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On the efficient numerical simulation of heterogenous anisotropic diffusion models of tumor invasion using GPUs

Introduction

Mathematical models for tumor invasion are often used to predict the behaviour of cancer evolution and can produce strikingly nontrivial patterns. Therefore, their numerical solution often requires high spatial resolution to capture detailed biophysical phenomena. As a consequence, long computational times are required when using a serial implementation of numerical schemes. Parallel computing can improve dramatically the time efficiency of some numerical methods such as finite differences algorithms, which are relatively simple to implement and apply to tumor invasion models. For clinical operators and applied scientists involved in setting up realistic experiments, the possibility of running fast comparative simulations using simple algorithms implemented into affordable processors is of primary interest, and that is where Graphical Processing Units (GPUs) excel.

In this work we focus on a mathematical model of anisotropic and heterogeneous diffusion of tumor cells, a set of time-evolution parabolic equations. The model includes chemotaxis and haptotaxis effects, that appear in other biophysical phenomena [START_REF] Anderson | Mathematical modelling of tumour invasion and metastasis[END_REF]. We compute numerical solutions considering spatial discretization by centered finite differences and time integration through an explicit Euler method. The choice of time-explicit algorithms is due to their greater ease of implementation, and performance, on GPU devices, despite the limitations related to their reduced stability properties.

The codes used in this work are designed using CUDA. The CUDA platform (Compute Unified Device Architecture NVIDIA 2007), was designed to support GPU execution of programs and focuses on data parallelism. With CUDA, graphics cards can be programmed with a medium-level language, that can be seen as an extension to C/C++/Fortran, without requiring a great deal of hardware expertise. We refer to [START_REF] Kirk And W.-M | Programming Massively Parallel Processors: A Hands-on Approach[END_REF] and [START_REF] Sanders | CUDA by example An Introduction to General Purpose GPU Programming[END_REF] for a comprehensive introduction to GPU-based parallel computing.

Mathematical Model

In our cancer dynamic model we considered :

• Tumour cells density (n) • Matrix Degradative Enzymes (MDE) concentration (m) • Extracellular Matrix (ECM) density (f)
The ECM consists of a complex mixture of macromolecules, some of which are believed to play structural roles and others are very important for cell adhesion, spreading and motility. One of the key mechanism allowing the tumour diffusion is its capability to degraded progressively the ECM. The acronym MDE indicates a family of enzymes, produced by cancer and cells and digest the ECM, which enables the migration of cancer cells through the tissue. [**] Roughly speaking invasive process is mostly determined by the ability of the tumour to degrade extracellular matrix. The tumour segregates matrix degradation enzymes which degrade the tissue locally.

The tumour cell density evolves according to

n t = ∇ • (D(x, y)∇n) -γ∇ • (n∇f ) + λn 1 - n n 0 - f f 0 , (1) 
Here (x, y)

∈ Ω ⊂ R 2 , t > 0.
The evolution of f is described by the following simple equation:

f t = -κmf, (2) 
Finally the evolution of the MDE concentration is

m t = D m ∇ 2 m + δn 1 - m m 0 -βm, (3) 
where the first term on the right side is a diffusion term, the second one models the production and the decay respectively. Let us to summarize as follow the system will be studied numerically in the following section

n t = ∇ • (D(x, y)∇n) -γ∇ • (n∇f ) + λn 1 - n n 0 - f f 0 f t = -κmf, m t = D m ∇ 2 m + δn 1 - m m 0 -βm. (4) 
Here, as usual, (x, y) ∈ Ω ⊂ R 2 , t > 0. This system of equations is based on the model by Enderling et al. [START_REF] Enderling | Mathematical modelling of radiotherapy strategies for early breast cancer[END_REF], with the new feature of an anisotropic diffusion tensor of the form

D(x, y) = a(x, y) b(x, y) b(x, y) c(x, y) . ( 5 
)
Compared to [START_REF] Anderson | A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion[END_REF], [START_REF] Anderson | Mathematical modelling of tumour invasion and metastasis[END_REF] and [START_REF] Enderling | Mathematical modelling of radiotherapy strategies for early breast cancer[END_REF], we introduce a spatially varying and anisotropic diffusion tensor D. For that purpose we set D(x, y) = τ L 2 D(x, y), to arrive at the non-dimensional system

n t = ∇ • (D(x, y)∇n) -γ∇ • (n∇f ) + λn 1 -n -f f t = -κmf, m t = d m ∇ 2 m + δn 1 -m -βm. (6)
The free parameters are d m , δ, β, κ and λ > 0 (see Table 1). We can write this numerical scheme as [START_REF] Sochen | A maximum principle for Beltrami color flow[END_REF]:

N k+1 i,j = N k i,j + a i,j ∆t ∆x 2 N k i+1,j -2N k i,j + N k i-1,j + c i,j ∆t ∆y 2 N k i,j+1 -2N k i,j + N k i,j-1 + + b i,j ∆t 2∆x∆y N k i+1,j+1 -N k i+1,j-1 -N k i-1,j+1 + N k i-1,j-1 + + ∆t 4∆x 2 a i+1,j -a i-1,j N k i+1,j -N k i-1,j + + ∆t 4∆x 2 F k i+1,j -F k i-1,j N k i+1,j -N k i-1,j + ∆t 4∆y 2 F k i,j+1 -F k i,j-1 N k i,j+1 -N k i,j-1 + + ∆t 4∆x∆y b i+1,j -b i-1,j N k i,j+1 -N k i,j-1 + b i,j+1 -b i,j-1 N k i+1,j -N k i-1,j + + ∆t 4∆y 2 c i,j+1 -c i,j-1 N k i,j+1 -N k i,j-1 + + ∆t 4∆x 2 γN k i,j F k i+1,j -2F k i,j + F k i-1,j + + ∆t 4∆y 2 γN k i,j F k i,j+1 -2F k i,j + F k i,j-1 + λN k i,j (1 -F k i,j -N k i,j ). (7) 
F k+1 i,j = F k i,j 1 -∆tκM k i,j . (8) 
M k+1 i,j = M k i,j + δN k i,j (1 -M k i,j ) -βM k i,j + + d m ∆t ∆x 2 M k i+1,j -2M k i,j + M k i-1,j + d m ∆t ∆y 2 M k i,j+1 -2M k i,j + M k i,j-1 . (9) 
The numerical scheme (7) -( 9) is stable provided that

∆t < min 1 8 max(∆x 2 , ∆y 2 ) max i,j (a ij , c ij ) , 1 2 max(∆x 2 , ∆y 2 ) d m .
For consistency with the previous work by Enderling et al. [START_REF] Enderling | Mathematical modelling of radiotherapy strategies for early breast cancer[END_REF] we consider the parameter values used in their simulations, which were based on tumor invasion in breast tissue. The values can be found in Table 1 

Performance analysis comparisons and conclusions

We run our tests on 6 square domains, from 64×64 to 2048×2048 elements over 10000 time-steps.

We define boundary conditions equal to 0 and

n 0 (x, y) = N 0 exp(-ω 0 ((x -0.5) 2 + (y -0.5) 2 )) (10) 
, with N 0 = 0.75 and ω 0 = 0.005, m 0 (x, y) = 0.5n 0 (x, y) and f 0 (x, y) = 1 -0.5n 0 (x, y). In the above graphs we report the CUDA kernel performance (MFlops single precision) and the related execution time (in seconds) for the two GPUs used.

Main References

D(x, y) = d n a 0 0 1

 1 where a = 0.1, 0.01. All numerical simulations were performed using these GPUs NVIDIA GTX 670/1344 CUDA cores/4Gbyte of RAM installed on HP DL585G7 4 AMD Opteron 6128 8 cores clock frequency 2.0 GHz 64 Gbytes of RAM, OS Linux centOS 5.5 amd64, compiler GNU gcc 4.4 and NVIDIA CUDA 6.5 linux 64 bit toolbox and NVIDIA GTX 1080/2560 CUDA cores/4Gbyte of RAM installed on HP DL585G7 4 AMD Opteron 6128 8 cores clock frequency 2.0 GHz 64 Gbytes of RAM, OS Linux centOS 6.5 amd64, compiler GNU gcc 4.4.7 and NVIDIA CUDA 8.0 linux 64 bit toolbox

Figure 1 :

 1 Figure 1: Numerical solution of tumor density cells n after 1 second for simulation anisotropic case. With haptotaxis in (γ = 0.005) contour(left), 3D results (right)
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 2 Figure 2: GPU CUDA Kernel performance comparison Mflops between GTX 670 and GTX 1080