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Introduction
Mathematical models for tumor invasion are often used to predict the behaviour of cancer evolution
and can produce strikingly nontrivial patterns. Therefore, their numerical solution often requires high
spatial resolution to capture detailed biophysical phenomena. As a consequence, long computational
times are required when using a serial implementation of numerical schemes. Parallel computing can
improve dramatically the time efficiency of some numerical methods such as finite differences algo-
rithms, which are relatively simple to implement and apply to tumor invasion models. For clinical
operators and applied scientists involved in setting up realistic experiments, the possibility of running
fast comparative simulations using simple algorithms implemented into affordable processors is of
primary interest, and that is where Graphical Processing Units (GPUs) excel.

In this work we focus on a mathematical model of anisotropic and heterogeneous diffusion of tu-
mor cells, a set of time-evolution parabolic equations. The model includes chemotaxis and haptotaxis
effects, that appear in other biophysical phenomena [1]. We compute numerical solutions consider-
ing spatial discretization by centered finite differences and time integration through an explicit Euler
method. The choice of time-explicit algorithms is due to their greater ease of implementation, and
performance, on GPU devices, despite the limitations related to their reduced stability properties.

The codes used in this work are designed using CUDA. The CUDA platform (Compute Unified De-
vice Architecture NVIDIA 2007), was designed to support GPU execution of programs and focuses
on data parallelism. With CUDA, graphics cards can be programmed with a medium-level language,
that can be seen as an extension to C/C++/Fortran, without requiring a great deal of hardware exper-
tise. We refer to [6] and [5] for a comprehensive introduction to GPU-based parallel computing.

Mathematical Model
In our cancer dynamic model we considered :
• Tumour cells density (n)
•Matrix Degradative Enzymes (MDE) concentration (m)
• Extracellular Matrix (ECM) density (f)
The ECM consists of a complex mixture of macromolecules, some of which are believed to play

structural roles and others are very important for cell adhesion, spreading and motility. One of the
key mechanism allowing the tumour diffusion is its capability to degraded progressively the ECM.
The acronym MDE indicates a family of enzymes, produced by cancer and cells and digest the ECM,
which enables the migration of cancer cells through the tissue. [**] Roughly speaking invasive pro-
cess is mostly determined by the ability of the tumour to degrade extracellular matrix. The tumour
segregates matrix degradation enzymes which degrade the tissue locally.

The tumour cell density evolves according to

nt = ∇ · (D(x, y)∇n)− γ∇ · (n∇f ) + λn
(

1− n

n0
− f

f0

)
, (1)

Here (x, y) ∈ Ω ⊂ R2, t > 0.
The evolution of f is described by the following simple equation:

ft = −κmf, (2)

Finally the evolution of the MDE concentration is

mt = Dm∇2m + δn
(

1− m

m0

)
− βm, (3)

where the first term on the right side is a diffusion term, the second one models the production and
the decay respectively. Let us to summarize as follow the system will be studied numerically in the
following section

nt = ∇ · (D(x, y)∇n)− γ∇ · (n∇f ) + λn
(

1− n

n0
− f

f0

)
ft = −κmf,
mt = Dm∇2m + δn

(
1− m

m0

)
− βm.

(4)

Here, as usual, (x, y) ∈ Ω ⊂ R2, t > 0. This system of equations is based on the model by Enderling
et al. [4], with the new feature of an anisotropic diffusion tensor of the form

D(x, y) =

(
a(x, y) b(x, y)
b(x, y) c(x, y)

)
. (5)

Compared to [2], [1] and [4], we introduce a spatially varying and anisotropic diffusion tensor D.
For that purpose we set

D̃(x, y) =
τ

L2
D(x, y),

to arrive at the non-dimensional system

nt = ∇ · (D(x, y)∇n)− γ∇ · (n∇f ) + λn
(
1− n− f

)
ft = −κmf,
mt = dm∇2m + δn

(
1−m

)
− βm.

(6)

The free parameters are dm, δ, β, κ and λ > 0 (see Table 1). We can write this numerical scheme as
[3]:
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. (8)

Mk+1
i,j = Mk

i,j + δNk
i,j(1−M

k
i,j)− βM

k
i,j+

+ dm
∆t

∆x2

(
Mk
i+1,j − 2Mk

i,j + Mk
i−1,j

)
+ dm

∆t

∆y2

(
Mk
i,j+1 − 2Mk

i,j + Mk
i,j−1

)
.

(9)

The numerical scheme (7) - (9) is stable provided that

∆t < min
(1

8

max(∆x2,∆y2)

maxi,j(aij, cij)
,

1

2

max(∆x2,∆y2)

dm

)
.

For consistency with the previous work by Enderling et al. [4] we consider the parameter values
used in their simulations, which were based on tumor invasion in breast tissue. The values can be
found in Table 1.

Description Symbol Value
Diffusion coefficient of MDE dm 0.0005
Rate of production of MDE δ 0.1
Degradation rate of ECM κ 10.0
Proliferation rate of tumor cells λ 0.3
Haptotactic sensitivity γ 0, 0.0005
Decay rate of MDE β 0

Performance analysis comparisons and conclusions
We run our tests on 6 square domains, from 64×64 to 2048×2048 elements over 10000 time-steps.
We define boundary conditions equal to 0 and

n0(x, y) = N0 exp(−ω0((x− 0.5)2 + (y − 0.5)2)) (10)

, with N0 = 0.75 and ω0 = 0.005, m0(x, y) = 0.5n0(x, y) and f0(x, y) = 1− 0.5n0(x, y).

D(x, y) = dn

(
a 0
0 1

)
where a = 0.1, 0.01. All numerical simulations were performed using these GPUs NVIDIA GTX
670/1344 CUDA cores/4Gbyte of RAM installed on HP DL585G7 4 AMD Opteron 6128 8 cores
clock frequency 2.0 GHz 64 Gbytes of RAM, OS Linux centOS 5.5 amd64, compiler GNU gcc 4.4
and NVIDIA CUDA 6.5 linux 64 bit toolbox and NVIDIA GTX 1080/2560 CUDA cores/4Gbyte of
RAM installed on HP DL585G7 4 AMD Opteron 6128 8 cores clock frequency 2.0 GHz 64 Gbytes
of RAM, OS Linux centOS 6.5 amd64, compiler GNU gcc 4.4.7 and NVIDIA CUDA 8.0 linux 64
bit toolbox

Figure 1: Numerical solution of tumor density cells n after 1 second for simulation anisotropic case. With haptotaxis in
(γ = 0.005) contour(left), 3D results (right)

Figure 2: GPU CUDA Kernel performance comparison Mflops between GTX 670 and GTX 1080

In the above graphs we report the CUDA kernel performance (MFlops single precision) and the
related execution time (in seconds) for the two GPUs used.
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