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Introduction

The origins of credibility theory can be traced back to the papers of [START_REF] Mowbray | How Extensive a Payroll Exposure Is Necessary to Give a Dependable Pure Premium[END_REF], [START_REF] Whitney | The Theory of Experience Rating[END_REF], [START_REF] Bailey | A Generalized Theory of Credibility[END_REF][START_REF] Bailey | A Generalized Theory of Credibility[END_REF], [START_REF] Longley-Cook | An Introduction to Credibility Theory[END_REF], and [START_REF] Mayerson | The Uses of Credibility in Property Insurance Ratemaking[END_REF]. The core of the theory, as it is known today, is developed in [START_REF] Bühlmann | Experience Rating and Credibility[END_REF] and in [START_REF] Bühlmann | Glaubwürdigkeit für Schadensätze (Credibility for Loss Ratios)[END_REF]. See also [START_REF] Hachemeister | Credibility for Regression Models with Application to Trend[END_REF] for the link with regressions, [START_REF] Zehnwirth | The Mean Credibility Formula Is a Bayes Rule[END_REF] for the link with Bayesian analysis, and [START_REF] Norberg | The Credibility Approach to Ratemaking[END_REF] for the application to ratemaking. General presentations of the theory can be found for instance in [START_REF] Bühlmann | Experience Rating and Credibility[END_REF], [START_REF] Herzog | Credibility Theory[END_REF], [START_REF] Klugman | Loss Models. From Data to Decisions[END_REF], [START_REF] Weishaus | ASM Study Manual Exam C/Exam 4[END_REF], and Norberg (2015). See also the recent broad survey paper by [START_REF] Lai | Credit Portfolios, Credibility Theory, and Dynamic Empirical Bayes[END_REF].

In this paper, we construct a quadratic credibility framework where premiums are estimated based on the values of past observations and of past squared observations. In Chapter 7 of [START_REF] Bühlmann | A Course in Credibility Theory and its Applications[END_REF], it is already mentioned -however without further developments -that credibility estimators are not theoretically restricted to be linear in the observations and that the squares of observations could be used in credibility theory. This paper can be viewed as a first contribution to this research program. See also Chapter 4 of [START_REF] Bühlmann | A Course in Credibility Theory and its Applications[END_REF] where a maximum likelihood estimator is computed using a logarithmic transformation of the observations, but note that the latter application more provides an appropriate trick for dealing with the Pareto distribution than a non-linear framework per se.

We fully compute non-linear, quadratic, credibility estimators in situations that range from parametric to non-parametric settings. The framework that is developed can be useful for the modeler who explicitly wants to deviate from a linear framework and to take into account higher order (cross) moments. For instance, our framework uses the explicit values of the covariance between observations and squared observations, and also the covariance between squared observations. For each of the parametric, non-parametric, and semi-parametric settings explored in this paper, we give illustrations of the reduction of the mean square error gained by going from the classic to the quadratic credibility approach. See [START_REF] Neuhaus | Choice of Statistics in Linear Bayes Estimation[END_REF] for general results on errors in credibility theory. Note that Norberg (1982), extending De Vylder (1978), uses high order moments and cross moments but in a different context: for the statistical estimation of classic structural parameters. See De Vylder (1985) for a reference on non-linear (in particular exponential) regressions in credibility theory and [START_REF] Hong | A Flexible Bayesian Nonparametric Model for Predicting Future Insurance Claims[END_REF] for a flexible non parametric Bayesian approach. See also [START_REF] Taylor | Abstract Credibility[END_REF] who proposes a Hilbert approach to credibility theory, derives results on sufficient statistics, and constructs an example with non-linear but unbiased statistics of the observations. In the present paper, unbiasedness is obtained by construction. For more details about the Hilbert space approach, see [START_REF] Shiu | Credibility Theory and Geometry[END_REF].

The paper is organized as follows. The first section develops a parametric quadratic credibility, or q-credibility, approach and provides illustrations of this approach in the Poisson-gamma and Poisson-Pareto settings. Building on the results of the first section, the second section derives a non-parametric approach and the third section concentrates on a semi-parametric approach where the conditional distribution is assumed to be of the Poisson type.

Main Results

We consider n random variables {X i } i=1:n that are identically distributed and independent conditionally on a random variable Θ that represents the uncertainty of the system or the parameters of each of the {X i } i=1:n . Note that the random variables {X i } i=1:n are not necessarily i.i.d. in full generality. Furthermore, for any strictly positive integer m, we define

µ m = E(E(X m |Θ)) and v m = E(Var(X m |Θ)),
and for simplicity we also denote µ = µ 1 and v = v 1 . Then, we define

a = Var(µ(Θ)),
where µ(Θ) = E(X|Θ), and we have:

Cov(X i , X k ) = a, ∀i = k, and Cov(X i , X i ) = Var(X i ) = a + v. ( 1 
)
Classic credibility is a method that solves the following program:

min α 0 ,{α i } i=1:n E   α 0 + n i=1 α i X i -X n+1 2  
to estimate the future outcome X n+1 of a quantity X by using past realizations {X i } i=1:n of this quantity. The solution of this program produces the following estimator of X n+1 :

Pn+1 = µ (1 -z) + z X, where X = 1 n n i=1 X i and z = na na + v .
Also note that the mean square error in classic credibility theory is given by

MSE c = E Pn+1 -X n+1 2 = v + a (1 -z). (2) 
It is also possible to define

MSE ′ c = E Pn+1 -E(X n+1 |Θ) 2 = a (1 -z).
In this paper, we introduce q-credibility as a method to estimate the future outcome X n+1 of a quantity X by using the past realizations {X i } i=1:n of this quantity but also the past realizations {X 2 i } i=1:n of the square of this quantity and by performing a least-squares optimization. Therefore, our goal is to solve the following extended program:

min α 0,q ,{α i } i=1:n ,{β i } i=1:n E   α 0,q + n i=1 α i X i + n i=1 β i X 2 i -X n+1 2   . (3) 
For this purpose, we first introduce four new structural parameters b, g, c, and h, defined as follows:

Cov(X 2 i , X k ) = b, ∀i = k, (4) and Cov(X 2 i , X i ) = b + g, (5) 
and also Cov(

X 2 i , X 2 k ) = c, ∀i = k, (6) and Cov(X 2 i , X 2 i ) = Var(X 2 i ) = c + h. (7) 
We can easily check that b = Cov(E(X 2 |Θ), E(X|Θ)), g = E(Cov(X 2 , X|Θ)), c = Var(E(X 2 |Θ)), and h = E(Var(X 2 |Θ)). We can now state the main result of this section.

Proposition 1.1 (q-credibility). The q-credibility premium P q n+1 that solves the program (3) and that gives the best quadratic estimator of X n+1 can be expressed as a function of the empirical mean X of the past values, of the empirical mean

X 2 = 1 n n i=1 X 2
i of the past squared values, and of the high-order co-moments defined in Eqs (4) to (7), as follows:

P q n+1 = α * 0,q + z q X + y q X 2 , ( 8 
)
where α * 0,q = µ (1 -z q ) -y q (µ 2 + a + v), (9) 
and

z q = n [a(nc + h) -b(nb + g)] (na + v)(nc + h) -(nb + g) 2 , ( 10 
)
and

y q = n(bv -ag) (na + v)(nc + h) -(nb + g) 2 , ( 11 
)
where lim n→+∞ z q (n) = 1 and lim n→+∞ y q (n) = 0, so where the best estimator in the presence of infinite experience is simply the empirical mean.

In this proposition, we assume that the denominators of Eqs (10) and ( 11) are non-null. Nothing prevents the credibility factor z q to be negative when the experience is limited, so when n is small. The last two illustrations of the paper will show situations where this is the case, even when all the structural parameters have positive estimated values. Indeed, q-credibility theory only provides the outcome of a least-squares optimization. As long as we do not expect more from the framework than what it can provide, it is not inconsistent that the best estimator of a future claim or claim number negatively depends on the empirical mean of past values, as long as a correction by the empirical mean of past squared values is applied. Let us now make four important remarks.

Remark 1.2. Similar to the classic estimator Pn+1 , the quadratic estimator P q n+1 is by construction unbiased. Indeed, we have that E( P q n+1 ) = E(X n+1 ) from Eq. ( 27) in the proof of Proposition 1.1.

Remark 1.3. We note that P q n+1 can also be written as

P q n+1 = µ (1 -z q ) + X z q + y q (X 2 -µ 2 ),
or as

P q n+1 = µ + z q ( X -µ) + y q (X 2 -µ 2 ),
so that q-credibility amounts to correcting credibility premiums by a proportion of the difference between the empirical and the theoretical non-centered second-order moments.

Remark 1.4. When b = g = 0, and without imposing any constraint on c or h, then z q = na na+v = z, y q = 0 and α 0,q = µ (1z q ) = µ (1z), so we recover the classic credibility case.

Remark 1.5. It can be easily checked that the solution to Eq. ( 3) also solves

min α 0,q ,{α i },{β i } E   α 0,q + n i=1 α i X i + n i=1 β i X 2 i -E (X n+1 | Θ) 2   .
To measure the gain reached by going from the credibility to the q-credibility framework, we derive the following proposition, in the spirit of [START_REF] Neuhaus | Choice of Statistics in Linear Bayes Estimation[END_REF].

Proposition 1.6 (Mean Square Error). In the q-credibility framework, the mean square error -or quadratic loss -is equal to

MSE q = E P q n+1 -X n+1 2 = v + a (1 -z q ) -y q b. ( 12 
)
We also define

MSE ′ q = E P q n+1 -E(X n+1 |Θ) 2 = a (1 -z q ) -y q b.
It is in fact possible to relate MSE c and MSE q as follows.

Remark 1.7. Because the space of the combinations of the {X i } i=1:n is a subspace of the combinations of the {X i } i=1:n and of the {X 2 i } i=1:n , which is itself a subpace of the space of the square integrable random variables, we have the following Pythagorean result:

E X n+1 -Pn+1 2 = E X n+1 -P 2 n+1 2 + E Pn+1 -P 2 n+1 2 ,
which expresses that the projection on a subsubspace is the projection on a subspace plus the square distance between the two projections. Therefore, we have:

MSE c = MSE q + Var Pn+1 -P 2 n+1 .
We can also define

∆MSE = MSE c -MSE q = a (z q -z) + b y q .
Note that relative gains will be measured by the quantity:

κ = ∆MSE MSE c = a (z q -z) + b y q v + a (1 -z) ,
or by

κ ′ = ∆MSE ′ MSE ′ c = a (z q -z) + b y q a (1 -z) .
We can make the following additional remarks:

Remark 1.8. The introduction of the β i 's in the optimization program allows us to reach a smaller quadratic distance between the estimator and X n+1 . Therefore, we always have MSE q ≤ MSE c . and Remark 1.9. When b = g = 0, and without imposing any constraint on c or h, then MSE q = MSE c . and also

Remark 1.10. Eqs ( 9), ( 10), ( 11), (2), and ( 12) are valid in all this text.

Next, we obtain general expressions for the structural parameters.

Proposition 1.11 (Parameters in the general case). We recall that v = E[Var(X|Θ)] and a = Var[E(X|Θ)] where, ∀i = k, X k and X i are identically distributed and can be replaced, when there is no ambiguity, by a representative random variable X. Further, X 2 i and X k are assumed independent conditionally on Θ. The quantities b, g, c, and h defined in Eqs (4) to (7) can be expressed as functions of Θ as follows:

b = Cov[E(X 2 |Θ), E(X|Θ)] = E[E(X 2 |Θ) E(X|Θ)] -E[E(X 2 |Θ)]E[E(X|Θ)],
(13)

and g = E[Cov(X 2 , X|Θ)] = E[E(X 3 |Θ)] -E[E(X 2 |Θ) E(X|Θ)], (14) 
and also

c = Var[E(X 2 |Θ)], (15) 
and

h = E[Var(X 2 |Θ)] = E[E(X 4 |Θ) -E(X 2 |Θ) 2 ]. (16) 
2 The Parametric Poisson Case

We now examine a few cases where parametric expressions are postulated for Θ and for X given Θ. In this context, we first derive expressions for the structural parameters in the conditional Poisson setting.

Proposition 2.1 (Parameters in the conditional Poisson case). We assume that X conditional on Θ is Poisson distributed. We recall that µ = v = E(Θ) and a = Var(Θ) in classic credibility theory. The quantities b, g, c, and h can be written as functions of the moments of Θ as follows:

b = a + E(Θ 3 ) -E(Θ 2 ) E(Θ), and g = E(Θ) + 2E(Θ 2 ), (17) 
and also c = 2ba + Var(Θ 2 ),

and h = E(Θ) + 6E(Θ 2 ) + 4E(Θ 3 ). ( 18 
)
When the distribution of Θ is gamma, q-credibility reduces to standard credibility. Indeed, the classic credibility premium coincides with the Bayesian premium in the Poisson-gamma case. This means that it is not possible to further reduce the mean square error and therefore the q-credibility predictor can only be equal to the classic credibility predictor. We are in a situation of exact q-credibility that we summarize in the next proposition.

Proposition 2.2 (q-Credibility in the Poisson-gamma case). In the Poissongamma case, q-credibility reduces to classic credibility, with y q = 0,

z q = z, and α 0,q = α 0 = µ (1 -z),
and the q-credibility predictor, similar to the credibility predictor, is equal to the Bayesian predictor.

When we assume that the distribution of Θ is Pareto, so when we use

E(Θ k ) = ηχ k
η-k that is valid as long as η > k, we obtain:

Proposition 2.3 (Parameters in the Pareto case). Let Θ be Pareto-distributed 1 with parameters (η, χ), under the restriction η > 4. In this context, it is already

known that µ = v = ηχ η-1 and a = ηχ 2 η-2 -ηχ η-1 2
. The quantities b, g, c, and h can be written as follows:

b = a + ηχ 3 η -3 - ηχ 2 η -2 ηχ η -1 , ( 19 
)
and g = ηχ η -1 + 2 ηχ 2 η -2 , ( 20 
)
and also

c = 2b -a + ηχ 4 η -4 - ηχ 2 η -2 2 , ( 21 
)
and h = ηχ η -1 + 6 ηχ 2 η -2 + 4 ηχ 3 η -3 . ( 22 
)
We now construct an example where the parameters of the Pareto distribution are η = 5 and χ = 4 and we assume that 5 claims have been observed in the past n = 2 years. In this example, the average number of observations is X = 5 2 = 2.5. To compute the quantity X 2 , we need to know how the 5 claims were distributed between the 2 years. There are three possible scenarios: 3 claims in one year and 2 claims in the other year, 4 claims in one year and 1 claim in the other year, and 5 claims in one year and 0 claim in the other year. The order in which the numbers of claims are observed is not relevant. In the first case,

X 2 = 3 2 +2 2 2 = 6.5. In the second case, X 2 = 4 2 +1 2 2 = 8.5. Finally, in the third case, X 2 = 5 2 +0 2 2 = 12.5.
According to the classic credibility theory, µ = v = 5, 1. We use the following density for the Pareto distribution:

f Θ (x) = η χ η x η+1 1 x>χ .
and a = 5 3 .

Therefore,

k = v a = 3, and 
z = n n + k = 2 2 + 3 = 2 5 .
The expected number of claims for the coming period is given by

P = z X + (1 -z) µ = 2 5 5 2 + 3 5 5 = 4.
Not surprisingly, this value is comprised between the empirical mean X = 2.5 and the theoretical mean µ = 5. The mean square error is in the classic setting:

MSE ′ c = 1.
To compute the q-credibility estimator, we start by computing Eqs ( 19) to ( 22). We obtain: Then, we have:

z q = 11 131 ≈ 0.083969, and 
y q = 3 131 ≈ 0.022901, so, α * 0,q = 505 131 ≈ 3.85496.
In Table 1, we show Pq = α * 0,q + z q X + y q X 2 for each of the three possible scenarios for X 2 . We observe from the table that the more the number of claims is irregular with years, the greater X 2 and the greater the correction to classic credibility theory made by q-credibility. Also note that the repartition of claims along years, ceteris paribus, is a feature that cannot be taken into account by classic credibility theory while quadratic credibility measures this effect in the premiums it produces. However, although q-credibility can capture irregularities, it cannot capture trends.

The mean square error is in the quadratic setting:

MSE ′ q = 115 131 ≈ 0.8779.
Therefore, the following relative reduction in the error is observed in this experiment:

κ ′ = 16 131 ≈ 12.21%.
Let us now examine what q-credibility means in a semi-parametric case.

The Semi-Parametric Case

The semi-parametric approach to credibility corresponds to a situation where the distribution of a number of claims X conditionally on Θ is known. However, neither the distribution of Θ nor the unconditional distribution of X are known.

Assume we observed M insured during a particular year. During that year, X i is the number of insureds for which i claims occurred. We can estimate the average number of claims as follows:

μ = +∞ i=0 i X i +∞ j=0 X j = 1 M +∞ i=0 i X i ,
where we note that M = +∞ j=0 X j .

Because we are in a conditional Poisson setting, we readily have:

v = µ
by taking the expectation of

Θ = E(X|Θ) = Var(X|Θ).
Using the unbiased estimator of the variance of X, which is equal to â + v, we can write the classic formula for the estimator of a:

â = +∞ i=0 (i -μ) 2 X i +∞ i=0 X i -1 -v = 1 M -1 +∞ i=0 (i -μ) 2 X i -v.
The next proposition gives the q-credibility semi-parametric estimators.

Proposition 3.1 (Semi-parametric estimators). Under the conditional Poisson assumption, we have:

ĝ = 1 M +∞ i=0 (2i 2 -i) X i , and b = 1 M -1 +∞ i=0 i 2 - 1 M +∞ j=0 j 2 X j i - 1 M +∞ j=0 j X j X i -ĝ,
and also

ĥ = 1 M +∞ i=0 (4i 3 -6i 2 + 3i) X i , and 
ĉ = 1 M -1 +∞ i=0 i 2 - 1 M +∞ j=0 j 2 X j 2 X i -ĥ.
Let us now come to an illustration of these results. Assume we observed the data given in Table 2. This table expresses that 560 insureds incurred no claim in the past period, 134 insureds incurred one claim in the past period, and so on. We want to compute the expected future number of claims for an insured who incurred i claims in the past period.

i 0 1 2 3 X i 560 134 14 2 Table 2 -Dataset
In this example, no insured incurred more that three claims. We have:

M = 3 i=0 X i = 710.
We can compute μ = v = 0.2366, â = 0.0006834, Using the classic credibility formulas (for n = 1 year of observations), we have:

k = v â = 346.26, z = 1 1 + k = 0.0029.
According to classic credibility theory, we can compute the expected future number of claims for an insured who incurred i claims as follows: where the observation and prediction periods are of the same length.

P (i) = z i + (1 -z) μ 0 ≤ i ≤ 3,
We now compute the q-credibility estimators given in Proposition 3.1. We obtain b = 0.0044, ĝ = 0.3493, ĉ = 0.0052, ĥ = 0.6423.

Then, we have, using Eqs ( 9) to ( 11):

z q = -0.0393, y q = 0.0283, α * 0,q = 0.2376.

Based on Eq. ( 8), we compute

Pq (i) = α * 0,q + z q i + y q i 2 0 ≤ i ≤ 3,
because i and i 2 represent the first-and second-order empirical non-centered moments over one period for each line of the dataset considered. We obtain the q-credibility estimates Pq = [0.2376 0.2266 0.2722 0.3743].

Using the formulas of Proposition 1.6, we find that the mean square error is in the classic setting: MSE ′ c = 0.000681, while we have in the quadratic setting:

MSE ′ q = 0.000585.
Therefore, the following relative reduction in the error is observed in this experiment:

κ ′ = 14.1%.
Note that the illustration of the semi-parametric case that we conduct here, where we compare the quadratic situation to the classic situation well-known of SOA and CAS actuaries (see for instance the book of [START_REF] Klugman | Loss Models. From Data to Decisions[END_REF]) is not devoid of drawbacks. For instance, the grouping of policies per number of claims measured per year may lead to the construction of inconsistent classes. We leave to another publication the development of other illustrations of the semi-parametric framework.

The Non-Parametric Case

We first give the main results obtained in a non-parametric setting for the structural parameters and then we provide an illustration of these results.

In classic credibility theory, the estimator of expected hypothetical means is

μ = 1 rn r i=1 n j=1 X ij ,
where the claims X ij are doubly indexed to reflect the fact that we now consider r policyholders over n periods. The estimator of expected process variance is

v = 1 r(n -1) r i=1 n j=1 (X ij -Xi ) 2 , where Xi = 1 n n j=1
X ij is the empirical mean of past observations for insured i.

Then, the estimator of the variance of hypothetical means is

â = 1 r -1 r i=1 ( Xi -X) 2 - v n ,
where X is the empirical mean of past observations for all insureds, which is equal to μ. We obtain similar estimators for q-credibility parameters in the following proposition.

Proposition 4.1 (Non-parametric estimators). The non-parametric estimators for the quantities h, c, g, and b are given as follows.

ĥ = 1 r(n -1) r i=1 n j=1 X 2 ij -X 2 i 2 , ( 23 
)
where

X 2 i = 1 n n j=1
X 2 ij is the empirical mean of past squared observations for a given insured i. Then,

ĉ = 1 r -1 r i=1 X 2 i -X 2 2 - ĥ n , ( 24 
)
where

X 2 = 1 rn r i=1 n j=1 X 2 ij
is the empirical mean of past squared observations for all insureds. Next,

ĝ = 1 r(n -1) r i=1 n j=1 (X 2 ij -X 2 i )(X ij -Xi ), (25) 
and b = 1 r -1 r i=1 (X 2 i -X 2 )( Xi -X) - ĝ n . ( 26 
)
Let us now study the use of these estimators via a simple example. Assume r = n = 3 and we have the following data:

   1 2 6 X = 1 10 13 1 1 1    ,
where each line is for one insured and gives three consecutive numbers of observations.

We compute X1 = 3, X2 = 8, X3 = 1 and μ = X = 4. Then, according to classic credibility theory, v = 46 3 and â = 71 9 . We deduce k = 138 71 and z = 3 3+k = 213 351 .

The expected number of claims in the next period for the first insured is, according to classic credibility theory,

P1 = z X1 + (1 -z) µ = 1, 191 351 ≈ 3.3932.
Similarly, we have for the second insured:

P2 = z X2 + (1 -z) µ = 2, 256 351 ≈ 6.4274,
and for the third insured:

P3 = z X3 + (1 -z) µ = 765 351 ≈ 2.1795.
Next, we turn to the q-credibility approach. For simplicity, we denote X 2 = X • X the element-wise product of X with itself. We have:

   1 4 36 X 2 = 1 100 169 1 1 1    .
Therefore, X 2 1 = 41 3 , X 2 2 = 90, X 2 3 = 1 and X 2 = 314 9 . The q-credibility parameters are estimated using Eqs (23) to (26). We obtain ĥ = 22, 522 9 , ĉ = 13, 355 9 , ĝ = 190, b = 325 3 .

Then, we have, using Eqs (9) to (11):

z q = -18, 862 40, 401 , y q = 365 4, 489 , α * 0,q = 12, 023 4, 489 .

The expected number of claims in the next period for the first insured is, according to q-credibility theory, Pq,1 = α * 0,q + z q X1 + y q X 2 1 = 10, 724 4, 489 ≈ 2.3890.

Similarly, we have for the second insured:

Pq,2 = α * 0,q + z q X2 + y q X 2 2 = 252, 961 40, 401 ≈ 6.2613, and for the third insured:

Pq,3 = α * 0,q + z q X3 + y q X 2 3 = 92, 630 40, 401 ≈ 2.2928.

The relative changes Pq,i -Pi Pi i=1:3 induced by the quadratic correction are respectively -29.6%, -2.58%, and 5.2%. They are not negligible and can be of any sign.

In the classic setting, we find that the mean square error is

MSE ′ c = 3.1016,
while in the quadratic setting we have:

MSE ′ q = 2.7634.
Therefore, the following relative reduction in the error observed in this experiment is κ ′ = 10.9%.

Conclusion

In this article, we have examined the effect of adding a quadratic correction to credibility theory. We have shown how the parametric, semi-parametric and non-parametric settings can be extended to incorporate this correction. The three settings have been illustrated and we have found a decent decrease of about 10% in the mean square error in each case.

At this stage, three types of extensions could be devised. First, it could be possible to conduct a study on exact q-credibility by introducing quadratic exponential functions, so by enlarging the linex paradigm. Then, for all of our analysis, we have considered uniform exposures: it could be interesting to develop q-credibility in a non-uniform setting in a distinct paper. Finally, adding parameters in a system does not go without increasing the uncertainty of this system. It could be interesting to examine in a further study the tradeoff between the precision added by moving to q-credibility and the cost of estimating an increased number of structural parameters. For this purpose, simulations could be conducted and the comparison of training and test MSEs could be performed (see, e.g., James et alii (2017)).

Finally, we set the derivative of f with respect to each β k equal to 0:

∂f ∂β k = 0 = 2 • E X 2 k α * 0,q + n i=1 α * i X i + n i=1 β * i X 2 i -X n+1 , ∀k = 1 : n,
and we obtain

α * 0,q E(X 2 k ) + n i=1 α * i E(X i X 2 k ) + n i=1 β * i E(X 2 i X 2 k ) = E(X n+1 X 2 k ), ∀k = 1 : n.
(31) Subtracting E(X 2 k ) times Eq. ( 28) from Eq. ( 31), we have:

n i=1 α * i E(X i X 2 k ) -E(X i )E(X 2 k ) + n i=1 β * i E(X 2 i X 2 k ) -E(X 2 i )E(X 2 k ) = E(X n+1 X 2 k ) -E(X n+1 )E(X 2 k ), ∀k = 1 : n, or n i=1 α * i Cov(X i , X 2 k ) + n i=1 β * i Cov(X 2 i , X 2 k ) = Cov(X n+1 , X 2 k ), ∀k = 1 : n.
(32) Recall that the X i 's are assumed identically distributed. Therefore, the index 'i' does not play any role and we have: ∀i = 1 : n, α * i = α * and ∀i = 1 : n, β * i = β * . Then, Eqs (30) and ( 32 Next, Eq. ( 28) can be rewritten as follows:

α * 0,q + nα * µ + nβ * (µ 2 + a + v) = µ.
because E X 2 i = E (X i ) 2 + Var(X i ) = µ 2 + a + v thanks to Eq. (1). Introducing z q = nα * , and y q = nβ * , we obtain α * 0,q = µ(1z q )y q (µ 2 + a + v).

These are Eqs ( 9) to ( 11). Then, we want to estimate X n+1 using the past realizations { Xi } i=1:n of the {X i } i=1:n . Using Proof of Proposition 1.6

We need to compute MSE q = E P q n+1 -X n+1 2 = Var P q n+1 -X n+1 or MSE q = Var P q n+1 + Var (X n+1 ) -2 Covar P q n+1 , X n+1 .

We already know that Var (X n+1 ) = v + a and we compute Var P q n+1 = z 2 q Var X + y 2 q Var X 2 + 2 z q y q Covar X, X we can identify

g = E[Cov(X 2 , X|Θ)] = E[E(X 3 |Θ)] -E[E(X 2 |Θ) E(X|Θ)].
The derivation of the expressions of c and h is similar to that of a and v, replacing X by X 2 .

Proof of Proposition 2.1

We use the fact that E(X|Θ) = Θ, E(X 2 |Θ) = Θ + Θ 2 , E(X 3 |Θ) = Θ + 3Θ 2 + Θ 3 , and E(X 4 |Θ) = Θ + 7Θ 2 + 6Θ 3 + Θ 4 . Note that 

b = E[E(X 2 |Θ) E(X|Θ)]-E[E(X 2 |Θ)]E[E(X|Θ)] = E[(Θ+Θ 2 ) Θ]-E(Θ+Θ 2 )E(Θ),

  which yields P = [0.2359 0.2388 0.2417 0.2446],

  ) become α * (na + v) + β * (nb + g) = a,(33)andα * (nb + g) + β * (nc + h) = b.(34)Solving Eqs (33) and (34), we obtainα * = a(nc + h)b(nb + g) (na + v)(nc + h) -(nb + g) 2 ,andβ * = bvag (na + v)(nc + h) -(nb + g) 2 .

  2 . and then, because X and Y are identically distributed, b= Cov[E(X 2 |Θ), E(X|Θ)] = E[E(X 2 |Θ) E(X|Θ)] -E[E(X 2 |Θ)]E[E(X|Θ)]. In Cov(X 2 , X) = E[Cov(X 2 , X|Θ)] + Cov[E(X 2 |Θ), E(X|Θ)],

  and b = E(Θ 2 ) + E(Θ 3 ) -E(Θ) 2 -E(Θ 2 )E(Θ) = Var(Θ) + E(Θ 3 ) -E(Θ 2 ) E(Θ).Then, we useg = E[E(X 3 |Θ)] -E[E(X 2 |Θ) E(X|Θ)] = E(Θ + 3Θ 2 + Θ 3 ) -E((Θ + Θ 2 )Θ).Next, we have:c = Var[E(X 2 |Θ)] = Var(Θ + Θ 2 ) = Var(Θ) + Var(Θ 2 ) + 2 Cov(Θ, Θ 2 ),andc = Var(Θ)+Var(Θ 2 )+2 E(Θ 3 ) -E(Θ 2 ) E(Θ) = b+Var(Θ 2 )+E(Θ 3 )-E(Θ 2 ) E(Θ),and finallyh = E[E(X 4 |Θ) -E(X 2 |Θ) 2 ] = E(Θ + 7Θ 2 + 6Θ 3 + Θ 4 -(Θ + Θ 2 ) 2 ).
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Appendix

Proof of Proposition 1.1

The goal is to minimize the Mean Square Error function:

We first set the derivative of f with respect to α 0,q equal to 0:

and we obtain

Then, we set the derivative of f with respect to each α k equal to 0:

and we obtain

(29) Subtracting E(X k ) times Eq. (28) from Eq. ( 29), we have:

Because Eqs ( 33) and ( 34) can be rewritten as follows:

we have:

Finally, we can compute:

Covar P q n+1 , X n+1 = Covar z q X + y q X 2 , X n+1 = z q a + y q b.

Recombining the above results, we obtain the result of the proposition.

Proof of Proposition 1.11

Then, by conditional independence of X 2 and Y ,

Proof of Proposition 2.2

Because bvag = χgvag = g(χva) = g(χ 2 ηχ 2 η) = 0

we have from Eq. ( 11) that y q = 0. A few lines of computation give z q = nχ nχ+1 = z. The expression of α 0,q follows.

Proof of Proposition 3.1

We have:

Using similar arguments, we obtain:

Replacing Eqs ( 35) and (36) in Eqs ( 17) and ( 18) and then taking the unbiased estimates of the non-centered moments gives the expressions of ĝ and ĥ. For the computation of b, we recall that

and we take the unbiased estimator of this covariance term. Similarly for the computation of ĉ, we have:

and we take the unbiased estimate of this variance term.

Proof of Proposition 4.1

The estimators ĥ and ĉ can be derived in the same way as v and â, replacing observations by squared observations. From Proposition 1.11, we have:

The inner sum in Eq. ( 25) is obtained by taking the unbiased estimator of the covariance in the above formula for g. Then, the outer sum in ( 25) is derived using the unbiased estimator of the mean in the expression of g. Next, to compute b, we start by computing Cov

where we have used the conditional independence of X 2 i,k and X i,j knowing Θ i . Then, we recognize in the above formula:

and the expression of b follows by computing the unbiased estimator of Cov X 2 i , X i .