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Abstract

This article extends uniform exposure credibility theory by making quadratic

adjustments that take into account the squared values of past observations. This

approach amounts to introducing non-linearities in the framework, or to consid-

ering higher order cross moments in the computations. We first describe the full

parametric approach and, for illustration, we examine the Poisson-gamma and

Poisson-Pareto cases. Then, we look at the non-parametric approach where pre-

miums can only be estimated from data and no type of distribution is postulated.

Finally, we examine the semi-parametric approach where the conditional distri-

bution is Poisson but the unconditional distribution is unknown. For all of these

approaches, the mean square error is, by construction, smaller in the q-credibility

framework than in the standard framework.
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Introduction

The origins of credibility theory can be traced back to the papers of Mowbray

(1914), Whitney (1918), Bailey (1945, 1950), Longley-Cook (1962), and Mayerson

(1964). The core of the theory, as it is known today, is developed in Bühlmann

(1967) and in Bühlmann and Straub (1970). See also Hachemeister (1975) for the

link with regressions, Zehnwirth (1977) for the link with Bayesian analysis, and

Norberg (1979) for the application to ratemaking. General presentations of the

theory can be found for instance in Bühlmann (1970), Herzog (1999), Klugman,

Panjer, and Willmot (2012), Weishaus (2015), and Norberg (2015). See also the

recent broad survey paper by Lai (2012).

In this paper, we construct a quadratic credibility framework where premi-

ums are estimated based on the values of past observations and of past squared

observations. In Chapter 7 of Bühlmann and Gisler (2005), it is already men-

tioned - however without further developments - that credibility estimators are

not theoretically restricted to be linear in the observations and that the squares

of observations could be used in credibility theory. This paper can be viewed as a

first contribution to this research program. See also Chapter 4 of Bühlmann and

Gisler (2005) where a maximum likelihood estimator is computed using a loga-

rithmic transformation of the observations, but note that the latter application

more provides an appropriate trick for dealing with the Pareto distribution than

a non-linear framework per se.

We fully compute non-linear, quadratic, credibility estimators in situations

that range from parametric to non-parametric settings. The framework that is

developed can be useful for the modeler who explicitly wants to deviate from a

linear framework and to take into account higher order (cross) moments. For

instance, our framework uses the explicit values of the covariance between ob-

servations and squared observations, and also the covariance between squared

observations. For each of the parametric, non-parametric, and semi-parametric

settings explored in this paper, we give illustrations of the reduction of the mean

square error gained by going from the classic to the quadratic credibility approach.

See Neuhaus (1985) for general results on errors in credibility theory. Note that

Norberg (1982), extending De Vylder (1978), uses high order moments and cross

moments but in a different context: for the statistical estimation of classic struc-

tural parameters. See De Vylder (1985) for a reference on non-linear (in particular

exponential) regressions in credibility theory and Hong and Martin (2017) for a

flexible non parametric Bayesian approach. See also Taylor (1977) who proposes
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a Hilbert approach to credibility theory, derives results on sufficient statistics, and

constructs an example with non-linear but unbiased statistics of the observations.

In the present paper, unbiasedness is obtained by construction. For more details

about the Hilbert space approach, see Shiu and Sing (2004).

The paper is organized as follows. The first section develops a parametric

quadratic credibility, or q-credibility, approach and provides illustrations of this

approach in the Poisson-gamma and Poisson-Pareto settings. Building on the re-

sults of the first section, the second section derives a non-parametric approach

and the third section concentrates on a semi-parametric approach where the con-

ditional distribution is assumed to be of the Poisson type.

1 Main Results

We consider n random variables {Xi}i=1:n that are identically distributed and

independent conditionally on a random variable Θ that represents the uncertainty

of the system or the parameters of each of the {Xi}i=1:n. Note that the random

variables {Xi}i=1:n are not necessarily i.i.d. in full generality. Furthermore, for

any strictly positive integer m, we define

µm = E(E(Xm|Θ))

and

vm = E(Var(Xm|Θ)),

and for simplicity we also denote µ = µ1 and v = v1. Then, we define

a = Var(µ(Θ)),

where µ(Θ) = E(X|Θ), and we have:

Cov(Xi, Xk) = a, ∀i 6= k,

and

Cov(Xi, Xi) = Var(Xi) = a+ v. (1)

Classic credibility is a method that solves the following program:

min
α0,{αi}i=1:n

E





[

α0 +
n
∑

i=1

αiXi −Xn+1

]2
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to estimate the future outcome Xn+1 of a quantity X by using past realizations

{Xi}i=1:n of this quantity. The solution of this program produces the following

estimator of Xn+1:

P̂n+1 = µ (1− z) + z X̄,

where

X̄ =
1

n

n
∑

i=1

Xi

and

z =
na

na+ v
.

Also note that the mean square error in classic credibility theory is given by

MSEc = E

(

[

P̂n+1 −Xn+1

]2
)

= v + a (1− z). (2)

It is also possible to define

MSE′
c = E

(

[

P̂n+1 − E(Xn+1|Θ)
]2
)

= a (1− z).

In this paper, we introduce q-credibility as a method to estimate the future

outcome Xn+1 of a quantity X by using the past realizations {Xi}i=1:n of this

quantity but also the past realizations {X2
i }i=1:n of the square of this quantity

and by performing a least-squares optimization. Therefore, our goal is to solve

the following extended program:

min
α0,q ,{αi}i=1:n,{βi}i=1:n

E





[

α0,q +
n
∑

i=1

αiXi +
n
∑

i=1

βiX
2

i −Xn+1

]2


 . (3)

For this purpose, we first introduce four new structural parameters b, g, c, and

h, defined as follows:

Cov(X2

i , Xk) = b, ∀i 6= k, (4)

and

Cov(X2

i , Xi) = b+ g, (5)

and also

Cov(X2

i , X
2

k) = c, ∀i 6= k, (6)

and

Cov(X2

i , X
2

i ) = Var(X2

i ) = c+ h. (7)
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We can easily check that b = Cov(E(X2|Θ), E(X|Θ)), g = E(Cov(X2, X|Θ)),

c = Var(E(X2|Θ)), and h = E(Var(X2|Θ)). We can now state the main result of

this section.

Proposition 1.1 (q-credibility). The q-credibility premium P̂
q
n+1 that solves the

program (3) and that gives the best quadratic estimator of Xn+1 can be expressed

as a function of the empirical mean X̄ of the past values, of the empirical mean

X2 = 1

n

∑n

i=1
X2

i of the past squared values, and of the high-order co-moments

defined in Eqs (4) to (7), as follows:

P̂
q
n+1 = α∗

0,q + zq X̄ + yq X2, (8)

where

α∗
0,q = µ (1− zq)− yq (µ2 + a+ v), (9)

and

zq =
n [a(nc+ h)− b(nb+ g)]

(na+ v)(nc+ h)− (nb+ g)2
, (10)

and

yq =
n(bv − ag)

(na+ v)(nc+ h)− (nb+ g)2
, (11)

where lim
n→+∞

zq(n) = 1 and lim
n→+∞

yq(n) = 0, so where the best estimator in the

presence of infinite experience is simply the empirical mean.

In this proposition, we assume that the denominators of Eqs (10) and (11)

are non-null. Nothing prevents the credibility factor zq to be negative when the

experience is limited, so when n is small. The last two illustrations of the paper will

show situations where this is the case, even when all the structural parameters have

positive estimated values. Indeed, q-credibility theory only provides the outcome

of a least-squares optimization. As long as we do not expect more from the

framework than what it can provide, it is not inconsistent that the best estimator

of a future claim or claim number negatively depends on the empirical mean of

past values, as long as a correction by the empirical mean of past squared values

is applied. Let us now make four important remarks.

Remark 1.2. Similar to the classic estimator P̂n+1, the quadratic estimator P̂ q
n+1

is by construction unbiased. Indeed, we have that E(P̂ q
n+1) = E(Xn+1) from Eq.

(27) in the proof of Proposition 1.1.

Remark 1.3. We note that P̂
q
n+1 can also be written as

P̂
q
n+1 = µ (1− zq) + X̄ zq + yq (X2 − µ2),
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or as

P̂
q
n+1 = µ+ zq (X̄ − µ) + yq (X2 − µ2),

so that q-credibility amounts to correcting credibility premiums by a proportion of

the difference between the empirical and the theoretical non-centered second-order

moments.

Remark 1.4. When b = g = 0, and without imposing any constraint on c or h,

then zq = na
na+v

= z, yq = 0 and α0,q = µ (1 − zq) = µ (1 − z), so we recover the

classic credibility case.

Remark 1.5. It can be easily checked that the solution to Eq. (3) also solves

min
α0,q ,{αi},{βi}

E





[

α0,q +
n
∑

i=1

αiXi +
n
∑

i=1

βiX
2

i − E (Xn+1 | Θ)

]2


 .

To measure the gain reached by going from the credibility to the q-credibility

framework, we derive the following proposition, in the spirit of Neuhaus (1985).

Proposition 1.6 (Mean Square Error). In the q-credibility framework, the mean

square error - or quadratic loss - is equal to

MSEq = E

(

[

P̂
q
n+1 −Xn+1

]2
)

= v + a (1− zq)− yq b. (12)

We also define

MSE′
q = E

(

[

P̂
q
n+1 − E(Xn+1|Θ)

]2
)

= a (1− zq)− yq b.

It is in fact possible to relate MSEc and MSEq as follows.

Remark 1.7. Because the space of the combinations of the {Xi}i=1:n is a subspace

of the combinations of the {Xi}i=1:n and of the {X2
i }i=1:n, which is itself a subpace

of the space of the square integrable random variables, we have the following

Pythagorean result:

E

(

[

Xn+1 − P̂n+1

]2
)

= E

(

[

Xn+1 − P̂ 2

n+1

]2
)

+ E

(

[

P̂n+1 − P̂ 2

n+1

]2
)

,

which expresses that the projection on a subsubspace is the projection on a sub-

space plus the square distance between the two projections. Therefore, we have:

MSEc = MSEq + Var
(

P̂n+1 − P̂ 2

n+1

)

.
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We can also define

∆MSE = MSEc − MSEq = a (zq − z) + b yq.

Note that relative gains will be measured by the quantity:

κ =
∆MSE

MSEc

=
a (zq − z) + b yq

v + a (1− z)
,

or by

κ′ =
∆MSE′

MSE′
c

=
a (zq − z) + b yq

a (1− z)
.

We can make the following additional remarks:

Remark 1.8. The introduction of the βi’s in the optimization program allows us

to reach a smaller quadratic distance between the estimator and Xn+1. Therefore,

we always have MSEq ≤ MSEc.

and

Remark 1.9. When b = g = 0, and without imposing any constraint on c or h,

then MSEq = MSEc.

and also

Remark 1.10. Eqs (9), (10), (11), (2), and (12) are valid in all this text.

Next, we obtain general expressions for the structural parameters.

Proposition 1.11 (Parameters in the general case). We recall that v = E[Var(X|Θ)]

and a = Var[E(X|Θ)] where, ∀i 6= k, Xk and Xi are identically distributed and

can be replaced, when there is no ambiguity, by a representative random variable

X. Further, X2
i and Xk are assumed independent conditionally on Θ. The quan-

tities b, g, c, and h defined in Eqs (4) to (7) can be expressed as functions of Θ

as follows:

b = Cov[E(X2|Θ), E(X|Θ)] = E[E(X2|Θ) E(X|Θ)]− E[E(X2|Θ)]E[E(X|Θ)],

(13)

and

g = E[Cov(X2, X|Θ)] = E[E(X3|Θ)]− E[E(X2|Θ) E(X|Θ)], (14)

and also

c = Var[E(X2|Θ)], (15)
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and

h = E[Var(X2|Θ)] = E[E(X4|Θ)− E(X2|Θ)2]. (16)

2 The Parametric Poisson Case

We now examine a few cases where parametric expressions are postulated for

Θ and for X given Θ. In this context, we first derive expressions for the structural

parameters in the conditional Poisson setting.

Proposition 2.1 (Parameters in the conditional Poisson case). We assume that

X conditional on Θ is Poisson distributed. We recall that µ = v = E(Θ) and

a = Var(Θ) in classic credibility theory. The quantities b, g, c, and h can be

written as functions of the moments of Θ as follows:

b = a+ E(Θ3)− E(Θ2) E(Θ),

and

g = E(Θ) + 2E(Θ2), (17)

and also

c = 2b− a+ Var(Θ2),

and

h = E(Θ) + 6E(Θ2) + 4E(Θ3). (18)

When the distribution of Θ is gamma, q-credibility reduces to standard credi-

bility. Indeed, the classic credibility premium coincides with the Bayesian premium

in the Poisson-gamma case. This means that it is not possible to further reduce

the mean square error and therefore the q-credibility predictor can only be equal

to the classic credibility predictor. We are in a situation of exact q-credibility that

we summarize in the next proposition.

Proposition 2.2 (q-Credibility in the Poisson-gamma case). In the Poisson-

gamma case, q-credibility reduces to classic credibility, with

yq = 0,

zq = z,

and

α0,q = α0 = µ (1− z),
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and the q-credibility predictor, similar to the credibility predictor, is equal to the

Bayesian predictor.

When we assume that the distribution of Θ is Pareto, so when we use E(Θk) =
ηχk

η−k
that is valid as long as η > k, we obtain:

Proposition 2.3 (Parameters in the Pareto case). Let Θ be Pareto-distributed 1

with parameters (η, χ), under the restriction η > 4. In this context, it is already

known that µ = v = ηχ

η−1
and a = ηχ2

η−2
−
(

ηχ

η−1

)2

. The quantities b, g, c, and h can

be written as follows:

b = a+
ηχ3

η − 3
−

(

ηχ2

η − 2

)(

ηχ

η − 1

)

, (19)

and

g =
ηχ

η − 1
+ 2

ηχ2

η − 2
, (20)

and also

c = 2b− a+
ηχ4

η − 4
−

(

ηχ2

η − 2

)2

, (21)

and

h =
ηχ

η − 1
+ 6

ηχ2

η − 2
+ 4

ηχ3

η − 3
. (22)

We now construct an example where the parameters of the Pareto distribution

are η = 5 and χ = 4 and we assume that 5 claims have been observed in the past

n = 2 years. In this example, the average number of observations is X̄ = 5

2
= 2.5.

To compute the quantity X2, we need to know how the 5 claims were dis-

tributed between the 2 years. There are three possible scenarios: 3 claims in

one year and 2 claims in the other year, 4 claims in one year and 1 claim in the

other year, and 5 claims in one year and 0 claim in the other year. The order

in which the numbers of claims are observed is not relevant. In the first case,

X2 = 32+22

2
= 6.5. In the second case, X2 = 42+12

2
= 8.5. Finally, in the third

case, X2 = 52+02

2
= 12.5.

According to the classic credibility theory,

µ = v = 5,

1. We use the following density for the Pareto distribution:

fΘ(x) =
η χη

xη+1
1x>χ.
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and

a =
5

3
.

Therefore,

k =
v

a
= 3,

and

z =
n

n+ k
=

2

2 + 3
=

2

5
.

The expected number of claims for the coming period is given by

P̂ = z X̄ + (1− z) µ =
2

5

5

2
+

3

5
5 = 4.

Not surprisingly, this value is comprised between the empirical mean X̄ = 2.5

and the theoretical mean µ = 5. The mean square error is in the classic setting:

MSE′
c = 1.

To compute the q-credibility estimator, we start by computing Eqs (19) to

(22). We obtain:

g =
175

3
≈ 58.33, b =

85

3
≈ 28.33, c =

5615

9
≈ 623.88, h = 805.

Then, we have:

zq =
11

131
≈ 0.083969,

and

yq =
3

131
≈ 0.022901,

so,

α∗
0,q =

505

131
≈ 3.85496.

In Table 1, we show P̂q = α∗
0,q + zq X̄ + yq X2 for each of the three possible

scenarios for X2.

Number of claims distrib. (3,2) (4,1) (5,0)

X2 6.5 8.5 12.5

P̂q 4.2137 4.2595 4.3511

Table 1 – q-Credibility Estimates
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We observe from the table that the more the number of claims is irregular with

years, the greater X2 and the greater the correction to classic credibility theory

made by q-credibility. Also note that the repartition of claims along years, ceteris

paribus, is a feature that cannot be taken into account by classic credibility theory

while quadratic credibility measures this effect in the premiums it produces. How-

ever, although q-credibility can capture irregularities, it cannot capture trends.

The mean square error is in the quadratic setting:

MSE′
q =

115

131
≈ 0.8779.

Therefore, the following relative reduction in the error is observed in this ex-

periment:

κ′ =
16

131
≈ 12.21%.

Let us now examine what q-credibility means in a semi-parametric case.

3 The Semi-Parametric Case

The semi-parametric approach to credibility corresponds to a situation where

the distribution of a number of claims X conditionally on Θ is known. However,

neither the distribution of Θ nor the unconditional distribution of X are known.

Assume we observed M insured during a particular year. During that year,

Xi is the number of insureds for which i claims occurred. We can estimate the

average number of claims as follows:

µ̂ =
+∞
∑

i=0

i
Xi

+∞
∑

j=0

Xj

=
1

M

+∞
∑

i=0

i Xi,

where we note that M =
+∞
∑

j=0

Xj.

Because we are in a conditional Poisson setting, we readily have:

v = µ

by taking the expectation of

Θ = E(X|Θ) = Var(X|Θ).
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Using the unbiased estimator of the variance of X, which is equal to â+ v̂, we

can write the classic formula for the estimator of a:

â =

+∞
∑

i=0

(i− µ̂)2 Xi

+∞
∑

i=0

Xi − 1

− v̂ =
1

M − 1

+∞
∑

i=0

(i− µ̂)2 Xi − v̂.

The next proposition gives the q-credibility semi-parametric estimators.

Proposition 3.1 (Semi-parametric estimators). Under the conditional Poisson

assumption, we have:

ĝ =
1

M

+∞
∑

i=0

(2i2 − i) Xi,

and

b̂ =
1

M − 1

+∞
∑

i=0

(

i2 −
1

M

+∞
∑

j=0

j2 Xj

)(

i−
1

M

+∞
∑

j=0

j Xj

)

Xi − ĝ,

and also

ĥ =
1

M

+∞
∑

i=0

(4i3 − 6i2 + 3i) Xi,

and

ĉ =
1

M − 1

+∞
∑

i=0

(

i2 −
1

M

+∞
∑

j=0

j2Xj

)2

Xi − ĥ.

Let us now come to an illustration of these results. Assume we observed the

data given in Table 2. This table expresses that 560 insureds incurred no claim

in the past period, 134 insureds incurred one claim in the past period, and so on.

We want to compute the expected future number of claims for an insured who

incurred i claims in the past period.

i 0 1 2 3
Xi 560 134 14 2

Table 2 – Dataset

In this example, no insured incurred more that three claims. We have:

M =
3
∑

i=0

Xi = 710.

12



We can compute

µ̂ = v̂ = 0.2366, â = 0.0006834,

Using the classic credibility formulas (for n = 1 year of observations), we have:

k =
v̂

â
= 346.26, z =

1

1 + k
= 0.0029.

According to classic credibility theory, we can compute the expected future

number of claims for an insured who incurred i claims as follows:

P̂ (i) = z i+ (1− z) µ̂ 0 ≤ i ≤ 3,

which yields

P̂ = [0.2359 0.2388 0.2417 0.2446],

where the observation and prediction periods are of the same length.

We now compute the q-credibility estimators given in Proposition 3.1. We

obtain

b̂ = 0.0044, ĝ = 0.3493, ĉ = 0.0052, ĥ = 0.6423.

Then, we have, using Eqs (9) to (11):

zq = −0.0393, yq = 0.0283, α∗
0,q = 0.2376.

Based on Eq. (8), we compute

P̂q(i) = α∗
0,q + zq i+ yq i2 0 ≤ i ≤ 3,

because i and i2 represent the first- and second-order empirical non-centered mo-

ments over one period for each line of the dataset considered. We obtain the

q-credibility estimates

P̂q = [0.2376 0.2266 0.2722 0.3743].

Using the formulas of Proposition 1.6, we find that the mean square error is in

the classic setting:

MSE′
c = 0.000681,
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while we have in the quadratic setting:

MSE′
q = 0.000585.

Therefore, the following relative reduction in the error is observed in this ex-

periment:

κ′ = 14.1%.

Note that the illustration of the semi-parametric case that we conduct here,

where we compare the quadratic situation to the classic situation well-known of

SOA and CAS actuaries (see for instance the book of Klugman et al. (2012)) is not

devoid of drawbacks. For instance, the grouping of policies per number of claims

measured per year may lead to the construction of inconsistent classes. We leave to

another publication the development of other illustrations of the semi-parametric

framework.

4 The Non-Parametric Case

We first give the main results obtained in a non-parametric setting for the

structural parameters and then we provide an illustration of these results.

In classic credibility theory, the estimator of expected hypothetical means is

µ̂ =
1

rn

r
∑

i=1

n
∑

j=1

Xij ,

where the claims Xij are doubly indexed to reflect the fact that we now consider

r policyholders over n periods. The estimator of expected process variance is

v̂ =
1

r(n− 1)

r
∑

i=1

n
∑

j=1

(Xij − X̄i)
2,

where X̄i = 1

n

n
∑

j=1

Xij is the empirical mean of past observations for insured i.

Then, the estimator of the variance of hypothetical means is

â =
1

r − 1

r
∑

i=1

(X̄i − X̄)2 −
v̂

n
,

where X̄ is the empirical mean of past observations for all insureds, which is equal

to µ̂. We obtain similar estimators for q-credibility parameters in the following
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proposition.

Proposition 4.1 (Non-parametric estimators). The non-parametric estimators

for the quantities h, c, g, and b are given as follows.

ĥ =
1

r(n− 1)

r
∑

i=1

n
∑

j=1

(

X2

ij −X2
i

)2

, (23)

where X2
i = 1

n

n
∑

j=1

X2
ij is the empirical mean of past squared observations for a

given insured i. Then,

ĉ =
1

r − 1

r
∑

i=1

(

X2
i −X2

)2

−
ĥ

n
, (24)

where

X2 =
1

rn

r
∑

i=1

n
∑

j=1

X2

ij

is the empirical mean of past squared observations for all insureds. Next,

ĝ =
1

r(n− 1)

r
∑

i=1

n
∑

j=1

(X2

ij −X2
i )(Xij − X̄i), (25)

and

b̂ =
1

r − 1

r
∑

i=1

(X2
i −X2)(X̄i − X̄)−

ĝ

n
. (26)

Let us now study the use of these estimators via a simple example. Assume

r = n = 3 and we have the following data:







1 2 6

X = 1 10 13

1 1 1






,

where each line is for one insured and gives three consecutive numbers of observa-

tions.

We compute
(

X̄1 = 3, X̄2 = 8, X̄3 = 1
)

and µ̂ = X̄ = 4. Then, according to

classic credibility theory, v̂ = 46

3
and â = 71

9
. We deduce k = 138

71
and z = 3

3+k
=

213

351
.

The expected number of claims in the next period for the first insured is,
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according to classic credibility theory,

P̂1 = z X̄1 + (1− z) µ =
1, 191

351
≈ 3.3932.

Similarly, we have for the second insured:

P̂2 = z X̄2 + (1− z) µ =
2, 256

351
≈ 6.4274,

and for the third insured:

P̂3 = z X̄3 + (1− z) µ =
765

351
≈ 2.1795.

Next, we turn to the q-credibility approach. For simplicity, we denote X2 =

X ◦X the element-wise product of X with itself. We have:







1 4 36

X
2 = 1 100 169

1 1 1






.

Therefore,
(

X2
1 = 41

3
, X2

2 = 90, X2
3 = 1

)

and X2 = 314

9
. The q-credibility pa-

rameters are estimated using Eqs (23) to (26). We obtain

ĥ =
22, 522

9
, ĉ =

13, 355

9
, ĝ = 190, b̂ =

325

3
.

Then, we have, using Eqs (9) to (11):

zq = −
18, 862

40, 401
, yq =

365

4, 489
, α∗

0,q =
12, 023

4, 489
.

The expected number of claims in the next period for the first insured is,

according to q-credibility theory,

P̂q,1 = α∗
0,q + zq X̄1 + yq X2

1 =
10, 724

4, 489
≈ 2.3890.

Similarly, we have for the second insured:

P̂q,2 = α∗
0,q + zq X̄2 + yq X2

2 =
252, 961

40, 401
≈ 6.2613,

16



and for the third insured:

P̂q,3 = α∗
0,q + zq X̄3 + yq X2

3 =
92, 630

40, 401
≈ 2.2928.

The relative changes
(

P̂q,i−P̂i

P̂i

)

i=1:3

induced by the quadratic correction are

respectively −29.6%, −2.58%, and 5.2%. They are not negligible and can be of

any sign.

In the classic setting, we find that the mean square error is

MSE′
c = 3.1016,

while in the quadratic setting we have:

MSE′
q = 2.7634.

Therefore, the following relative reduction in the error observed in this exper-

iment is

κ′ = 10.9%.

Conclusion

In this article, we have examined the effect of adding a quadratic correction

to credibility theory. We have shown how the parametric, semi-parametric and

non-parametric settings can be extended to incorporate this correction. The three

settings have been illustrated and we have found a decent decrease of about 10%

in the mean square error in each case.

At this stage, three types of extensions could be devised. First, it could be pos-

sible to conduct a study on exact q-credibility by introducing quadratic exponential

functions, so by enlarging the linex paradigm. Then, for all of our analysis, we

have considered uniform exposures: it could be interesting to develop q-credibility

in a non-uniform setting in a distinct paper. Finally, adding parameters in a

system does not go without increasing the uncertainty of this system. It could

be interesting to examine in a further study the tradeoff between the precision

added by moving to q-credibility and the cost of estimating an increased number

of structural parameters. For this purpose, simulations could be conducted and

the comparison of training and test MSEs could be performed (see, e.g., James et

alii (2017)).

17



Acknowledgments and a final remark

The author wishes to thank referees and Daniel Bauer, Michel Dacorogna,

Abdou Kelani, Zinoviy Landsman, Ragnar Norberg, Li Shen, and Xia Xu for

their insightful comments. The proof of the first proposition of this article is

long on purpose, to show to a broad readership how the q-credibility estimator is

constructed. It is of course possible to derive an existence and uniqueness result in

a shorter way, using a Hilbert space Pythagorean lemma as in Remark 1.7 dealing

with the mean square error.

References

Bailey, A. (1945): “A Generalized Theory of Credibility,” Proceedings of the

Casualty Actuarial Society, 37, 13–20.

(1950): “Credibility Procedures,” Proceedings of the Casualty Actuarial

Society, 37, 7–23, 94–115.

Bühlmann, H. (1967): “Experience Rating and Credibility,” ASTIN Bulletin,

4(3), 199–207.

(1970): Mathematical Methods in Risk Theory. Springer, Berlin.

Bühlmann, H., and A. Gisler (2005): A Course in Credibility Theory and its

Applications. Universitext, Springer, Berlin.

Bühlmann, H., and E. Straub (1970): “Glaubwürdigkeit für Schadensätze

(Credibility for Loss Ratios),” Mitteilungen der Vereiningun Schweizerischer

Versicherungs - Mathematiker, 70, 111–133.

De Vylder, F. (1978): “Parameter Estimation in Credibility Theory,” ASTIN

Bulletin, 10, 99–112.

(1985): “Non-Linear Regression in Credibility Theory,” Insurance: Math-

ematics and Economics, 4, 163–172.

Hachemeister, C. A. (1975): “Credibility for Regression Models with Applica-

tion to Trend,” in Credibility: Theory and Applications, ed. by P. M. Kahn, pp.

129–169. Academic Press, New York.

Herzog, T. N. (1999): Credibility Theory. ACTEX Publications, Third Edition.

Hong, L., and R. Martin (2017): “A Flexible Bayesian Nonparametric Model

for Predicting Future Insurance Claims,” North American Actuarial Journal,

21(2), 228–241.

18



James, G., D. Witten, T. Hastie, and R. Tibshirani (2017): An Introduc-

tion to Statistical Learning with Applications in R. Springer.

Klugman, S. A., H. H. Panjer, and G. E. Willmot (2012): Loss Models.

From Data to Decisions. Wiley, Fourth Edition.

Lai, T. L. (2012): “Credit Portfolios, Credibility Theory, and Dynamic Empirical

Bayes,” International Scholarly Research Network: Probability and Statistics.

Longley-Cook, L. (1962): “An Introduction to Credibility Theory,” Proceedings

of the Casualty Actuarial Society, 49, 194–221.

Mayerson, A. L. (1964): “The Uses of Credibility in Property Insurance

Ratemaking,” Giornale dell’Istituto Italiano degli Attuari, 27, 197–218.

Mowbray, A. H. (1914): “How Extensive a Payroll Exposure Is Necessary to

Give a Dependable Pure Premium,” Proceedings of the Casualty Actuarial So-

ciety, 1, 24–30.

Neuhaus, W. (1985): “Choice of Statistics in Linear Bayes Estimation,” Scandi-

navian Actuarial Journal, pp. 1–26.

Norberg, R. (1979): “The Credibility Approach to Ratemaking,” Scandinavian

Actuarial Journal, pp. 181–221.

(1982): “On Optimal Parameter Estimation in Credibility,” Insurance:

Mathematics and Economics, 1, 73–89.

(2015): “Credibility Theory,” Wiley StatsRef: Statistics Reference Online.

Shiu, E. S., and F. Y. Sing (2004): “Credibility Theory and Geometry,” Journal

of Actuarial Practice, 11, 197–216.

Taylor, G. C. (1977): “Abstract Credibility,” Scandinavian Actuarial Journal,

pp. 149–168.

Weishaus, A. (2015): ASM Study Manual Exam C/Exam 4, 17th Edition. Actex

Publications.

Whitney, A. W. (1918): “The Theory of Experience Rating,” Proceedings of the

Casualty Actuarial Society, 4, 274–292.

Zehnwirth, B. (1977): “The Mean Credibility Formula Is a Bayes Rule,” Scan-

dinavian Actuarial Journal, pp. 212–216.

19



Appendix

Proof of Proposition 1.1

The goal is to minimize the Mean Square Error function:

f = E





[

α0,q +
n
∑

i=1

αiXi +
n
∑

i=1

βiX
2

i −Xn+1

]2


 .

We first set the derivative of f with respect to α0,q equal to 0:

∂f

∂α0,q

= 0 = 2 · E

(

α∗
0,q +

n
∑

i=1

α∗
iXi +

n
∑

i=1

β∗
i X

2

i −Xn+1

)

, (27)

and we obtain

α∗
0,q +

n
∑

i=1

α∗
iE(Xi) +

n
∑

i=1

β∗
i E(X2

i ) = E(Xn+1). (28)

Then, we set the derivative of f with respect to each αk equal to 0:

∂f

∂αk

= 0 = 2 · E

(

Xk

[

α∗
0,q +

n
∑

i=1

α∗
iXi +

n
∑

i=1

β∗
i X

2

i −Xn+1

])

, ∀k = 1 : n,

and we obtain

α∗
0,qE(Xk) +

n
∑

i=1

α∗
iE(XiXk) +

n
∑

i=1

β∗
i E(X2

i Xk) = E(Xn+1Xk), ∀k = 1 : n.

(29)

Subtracting E(Xk) times Eq. (28) from Eq. (29), we have:

n
∑

i=1

α∗
i [E(XiXk)− E(Xi)E(Xk)] +

n
∑

i=1

β∗
i

[

E(X2

i Xk)− E(X2

i )E(Xk)
]

= E(Xn+1Xk)− E(Xn+1)E(Xk), ∀k = 1 : n,

or

n
∑

i=1

α∗
i Cov(Xi, Xk)+

n
∑

i=1

β∗
i Cov(X2

i , Xk) = Cov(Xn+1, Xk), ∀k = 1 : n. (30)
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Finally, we set the derivative of f with respect to each βk equal to 0:

∂f

∂βk

= 0 = 2 · E

(

X2

k

[

α∗
0,q +

n
∑

i=1

α∗
iXi +

n
∑

i=1

β∗
i X

2

i −Xn+1

])

, ∀k = 1 : n,

and we obtain

α∗
0,qE(X2

k) +
n
∑

i=1

α∗
iE(XiX

2

k) +
n
∑

i=1

β∗
i E(X2

i X
2

k) = E(Xn+1X
2

k), ∀k = 1 : n.

(31)

Subtracting E(X2
k) times Eq. (28) from Eq. (31), we have:

n
∑

i=1

α∗
i

[

E(XiX
2

k)− E(Xi)E(X2

k)
]

+
n
∑

i=1

β∗
i

[

E(X2

i X
2

k)− E(X2

i )E(X2

k)
]

= E(Xn+1X
2

k)− E(Xn+1)E(X2

k), ∀k = 1 : n,

or

n
∑

i=1

α∗
i Cov(Xi, X

2

k) +
n
∑

i=1

β∗
i Cov(X2

i , X
2

k) = Cov(Xn+1, X
2

k), ∀k = 1 : n.

(32)

Recall that the Xi’s are assumed identically distributed. Therefore, the index

‘i’ does not play any role and we have: ∀i = 1 : n, α∗
i = α∗ and ∀i = 1 : n, β∗

i = β∗.

Then, Eqs (30) and (32) become

α∗(na+ v) + β∗(nb+ g) = a, (33)

and

α∗(nb+ g) + β∗(nc+ h) = b. (34)

Solving Eqs (33) and (34), we obtain

α∗ =
a(nc+ h)− b(nb+ g)

(na+ v)(nc+ h)− (nb+ g)2
,

and

β∗ =
bv − ag

(na+ v)(nc+ h)− (nb+ g)2
.

Next, Eq. (28) can be rewritten as follows:

α∗
0,q + nα∗µ+ nβ∗(µ2 + a+ v) = µ.
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because

E
(

X2

i

)

= E (Xi)
2 + Var(Xi) = µ2 + a+ v

thanks to Eq. (1).

Introducing

zq = nα∗,

and

yq = nβ∗,

we obtain

α∗
0,q = µ(1− zq)− yq(µ

2 + a+ v).

These are Eqs (9) to (11). Then, we want to estimate Xn+1 using the past

realizations {X̂i}i=1:n of the {Xi}i=1:n. Using

α∗
0,q +

n
∑

i=1

α∗
i X̂i +

n
∑

i=1

β∗
i X̂

2
i

that we rewrite as

α∗
0,q + nα∗

n
∑

i=1

X̂i

n
+ nβ∗

n
∑

i=1

X̂2
i

n
,

we obtain Eq. (8).

Proof of Proposition 1.6

We need to compute

MSEq = E

(

[

P̂
q
n+1 −Xn+1

]2
)

= Var
(

P̂
q
n+1 −Xn+1

)

or

MSEq = Var
(

P̂
q
n+1

)

+ Var (Xn+1)− 2 Covar
(

P̂
q
n+1, Xn+1

)

.

We already know that

Var (Xn+1) = v + a

and we compute

Var
(

P̂
q
n+1

)

= z2q Var
(

X
)

+ y2q Var
(

X2

)

+ 2 zq yq Covar
(

X,X2

)

.
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Elementary computations yield

Var
(

X
)

= a+
v

n
,

Var
(

X2

)

= c+
h

n
,

and

Covar
(

X,X2

)

= b+
g

n
,

so that

Var
(

P̂
q
n+1

)

= z2q

(

a+
v

n

)

+ y2q

(

c+
h

n

)

+ 2 zq yq

(

b+
g

n

)

.

Because Eqs (33) and (34) can be rewritten as follows:

zq

(

a+
v

n

)

+ yq (b+
g

n
) = a

and

zq

(

b+
g

n

)

+ yq (c+
h

n
) = b,

we have:

Var
(

P̂
q
n+1

)

= zq a+ yq b.

Finally, we can compute:

Covar
(

P̂
q
n+1, Xn+1

)

= Covar
(

zq X + yq X2, Xn+1

)

= zq a+ yq b.

Recombining the above results, we obtain the result of the proposition.

Proof of Proposition 1.11

For X 6= Y ,

b = Cov(X2, Y ) = E[Cov(X2, Y |Θ)] + Cov[E(X2|Θ), E(Y |Θ)].

Then, by conditional independence of X2 and Y ,

b = Cov[E(X2|Θ), E(Y |Θ)] = E[E(X2|Θ) E(Y |Θ)]− E[E(X2|Θ)]E[E(Y |Θ)],
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and then, because X and Y are identically distributed,

b = Cov[E(X2|Θ), E(X|Θ)] = E[E(X2|Θ) E(X|Θ)]− E[E(X2|Θ)]E[E(X|Θ)].

In

Cov(X2, X) = E[Cov(X2, X|Θ)] + Cov[E(X2|Θ), E(X|Θ)],

we can identify

g = E[Cov(X2, X|Θ)] = E[E(X3|Θ)]− E[E(X2|Θ) E(X|Θ)].

The derivation of the expressions of c and h is similar to that of a and v,

replacing X by X2.

Proof of Proposition 2.1

We use the fact that E(X|Θ) = Θ, E(X2|Θ) = Θ+Θ2, E(X3|Θ) = Θ+3Θ2+

Θ3, and E(X4|Θ) = Θ + 7Θ2 + 6Θ3 +Θ4. Note that

b = E[E(X2|Θ) E(X|Θ)]−E[E(X2|Θ)]E[E(X|Θ)] = E[(Θ+Θ2) Θ]−E(Θ+Θ2)E(Θ),

and

b = E(Θ2) + E(Θ3)− E(Θ)2 − E(Θ2)E(Θ) = Var(Θ) + E(Θ3)− E(Θ2) E(Θ).

Then, we use

g = E[E(X3|Θ)]− E[E(X2|Θ) E(X|Θ)] = E(Θ + 3Θ2 +Θ3)− E((Θ + Θ2)Θ).

Next, we have:

c = Var[E(X2|Θ)] = Var(Θ + Θ2) = Var(Θ) + Var(Θ2) + 2 Cov(Θ,Θ2),

and

c = Var(Θ)+Var(Θ2)+2
[

E(Θ3)− E(Θ2) E(Θ)
]

= b+Var(Θ2)+E(Θ3)−E(Θ2) E(Θ),

and finally

h = E[E(X4|Θ)− E(X2|Θ)2] = E(Θ + 7Θ2 + 6Θ3 +Θ4 − (Θ + Θ2)2).
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Proof of Proposition 2.2

Because

bv − ag = χgv − ag = g(χv − a) = g(χ2η − χ2η) = 0

we have from Eq. (11) that yq = 0. A few lines of computation give zq =
nχ

nχ+1
= z.

The expression of α0,q follows.

Proof of Proposition 3.1

We have:

E(X) = E(E(X|Θ)) = E(Θ)

Then,

Var(X) = E(X2)− E(X)2 = E(Var(X|Θ)) + Var(E(X|Θ)) = E(Θ) + Var(Θ)

yields

E(X2)− E(X)2 = E(Θ) + E(Θ2)− E(Θ)2

so that

E(Θ2) = E(X2)− E(X). (35)

Using similar arguments, we obtain:

E(Θ3) = E(X3)− 3E(X2) + 2E(X). (36)

Replacing Eqs (35) and (36) in Eqs (17) and (18) and then taking the unbiased

estimates of the non-centered moments gives the expressions of ĝ and ĥ. For the

computation of b̂, we recall that

b+ g = Cov(X2, X),

and we take the unbiased estimator of this covariance term. Similarly for the

computation of ĉ, we have:

c+ h = Var(X2),

and we take the unbiased estimate of this variance term.
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Proof of Proposition 4.1

The estimators ĥ and ĉ can be derived in the same way as v̂ and â, replacing

observations by squared observations. From Proposition 1.11, we have:

g = E[Cov(X2, X|Θ)],

The inner sum in Eq. (25) is obtained by taking the unbiased estimator of the

covariance in the above formula for g. Then, the outer sum in (25) is derived using

the unbiased estimator of the mean in the expression of g. Next, to compute b̂,

we start by computing

Cov
(

X2
i , Xi

)

= Cov
(

E(X2

i,j|Θi), E(Xi,j|Θi)
)

+
1

n
E
(

Cov
(

X2

i,j , Xi,j|Θi

))

where we have used the conditional independence of X2
i,k and Xi,j knowing Θi.

Then, we recognize in the above formula:

Cov
(

X2
i , Xi

)

= b̂+
ĝ

n

and the expression of b̂ follows by computing the unbiased estimator of Cov
(

X2
i , Xi

)

.

26


	Main Results
	The Parametric Poisson Case
	The Semi-Parametric Case
	The Non-Parametric Case
	Bibliography

