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ABSTRACT This paper develops a Rao-Blackwellized particle filter with variational inference for jointly
estimating state and time-varying parameters in non-linear state-space models (SSM) with non-Gaussian
measurement noise. Depending on the availability of the conjugate prior for the unknown parameters,
the joint posterior distribution of the state and unknown parameters is approximated by using an auxiliary
particle filter with a probabilistic changepoint model. The distribution of the SSM parameters conditionally
on each particle is then updated by using variational Bayesian inference. Experiments are first conducted on
a modified nonlinear benchmark model to compare the performance of the proposed approach with other
state-of-the-art approaches. Finally, in the context of GNSS multipath mitigation, the proposed approach is
evaluated based on data obtained from a measurement campaign conducted in a street urban canyon.

INDEX TERMS Joint state and parameter estimation, Rao-blackwellized particle filter, state-space models,
variational inference.

I. INTRODUCTION
State-space models (SSMs), composed of dynamic and mea-
surement equations, are applied to a wide variety of signal
processing problems, especially in positioning, tracking and
navigation [1], [2]. A central problem when using these
models is to recursively infer the state based on a sequence
of measurements. In general, sensors delivering measure-
ments are assumed to be in their nominal state of work,
i.e., the parameters in the measurement equation have to be
exactly specified a priori. However, in realistic contexts, these
parameters can be time-varying due to abruptly changing
environment, leading to the problem of state estimation in the
presence of model uncertainty.

Early attempts to solve this problem are based on Gaussian
mixture approximations, such as the interacting multiple
model (IMM) algorithm [3]. Since the reliability of the IMM
is dependent on the number and choice of models, some
approaches for jointly estimating state and parameter for
SSMs have been proposed. Another solution for joint state
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and parameter estimation is to assign a prior distribution
to the model parameters and augment the state vector by
including these unknown parameters. When it cannot be
computed in closed form, the joint posterior distribution
of all variables can be approximated by using sequential
Monte Carlo (SMC) techniques [4]–[6]. Another possibility
is to exploit the expectation-maximization (EM) algorithm,
i.e., the posterior distribution of the state is obtained in the
expectation step and then the maximum likelihood estimator
of the unknown parameters is updated in the maximization
step [7]–[10]. Recently, variational inference-based
approaches in SSMs have been extensively studied for state
estimation in the presence of model uncertainty [11]. In the
case of linear SSMs, approximate separable distributions for
state and noise parameters can be updated by iteratively solv-
ing the coupled equations by using variational Bayesian (VB)
inference [12]–[14]. A VB-based Kalman filter was also
proposed for linear SSMs with non-stationary heavy-tailed
noises [15], [16]. In the case of nonlinear SSMs, the noise
parameters are usually marginalized out and the posterior
distribution of the state is approximated by using an appro-
priate particle filter (PF). Then the distribution of the noise
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parameters conditionnally on each state particle can be cal-
culated by using VB inference [17], [18].

Considering that state and measurement equations depend
linearly on a subset of the state vector, a Rao-Blackwellized
particle filter (RBPF) (also known as marginalized particle
filter) was proposed in [19], [20]. The filter was introduced
for state and measurement equations depending linearly on
a subset of the state vector and non-linearly on the other
state variables. The idea of the Rao-Blackwellization is to
marginalize the distribution of interested with respect to the
state variables appearing linearly in the state and measure-
ment equations, allowing these linear components to be pro-
cessed using analytical methods (such as the Kalman filter)
and the non-linear components by SMC techniques [21].
Rao-Blackwelization has been used successfully in many
applications including navigation using an inertial navigation
system and a terrain-aided positioning [22], multiple target
tracking [23] and simultaneous localization and mapping
(SLAM) [24]. Some theoretical works derived the asymptotic
variance of the Rao-Blackwell particle filter in order to deter-
mine in which cases it is interesting to use an RBPF in place
of a standard PF with an increased number of particles [25].
When there is no linear sub-structure in the state vector, which
is the case in this work, the standard Rao-Blackwellization
cannot be applied directly.

Several approaches can be found in the literature for jointly
estimating state and static parameter in the frame of the
RBPF. The common way is to replace analytical methods
with different types of SMC samplers for implementing the
parameter estimation, such as the particle Markov chain
Monte Carlo [26], the twisted particle filter [27] and the
nested particle filter [28], [29]. However, these approaches
cannot be easily applied to cases where the parameters
appearing in the measurement equation are time-varying.
To address this problem, an RBPF based on a Dirichlet pro-
cessmixture (DPM)was studied in [30]. In addition, the adap-
tive parameter filter was proposed in [31] to implement a
probabilistic changepoint model in the frame of the RBPF
for estimating jointly the state vector and the time-varying
unknown parameters.

This paper studies an RBPF with variational inference for
jointly estimating state and time-varying parameters in non-
linear state-space models with measurement noise distributed
according to a Student-t distribution. The interest of using
this Student-t distribution is to obtain a robust estimator of
the state vector. The idea of the resulting RBPF filter is
to marginalize the joint distribution of interest with respect
to the parameters of the Student-t distribution, to sample
the remaining state and unknown parameters by using an
auxiliary particle filter (APF) with a probabilistic change-
point model, and to sample the Student-t parameters by
using VB inference. The proposed approach combines the
advantages of the adaptive parameter estimation (APE) filter
introduced in [31] and the robust PF studied in [18] to build
a joint state and time-varying parameter estimator in the
presence of non-Gaussian measurement noise.

The paper is organized as follows: The problem of jointly
estimating state and time-varying parameters in non-linear
SSMs with non-Gaussian measurement noise is presented in
Section II. Section III studies the proposed new RBPF based
on VB inference. The performance of this filter is evaluated
in Section IV, first using simulated data based on a modified
nonlinear benchmark model, and then using experimental
data in the context of GNSS multipath mitigation in urban
canyons. Conclusions are finally reported in Section V.

II. PROBLEM FORMULATION
In this paper, we consider the following nonlinear discrete-
time SSM related to a hidden state vector xk ∈ Rnx and the
measurement vector yk ∈ Rny

xk = f (xk−1)+ ωk (1)

yk = hθk (xk)+ vk (2)

where k = 1, . . . ,K denotes the kth time instant, f (·) is the
state transition function, ωk denotes the process noise with
a zero mean Gaussian distribution of covariance matrix Qk ,
hθk (·) is the measurement function depending on a vector of
parameters θk ∈ Rnθ and vk denotes the measurement noise.
In practice, the unknown parameter vector θk can be time-
varying due to abruptly changing environments leading to
different sensor functioning conditions. In addition, the mea-
surement noise vk can be non-Gaussian due to abruptly
changing environments leading to outliers corrupting the
measurements. Since the Student-t distribution is heavy-
tailed compared to the Gaussian distribution and is robust
to outliers, this work assumes that the measurement noise
has a Student-t distribution. This distribution is obtained by
integrating an infinite mixture of Gaussians with the same
mean and scaled precision matrices [32], i.e.,

St (vk |3k , νk) =

∫
∞

0
N
(
vk |0, (κk3k )−1

)
×γ (κk |νk/2, νk/2) dκk (3)

where St (·) denotes the student-t distribution andN (·) is the
multivariate Gaussian probability density function (pdf) (here
with zero mean and precision matrix κk3k ), κk is an auxiliary
precision scalar, γ (·) is the gamma distribution with shape
and inverse scale parameters both equal to νk

2 and νk adjusts
the thickness of the distribution tail. Independent conjugate
gamma distributions are assigned a priori to 3k , κk and νk ,
i.e., the joint prior of (3k , κk , νk) is defined as

q (3k , κk , νk) =

Nd∏
s=1

γ
(
λs,k |αs,k , βs,k

)
×γ

(
κk |ν

1
k , ν

2
k

)
γ (νk |ak , bk) (4)

where 3k = diag
[
λ1,k , · · · , λNd,k

]
(a diagonal matrix with

diagonal elements λ1,k , · · · , λNd,k ), Nd is the dimension of
3k , αk , βk , ν1k , ν

2
k , ak , bk are the hyperparameters of the prior

distributions at the kth time instant.
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Considering that both the parameter vector θk and the noise
statistical parameters ξ k = {3k , κk , νk} are time-varying in
abruptly changing environments, the aim of this paper is to
infer the states xk and the time-varying parameters

{
θk , ξ k

}
given measurements y1:k =

{
y1, · · · , yk

}
.

III. A RAO-BLACKWELLIZED PARTICLE FILTER WITH
VARIATIONAL INFERENCE
Since the joint posterior distribution of all unknown vari-
ables p

(
xk , θk , ξ k |y1:k

)
has a complex expression and cannot

be calculated in closed form, we propose to study a PF
approximating this posterior by using sequential importance
sampling. The joint posterior distribution of the state and
unknown parameters can be factorized as follows

p
(
xk , θk , ξ k |y1:k

)
= p

(
ξ k |xk , θk , y1:k

)
p
(
xk , θk |y1:k

)
(5)

where the noise statistical parameters ξ k have been marginal-
ized out in the second term of the right hand side. We propose
to approximate p

(
xk , θk |y1:k

)
by using an empirical density

following the principle of PFs

p
(
xk , θk |y1:k

)
≈

N∑
i=1

ωikδ
(
(xk , θk)−

(
xik , θ

i
k

))
(6)

where N is the number of particles, δ (·) is the Dirac delta
function,

(
xik , θ

i
k

)
is the ith particle and ωik is the correspond-

ing weight at the kth time instant, which can be updated as
follows [33]

ωik ∝ p
(
yk , xk , θk |y1:k−1

)
ωik−1. (7)

The conditional density p
(
yk , xk , θk |y1:k−1

)
can be obtained

by the following marginalization

p
(
yk , xk , θk |y1:k−1

)
=

∫
p
(
yk , xk , θk |ξ k , y1:k−1

)
×p

(
ξ k |y1:k−1

)
dξ k (8)

where p
(
ξ k |y1:k−1

)
is the predictive distribution of the noise

statistical parameters. Replacing (6) in (5) leads to

p
(
xk , θk , ξ k |y1:k

)
≈

N∑
i=1

ωikp
(
ξ k |x

i
k , θ

i
k , y1:k

)
×δ

(
(xk , θk)−

(
xik , θ

i
k

))
(9)

where the conditional distribution p
(
ξ k |x

i
k , θ

i
k , y1:k

)
is the

distribution of the noise parameter vector conditionally on the
ith particle

(
xik , θ

i
k

)
. In this paper, we propose to approximate

the distribution p
(
ξ k |x

i
k , θ

i
k , y1:k

)
using VB inference. As a

consequence, samples
(
xik , θ

i
k

)
are generated using an APF,

and then the posterior distribution of ξ k conditionally on(
xik , θ

i
k

)
is calculated according to VB inference and replaced

in (9), allowing the joint distribution of the state, parameters
and hyperparameters to be determined.

A. UPDATING
(
xk , θk

)
SAMPLES BASED ON THE

AUXILIARY PARTICLE FILTER
Assuming that the propagation models for xk and θk are
independent, the posterior distribution p

(
xk , θk |y1:k

)
can be

recursively updated according to Bayes’ rule

p
(
xk , θk |y1:k

)
∝ p

(
yk |xk , θk

)
p
(
xk |y1:k−1

)
p
(
θk |y1:k−1

)
(10)

where the predictive distribution of the state p
(
xk |y1:k−1

)
can be obtained by using the Chapman-Kolmogorov equa-
tion. This paper assumes that the predictive distribution
p
(
θk |y1:k−1

)
can depend on θk−1 or on a non-informative

prior distribution (i.e., can change to a value independent
of θk−1). More precisely, the probabilistic model for the
changepoint locations proposed in [34] is used for adap-
tively estimating the time-varying parameter vector θk when
a changepoint has occurred. We also assume that there is a
probability η (fixed to an a priori value for a given applica-
tion) of a changepoint at each time instant. As a consequence,
the predictive distribution of θk can be defined as follows

p
(
θk |y1:k−1

)
=

{
φθk−1 (θk) with probability 1− η
ψ (θk) with probability η

(11)

where φθk−1 (·) denotes a prior distribution for θk given θk−1
(corresponding to the absence of changepoint) and ψ (·)
denotes a non-informative prior distribution (corresponding
to the presence of changepoint). Note that, as explained
in [31], a large value for change probability η will intro-
duce excess parameters from the diffuse prior ψ (θ) when
no changepoint has occurred, whereas too small value for η
will lead to difficulties in handling time-varying parameters.
Based on the previous assumptions, we propose to sample
(xk , θk) based on the APF by using the following steps:

1) Sample xik according to a proposal distribution
q
(
xk |xik−1, y1:k

)
for i = 1, . . . ,N where q (·) is the

optimal importance distribution introduced in [20].
2) Propagate the previous particles ξ ik−1 by using the evo-

lution equation of the noise parameters to create new
particles ξ i,−k , where the superscript ‘‘-’’ means that the
quantity is computed a priori.

3) Generate two sets of weights for presence and absence
of changepoint at time k , i.e.,

ωik,1 ∝ p
(
yk |x

i
k , θ

i
k,1, ξ

i,−
k

)
with θ ik,1 ∼ φθk−1 (θ)

(12)

ωik,2 ∝ p
(
yk |x

i
k , θ

i
k,2, ξ

i,−
k

)
with θ ik,2 ∼ ψ (θ) (13)

where i = 1, . . . ,N . Thus N equally-weighted parti-
cles

{
xik−1, θ

i
k−1

}N
i=1 at the (k − 1)th time instant lead

to 2N samples at the kth time instant.
4) In order to estimate θk , N particles are selected

from the 2N samples with probabilities proportional
to
{
(1− η) ω1

k,1, · · · , (1− η) ω
N
k,1

}
and

{
ηω1

k,2, · · · ,

ηωNk,2

}
.
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5) The weights for the selected N particles are updated
according to the APF, i.e.,

ωik =



p
(
yk |x

ji

k , θ
ji

k,1, ξ
ji,−
k

)
ω
ji
k,1

when ji ∈ {1, · · · ,N }

p
(
yk |x

ji

k , θ
ji

k,2, ξ
ji,−
k

)
ω
ji
k,2

when ji ∈ {N + 1, · · · , 2N }

(14)

where i = 1, · · · ,N and ji denotes the index of the ith
selected particle.

B. CALCULATING p
(
ξk |xi

k , θ
i
k , y1:k

)
BASED ON

VARIATIONAL BAYESIAN INFERENCE
The posterior distribution p

(
ξ k |x

i
k , θ

i
k , y1:k

)
conditionally

on the ith particle
(
xik , θ

i
k

)
cannot be calculated in closed

form. According to the VB inference, this posterior can
be approximated by another distribution q

(
ξ k
)
, which is

factorized into single-variable factors based on the mean-
field theory [35], i.e., q

(
ξ k
)
= q (3k) q (κk) q (νk). Accord-

ing to the VB approximation, the log marginal likelihood
ln p

(
yk |x

i
k , θ

i
k , ξ k

)
can be defined by using the following

identity

ln p
(
yk |x

i
k , θ

i
k , ξ k

)
= L+ KL (q||p) (15)

with

L =
∫
q
(
ξ k
)
ln
p
(
yk , ξ k |x

i
k , θ

i
k , y1:k−1

)
q
(
ξ k
) dξ k (16)

and

KL (q||p) =
∫
q
(
ξ k
)
ln

q
(
ξ k
)

p
(
ξ k |x

i
k , θ

i
k , y1:k

)dξ k (17)

where L is a variational lower bound for the log-marginal
likelihood, KL (q||p) is the Kullback-Leibler (KL) diver-
gence between the true posterior and its approximation. Con-
sidering that the KL divergence is non-negative, minimiz-
ing the KL divergence can be achieved by maximizing the
lower boundL, which results in computing expectations with
respect to q (3k), q (κk) and q (νk) in turn. Straightforward
computations lead to

ln q (3k) ∝ Eκk ,νk
[
ln p

(
yk |x

i
k , θ

i
k ,3k , κk

)
+ ln p (3k)

]
=

Ns∑
s=1

(
αs,k −

1
2

)
ln λs,k

−

(
βs,k +

1
2
E [κk ]

(
ys,k − hs,θ ik

(
xik
))2)

λs,k

(18)

ln q (κk) ∝ E3k ,νk

[
ln p

(
yk |x

i
k , θ

i
k ,3k , κk

)
+ ln p (κk |νk)

]
=

E [νk ]− 1
2

ln κk −
E
[
νik

]
2

κk

−

(
yk − hθ ik

(
xik
))T

E [3k ]
(
yk − hθ ik

(
xik
))

2
κk

(19)

ln q (νk) ∝ Eκk [ln p (κk |νk)+ ln p (νk)]

=

(
ak −

1
2

)
ln νk

−

(
bk +

E [κk ]
2
−

E [ln κk ]
2

−
1
2

)
νk (20)

where i = 1, · · · ,Ns, ys,k and hs,θ ik (·) denote the sth
measurement and the corresponding nonlinear function. The
expectations in the above equations can be expressed as
follows

E
[
λs,k

]
=
αs,k

βs,k
E [κk ] =

ν1k

ν2k

E [ln κk ] = 9
(
ν1k

)
− ln ν2k E [νk ] =

ak
bk

(21)

where s = 1, . . . ,Ns and 9 (·) denotes the digamma func-
tion. According to (18)-(20), the hyperparameters of the pos-
terior distribution conditionally on the ith particle

(
xik , θ

i
k

)
can be updated as follows [13]

α
i,+
s,k = α

i,−
s,k +

1
2

(22)

β
i,+
s,k = β

i,−
s,k +

1
2
E
[
κ ik

] (
ys,k − hs,θ ik

(
xik
))2

(23)

ν
1,i,+
k =

E
[
νik

]
+ 1

2
(24)

ν
2,i,+
k =

E
[
νik

]
2

+

(
yk − hθ ik

(
xik
))T

E
[
3i
k

] (
yk − hθ ik

(
xik
))

2
(25)

ai,+k = ai,−k +
1
2

(26)

bi,+k = bi,−k +
E
[
κ ik

]
2
−

E
[
ln κ ik

]
2

−
1
2

(27)

where s = 1, · · · ,Nd, i = 1, · · · ,N . Note that the super-
script ‘‘+’’ in the above equation means that the quantity is
computed a posteriori. In order to maintain the conjugacy for
the distribution of the noise statistical parameters, αs,k , βs,k ,
ak , bk are propagated as follows [12]

α
i,−
s,k = ρα

i,+
s,k−1 β

i,−
s,k = ρβ

i,+
s,k−1

ai,−k = ρa
i,+
k−1 bi,−k = ρb

i,+
k−1 (28)

where ρ is a forgetting factor, which can be considered as
a weight balancing the historical estimates and the current
information. Accordingly, a small forgetting factor can track
faster changes in the noise statistical parameters whereas a
larger value of this factor induces a slower response [17].

Thus p
(
ξ k |x

i
k , θ

i
k , y1:k

)
can be approximated by iteratively

calculating (22)-(27) until an iteration stopping rule is satis-
fied. Note that the updates for ν1k and ν2k in (24) and (25) are
functions of αk , βk , ak and bk , whereas the updates for βk
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and bk in (23) and (27) require to know the values of ν1k and
ν2k . Therefore, the estimates of ν1k and ν2k in (24) and (25) at
the (r + 1)th iteration are calculated by using the estimates
of αk , βk , ak and bk at the r th iteration. Finally, note that
the estimates of βk and bk at the (r + 1)th iteration can be
implemented based on the last estimates of ν1k and ν2k . The
proposed RBPF with VB inference for joint state and time-
varying parameter estimation is summarized in Alg. 1.

IV. EXPERIMENTAL RESULTS
A. ILLUSTRATIVE EXAMPLE
In order to evaluate the proposed RBPFwith variational infer-
ence, we use the followingmodified benchmarkmodel [6] for
the illustrations

xk = 0.5 xk−1 + 25 xk−1/
(
1+ x2k−1

)
+ 8 cos (1.2 k)+ ωk

yk = x2k /a+ vk

where ωk ∼ N (0, 0.5), a is a time-varying param-
eter taking values {5,−6, 7, 14, 5} with changes occur-
ing at time instants {0, 40, 80, 120, 160}. The noise vk
is the non-Gaussian measurement noise whose distri-
bution is (1− ε)N (0, 1) + εD where ε denotes the
outlier probability, D denotes the outlier distribution,
which was set to U (−20, 20) where U (·) is the uniform
distribution [13], [36]. We compare the proposed approach
with the interacting multiple model (IMM) algorithm [1] and
the APE filter [31]. More details about these algorithms are
provided below

• IMM Algorithm [1]: The models in the IMM differ
by the choice of the parameter a where 10 equally
spaced values of a are sampled in the range [−18, 18]
and the measurement noise associated with each model
is assumed to be distributed according to a N (0, 1)
distribution. Moreover, the unscented Kalman filter is
embedded in the IMM in order to estimate the state for
the nonlinear SSM.

• APE filter with known variance [31]: The APE filter is
combined to the APF with a changepoint model and the
measurement noise model is assumed to be distributed
according to a N (0, 1) distribution.

• APE filter with unknown variance [31]: In the presence
of measurement outliers, the estimation accuracy of the
APE filter can be improved by considering that the
measurement noise is a zero-mean Gaussian distribution
with unknown variance, which is estimated with other
parameters, i.e., the APE filter with unknown variance is
combined to the APF with a changepoint model and the
conjugate prior for the variance of Gaussian distribution
is updated by using the state particles andmeasurements.

In the changepoint model applied to the APE filter and pro-
posed strategy, the predictive distribution of a conditionally
upon ak−1 is assumed to be a mixture of multivariate Gaus-
sian distributions based on the kernel smoothing method [4],
i.e., φak−1 (a) ≈

∑N
i=1 ω

i
k−1N

(
a|ζ ik−1, h

2 Vk−1
)
where

Algorithm 1 Proposed RBPF With Variational Inference

Inputs:
{
xik−1, θ

i
k−1,

{
αis,k−1, β

i
s,k−1

}Nd
s=1

, aik−1, b
i
k−1

}N
i=1

Outputs:
{
xik , θ

i
k ,
{
αis,k , β

i
s,k

}Nd
s=1

, ν
1,i
k , ν

2,i
k , aik , b

i
k

}N
i=1

% Step 1: Generate samples of (xk , θk ) by using the APF.
1: Generate xik ∼ p

(
xk |xik−1

)
by using (1), and then com-

pute
{
α
i,−
s,k , β

j,−
s,k

}Nd
s=1

, ai,−k , bi,−k according to (28) and generate

ν
i,−
k ∼ γ

(
νk |a

i,−
k , bi,−k

)
where i = 1, . . . ,N .

2: Generate
{
λis,k ∼ γ

(
λk |α

i,−
s,k , β

i,−
s,k

)}Nd
s=1

and κ ik ∼

γ

(
κk |

ν
i,−
k
2 ,

ν
i,−
k
2

)
where i = 1, . . . ,N .

3: Generate θ ik,1 ∼ φθk−1 (θ) and θ ik,2 ∼ ψ (θ), and

then compute ωik,1 ∝ p
(
yk |x

i
k , θ

i
k,1,

(
κ ik3

i
k
)−1)

and ωik,2 ∝ p
(
yk |x

i
k , θ

i
k,2,

(
κ ik3

i
k
)−1)

where

3ik = diag
[
λi1,k , · · · , λ

i
Nd,k

]
and i = 1, · · · ,N .

4: for i = 1, . . . ,N do
5: Sample index ji in {1, · · · , 2N } with probabilities{

(1− η) ωik,1

}N
i=1

and
{
ηωik,2

}2N
i=N+1

;

6: Propagate xik ∼ p
(
xk |x

ji

k−1

)
;

7: If ji ∈ {1, · · · ,N }, update θ ik ∼ φθ j
i
k,1

(θ) and compute ω̃ik ∝

p

(
yk |x

ji

k ,θ
ji

k,1,

(
κ
ji

k 3
ji

k

)−1)
ω
ji
k,1

;

8: If ji ∈ {N + 1, · · · , 2N }, set θ ik = θ
ji

k,2 and compute ω̃ik ∝

p

(
yk |x

ji

k ,θ
ji

k,2,

(
κ
ji

k 3
ji

k

)−1)
ω
ji
k,2

;

9: end for
% Step 2: Calculating q (λk , κk , vk ) by using VB inference.

10: Initialize αi,+s,k (0) = α
ji,−
s,k , β i,+s,k (0) = β

ji,−
s,k , ai,+k (0) = aj

i,−
k and

bi,+k (0) = bj
i,−
k where s = 1, · · · ,Nd and i = 1, . . . ,N .

11: for i = 1, . . . ,N do
12: for r = 1, . . . , rmax do
13: Compute ν1,i,+k (r) , ν2,i,+k (r) according to (24) and (25);

14: Compute
{
α
i,+
s,k (r) , β

i,+
s,k (r)

}Nd
s=1

, ai+k (r) and bi+k (r)
according to (22), (23), (26) and (27);

15: if the parameters change by less than 0.001 then
16: stop the iteration;
17: else
18: set r = r + 1;
19: end if
20: end for
21: end for
22: Normalize ωik = ω̃ik/

∑N
i=1

(
ω̃ik
)
and perform particle resam-

pling.
% Step 3: (Recursion) k = k + 1.

23: Go to Step 1.

ζ ik−1 = τa
i
k−1 + (1− τ) a, Vk−1 =

∑N
i=1 ω

i
k−1

(
aik−1 − a

)2
,

a =
∑N

i=1 ω
i
k−1a

i
k−1, h

2 is the kernel smoothing parameter,
τ =
√
1− h2 is the shrinkage parameter of the kernel mean,

VOLUME 8, 2020 55669



C. Cheng et al.: Rao-Blackwellized PF With Variational Inference for State Estimation With Measurement Model Uncertainties

TABLE 1. Parameters used for the simulations on synthetic data.

FIGURE 1. Mean of the estimates â for 100 MC runs in the absence of
outliers.

while the non-informative prior pdf ψ (a) was assumed to be
a uniform distribution. The related parameters used in all test
scenarios are provided in Table 1. Nm = 100 Monte Carlo
simulations have been run for any approach to compute the
average root mean square errors (ARMSEs) of the estimates

defined by
√
(KNm)

−1∑K
k=1

∑Nm
m=1 (̂xk (m)− xk)

2, where
x̂k (m) is the mth state estimate and K is the number of time
instants. All algorithms have been coded usingMATLAB and
run on a laptop with Intel i-5 and 8 GB RAM.

Fig. 1 displays the means and standard deviations of â 1

computed using 100 MC simulations for the IMM, the APE
filter with known variance and the proposed approach in
the absence of outliers (i.e., ε = 0). Considering that the
changepoint model for parameter a is taken into account both
in the proposed approach and in the APE filter, the esti-
mation accuracies for parameter a obtained with these two
approaches are obviously better than the one obtained with
the IMM. Since the Student-t distribution provides almost the
same solution as the Gaussian distribution in the absence of
outliers, similar mean and standard deviation for the estimator
â should be obtainedwith the proposed approach and the APE
filter.

The means and standard deviations of â computed using
100 MC simulations for different outlier probabilities are
depicted in Fig. 2. It is clear that the estimation perfor-
mance of the APE filter with known variance for param-
eter a severely degrades in the presence of measurement

1The estimator of the parameter a is denoted as â

FIGURE 2. Mean of the estimates â for two different outlier probabilities
(100 MC runs).

outliers, whereas the estimation performance of the APE
filter is robust to outliers when the variance of measurement
noise is assumed to be time-varying and jointly estimated
with the state. However, the performance of the proposed
approach is less affected by the presence of outliers due to the
Student-t distribution, which is more robust to outliers than
the Gaussian distribution. The ARMSEs of the state estimates
obtained with the three approaches for different outlier prob-
abilities are reported in Table 2. In presence or absence of
outliers, the ARMSEs obtained with the proposed approach
and the APEfilter are obviously smaller than the one obtained
with the IMM. Moreover, the state estimation accuracy of the
proposed approach is better than that of the APE filter in the
absence of outliers. Finally, thanks to the good robustness of
the Student-t distribution to outliers, the proposed approach
provides more accurate state estimates for any outlier proba-
bility.

Table 3 shows the execution times for 100 MC runs
by using different numbers of particles for the proposed
approach and the APE filter with unknown variance. The
main difference between the proposed approach and the APE
filter with unknown variance is that the computation of the
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TABLE 2. ARMSEs of state estimates for different outlier probabilities.

TABLE 3. Execution times for different numbers of particles.

VB iterations is embedded in the APF before performing the
update of the unknown parameter distribution, which leads to
a higher computation load for APF, as reported in Table 3.
Note that the computational cost of the proposed approach
was evaluated in the following two situations: (a) the algo-
rithm is stopped when the stopping rule in Line 15 of Alg. 1 is
satisfied, (b) the number of variational iterations is set to its
maximum value rmax. It is clear that the corresponding com-
putational cost can be efficiently reduced by introducing the
stopping rule of Line 15 of Alg. 1 in the proposed approach.

B. GNSS MULTIPATH MITIGATION IN URBAN CANYONS
This section validates the proposed RBPF with VB inference
in the context of multipath (MP) interference mitigation for
GNSS receivers in urban canyons. MP signals are mainly due
to the fact that a signal transmitted by a navigation satellite
is very likely to be reflected or diffracted and can follow
different paths before arriving at the GNSS receiver [37].
Depending on the availability of the direct signal, reflected
MP signals affecting the received direct GNSS signal can be
divided into two situations: (a)MP interfereces resulting from
the sum of the direct signal and of delayed reflections handled
by the GNSS receiver; (b) non-line-of-sight (NLOS) signals
resulting from a unique reflected signal received and tracked
by the GNSS receiver [38], [39]. Accordingly, the pseudo-
range measurement noise error in the MP interference sit-
uation is considered as a non-Gaussian stochastic process,
while a mean value jump is present on the pseudo-range
measurement in the NLOS signal situation [40]–[42]. Since
our aim is to estimate the pseudo-range measurement error
resulting from MP rather than to identify the type of MP,
the impact of MP signals on the pseudo-range measurement
in this work is formulated as an unknown mean value jump
and a non-Gaussian measurement noise distributed accord-
ing to the Student-t distribution in this work. Assuming the
atmospheric propagation errors can be compensated within
the GNSS receiver, the pseudo-range measurement model

collected from Nd in-view satellites in the presence of MP
can be defined using the following compact form

yk = hθk (xk)+ vk (29)

with

hθk (xk) =
(
h1,θ1,k (xk) , . . . , hNd,θNd,k

(xk)
)T

(30)

and

hs,θs,k (xk) =‖ ps,k − pk ‖ +bk + θs,k (31)

where s = 1, . . . ,Nd, xk is state vector for describing
the dynamic of the vehicle in the earth-centered earth-fixed
(ECEF) frame at the kth time instant, yk =

(
y1,k , . . . , yNd,k

)T
is the pseudo-range measurement vector composed of all
in-view satellites, ps,k =

(
xs,k , ys,k , zs,k

)T and pk =
(xk , yk , zk)T are the sth satellite and vehicle positions in the
ECEF frame, bk is the GNSS receiver clock offset, ‖ · ‖ and
(·)T denote the Euclidean norm and the transpose of a vector,
respectively. In the presence of MP, θk =

(
θ1,k , · · · , θNd,k

)T
denotes the mean value jumps appearing on the pseudo-range
measurement of all in-view satellites (θs,k = 0 in the absence
ofMP) and vk is the measurement noise distributed according
to the Student-t distribution (as in (3)). In practice, an impor-
tant property of MP signals is that they are not only depend
on the relative position of the receiver and GNSS satellites,
but also on the environment where the receiver is located,
especially in urban canyons. Thus the mean value jump θk
and the measurement noise parameters ξ k = {3k , κk , vk} can
be considered as unknown time-varying model parameters,
which need to be estimated jointly with the vehicle state xk .
In addition, the state vector xk considered in this paper is
defined as follows [42], [43]

xk = (xk , ẋk , yk , ẏk , zk , żk , bk , dk)T (32)

where k = 1, . . . ,K denotes the kth sampling time instant,
ṗk = (ẋk , ẏk , żk )T is the vehicle velocity in the ECEF frame,
dk is the GNSS receiver clock drift. The velocity can be
reasonably modelled as a random walk, e.g., ẍ = ex where
ex is a zero mean Gaussian noise of variance σ 2

a . For short-
term applications in which the periodical clock resets of the
GNSS receiver are not taken into account, the GNSS receiver
clock offset bk and its drift dk can also be modelled as random
walks, i.e., ḃk = dk + eb and ḋk = ed where eb and
ed are zero-mean Gaussian white noises of variance σ 2

b and
σ 2
d . Based on the above assumptions, the discrete-time state

model which describes the propagation of the vehicle state xk
can be formulated as

xk = Fk|k−1xk−1 + ek (33)

where k = 1, . . . ,K denotes the kth sampling time instant,
ek =

(
ex , ey, ez, eb, ed

)T is a zeromeanGaussian noise vec-
tor of covariance matrix Qk . Details on the matrices Fk|k−1
and Qk can be found in [44].

The experimental data was collected during ameasurement
campaign carried out in Toulouse center (France) and was
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FIGURE 3. Urban canyon trajectory used in the proposed experiments
(obtained with Google Earth).

FIGURE 4. Distance to the origin versus time.

used to evaluate the method proposed in [42]. A synchro-
nized integrated navigation system composed of a Novatel
receiver coupled to a tactical grade IMAR IMU was used to
provide a reference trajectory. Taking advantage of a ground
reference station, differential corrections were performed to
obtain position accuracy close to 1m for the reference trajec-
tory, which is considered as the ground truth. For assessing
the algorithm performance, the vehicle was equipped with
a UBLOX 6T receiver. This receiver delivered not only the
position, velocity and time solution, but also, for each satel-
lite, the raw pseudo-range and Doppler frequency measure-
ments, as well as the navigation message. It allowed us to
compute satellite locations, and to perform timing and prop-
agation correction on the measured pseudo-range. Data were
collected in street urban canyons during which the receiver
was strongly affected by MP signals, and post-processed
using Matlab.

Fig. 3 shows the trajectory considered in our measurement
campaign (lasting 240 s). Fig. 4 displays the evolution of the
distance to the starting point of the trajectory (considered
in our experiment) versus time, where the original point is
defined as the initial position on the trajectory and the trip
distance represents the horizontal distance travelled from the
initial position. It is clear that the distance to the origin does

FIGURE 5. Typical example of estimated mean value jumps.

not change during the time interval (78 s, 159 s), as the vehicle
is stopped in the middle of two buildings. As it appears at
the LOS frequency (the Doppler frequency related to the
vehicle velocity is zero), pseudo-range measurements are
severely impacted by mean value jump during this period.
The in-view satellites observed during the experience are
satellites #3, #6, #19, #26, and #27 (i.e., Nd = 5). The non-
informative prior used for the mean value jump is a uni-
form distribution defined by ψ

(
θs,k

)
= U (−20m, 20m),2

where s = 1, · · · ,Nd. In order to evaluate the proposed
algorithm, we propose to compare its positioning estimation
accuracy with that obtained using the standard APF and
the Dirichlet process mixture (DPM)-based RBPF studied
in [30]. In [30], the pseudo-range measurement noise in the
absence of MP is assumed to have a zero mean Gaussian
distribution with a nominal standard deviation, whereas the
mean and standard deviation of the measurement noise can
change abruptly or evolve slowly during a long period of time
in the presence of MP, leading to time-varying measurement
noise parameters. The DPM-approach of [30] was considered
in this work since it provided interesting results for state-
space models with time-varying parameters, in particular for
MP mitigation in urban canyons. The standard deviations of
the process noise, the clock offset and drift noises were set to
σa = 1m/s2, σb = 3c×10−10m and σd = 2πc×10−10m/s,
respectively, where c = 3 × 108m/s denotes the velocity
of light. The nominal standard deviation of the pseudo-range
measurement noise used for the standard APF was adjusted
by cross-validation and was set to 4m, and the number of par-
ticles for all three approaches is 5000. The other parameters
used in the proposed approach are reported in Table 1.

Fig. 5 displays typical estimates for the mean value jumps
θ̂k impacting the pseudo-range measurements of all in-view
satellites during the measurement campaign. According to

2The sign of the mean value jump depends on the value of the MP signal
carrier phase relative to the direct signal. When the relative carrier phase
belongs to

(
−90◦, 90◦

)
, the sign of the mean value jump is positive. When

the relative carrier phase belongs to
(
−180◦,−90◦

)
or
(
90◦, 180◦

)
, the sign

of the mean value jump is negative.
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TABLE 4. Elevation angles for in-view satellites.

FIGURE 6. Positioning errors versus time.

the results obtained with the proposed approach, the pseudo-
range measurement of satellites #3, #6 and #27 are less
affected by MP than the other received signals. Conversely,
the mean value jumps of satellites #16 and #19 are more
important, confirming the presence of MP. The elevation
angles of all in-view satellites during the measurement cam-
paign are reported in Table 4. Note that the elevation angles
for satellites #3, #6 and #27 are larger than 75◦, whereas
the elevation angles for satellites #16 and #19 are less
than or equal to 60◦. In general, the signals acquired with low
elevation angles (for satellites #16 and #19) are more likely
to be affected by MP, which seems to be the case here.

Fig. 6 displays the positioning errors (horizontal and
vertical errors versus time) for the different approaches.
It is clear that MP signals severely impair the positioning

solution if these interferences are not processed within the
receiver. Conversely, the positioning errors obtained with
the DPM-based RBPF and the proposed approach remains
lower than 20m, confirming that the MP signals affecting the
pseudo-range measurements have been mitigated. We think
that the slightly better positioning accuracy obtained with the
proposed approach with respect to the DPM-based RBPF is
due to a good estimation of the locations of the mean value
jumps, which is possible thanks to the use of the change-point
model defined in (11). Note that the MP amplitude, delay and
phase are constant with respect to those of the direct signal
when the vehicle stops in themiddle of two buildings (leading
to a constant jump). As a consequence, the impact result-
ing from the MP signal is the maximum during this period
(i.e., 78 s-159 s).

V. CONCLUSION
This paper proposed a Rao-Blackwellized particle filter with
variational inference for jointly estimating state and time-
varying parameters in non-linear state-space models with
non-Gaussian measurement noise. The proposed approach
embedded the variational Bayesian inference in an auxiliary
particle filter with a probabilistic changepoint model to build
a joint state and time-varying parameter estimator in the pres-
ence of non-Gaussianmeasurement noise. A simulation study
was conducted by using a modified nonlinear benchmark
model in order to compare the performance of the proposed
approachwith the interactingmultiple model and the adaptive
parameter estimation filter. Since the Student-t distribution
considered in the proposed approach is more robust to out-
liers, the proposed approach provided better estimate accu-
racy for the state and unknown parameters when compared
to the other strategies. Finally, the proposed approach was
validated by processing GNSS receiver data collected from a
measurement campaign carried out in an urban environment
and proved its efficiency for MP mitigation, resulting in
improved positioning accuracy.

One of the drawbacks of the proposed approach is the
requirement that a conjugate prior of the unknown parame-
ters needs to be available for optimizing the objective func-
tion in the proposed variational Bayesian inference. Recent
work on stochastic variational inference might solve this
problem by applying stochastic optimization to the objective
function [45]. Applying stochastic variational inference for
estimating the state and parameters of the changepoint model
investigated in this work is currently under investigation.
Validating the proposed method using data from other mea-
surement campaigns and high-dimensional state-space mod-
els is also an interesting prospect.
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