
1

4a20

(
a1(x)2 − 4a0a2(x)− 2a0a

′
1(x)

)
+

(1− τ a(x))

a20
λ+

τ

a0
λ2.

Multiplying by w̄, we infer the relation

|wx|2 − (w̄wx)x + αλw̄wx + β(x, λ)|w|2 = 0.

Thus, integrating in R and taking the imaginary part one obtainsˆ
R

Imλ
{

2cτ(1− c2τ)Re (wxw̄) +
(
1− τ a(x)

)
|w|2

}
dx = 0.
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since, by assumption, λ ∈ iR. For λ 6= 0, thanks to the relation

Re (w̄wx) = 1
2

(
|w|2

)
x
,

the previous equality implies w = 0 a.e. since 1− τa(x) > 0.

3.5. Consistent splitting and essential spectrum

Let us look at the asymptotic (constant coefficient) systems derived from (3.11)

when we take the limit as x→ ±∞. If we define the positive parameters

0 < δ± := − lim
x→±∞

a(x) = − lim
x→±∞

f ′(U) = −f ′(U±)

0 < b± := lim
x→±∞

(
1− τf ′(U)

)
= 1 + τδ±,

for each τ ∈ (0, τm), then systems (3.10) tend to the constant coefficient asymptotic

systems

wx = Aτ
±(λ)w, (3.24)

where

Aτ
±(λ) := lim

x→±∞
Aτ (x, λ)

= (1− c2τ)−1
(

0 1− c2τ
τλ2 + λb± + δ± −c(b± + 2τλ)

)
.

(3.25)

The location of the essential spectrum of problem (3.8) is determined by systems

(3.24). Let us denote the characteristic polynomial of Aτ
±(λ) as

π
(τ,λ)
± (κ) := det(Aτ

±(λ)− κI). (3.26)

Thus, we compute

det(κI − (1− c2τ)Aτ
±(λ)) = det

(
κ −(1− c2τ)

−(τλ2 + λb± + δ±) κ− c(b± + 2τλ)

)
= κ2 + κc(b± + 2τλ)− (1− c2τ)(τλ2 + λb± + δ±).

Hence, if we assume κ = iξ, ξ ∈ R, is a purely imaginary root of (3.26), then

ξ2 − icξ(b± + 2τλ) + (1− c2τ)(τλ2 + b±λ+ δ±) = 0. (3.27)

Equation (3.27) is the dispersion relation of wave solutions to the constant coefficient

equations (3.24). Its λ-roots, functions of ξ ∈ R, define algebraic curves in the

complex plane. They bound the essential spectrum on the right as we shall verify.

We denote these curves as

λ = λ±1,2(ξ), ξ ∈ R. (3.28)

It is to be noticed that λ = 0 does not belong to any of the algebraic curves (3.28)

inasmuch as

Re (ξ2 − icξb± + (1− c2τ)δ±) = ξ2 + (1− c2τ)δ± > 0,

for all ξ ∈ R.
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3.5.1. Analysis of the dispersion relation

Fix 0 < τ < τm. Suppose that λ(ξ) belongs to one of the algebraic curves (3.28)

and denote η := Reλ(ξ) and β := Imλ(ξ). Taking the real and imaginary parts of

(3.27) yields

ξ2 + 2cτξβ + (1− c2τ)
(
τ(η2 − β2) + ηb± + δ±

)
= 0. (3.29)(

(1− c2τ)β − cξ
)(
b± + 2τη

)
= 0. (3.30)

We readily notice that if η = 0 for some ξ ∈ R then from Eq. (3.30) we get

β = cξ/(1− c2τ), as b± > 0. Upon substitution in (3.29) we obtain

ξ2 +
c2τξ2

1− c2τ
+ (1− c2τ)δ± = 0,

which yields a contradiction with δ± > 0, τ > 0 and the subcharacteristic condition

(2.2). We conclude that the algebraic curves never cross the imaginary axis: they

remain in either the stable or in the unstable complex half plane. Now, from Eq.

(3.30) we distinguish two cases:

either η = −b±
2τ
, (3.31)

or β =
cξ

1− c2τ
. (3.32)

Let us first assume (3.31). Substituting into (3.29) we obtain the equation

τβ2 − 2cτξ

1− c2τ
β − δ± +

b2±
4τ
− ξ2

1− c2τ
= 0. (3.33)

This equation has real solutions β provided that

∆1(ξ) :=
4c2τ2ξ2

(1− c2τ)2
− 4τ

(
− δ± +

b2±
4τ
− ξ2

1− c2τ

)
≥ 0,

⇐⇒ ξ2(1− c2τ)−2 + δ± ≥
b2±
4τ
. (3.34)

Secondly, substitute (3.32) into (3.29). The result is

τη2 + b±η + δ± +
ξ2

(1− c2τ)2
= 0. (3.35)

Last equation has real solutions η if and only if

∆2(ξ) := b2± − 4τ
(
δ± +

ξ2

(1− c2τ)2

)
≥ 0,

⇐⇒ ξ2(1− c2τ)−2 + δ± ≤
b2±
4τ
. (3.36)

Then, clearly, from (3.34) and (3.36) we have sgn ∆2 = −sgn ∆1. Observe, however,

that by definition,

b2±
4τ

=
(1 + τδ±)2

4τ
> δ±,
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because (1 − δ±τ)2 > 0 for all 0 < τ < τm = 1/ sup |f ′|, δ± = |f ′(1)|, |f ′(0)|.
Therefore, for small values of |ξ|, (3.36) holds, sgn ∆2 = +1, and the only algebraic

curve solutions λ = λ(ξ) are

Imλ(ξ) = β(ξ) =
cξ

1− c2τ
, Reλ(ξ) = η(ξ) =

1

2τ

(
− b± ±

√
∆2(ξ)

)
. (3.37)

Let ξ
(0)
± be the positive solution to

(ξ
(0)
± )2 = (1− c2τ)2

(b2±
4τ
− δ±

)
> 0.

Hence, for each ξ ∈ (−ξ(0)± , ξ
(0)
± ), condition (3.36) holds and the algebraic curves are

determined by (3.37). Observe that:

• ∆1(ξ),∆2(ξ)→ 0,

• η(ξ)→ −b±/2τ , β(ξ)→ ±cξ(0)± /(1− c2τ),

as |ξ| ↑ ξ(0)± . This behavior guarantees the continuity of the algebraic curves at

|ξ| = ξ
(0)
± , as β tends to the roots of (3.33) and η tends to (3.31). Therefore, for

|ξ| ≥ ξ(0)± , ∆1(ξ) ≥ 0 and the solutions λ(ξ) are determined uniquely by

Imλ(ξ) = β(ξ) =
cξ

1− c2τ
±
√

∆1(ξ)

2τ
, Reλ(ξ) = η(ξ) = −b±

2τ
. (3.38)

The algebraic curves (3.28) in the case of a cubic reaction (1.3), with κ = 1 and

for the parameter value α = 3/4 can be found in Fig. 6. To compute them, we

approximated the value of the speed c by its lower bound (2.8).

Finally, notice that, for |ξ| ≤ ξ(0)± , from Eq. (3.37) we obtain the following bound

for the real part of λ:

Reλ = η =
1

2τ

(
− b± ±

√
∆2(ξ)

)
≤ 1

2τ

(
− b± +

√
b2± − 4τδ±

)
=

1

2τ
(−(1 + τδ±) + (1− δ±τ)) = −δ± < −

δ±
2
.

Likewise, when |ξ| ≥ ξ(0)± , we have the uniform bound

Reλ = η = −b±
2τ

= −1 + τδ±
2τ

< −δ±
2
,

for all 0 < τ < τm. We have proved the following

Lemma 3.4. For all τ ∈ (0, τm), there exists a uniform

χ0 := 1
2 min{δ+, δ−} > 0, (3.39)

such that the algebraic curves λ = λ±1,2(ξ), ξ ∈ R, solutions to the dispersion rela-

tions (3.27), satisfy

Reλ±1,2(ξ) < −χ0 < 0, (3.40)

for all ξ ∈ R.
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Fig. 6. Algebraic Fredholm curves (3.28) for systems (3.24) in the case of a cubic nonlinearity

(1.3) with κ = 1, τ = 1/2, and unstable state u = α = 3/4. The value of the speed c = c(τ)

is approximated by its lower bound (2.8). The curves at +∞, λ+1,2(ξ) are depicted by the solid

continuous (blue; online version) curves, whereas the curves at −∞, λ−1,2(ξ), are represented by

the dashed (red; online version) curves.

3.5.2. Stability of the essential spectrum

We define the following open, connected region of the complex plane,

Ω := {λ ∈ C : Reλ > −χ0}. (3.41)

It properly contains the unstable complex half plane C+ = {Reλ > 0}. Denote

Sτ±(λ) and Uτ±(λ) as the stable and unstable eigenspaces of Aτ
±(λ), respectively.

Lemma 3.5. For all τ ∈ (0, τm), and all λ ∈ Ω, the coefficient matrices Aτ
±(λ)

have no center eigenspace and, moreover,

dimSτ±(λ) = dimUτ±(λ) = 1.

Proof. Take λ ∈ Ω and suppose κ = iξ, with ξ ∈ R, is an eigenvalue of Aτ
±(λ).

Then λ belongs to one of the algebraic curves (3.28). But (3.40) yields a contradic-

tion with λ ∈ Ω. Therefore, the matrices Aτ
±(λ) have no center eigenspace.

Since Ω is a connected region of the complex plane, it suffices to compute the

dimensions of Sτ±(λ) and Uτ±(λ) when λ = η ∈ R+, sufficiently large. The charac-

teristic polynomial (3.26) of Aτ
±(λ) is

κ2 + κc(b± + 2τλ)− (1− c2τ)(τλ2 + λb± + δ±) = 0.

Assuming λ = η ∈ R+, the roots are

κ = − c
2

(b± + 2τη)± 1

2

√
c2(b± + 2τη)2 + 4(1− c2τ)(τη2 + ηb± + δ±).
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Clearly, for each η > 0, one of the roots is positive and the other is negative. This

proves the lemma.

In view of last result, the region Ω is often called the region of consistent

splitting.50

Corollary 3.3 (Stability of the essential spectrum). For each τ ∈ (0, τm),

the essential spectrum is contained in the stable half-plane. More precisely,

σess ⊂ {λ ∈ C : Re λ ≤ −χ0 < 0}.

Proof. Fix λ ∈ Ω. By exponential dichotomies theory (see Refs. 7, 50), since

Aτ
±(λ) are hyperbolic, the asymptotic systems (3.10) have exponential dichotomies

in x ∈ R+ = (0,+∞) and in x ∈ R− = (−∞, 0) with respective Morse indices

i+(λ) = dimUτ+(λ) = 1, i−(λ) = dimUτ−(λ) = 1.

This implies (see Palmer,42,43 and Sandstede,50) that the variable coefficient oper-

ators T τ (λ) are Fredholm as well, with index

ind T τ (λ) = i+(λ)− i−(λ) = 0,

showing that Ω ⊂ C\σess, or equivalently, σess ⊂ C\Ω = {Reλ ≤ −χ0 < 0}.

The significance of Corollary 3.3 is that there is no accumulation of essential

spectrum at the eigenvalue λ = 0, which is an isolated eigenvalue with finite multi-

plicity. In other words, there is a spectral gap.

3.6. Evans function analysis

The Evans function (cf. Refs. 2, 29, 50) is a powerful tool to locate the point spec-

trum. Thanks to Lemma 3.5, Ω is the open, connected component of C\σess con-

taining the (unstable) right half-plane in which the asymptotic matrices Aτ
±(·) are

hyperbolic and the dimensions of their stable Sτ± (respectively, unstable Uτ±) spaces

agree. By spectral separation of Uτ±,Sτ±, the associated eigenprojections are analytic

in λ and there exists analytic representations for the bases of subspaces Sτ± and Uτ±
(by Kato’s construction, Ref. 30, p. 99–102). In our special (low dimensional) case,

Sτ+ = span{w+(λ)}, Uτ− = span{w−(λ)},

where w±(λ) can be chosen analytic in λ ∈ Ω. The associated Evans function

Dτ (λ) := det(w−(λ), w+(λ)), (3.42)

is defined to locate non-trivial intersections of the initial conditions w+ which pro-

duce solutions to the variable coefficient systems (3.10) that decay when x→ +∞,

with the initial conditions w− which produce solutions to (3.10) that decay at

x→ −∞. The Evans function is not unique, but they all differ by a non-vanishing

factor. It is endowed with the following properties:
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• Dτ is analytic in λ ∈ Ω;

• Dτ (λ) = 0 if and only if λ ∈ σpt ∩ Ω; and,

• the order of λ as a zero of Dτ is equal to its algebraic multiplicity

In our case, we end up with a family of Evans functions Dτ (·) indexed by τ ∈ [0, τm)

and defined on Ω. It is to be observed that the region Ω is independent of τ , and

that the case when τ = 0 is included in the family. In view of Proposition 3.1,

which guarantees the spectral stability of the parabolic Allen-Cahn front, we have

the following

Corollary 3.4. D0(λ) 6= 0 for all Reλ ≥ 0, λ 6= 0. Moreover, λ = 0 is a simple

zero of D0(·).

In order to establish spectral stability in the regime τ ∈ (0, τm), we shall apply

a result from Evans function theory,46 which assures that, under suitable structural

but rather general conditions, the Evans functions for τ > 0 converge uniformly

to the Evans function with τ = 0 in bounded regions of λ ∈ Ω. For that purpose,

it will be necessary to show that large |λ| values belong to the resolvent set. By

analiticity and uniform convergence, the non-vanishing property of D0 persists for

Dτ for each 0 < τ � 1 sufficiently small. Next, by continuity in τ of eigenvalues and

by Lemma 3.2 and Lemma 3.3, we rule out possible crossing of eigenvalues across

the imaginary axis as τ varies within the full set (0, τm), establishing point spectral

stability for all values of τ under consideration.

Therefore, let us consider the family of first order systems (3.10) for λ ∈ Ω

and with τ varying in a compact set V := [0, τ1], with τ1 < τm. First, we observe

that the coefficients Aτ (·, λ) are functions of (λ, τ) ∈ Ω×V into L∞(R;R2×2) (the

coefficients are bounded), they are analytic in λ ∈ Ω (second order polynomial in

λ), and continuous in τ ∈ V (this follows from the continuity of the coefficients and

of the velocity c in τ). Moreover, in view of Theorem 1.1(c),

c(τ) = c0 + ζ(τ), ζ(τ) = o(1) as τ → 0+.

Here c0 is, of course, the speed of the traveling wave for the parabolic Allen-Cahn

equation (or Nagumo front). Also, notice that from the expressions of the coefficients

(3.25) we may write

Aτ
±(λ) = A0

±(λ) + (1− c2τ)−1Qτ
±(λ),

where the residual is

Qτ
±(λ) =

(
0 0

τλ2 + τ(c2 − a(x))λ+ cτa′(x) cτ(cc0 − a(x)− 2λ)− (c− c0)

)
= (λ2 + λ+ 1)O(τ) +O(|ζ(τ)|),

so that

|Qτ
±(λ)| ≤ O(τ + |ζ(τ)|)(1 + |λ|+ |λ|2).
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Thanks to exponential decay of the wave (3.3) we conclude that the coefficients

Aτ (·, λ) approach exponentially to its limit coefficients Aτ
±(λ) as x→ ±∞:

|Aτ (x, λ)−Aτ
±(λ)| ≤ Ce−ν|x|, for |x| → +∞,

uniformly on compact subsets of (λ, τ) ∈ Ω×V. In addition, by Lemma 3.5 the lim-

iting coefficient matrices are hyperbolic with agreeing dimensions of their unstable

eigenspaces.

Finally, the geometric separation assumption of Gardner and Zumbrun,15

(namely, that the limits of the spaces Sτ± and Uτ± along λ-rays, λ = rλ0 as r → 0+,

λ0 ∈ Ω, are continuous) holds trivially in our case as the matrices Aτ
±(0) are hy-

perbolic and the eigenspaces are one-dimensional with uniform spectral separation.

To sum up, we have verified that assumptions (A0), (A1) and (A2) in Ref. 46

(p. 894) are satisfied, and the systems (3.10) belong to the generic class of equations

for which there is convergence of approximate flows (see Sec. 2 in Ref. 46). We need

to verify one final hypothesis to apply Proposition 2.4 in Ref. 46.

Lemma 3.6. Let (λ, τ) ∈ Ω × V. Then the stable eigenvector w+(λ) of Aτ
+(λ)

and the unstable eigenvector w−(λ) of Aτ
−(λ) converge as τ → 0+ with rate

η(τ) := O(τ + |ζ(τ)|) to the stable and unstable eigenvectors of A0
+(λ) and A0

−(λ),

respectively. Moreover, for all τ ∈ V,

|(Aτ −Aτ
±)− (A0 −A0

±)| ≤ C1η(τ)e−ν̃|x|,

as x→ ±∞ for some constants C1, ν̃ > 0, uniformly in compact sets of Ω.

Proof. Let γ be a closed rectifiable contour enclosing the stable eigenvalue of Aτ
±.

By continuity on τ , we may as well select γ such that it encloses the stable eigenvalue

of Aτ
± for each τ > 0 sufficiently small. By compactness of γ̄ we have a uniform

resolvent bound of the form

|(A0
+ − z)−1| ≤ C, z ∈ γ.

Thus, expanding,

(Aτ
+ − z)−1 = (A0

+ − z + (1− c2τ)−1Qτ
+)−1

= ((A0
+ − z)(I + (A0

+ − z)−1(1− c2τ)−1Qτ
+))−1

= (I + (A0
+ − z)−1(1− c2τ)−1Qτ

+)−1(A0
+ − z)−1

= (I +O(|η(τ)|))(A0
+ − z)−1.

Here η(τ) depends on |A0
+|. Therefore, the (one-dimensional) projection Pτ

+ onto

Sτ+ satisfies the bound

|Pτ
+(λ)−P0

+(λ)| =
∣∣∣∣ 1

2πi

˛
γ

(z −Aτ
+(λ))−1 dz − 1

2πi

˛
γ

(z −A0
+(λ))−1 dz

∣∣∣∣
≤ 1

2πi

˛
γ

O(|η(τ)|)|(A0
+ − z)−1| dz ≤ C|η(τ)|,
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that is, Pτ
+(λ) = P0

+(λ) +O(|η(τ)|), showing that w+(λ)→ w0
+(λ) as τ → 0+ with

rate |η(τ)| in Ω-neighbourhoods of λ. The same applies to the unstable eigenvectors.

The second assertion is an immediate consequence of the exponential decay (3.3)

of the coefficients.

3.7. Resolvent estimates and proof of Theorem 3.1

In order to give a complete proof of Theorem 3.1, we establish a general resolvent

estimates, based on an approximate diagonalization technique introduced by Mascia

and Zumbrun.33

3.7.1. Resolvent estimates

Given two real symmetrix matrices A,B ∈ Rn×n, a real matrix valued function

x 7→ C(x) defined for any x ∈ R, and λ ∈ C, let us consider the resolvent equation

Awx + (λB + C(x))w = f , f ∈ Hm(R;Cn), (3.43)

for the unknown w ∈ Hm(R;Cn). Here, the concern is to show that, for appropriate

choices of sets Ω̃ ⊂ C, there exists some constant M such that for any solution

w = w(·, λ) to (3.43) with λ ∈ Ω̃, there holds

|w(·, λ)|Hm ≤M |f |Hm . (3.44)

The first classical result, consequence of the underlying hyperbolic problem from

which (3.43) arises, provides an estimate for sets Ω̃ composed by numbers with large

positive real part.

Proposition 3.3. Given m ∈ N, let B be positive definite and C = C(x) uniformly

bounded in R together with its derivatives of order j = 1, . . . ,m. Then there exist

L,M > 0 such that for any λ with Reλ ≥ L there holds

|w(·, λ)|Hm ≤ M

Reλ
|f |Hm . (3.45)

Proof. As a first step, let us consider the case of L2, i.e. m = 0. We recall that if

A is a constant real symmetrix matrix then

w∗Awx = 1
2 (w∗Aw)x .

Taking the scalar product of (3.43) against w and integrating in R, we get

λ〈w,Bw〉L2 + 〈w,C(x)w〉L2 = 〈w, f〉L2 .

Since B is symmetric, the term 〈w,Bw〉L2 is real; thus, taking the real part, we

infer that there exists some constant C > 0 such that

(Reλ)〈w,Bw〉L2 ≤ C
(
|w|2L2 + |f |2L2

)
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having used the standard Young inequality. As a final step, under the hypothesis

that B is positive definite, it is possible to absorb the term with w at the right-

hand side into the corresponding term in the left-hand side and deduce (3.45) with

m = 0.

Next, we may proceed inductively, assuming estimate (3.45) for any j =

0, 1, . . . ,m − 1. By differentiation of (3.43), we deduce that the function z :=

dmw/dxm solves

Azx + (λB + C(x))z =
dmf

dxm
−
m−1∑
j=0

(
m

j

)
dm−jC

dxm−j
djw

dxj
. (3.46)

Since the coefficients of the derivatives of C are assumed to be bounded, as a

consequence of (3.45) with m = 0, we infer the estimate

|z(·, λ)|L2 ≤ C

Re λ

∣∣∣∣ dmf

dxm

∣∣∣∣
L2

+

m−1∑
j=0

∣∣∣∣djwdxj
∣∣∣∣
L2

 ,

for some C > 0. Then, the inductive assumption provides the conclusion.

Next, we turn to the problem of proving (3.44) for sets Ω̃ contained in the

half plane {Reλ ≥ 0} and with sufficiently large modulus. Of course, additional

restrictions on the matrices A,B,C are needed. Our approach is based on the

approximate diagonalization procedure presented in Ref. 33 (p. 817 and following).

Specifically, let us consider a change of variable w = T(x, λ)v with T(x, λ) in the

form

T(x, λ) = T0(I + λ−1T1(x)),

with T0 and T1 = T1(x) to be determined. Plugging into (3.43) and assuming A

invertible, we deduce the equation solved by the new unknown v,

vx + Ã(x, λ)v = f̃ ,

where

Ã(x, λ) = (I + λ−1T1)−1
{
λT0

−1A−1BT0 + T0
−1A−1

(
BT0T1 + CT0

)
+ λ−1

(
T0
−1A−1CT0T1 + T1

′)},
f̃ = (I + λ−1T1(x))−1T0

−1A−1f .

The matrix Ã can be represented as

Ã(x, λ) = λD0 + D1 + o(1), λ→∞,

where the matrices D0 and D1 are given by

D0 := T0
−1A−1BT0, D1 := [D0,T1(x)] + T0

−1A−1C(x)T0, (3.47)

and [A,B] = AB −BA. If the matrix A−1B is diagonalizable, T0 can be chosen

so that D0 is diagonal and T1 = T1(x) is such that the matrix D1 is diagonal (see
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Lemma 4.6 in Ref. 33). Moreover, since [D0,T] is equal to zero for any diagonal

matrix, the term T1 can be chosen with zero entries in the principal diagonal. With

these choices, the special form of the system satisfied by v can be used to obtain a

different form of estimate (3.44).

Proposition 3.4. Given m ∈ N, let the matrices A B and C be such that A is

invertible, A−1B is diagonalizable in R, and C = C(x) is uniformly bounded in R
together with all its derivatives of order j = 1, . . . ,m. Let the elements of D0 and

D1, defined in (3.47), be denoted by µk0 and µk1 , k = 1, . . . , n. If µk0 and Reµk1 have

the same sign for any k and

min
k=1,...,n

inf
x∈R
|Reµk1 | > 0, (3.48)

then there exist R > 0 and M such that the estimate (3.44) holds for any λ ∈ Ω̃R :=

{|λ| ≥ R, Reλ ≥ 0}.

Proof. As in the proof of Proposition 3.3, we initially consider the L2-case, i.e.

m = 0. With the change of variable v = T(x, λ)w where T has been chosen

following the above procedure, we end up with a system for the unknown v, whose

k−th component solves

dvk
dx

+
(
λµk0 + µk1(x)

)
vk = o(1)vk + f̃k.

Taking the scalar product against v̄k, integrating in R, and taking its real part, we

deduce ˆ
R

(
Reλµk0 + Re µk1(x)

)
|vk|2 dx = Re

ˆ
R

(o(1)vk + f̃k)v̄k dx.

For any λ with positive real part, since µk0 and Re µk1(x) have the same sign, we

obtain ˆ
R

(
Reλ |µk0 |+ |Re µk1(x)|

)
|vk|2 dx ≤ o(1)|v|2L2 + C|f̃ |2L2

for some C > 0 and then, as a consequence of (3.48),

C0|v|2L2 ≤ o(1)|v|2
L2

+ C|f̃ |2L2

for some C0 > 0. For |λ| sufficiently large, the term o(1) can be controlled by C0,

so that we end up with

|v|2L2 ≤ C|f̃ |2L2 .

Finally, since C is uniformly bounded, also T and T1 are, and the estimate can be

brought back to the original variable w.

The case of m ≥ 1 follows by differentiating (3.43) and proceeding as in the

proof of Proposition 3.3.
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In the case at hand, system (3.43) is two-dimensional and defined by the matrices

A, B and C of (3.7). Then, the matrix

A−1B =
1

1− c2τ

(
−cτ τ

1 −cτ

)
has real eigenvalues µ±0 = ±

√
τ(1∓ c

√
τ) and

T0
−1A−1BT0 = D0 = diag (µ−0 , µ

+
0 ), where T0 =

(
−
√
τ
√
τ

1 1

)
.

Then, straightforward computations give

T0
−1A−1C(x)T0 =

1

2
√
τ

(
−(1− τa)/(1− c

√
τ) −(1 + τa)/(1− c

√
τ)

(1 + τa)/(1 + c
√
τ) (1− τa)/(1 + c

√
τ)

)
,

(where a = a(x)) so that

D1 = diag (µ−1 , µ
+
1 ) =

1

2
√
τ

diag

(
− 1− τa

1− c
√
τ
,

1− τa
1 + c

√
τ

)
.

Thus, if the function a = a(x) is such that sup a < 1/τ , then assumption of Proposi-

tion 3.4 holds and the resolvent estimate (3.44) holds in Ω̃R := {|λ| ≥ R, Re λ ≥ 0}
for R sufficiently large.

3.7.2. Proof of Theorem 3.1

In view of Proposition 3.4, take R > 0 sufficiently large so that σpt∩Ω ⊂ {|λ| ≤ R},
and consider the following compact subset of Ω:

ΩR := {λ ∈ C : |λ| ≤ R, Re λ ≥ − 1
2χ0}.

By Lemma 3.6, systems (3.10) satisfy the hypotheses of Proposition 2.4 in Ref. 46.

Hence, for each τ ∈ V and in a ΩR-neighborhood of λ, the local Evans functions

Dτ (λ) converge uniformly to D0(λ) in a (possible smaller) neighborhood of λ as

τ → 0+ with rate |Dτ (·)−D0(·)| = O(η(τ)) = O(τ + |ζ(τ)|)→ 0.

By point spectral stability for τ = 0 (Corollary 3.4), and by analiticity and

uniform convergence, we conclude that Dτ (λ) 6= 0 for λ ∈ ΩR, Re λ ≥ 0, except only

at λ = 0, and for each 0 ≤ τ � 1 sufficiently small. Hence, there exists τ0 ∈ (0, τm)

such that point spectral stability holds for each τ ∈ (0, τ0). Finally, noticing that

ΩR contains only isolated eigenvalues with finite multiplicity, and by continuous

dependence of eigenvalues of Fredholm operators in Banach spaces with respect to

its coefficients,39 the eigenvalues λ = λ(τ) ∈ σpt ∩ ΩR are continuous functions

of τ ∈ (0, τm). In view of Lemma 3.3, such eigenvalues may cross the imaginary

axis towards the unstable half plane only through the origin. But λ = 0 ∈ σpt is

a simple eigenvalue for each τ ∈ (0, τm) as proved in Lemma 3.2. Hence all point

spectrum remains in the stable half plane Re λ < 0 for all τ ∈ (0, τm). This proves

the theorem.
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4. Decaying semigroup and nonlinear stability

In this section, we establish the conditions for the generation of a C0-semigroup of

solutions operators for the linearization around the wave, as well as for its asymp-

totic decaying properties. We also present the proof of nonlinear (orbital) stability,

which uses such information in a key way.

4.1. Generation of the semigroup

We are now ready to establish that each operator Lτ generates a C0 semigroup in

L2(R;C2).

Lemma 4.1. For each τ ∈ (0, τm), the operator Lτ : D = H2(R;C2)→ L2(R;C2)

is the infinitesimal generator of a C0-semigroup, {S(t)}t≥0, satisfying

‖S(t)‖ ≤ eωt, (4.1)

for some ω = ω(τ) ∈ R, all t ≥ 0.

Here ‖ · ‖ denotes the operator norm.

Proof. First, we note that the domain D = H2(R;C2) is dense in L2(R;C2). Now,

for each u = (u, v)> ∈ D:

Re 〈u,Lτu〉L2 = −Re 〈u,B−1(Aux + C(x)u)〉L2

= −Re 〈u,B−1Aux〉L2 − Re 〈u,B−1C(x)u〉L2

= −
ˆ
R
a(x)|u|2 dx+ τ−1|v|2L2

≤ sup
R
|a(x)||u|2L2 + τ−1|v|2L2 ≤ ω|u|2L2 ,

with ω = max{sup |a(x)|, τ−1} > 0.

Now, thanks to the resolvent estimate (3.44) for any |λ| ≥ R, Re λ ≥ 0 with R

sufficiently large, there are no L2 solutions to Lτu = λ0u for λ0 ∈ R, λ0 > ω and

sufficiently large. Thus, for each λ0 > ω sufficiently large L − λ0 is onto. A direct

application of the classical Hille-Yosida theorem,10,44 yields the result together with

the estimate (4.1).

As a consequence of the semigroup properties we have that

d

dt
(S(t)u) = S(t)Lτu = LτS(t)u,

for all u = (u, v)> ∈ D = H2(R;C2).

Naturally, the growth rate ω of estimate (4.1) is not optimal. Actually, ω → +∞
as τ → 0+, due to the fact that, in the limit, the operator Lτ is not defined and

becomes singular. The optimal growth rate in the appropriate subspace will be

provided by spectral stability. The significance of Lemma 4.1 is simply that, for
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each fixed τ ∈ (0, τm), the operator Lτ is the generator of a C0-semigroup. Let us

recall the growth bound for a semigroup S(t):

ω0 = inf{ω ∈ R : lim
t→+∞

e−ωt‖S(t)‖ exists}.

We say a semigroup is uniformly (exponentially) stable whenever ω0 < 0. Let L be

the infinitesimal generator of the semigroup S(t). Its spectral bound is defined as

s(L) = sup{Re λ : λ ∈ σ(L)}.

Since the spectral mapping theorem — namely, that, σ(S(t))\{0} = etσ(L) — is not

true in general for C0-semigroups,10 for stability purposes we rely on the Gearhart-

Prüss theorem,16,47 which restricts our attention to semigroups on Hilbert spaces

(see also Refs. 8, 10). It states that any C0-semigroup {S(t)}t≥0 on a Hilbert space

H is uniformly exponentially stable if and only if its generator satisfies s(L) < 0,

and the following resolvent estimate holds:

sup
Re λ>0

‖(L − λ)−1‖ < +∞.

This task is already substantially completed thanks to the general resolvent esti-

mates of the previous section. It remains to be shown that the estimate holds inside

a half circle, with large radius, and on the projected space, which is the content of

the proof of Proposition 4.1 below.

It is known (see Remark 6.23, p. 184, in Ref. 30) that if λ ∈ C is an eigenvalue

of a closed operator L : D ⊂ H → H then λ is an eigenvalue of L∗ (formal adjoint)

with the same geometric and algebraic multiplicities. Also, since H2 and L2 are

reflexive Hilbert spaces, L : D = H2 → L2 has a formal adjoint which is also

densely defined and closed. Moreover, L∗∗ = L (see, e.g., Theorem 5.29, p.168, in

Ref. 30). Upon these observations we immediately have the following

Lemma 4.2. λ = 0 is an isolated, simple eigenvalue of the formal adjoint

(Lτ )∗ : D(Lτ ) = H2(R;C2)→ L2(R;C2),

and there exists an eigenfunction (Ψ,Φ)> ∈ D(Lτ ) such that (Lτ )∗(Ψ,Φ)> = 0.

Let us denote the inner product:

Θ := 〈(Ux, Vx), (Ψ,Φ)〉L2 =

ˆ +∞

−∞

(
Ux
Vx

)∗(
Ψ

Φ

)
dx.

It is not hard to see that Θ 6= 0. Indeed, suppose by contradiction that Θ =

0. Then (Ψ,Φ)> ∈ (kerLτ )⊥ = range(Lτ ∗). Hence, there exists 0 6= (u, v)> ∈
D(Lτ ) = H2 such that (Lτ )∗(u, v)> = (Ψ,Φ)>. Thus, ((Lτ )∗)2(u, v)> = 0, which is

a contradiction with λ = 0 being a simple eigenvalue of (Lτ )∗. Thus, we may define

the Hilbert space X̃ ⊂ L2(R;C2) as the range of the spectral projection,

P
(
u

v

)
:=

(
u

v

)
−Θ−1〈(u, v), (Ψ,Φ)〉L2

(
Ux
Vx

)
.
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In this fashion we project out the eigenspace spanned by the single eigenfunction

(Ux, Vx)>. Outside this eigenspace, the semigroup decays exponentially, as we shall

see next.

4.2. Linear decay rates

We now observe that on a reflexive Banach space, weak and weak∗ topologies co-

incide, and therefore the family of dual operators {S(t)
∗}t≥0, consisting of all the

formal adjoints in L2 is a C0-semigroup as well (cf. Ref. 10, p. 44). Moreover, the

infinitesimal generator of this semigroup is simply (Lτ )∗ (see Corollary 10.6 in Ref.

44). By semigroup properties we readily have

S(t)

(
Ux
Vx

)
=

(
Ux
Vx

)
, S(t)

∗
(

Ψ

Φ

)
=

(
Ψ

Φ

)
.

As a result of these properties and the definition of the projector it is easy to verify

that

S(t)P = PS(t).

Hence X̃ is an S(t)-invariant closed (Hilbert) subspace of H2(R;C2). So we define

the domain

D̃ := {u ∈ D ∩ X̃ : Lτu ∈ X̃},

and the operator

L̃τ : D̃ ⊂ X̃ → X̃,

L̃τu := Lτu, u ∈ D̃,

as the restriction of Lτ on X̃. Therefore, L̃τ is a closed, densely defined operator

on the Hilbert space X̃. Moreover, we observe that 0 6= (Ux, Vx)> ∈ kerP. Hence,

λ = 0 /∈ σpt(L̃τ ). As a consequence of point spectral stability of Lτ we readily

obtain

σ(L̃τ ) ⊂ {λ ∈ C : Re λ < 0},

and hence the spectral bound of L̃τ is strictly negative, s(L̃τ ) < 0. By the above

observations, we obtain the following

Lemma 4.3. The family of operators {S̃(t)}t≥0, S̃(t) : X̃ → X̃, defined as

S̃(t)u := S(t)Pu, u ∈ X̃, t ≥ 0,

is a C0-semigroup in the Hilbert space X̃ with infinitesimal generator L̃τ .

Proof. The semigroup properties are inherited from those of S(t) in L2(R;C2).

That L̃τ is the infinitesimal generator follows from Corollary in Sec. 2.2 of Engel

and Nagel,10 p.61.
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Finally, we apply Gearhart-Prüss theorem.

Proposition 4.1 (Uniform exponential stability). For each τ ∈ (0, τm) there

exist constants C ≥ 1 and θ > 0 such that

|S̃(t)u|L2 ≤ Ce−θt|u|L2 , u ∈ X̃, t ≥ 0. (4.2)

Proof. In view of the resolvent estimates (3.44), we can find a radius sufficiently

large such that, if |λ| ≥ R and Re λ ≥ 0, then

‖(Lτ − λ)−1‖L2→L2 ≤ C

for some uniform C > 0. Since L̃τ = Lτ on the subspace X̃ ⊂ L2(R;C2), the

same estimate applies to L̃τ outside that half circle. Inside, however, thanks to

(strict) point spectral stability of the operator restricted to X̃, the resolvent of L̃τ
is uniformly bounded inside the intersection of any ball of finite radius and Re λ ≥ 0.

We conclude that

sup
Re λ>0

‖(L̃τ − λ)−1‖X̃→X̃ ≤ C,

for some C > 0 independent of λ. In addition, s(L̃τ ) < 0. Thus, a direct application

of Gearhart-Prüss theorem to the operator L̃τ on the Hilbert space X̃ implies that

the semigroup S̃(t) is uniformly exponentially stable, and that estimate (4.2) holds

for some C ≥ 1 and some θ > 0.

This result establishes the decaying properties of the linearized operator around

the wave, that is, linear stability. The latter can be summarized in the following

Theorem 4.1 (Linear stability). There exists a projection operator Q = I − P
with one-dimensional range span{(Ux, Vx)>} ⊂ L2(R;C2) such that for any t > 0

S(t)Q = QS(t) = Q and ‖S(t)(I −Q)‖ ≤ C e−θt

for some C, θ > 0.

4.3. Nonlinear stability

The proof of Theorem 1.2 on nonlinear orbital stability of the traveling fronts for

(1.5) is a consequence of the linear decay estimates combined in a smart way with

the standard Duhamel representation formula. The main difficulty stems in the fact

that a single traveling front is not isolated as a stationary solution and it belongs to

a one-dimensional manifold generated by applying an arbitrary translation in space.

This is a common feature of many autonomous evolutive PDEs when considered

in the whole space as a consequence of the underlying translation invariance of the

corresponding initial value problem.

At the linear level, such feature of the problem is expressed by the membership

of λ = 0 to the spectrum of the linearized operator and by the presence of a

time-independent projection term into the representation of the solution semigroup.
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Converting such structure at the nonlinear level amounts in identifying a nonlinear

projection operator describing the convergence of a given perturbed initial datum to

a translate of the original front. A possible approach is based on the application of

the Implicit Function Theorem in Banach spaces and it has been used by Sattinger

in a classical paper.52 For the sake of clarity, we first present here a restyled version

of this approach in the framework of Hilbert spaces, as needed in our case, and then

apply it to prove Theorem 1.2.

Let W be a Hilbert space with norm | · |W and let Br(W ) be the open ball with

center W and radius r. Let F be a smooth function from D ⊂ W into W such that

F (W ) = 0 for some W ∈ D. Additionally, let us assume that, for some r > 0, there

holds

{W ∈ W : F (W ) = 0} ∩ {|W −W |W < r} = φ(I)

for some smooth function φ : I → W, I ⊂ R an open interval. Without loss of

generality, we may assume 0 ∈ I and φ(0) = W .

Let W = W (t;W0) be the solution to the abstract Cauchy problem

dW

dt
= F (W ), W (0) = W0 ∈ D. (4.3)

By assumption, there holds W (t;φ(δ)) = φ(δ) for any t.

The linearized problem at φ(δ) is

dZ

dt
= dF (φ(δ))Z, Z(0) = Z0 ∈ D. (4.4)

Differentiating with respect to δ the relation F (φ(δ)) = 0 for δ ∈ I, we infer

dF (φ(δ))φ′(δ) = 0,

showing that 0 ∈ σ
(
dF (φ(δ))

)
and that r(δ) := φ′(δ) is a right eigenvector of

dF (φ(δ)). Let us denote by `(δ) the unique left eigenvector of dF (φ(δ)) such that

`(δ)·r(δ) = 1. Equivalently, `(δ) can be defined as the unique element in the kernel of

the adjoint operator dF (φ(δ))∗ satisfying the normalization condition `(δ)·r(δ) = 1.

We also set for δ ∈ I

P (δ) := r(δ)⊗ `(δ), Q(δ) := I − P (δ).

In particular, there hold

dF (φ)P = P dF (φ) = 0, and dF (φ)Q = QdF (φ) = dF (φ),

where the dependency on δ has been omitted for shortness.

We assume the following hypotheses.

H1. There exist C, θ > 0 such that the solution Z = Z(t;Z0, δ) to (4.4) is such

that

|Q(δ)Z(t;Z0, δ)| ≤ Ce−θt|Q(δ)Z0|, (4.5)

for any Z0 ∈ D.
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H2. The function φ is differentiable at δ = 0 and there exist C, δ0, γ > 0 such

that

|φ(δ)− φ(0)− φ′(0)δ|W ≤ Cδ1+γ , (4.6)

for |δ| < δ0.

H3. There exist C,M, δ0, γ > 0 such that the function F is differentiable at φ(δ)

for any δ ∈ (−δ0, δ0) and

|F (φ(δ) +W )− F (φ(δ))− dF (φ(δ))W |W ≤ C|W |1+γW
, (4.7)

for |δ| < δ0 and |W |W ≤M .

Theorem 4.2. Assume that hypotheses H1, H2 and H3 hold. Then there exists

ε > 0 such that for any W0 ∈ Bε(W̄ ) there exists δ ∈ I for which the solution

W (t;W0) to (4.3) satisfies

|W (t;W0)− φ(δ)|W ≤ C|W0 −W |W e−θ t, (4.8)

for some C, θ > 0

Proof. Given W0 ∈ W, let w0 ∈ W be such that W0 = W + εw0 where ε :=

|W0 −W |W and let the solution W to (4.3) be decomposed as

W = φ(εη) + εw,

with η = η(ε) to be determined later, where the function w solves

dw

dt
= dF (φ(εη))w + εγR(η, w; ε), w(0) = w0 − φ′(0)η − εγψ(η; ε), (4.9)

with

R(η, w; ε) := ε−1−γ {F (φ(εη) + rw)− F (φ(εη))− dF (φ(εη))rw} ,
ψ(η; ε) := ε−1−γ {φ(εη)− φ(0)− φ′(0)εη} .

Decomposing w as

w = αφ′(εη) + ω, where α := `(εη) · w, ω := Q(εη)w,

and setting

S(η, α, ω; ε) := R(η, α φ′(εη) + ω; ε),

the unknowns α and ω solve
dα

dt
= εγ `(εη) · S(η, α, ω; ε),

dω

dt
= dF (φ(εη))ω + εγQ(εη)S(η, α, ω; ε),

(4.10)

with initial conditions{
α(0) = `(εη) ·

(
w0 − φ′(0)η − εγψ(η; ε)

)
,

ω(0) = Q(εη)
(
w0 − φ′(0)η − εγψ(η; ε)

)
.

(4.11)
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Therefore, the following relations hold

α(t) = ` ·
(
w0 − φ′(0)η

)
− εγ

{
` · ψ −

ˆ t

0

` · S dτ
}
,

ω(t) = edF (φ)tQ
(
w0 − φ′(0)η

)
− εγ

{
edF (φ)tQψ −

ˆ t

0

edF (φ)(t−τ)QS dτ

}
.

(4.12)

where ` = `(εη), Q = Q(εη), φ = φ(εη), ψ = ψ(η; ε) and S = S(η, α, ω; ε).

Next, we require the value η = η(ε) to be such that α(+∞) = 0 that is

` ·
(
−w0 + φ′(0)η

)
+ εγ

{
` · ψ −

ˆ +∞

0

` · S dτ
}

= 0.

Thus, the triple (η, α, ω) has to be such that

F(η, α, ω; ε) + εγG(η, α, ω; ε) = 0, (4.13)

where

F =
(
` ·
(
−w0 + φ′(0)η

)
, α, ω − edF (φ)tQ

(
w0 − φ′(0)η

))
,

G =
(
` · ψ −

ˆ +∞

0

` · S dτ,
ˆ +∞

t

` · S dτ, edF (φ)tQψ −
ˆ t

0

edF (φ)(t−τ)QS dτ
)
.

We want to show that, for small ε, the implicit relation (4.13) defines a function

ε 7→ (η, α, ω). To prepare for the application of the Implicit function theorem in

Banach spaces (see, e.g., Ref. 4), let us introduce an appropriate functional setting.

Given θ > 0 and a Banach space Y with norm | · |Y , set

C0
θ (R+;Y) :=

{
f ∈ C0(R+;Y) : sup

t>0
eθ t|f(t)|Y < +∞

}
.

Then, let us consider the Banach space X = R×C0
θ (R+;R)×C0

θ (R+;W) with norm

‖(η, α, ω)‖
X

:= |η|+ sup
t>0

eθ t
(
|α(t)|+ |ω(t)|W

)
.

Choosing θ as in (4.5), for any M > 0, the function F maps the set X × (−ε, ε) into

X ∩ {|η| ≤M} for ε sufficiently small, since

eθ t|edF (φ)tQ
(
w0 − φ′(0)η

)
|W ≤ C

∣∣Q(w0 − φ′(0)η
)∣∣

W
< +∞.

Moreover, as a consequence of the estimate

eθ t
ˆ +∞

t

|S(η, α(τ), ω(τ); r)|W dτ ≤ C eθ t
ˆ +∞

t

|α(τ)φ′(εη) + ω(τ)|1+γ
W

dτ

≤ C eθ t
ˆ +∞

t

e−(1+γ)θτ
{
eθτ (|α(τ)|+ |ω(τ)|n)

}1+γ
dτ

≤ C e−γθ t ‖(0, α, ω)‖2
X
,
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also the function εγG maps X × (−ε, ε) into X ∩{|η| ≤M} for any M > 0 and for ε

sufficiently small. Moreover, the smoothness of the functions `,Q, ψ, S with respect

to their arguments guarantees that the map F + εγG is differentiable.

For r = 0, there holds F(η, α, ω; 0) =
(
`(0) ·w0 − η, α, ω −Q(0)w0

)
, thus (4.13)

is satisfied if and only if

η = `(0) · w0, α = 0, ω = Q(0)w0.

In order to apply Implicit Function Theorem, it is sufficient to observe that

∂ (F + εγG)

∂(η, α, ω)

∣∣∣
ε=0

=
∂F

∂(η, α, ω)

∣∣∣
ε=0

=

1 0 0

0 I 0

0 0 I

 ,

since

∂

∂η
`(εη)

∣∣∣
ε=0

=
∂

∂η
Q(εη)

∣∣∣
ε=0

= 0.

Thus, in a neighborhood of ε = 0, there exist a smooth function Ξ with values in a

neighborhood of (`(0) · w0, 0, Q(0)w0) ∈ X such that

F + εG = 0 if and only if (η, α, ω) = Ξ(r). (4.14)

The function Ξ is locally bounded, ‖Ξ(r)‖X ≤ C for ε small, and thus

|w(t)| = |α(t)φ′(εη) + ω(t)| ≤ C e−θ t.

Recalling that W = φ(εη) + εw, the decay estimate (4.8) follows.

With Theorem 4.2 at hand, we are able to provide the proof of Theorem 1.2. For

the reader’s convenience, let us briefly retrace the path toward nonlinear stability.

The traveling wave (U, V ) propagates with a specific speed c. Thus, considering a

reference frame moving with such speed, we obtain the nonlinear system (3.4) for

the perturbation variables, for which the Cauchy problem can be written as

∂t

(
u

v

)
= −B−1

(
A ∂x

(
u

v

)
+

(
f(U)− f(u+ U)

v

))
,(

u

v

)
(0) =

(
u0 − U
v0 − V

)
,

(4.15)

where A and B are defined in (3.7), and (u0, v0) is the (unperturbed) initial data

of Theorem 1.2. Problem (4.15) corresponds to (4.3) in the general framework pre-

viously considered in Theorem 4.2. Therefore, we are able to make the following

identifications:

1. the Hilbert space W is H1(R;R2); the steady state W is W = 0, and the

function φ is defined by φ(δ) := (U, V )(· + δ) − (U, V )(·) with δ ∈ R; observe that
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for each δ ∈ R fixed,

|φ(δ)|2H1 =

ˆ
R
|(U, V )(ζ + δ)− (U, V )(ζ)|2 dζ +

ˆ
R
|(Ux, Vx)(ζ + δ)− (Ux, Vx)(ζ)|2 dζ

=

ˆ
R
|(Ux, Vx)(θ̂ζ)|2δ2 dζ +

ˆ
R
|(Uxx, Vxx)(θ̂ζ)|2δ2 dζ

≤ Cδ|(Ux, Vx)|2H1 ,

for some θ̂ ∈ (0, δ), showing that φ(δ) ∈ W.

2. the linearized equation (corresponding to the one in (4.4)) is

∂t

(
u

v

)
= −B−1

(
A ∂x + C(x)

)(u
v

)
;

3. the remainder, for which the estimate (4.7) has to be proved, is(
u

v

)
7→

(
R(U ;u)

0

)
:=

(
f(U + u)− f(U)− f ′(U)u

0

)
.

Assuming f ∈ C3, we next show that hypotheses H2 and H3 are verified for the

function space W = H1(R;R2).

First we verify (4.6). Denoting by Φ the couple (U, V ), there holds

|φ(δ)− φ(0)− φ′(0)δ|2L2 =

ˆ
R
|Φ(x+ δ)− Φ(x)− Φx(x)δ|2 dx

= δ2
ˆ
R

∣∣∣∣ˆ 1

0

(Φx(x+ θδ)− Φx(x)) dθ

∣∣∣∣2 dx
≤ δ2

ˆ
R

ˆ 1

0

|Φx(x+ θδ)− Φx(x)|2 dθ dx

≤ δ4
ˆ
R

ˆ 1

0

ˆ 1

0

|Φxx|2dη dθ dx,

and thus

|φ(δ)− φ(0)− φ′(0)δ|L2 ≤ δ2|Φxx|L2 .

A similar estimate can be obtained by differentiating with respect to x, so that

|φ(δ)− φ(0)− φ′(0)δ|H1 ≤ δ2|Φxx|H1 .

To prove estimate (4.7), we first observe that

R(U ;u) =

{ˆ 1

0

f ′′(U + θu)(1− θ) dθ
}
u2;

∂xR(U ;u) =

{ˆ 1

0

f ′′′(U + θu)θ(1− θ) dθ
}
u2 ∂xu

+ 2

{ˆ 1

0

f ′′(U + θu)(1− θ) dθ
}
u ∂xu.
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Thus, for u ∈ H1(R), taking into account the embedding H1(R) ⊂ L∞(R), there

holds

|R(U ;u)|
L2 ≤ C |u|2L2

, |∂xR(U ;u)|
L2 ≤ C |u|2H1

,

where the constant C depends on f, U and the L∞−norm of u, so that, in particular,

estimate (4.7) holds with γ = 1.

Finally, thanks to Theorem 4.1, also hypothesis H1 is verified, so that Theorem

4.2 applies and Theorem 1.2 follows.

5. Numerical experiments

In this section, we present some numerical experiments on system (1.5), based on

the observation that it can be rewritten as the weakly coupled semilinear hyperbolic

system (a reactive version of the Goldstein–Kac model for correlated random walk):{
∂tu− − %∂xu− = 1

2 τ
−1(−u− + u+) + 1

2f(u+ + u−),

∂tu+ + %∂xu+ = 1
2τ
−1(u− − u+) + 1

2f(u+ + u−),
(5.1)

where the coefficient % and the unknowns u± are given by

% := 1/
√
τ , u− := 1

2

(
u+ %−1v

)
, u+ := 1

2

(
u− %−1v

)
.

Inverting the equality, we infer the relations u = u+ + u− and v = %(u− − u+).

Fixed the mesh size dx > 0, we discretize the space by approximating the first

order space derivatives in an upwind fashion. Thus, setting rj ≈ u−(j dx, t) and

sj ≈ u+(j dx, t), we obtain
drj
dt

=
%

dx
(rj+1 − rj) +

1

2τ
(−rj + sj) +

1

2
f(rj + sj),

dsj
dt

= − %

dx
(sj − sj−1) +

1

2τ
(rj − sj) +

1

2
f(rj + sj).

(5.2)

Let us stress that, setting uj := rj +sj and vj := %(rj−sj), we infer a semi-discrete

version of (1.5)
duj
dt

=
1

2
%dx

uj+1 − 2uj + uj−1

dx2 +
vj+1 − vj−1

2dx
+ f(uj),

dvj
dt

=
1

2
%dx

vj+1 − 2vj + vj−1

dx2 +
1

τ

(
uj+1 − uj−1

2dx
− vj

)
,

which formally corresponds to{
ut − vx = ν uxxu+ f(u),

τvt − ux = τν vxx − v,
where ν := 1

2% dx,

so that we expect the appearance of a numerical viscosity with strength measured

by the parameter %.
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Next, fixed the time step dt > 0, we discretize the time derivative in (5.2) by

means of an implicit-explicit approach, leaded by a simplicity criterion suggesting

to discretize implicitly only the linear terms
rn+1
j − rnj

dt
=

%

dx

(
rn+1
j+1 − r

n+1
j

)
+

1

2τ

(
−rn+1

j + sn+1
j

)
+

1

2
f(rnj + snj ),

sn+1
j − snj

dt
= − %

dx

(
sn+1
j − sn+1

j−1
)

+
1

2τ

(
rn+1
j − sn+1

j

)
+

1

2
f(rnj + snj ).

Fully implicit schemes have been tested with no significant advantage in the ap-

proximation, but with a significant increase of the computational time.

Setting

α = %
dt

dx
, β =

dt

2τ
, fnj = f(rnj + snj ),

and with an upwind discretization of the space derivatives, we end up with(
(1 + β) I− αD+ −β I

−β I (1 + β) I + αD−

)(
rn+1

sn+1

)
=

(
rn + fndt/2

sn + fndt/2

)
, (5.3)

where the matrices I,D± are given by

I = (δi,j), D+ = (δi+1,j − δi,j), D− = (δi,j − δi,j+1)

(here δi,j is the standard Kronecker symbol). The block-matrix in (5.3) is invertible,

since its spectrum is contained in the complex half plane {λ ∈ C : Reλ ≥ 1} as a

consequence of the Geršgorin criterion.

A direct manipulation of (5.3) gives

rn+1 = (S− α2D−D+)−1
{

[(1 + β)I + αD−]rn + βsn

+ 1
2 [(1 + 2β)I + αD−]fndt

}
,

sn+1 = (S− α2D+D−)−1
{
βrn + [(1 + β)I− αD+]sn

+ 1
2 [(1 + 2β)I− αD+]fndt

}
,

(5.4)

where S is the symmetric matrix

S := (1 + 2β)I + α(1 + β)(D− − D+).

To start with, we test the algorithm by analyzing its capability to recover the

correct wave speeds c∗ of the front connecting the stable states 0 and 1. Following

LeVeque and Yee,31 we introduce an average speed of the numerical solution at time

tn defined by

cn =
1

dt
1 · (un − un+1) =

1

dt

∑
j

(unj − un+1
j ), (5.5)
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Table 2. Riemann problem with jump at `/2, ` = 25. Relative error for three different cases (T

final time): A. τ = 1, α = 0.9, c∗ = 0.5646, T = 40; B. τ = 2, α = 0.6, c∗ = 0.1737, T = 30; C.
τ = 4, α = 0.7, c∗ = 0.3682, T = 35.

dx 20 2−1 2−2 2−3 2−4

A 0.1664 0.0787 0.0325 0.0091 0.0018

dt = 10−1 B 0.0383 0.0306 0.0241 0.0198 0.0175

C 0.1527 0.1144 0.0818 0.0581 0.0442

A 0.1751 0.0876 0.0417 0.0186 0.0079

dt = 10−2 B 0.0275 0.0196 0.0128 0.0084 0.0061

C 0.1420 0.1018 0.0684 0.0457 0.0339

A 0.1760 0.0885 0.0427 0.0196 0.0089

dt = 10−3 B 0.0265 0.0184 0.0117 0.0072 0.0049

C 0.1411 0.1006 0.0670 0.0441 0.0321

where 1 = (1, . . . , 1). Indeed, for any differentiable function φ with asymptotic

states φ± and derivative integrable in R, and for h ∈ R, there holds

ˆ
R

(φ(x+ h)− φ(x)) dx = h

ˆ
R

ˆ 1

0

dφ

dx
(x+ θh)dh dx

= h

ˆ 1

0

ˆ
R

dφ

dx
(x+ θh)dx dh = h[φ],

where [φ] := φ(+∞)− φ(−∞), so that for h = −cdt, we infer

c =
1

[φ] dt

ˆ
R

(φ(x)− φ(x− cdt)) dx.

As a test case, we consider the usual cubic function f(u) = u(u − α)(1 − u) with

α ∈ (0, 1). Our aim is to compare the values for the propagation speed c∗ as obtained

by means of the shooting argument (see Sec. 2) and the one given by calculating (5.5)

for the solution to the initial-value problem with an increasing datum connecting

0 and 1 and computing cn at a time t so large that stabilization of the speed of

propagation of the numerical solution is reached.

To start with, we test three different choices for the couple (τ, α) for different

values of dx and dt, where the range of variation of τ has been chosen so that the

condition τ f ′(u) < 1 is satisfied for all the values of the unstable zero α.

From Table 2, we note that the smallness of the space mesh dx is more relevant

than the corresponding time-step value dt.

Requiring to detect the correct speed value with an error that is always less

than 5% of the effective value, we heuristically determine the choice dx = 2−3 and

dt = 10−2, that will be used for subsequent numerical experiments. For such a

choice, we record the results in Table 3 for different choices of α and τ = 1 and

τ = 4 together with the corresponding relative error.

Considering different form for matrices D± giving a second order approximation
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Table 3. Final average speed (5.5) and relative error with respect to c∗ given in Sect.2 (N = 400,

dx = 0.125, dt = 0.01, ` = 25, T = 40).

α = 0.6 α = 0.7 α = 0.8 α = 0.9

τ = 1 0.1580 0.3096 0.4497 0.5751

0.0101 0.0118 0.0145 0.0186

τ = 4 0.2102 0.3533 0.4337 0.4825

0.0396 0.0404 0.0365 0.0118

Table 4. Second order in space. Final average speed (5.5) and relative error with respect to c∗
given in Sect.2 (N = 400, dx = 0.125, dt = 0.01, ` = 25, T = 40).

α = 0.6 α = 0.7 α = 0.8 α = 0.9

τ = 1 0.1560 0.3052 0.4421 0.5630

0.0025 0.0025 0.0026 0.0029

τ = 4 0.2184 0.3672 0.4485 0.4885

0.0022 0.0025 0.0034 0.0004

of the derivatives, such as

D+ =
(
− 1

2δi+2,j + 2δi+1,j − 3
2δi,j

)
, D− =

(
3
2δi,j − 2δi,j+1 + 1

2δi,j+2

)
,

the speed approximation gain in accuracy, as reported in Table 4, that shows an

increase of one order.

In what follows, we keep considering the previously discussed first order dis-

cretization, since we are interested in considering initial data with sharp transitions

(as in the case of Riemann problems). In such a case, higher order approximations of

the derivatives introduce spurious oscillations that, even being transient, may lead

to catastrophic consequences because of the bistable nature of the reaction term.

As a consequence of its capability to correct computations of propagation speeds,

we consider the scheme (5.4) to be a reliable tool for determining numerically the

behavior of the solutions to (1.5), and we use it to show that the actual domain of

attraction of the front is much larger than guaranteed by the nonlinear stability in

Theorem 1.2.

5.1. Riemann problem

The rigorous result proved in the previous sections guarantees that small perturba-

tions to the propagating front are dissipated, with exponential rate, by the equation.

Inspired by the many available results for the parabolic Allen–Cahn equation (start-

ing from the landmark article by Fife and McLeod,13) we expect that the front pos-

sesses a very large domain of attraction and, specifically, that any bounded initial

data u0 such that

lim sup
x→−∞

u0(x) < α < lim inf
x→+∞

u0(x), (5.6)
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gives raise to a solution that is asymptotically convergent to a member of the

traveling fronts connecting u = 0 with u = 1.

Fig. 7. Riemann problem with initial datum χ
(0,`)

in (−`, `), ` = 25. Left: solution profiles zoomed

in the interval (−5, 5) at time t = 1 (dash-dot), t = 5 (dash), t = 15 (continuous), for comparison,
solution to the parabolic Allen–Cahn equation at time t = 1 (dot). Right: Decay of the L2 distance

to the exact equilibrium solution for the hyperbolic (continuous) and parabolic (dot) Allen–Cahn

equations.

To support such conjecture, we perform some numerical experiments choosing

the parameters values

τ = 4, ` = 25, dx = 0.125, dt = 0.01.

Moreover, we consider the case α = 1/2 motivated by the fact that, in such a special

case, the profile of the traveling front for the hyperbolic Allen–Cahn equation is

stationary and it coincides with the one of the corrresponding original parabolic

equation, explicitly given by

U(x) =
1

1 + e−x/
√
2
, V (x) =

dU

dx
=

1√
2

1

ex/
√
2 + 2 + e−x/

√
2

when normalized by the condition U(0) = 1/2.

Numerical simulations confirm the decay of the solution to the equilibrium profile

(see Fig. 7, left). When compared with the standard Allen–Cahn equation, it appears

evident that the dissipation mechanism of the hyperbolic equation is weaker with

respect to the parabolic case (see Fig. 7, right).

5.2. Randomly perturbed initial data

Next, keeping all of the previous parameters fixed, we consider initial data that

resemble very roughly the transition from 0 to 1. Namely, we divide the interval

(−`, `) into three parts and we choose a random value in each of these sub-intervals

coherently with the requirement (5.6). Precisely, we choose u0(x) to be a different

random value in (0, 0.5) for each x ∈ (−`,−`/3), in (0, 1) for each x ∈ (−`/3, `/3)

and in (0.5, 1) for each x ∈ (`/3, `).
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Fig. 8. Random initial datum in (−`, `), ` = 25 (squares). Solution profiles for the hyperbolic

Allen–Cahn equation with relaxation at time t = 0.5 (dot), t = 7.5 (dash), t = 15 (continuous).

For comparison, in the small window, the solution to the parabolic Allen–Cahn equation.

The results for both hyperbolic and parabolic Allen–Cahn equation with the

same initial datum are illustrated in Fig. 8. Convergence to the equilibrium config-

uration is manifest. It is also worthwhile to note that different level of smoothing

produced by the presence/absence of the relaxation parameter τ , measuring the

“hyperbolicity” of the model.

The transition is even much more robust than what the previous computation

shows. With an initial datum u0(x) given by a random value in (0, 0.9) for each

x ∈ (−`,−`/3), in (0, 1) for each x ∈ (−`/3, `/3) and in (0.1, 1) for each x ∈ (`/3, `),

we still observe the appearance and formation of the front, as shown in Fig. 1.
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25. G. Izús, R. Deza, O. Ramı́rez, H.S. Wio, D. H. Zanette and C. Borzi, Global stability of

stationary patterns in bistable reaction-diffusion systems. Phys. Rev. E (3) 52 (1995)
no. 1, part A, 129–136.

26. D. D. Joseph and L. Preziosi, Heat waves. Rev. Modern Phys. 61 (1989) no. 1, 41–73.
27. D. D. Joseph and L. Preziosi, Addendum to the paper: “Heat waves” [Rev. Modern

Phys. 61 (1989) no. 1, 41–73]. Rev. Modern Phys. 62 (1990) no. 2, 375–391.
28. M. Kac, A stochastic model related to the telegrapher’s equation, Rocky Mountain J.

Math. 4 (1974), 497–509.
29. T. Kapitula and K. Promislow, Spectral and dynamical stability of nonlinear waves,

vol. 185 in Applied Mathematical Sciences (Springer-Verlag, New York, 2013).
30. T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics

(Springer-Verlag, New York, Second ed., 1980).
31. R. J. LeVeque and H. C. Yee, A study of numerical methods for hyperbolic conserva-

tion laws with stiff source terms. J. Comput. Phys. 86 (1990) no. 1, 187–210.
32. H. M. Lieberstein, On the Hodgkin–Huxley partial differential equation, Math. Biosci.

1 (1967) no.1, 45–69.
33. C. Mascia and K. Zumbrun, Pointwise Green’s function bounds and stability of re-

laxation shocks. Indiana Univ. Math. J. 51 (2002) no. 4, 773–904.
34. J. C. Maxwell, On the dynamical theory of gases. Trans. Royal Soc. London 157

(1867), 49–88.
35. H. P. McKean Jr., Nagumo’s equation. Advances in Math. 4 (1970) 209–223.
36. I. Melbourne and G. Schneider, Phase dynamics in the real Ginzburg-Landau equa-

tion, Math. Nachr. 263/264 (2004), 171–180.
37. V. Méndez, J. Fort and J. Farjas, Speed of wave-front solutions to hyperbolic reaction-

diffusion equations. Phys. Review E 60 no.5 (1999), 5231–5243.
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39. M. Möller and A. Zettl, Differentiable dependence of eigenvalues of operators in Ba-

nach spaces. J. Operator Theory 36 (1996), no. 2, 335–355.
40. J. D. Murray, Mathematical biology. I. An introduction. Third edition. Interdisci-

plinary Applied Mathematics, 17 (Springer-Verlag, New York, 2002).
41. J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating

nerve axon. Proc. IRE 50 (1962), no. 10, 2061–2070.
42. K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differ-

ential Equations 55 (1984), no.2, 225–256.
43. K. J. Palmer, Exponential dichotomies and Fredholm operators, Proc. Amer. Math.

Soc. 104 (1988), no. 1, 149–156.
44. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential

Equations (Springer-Verlag, New York, 1983).
45. L. Perko, Rotated vector fields, J. Differential Equations 103 (1993) no. 1, 127–145.
46. R. G. Plaza and K. Zumbrun, An Evans function approach to spectral stability of

small-amplitude shock profiles. Discr. and Cont. Dynam. Syst. 10 (2004) no. 4, 885–
924.

47. J. Prüss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc. 284 (1984),
no. 2, 847–857.

48. J. Rottmann-Matthes, Linear stability of traveling waves in first-order hyperbolic
PDEs, J. Dynam. Differential Equations 23 (2011) no. 2, 365–393.

49. J. Rottmann-Matthes, Stability and freezing of nonlinear waves in first order hyper-
bolic PDEs, J. Dynam. Differential Equations 24 (2012) no. 2, 341–367.



November 26, 2015 10:34 WSPC/INSTRUCTION FILE LMPS

Traveling waves for the Allen-Cahn relaxation model 55

50. B. Sandstede, Stability of travelling waves, in B. Fiedler (ed.), Handbook of dynamical
systems, Vol. 2, North-Holland, Amsterdam, 2002, 983–1055.

51. B. Sandstede and A. Scheel, Absolute and convective instabilities of waves on un-
bounded and large bounded domains, Phys. D 145 (2000), no. 3-4, 233–277.

52. D. H. Sattinger, On the stability of waves of nonlinear parabolic systems. Advances
in Math. 22 (1976) no. 3, 312–355.

53. R. A. van Gorder and K. Vajravelu, Analytical and numerical solutions of the density
dependent Nagumo telegraph equation. Nonlinear Anal. Real World Appl. 11 (2010)
no. 5, 3923–3929.


