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Green-Naghdi equations are commonly used in coastal oceanography to describe the propagation of large-amplitude surface waves. In this paper, a new convenient equivalent system to the standard twodimensional case of these equations is presented. This system helps in studying the existence of solution and in its numerical simulations, also gives some physical properties as the irrationality phenomena.

Introduction

The water wave theory lies entirely inside hydrodynamics which is a branch of fluid mechanics that deals with constant density fluids. Water waves have a wide requests as an exploratory subject. Hydrodynamics procedures identified with the change of waves in shallow situations include nonlinear, dispersive phenomenon, and bathymetric effects are complex to study, but their comprehension is important to acquire data that will assist to curb wave phenomena for example, tsunami wave waves and what makes them more dangerous than other sea waves. Despite the several unknowns the water-wave problem have, the moving surface is also a piece of the solution according to what will be explained later on. For this reason, scientists of different fields of study went towards deriving simpler models that needs to be determined in specific physical regimes : the shallow water (µ 1) and deep water models (µ 1) (see [START_REF] Alvarez-Samaniego | Large time existence for 3D water-waves and asymptotics[END_REF] for more details). Each of these models are an approximation model with respect to a different geophysical situation and many thus have been derived starting by J. Boussinesq in 1872 [START_REF] Boussinesq | Théorie de l'intumescence liquide, applelée onde solitaire ou de translation, se propageant dans un canal rectangulaire[END_REF][START_REF] Boussinesq | Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond[END_REF][START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. i: Derivation and linear theory[END_REF]. This approximation came after an observation by John Scott Russell of the wave of translation (solitary wave or soliton see [START_REF] Alvarez-Samaniego | Large time existence for 3D water-waves and asymptotics[END_REF][START_REF] Ovsjannikov | Cauchy problem in a scale of Banach spaces and its application to the shallow water theory justification[END_REF][START_REF] Kano | L'equation de Kadomtsev-Petviashvili approchant les onds longues de surface de l'eau en écoulement trois-dimentionnel Patterns and waves[END_REF][START_REF] Iguchi | A shallow water approximation for water waves[END_REF]) that simulated much wave motion issue in coastal engineering so that most of the wave phenomena contained across the nearshore (like refraction, diffraction, shoaling, frequency dispersion and nonlinear interaction) but they cannot predict either where and when a wave breaks or, particularly, the hydrodynamic features of a breaking wave. In 1953 Serre, and later in 1956, Green and Naghdi uploaded a higher-order model (see [START_REF] Makarenko | A second long-wave approximation in the Cauchy-Poisson problem[END_REF][START_REF] Li | A shallow-water approximation to the full water wave problem[END_REF][START_REF] Alvarez-Samaniego | Large time existence for 3D water-waves and asymptotics[END_REF] for justification). This model has since been widely used in coastal oceanography [START_REF] Green | A derivation of equations for wave propagation in water of variable depth[END_REF][START_REF] Green | On the theory of water waves[END_REF][START_REF] Basenkova | Dispersive efects in two-dimensional hydrodynamics[END_REF][START_REF] Wei | A fully nonlinear Boussinesq model for surface waves.P I. Highly nonlinear unsteady waves[END_REF][START_REF] Kim | A strongly-nonlinear model for water waves in water of variable depth: the irrotational green-naghdi model[END_REF] since it considers the dispersive impacts ignored by the previous order model (NSW equations), that is, first order in µ the shallowness parameter (see [START_REF] Alvarez-Samaniego | Large time existence for 3D water-waves and asymptotics[END_REF][START_REF] Iguchi | A shallow water approximation for water waves[END_REF][START_REF] Kano | L'equation de Kadomtsev-Petviashvili approchant les onds longues de surface de l'eau en écoulement trois-dimentionnel Patterns and waves[END_REF][START_REF] Ovsjannikov | Cauchy problem in a scale of Banach spaces and its application to the shallow water theory justification[END_REF] for justification of this approximation). Then again, from that point forward it is presently the most notable model for the numerical simulation of coastal flows [START_REF] Lannes | A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulation[END_REF][START_REF] Bonneton | a splitting approach for the fully nonlinear and weakly dispersive greennaghdi model[END_REF]. Here the first three sections are dedicated to introducing and recalling the water-wave problem in detailed. In section four, a brief view on the work done on large-amplitude/shallow-water models with different approximation errors such as Green-Naghdi equations. A new ingredient is presented in section five. An equivalent and same accuracy system to the classical Green-Naghdi equations is derived in Theorem 1 as follows

∂ t ζ + ∇ • (hu) = 0 ∂ t + εu ⊥ curl v + ∇ ζ + εu • v - 1 2 ε|u| 2 - 1 2 εµw 2 = 0, where v = u + µT [h, βb]u, w 2 = (βu • ∇b -h∇ • u) 2 , T [h, βb]u = -1 3h ∇(h 3 ∇ • u) + 1 2h ∇ h 2 (β∇b) • u -h 2 (β∇b)∇ • u + β 2 (∇b • u)∇b.
This new version helps us in proving its well-posedness using the fixed point method and facilitates the way on its numerical and analytic analysis. As a result, an irrotational property is ensured in Theorem 2. At the end of the paper, some numerical experiments are presented in order to validate some theoretical results.

The Water Wave Problem

We consider the two-dimension water wave problem neglecting rotational effects in an incompressible inviscid fluid (i.e. it is difficult to press a gallon of water into your slight water bottle, no matter how hard you attempted) with density one. Without the presence of surface tension the gravity is the only force acting on the surface water. Referring to figure 1 below, the domain of the fluid Ω t is bounded from above by the surface wave ζ(t, X) and from below by the time-independent bottom non moving topography -h 0 + b(X) where h 0 is the depth at initial time. 

Euler Equations

A moving ideal fluid flow is described by the free surface (because the surface wave ζ is unknown) Euler equations that is a relation between the velocity, pressure, and density (that is 1 in our case) of the fluid combined with several assumptions and appears under the form (1)

                             ∂ t V + (V • ∇ X,z )V = -g - → e z - 1 ρ ∇ X,z P in (X, z) ∈ Ω t , t ≥ 0, ∇ X,z • V = 0 in (X, z) ∈ Ω t , t ≥ 0, ∇ X,z × V = 0 in (X, z) ∈ Ω t , t ≥ 0, P = 0 at z = ζ(t, X) , t ≥ 0, ∂ t ζ -1 + |∇ X ζ| 2 V • n + = 0 at z = ζ(t, X) , t ≥ 0, V • n -= 0 at z = -h 0 + b(X) , t ≥ 0, lim |(X,z)|→+∞ |ζ(X, z)| + |V (t, X, z)| = 0 in (X, z) ∈ Ω t , t ≥ 0,
where V (•, •, •) the fluid velocity, P (•, •, •) the fluid pressure term are at point (X, z) ∈ Ω t and instant t ∈ R + .

The gravity force g > 0 is acting vertically downward and denote by -→ e z = (0, 0, 1) T the z-component

unit vector. While n + = 1 √ 1+|∇ X ζ| 2 ∇ X ζ T , 1 T and n -= 1 √ 1+|∇ X b| 2 ∇ X b T , -1
T are the outward unit vectors to the boundaries of the fluid domain where X ∈ R d the spatial variable is written as X = (x, y) and

∇ = ∇ X = (∂/∂ x , ∂/∂ y )
T is the two-dimensional horizontal gradient operator.

• The first equation in (1) can be written using the Newton's law for the rate of change of momentum (see Chapter 8 in [START_REF] Salmon | Introduction to Ocean Waves[END_REF] for details) with ∂ t V + (V • ∇ X,z )V denotes the mathematical derivative and (V • ∇ X,z ) denotes the convective operator. Proceeding as in [START_REF] Salmon | Introduction to Ocean Waves[END_REF] we denote by n the amount of R per unit volume where total amount of R is conserved. In the case n satisfies the following form of equation

∂ t n + ∇ X,z • F = 0,
where F (x, y, z) = (F 1 , F 2 , F 3 ) the flux density of R that moves with velocity V , that is, F = nV . The equation hence becomes

(2)

∂ t n + ∇ X,z • (nV ) = 0.
Furthermore, since the mass moves at the velocity V of the fluid and the density ρ = mass volume = 1, a conservation low for mass is

(3) ∇ X,z • V = 0.
The momentum per unit volume is ρV

= V = (V 1 , V 2 , V 3 ). Now V 1 is the x-component of the momentum
which is carried around by the fluid in the same way as mass, then we would take

n = ρV 1 = V 1 , so we get ∂ t V 1 + ∇ X,z • (V V 1 ) = f 1
and not zero since forces cause the momentum to change where f 1 is the x-component of the force f , that is the force of the fluid on itself which is the pressure force. Cut the liquid at any point. The liquid on every side of your cut is pushing against the opposite side of the cut with a force equal to the pressure. The direction of the force is always normal to the cut. In that sense the weight is is exerted equally in all directions. We see that the pressure per unit volume is f = -∇ X,z P . The sign mines is because of the fluid being pushed far from where the pressure is high. Thus the last equation combined for simplification by (2) leads to the x-component of the momentum as

∂ t V 1 + V • ∇ X,z • V 1 = -∂ x P.
Similarly, the y-component of the momentum equation reads

∂ t V 2 + V • ∇ X,z • V 2 = -∂ y P.
The z-component contains an additional force caused by the gravity, giving

∂ t V 3 + V • ∇ X,z • V 3 = -∂ z P -g. Note that the identity ∇ • (V V i ) = V i ∇ • V + V • ∇V i
for all scalar function V i is used above for simplification. Gathering the equations above yield the Euler equation.

• The third equation in [START_REF] Boussinesq | Théorie de l'intumescence liquide, applelée onde solitaire ou de translation, se propageant dans un canal rectangulaire[END_REF] expresses the irrotational of the fluid.

• The forth equation in ( 1) is a dynamic condition that expresses a balance of forces across the free surface.

Ignoring the effect of surface tension implies that the pressure is constant at the interface, that is, one can consider zero pressure at the surface.

• The fifth equation in ( 1) is the boundary condition at the surface called the kinematic condition which states that the free surface moves with the fluid with n + the outward normal vector to the free surface and

equal to ∇ X,z F ∇ X,z F where F (t, X, z) = z -ζ(t, X).
It is obtained as follows. suppose that the position of a fluid particle at time t is determined by

M (t) = (X(t), z(t)).
Remark that for all time t, particle stays on the surface

F (t, X(t), z(t)) = 0 ⇐⇒ F (t, M (t)) = ∂ t F (t, M (t)) = 0. Furthermore, sine F (t, M (t)) = 0 this ensures that z = ζ(t, X) for all t ≥ 0. Also, since ∂ t F (t, M (t)) = 0 this implies that ∂ t F + ∂ t M • ∂ M F = 0 for all t ≥ 0. Now replacing ∂ t F = -∂ t ζ, ∂ t M = V , and ∂ M F = ∇ X,z F = -∇ X ζ, 1
T , then equation five is verified.

• The sixth equation in ( 1) is the boundary is the boundary condition at the bottom which means that the fluid particles do not cross the bottom with n -= 1

1 + |∇ x b| 2 ∇ X b, -1
T is the outward normal to the lower boundary of Ω t . It is obtained in the same way as the previous condition but take F (t, X, z) = -h 0 +b(X)-z.

• The last condition states that the fluid is at rest at infinity.

Non-dimensionalised Euler equations

In this paper, we consider the Eulerian approach of the fluid motion rather than working in the Lagrangian approach. In particular, when approximate features are investigated. More precisely, a starting point for simplifying this problem is to use the fact that the fluid is irrotational. This ensures the existence of the velocity potential flow of the fluid, so we can say that V equals to the gradient of the velocity potential ϕ(t, X, z). Once we do this then ϕ(t, X, z) has to be harmonic in the fluid domain that is ∆ X,z ϕ = 0 in Ω t . Moreover, replacing V by ∇ X,z ϕ in the Euler equation we may rewrite the Euler system under Bernoulli's formulation (4)

           ∆ X,z ϕ = 0 at -h 0 + b(X) < z < ζ(t, X), ∂ z ϕ -∇ X b • ∇ X ϕ = 0 at z = -h 0 + b(X), ∂ t ζ + ∇ X ϕ • ∇ X ζ -∂ z ϕ = 0 at z = ζ(t, X), ∂ t ϕ + 1 2 |∇ X,z ϕ| 2 + gζ = 0 at z = ζ(t, X).
The second and third equations can be written using the boundary condition at the bottom (1) 6 and the kinematic condition (1) 5 respectively. The last equation is established by commuting V = ∇ X,z ϕ in (1) 1 and noticing that

(V • ∇ X,z )V =   ∂ x ϕ∂ 2 x ϕ ∂ y ϕ∂ 2 xy ϕ ∂ z ϕ∂ 2 xz ϕ ∂ x ϕ∂ 2 xy ϕ ∂ y ϕ∂ 2 y ϕ ∂ z ϕ∂ 2 yz ϕ ∂ x ϕ∂ 2 xz ϕ ∂ y ϕ∂ 2 yz ϕ ∂ z ϕ∂ 2 z ϕ  
we get the following three equalities ( 5)

∂ tx ϕ + 1 2 ∂ x |∂ x ϕ| 2 + 1 2 ∂ x |∂ y ϕ| 2 + 1 2 ∂ x |∂ z ϕ| 2 = - 1 ρ ∂ x P, (6) 
∂ ty ϕ + 1 2 ∂ y |∂ x ϕ| 2 + 1 2 ∂ y |∂ y ϕ| 2 + 1 2 ∂ y |∂ z ϕ| 2 = - 1 ρ ∂ y P, ( 7 
) ∂ tz ϕ + 1 2 ∂ x |∂ z ϕ| 2 + 1 2 ∂ z |∂ y ϕ| 2 + 1 2 ∂ z |∂ z ϕ| 2 = -g - 1 ρ ∂ z P.
Now, integrating (5), ( 6) and ( 7) with respect to x, y, z respectively, we obtain (8)

∂ t ϕ + 1 2 |∂ x ϕ| 2 + 1 2 |∂ y ϕ| 2 + 1 2 |∂ z ϕ| 2 = - 1 ρ P (t, X, z) + a(y, z), ( 9 
) ∂ t ϕ + 1 2 |∂ x ϕ| 2 + 1 2 |∂ y ϕ| 2 + 1 2 |∂ z ϕ| 2 = - 1 ρ P (t, X, z) + b(x, z), ( 10 
) ∂ t ϕ + 1 2 |∂ x ϕ| 2 + 1 2 |∂ y ϕ| 2 + 1 2 |∂ z ϕ| 2 = -gz - 1 ρ P (t, X, z) + c(x, y).
Furthermore, differentiating [START_REF] Green | On the theory of water waves[END_REF] with respect to x, one gets

∂ x (∂ t ϕ + 1 2 |∇ xyz ϕ| 2 ) = - 1 ρ ∂ x P + ∂ x c. Also, differentiating (8) with respect to x, one gets ∂ x (∂ t ϕ + 1 2 |∇ xyz ϕ| 2 ) = - 1 ρ ∂ x P .
Hence, the addition of the previous two equations yields : ∂ x c(x, y) = 0 which implies c(x, y) = c 1 (y). Similarly, differentiating [START_REF] Green | On the theory of water waves[END_REF] with respect to y and ( 9) with respect to y, one obtains

∂ y c 1 (y) = 0 ⇒ c(x, y) = c 1 (y) = c 2 (constant). Now, differentiating (9) with respect to x, one gets ∂ x (∂ t ϕ + 1 2 |∇ xyz ϕ| 2 ) = - 1 ρ ∂ x P + ∂ x b. Also, differentiating (10) with respect to x, one gets ∂ x (∂ t ϕ + 1 2 |∇ xyz ϕ| 2 ) = - 1 ρ ∂ x P , their addition leads to have b(x, z) = b 1 (z).
Similarly, adding the derivations of ( 9) and ( 10) with respect to z, we obtain b

(z) = -g then b(x, z) = b(z) = -gz + b 2 (constant).
Proceeding as above, one can conclude that a(y, z) = -gz + a 2 (constant). Finally, using (1) 7 we get the desired result .

To avoid the difficulties in solving the system above represented in the moving domain itself, we look toward simpler asymptotic models and this requires the identification of physical parameters so that from their variation one can derive different approximations in specific regimes. More precisely, let us introduce the following dimensionless parameters Nonlinearity parameter 0 < ε = a h0 ≤ 1; a : wave amplitude Shallowness parameter µ = h 2 0 λ 2 1; λ : wave-length of the wave Topography parameter β = b0 h0 ; b 0 : bottom topography variation recalling that h 0 is the reference depth. We now execute the classical shallow water (µ 1) non-dimensionalization using the following relations :

X = λX , z = h 0 z , ζ = aζ , ϕ = a h 0 λ gh 0 ϕ , b = b 0 b , t = λ √ gh 0 t .
Furthermore, for writing the dimensionless form of equation ( 4) 1 , we use

       ∂ 2 ϕ ∂x 2 = ∂ ∂x ( ∂ϕ ∂x ) ∂x ∂x = a h0 1 λ √ gh 0 ∂ 2 ϕ ∂x 2 ∂ 2 ϕ ∂y 2 = a h0 1 λ √ gh 0 ∂ 2 ϕ ∂y 2 ∂ 2 ϕ ∂z 2 = a h 3 0 λ √ gh 0 ∂ 2 ϕ ∂z 2 .
While for the dimensionless form of equation ( 4) 2 we use ( 11)

         ∇ X ζ = a λ ∇ X ζ ∇ X ϕ = a h0 √ gh 0 ∇ X ϕ ∇ X b = b0 λ ∇ X b ∂ z ϕ = a h 2 0 λ √ gh 0 ∂ϕ ∂z .
For (4) 3 in addition to [START_REF] Green | A derivation of equations for wave propagation in water of variable depth[END_REF] Therefore, the equations of motion (1) then become (after eliminating the primes for sake of clarity) under the dimensionless Bernoulli's formulation

(12)                µ∂ 2 x ϕ + µ∂ 2 y ϕ + ∂ 2 z ϕ = 0 at -1 + βb(X) < z < εζ(t, X), ∂ z ϕ -µβ∇ X b • ∇ X ϕ = 0 at z = -1 + βb(X), ∂ t ζ - 1 µ (-µε∇ X ζ • ∇ X ϕ + ∂ z ϕ) = 0 at z = εζ(t, X), ∂ t ϕ + 1 2 (ε|∇ X ϕ| 2 + ε µ (∂ z ϕ) 2 ) + ζ = 0 at z = εζ(t, X).
Although the system now is simpler because the vectorial unknown V is replaced by a scalar unknown ϕ. At this stage it is worth noticing a free boundary problem still exists and appears in the moving unknown domain Ω t . To fix our domain the Zakharov/Criag-Sulem formulation [START_REF] Zakharov | Stability of periodic waves of finite amplitude on the surface of a deep fluid[END_REF][START_REF] Craig | Nonlinear modulation of gravity waves : a rigorous approach[END_REF][START_REF] Craig | Numerical modulation of gravity waves[END_REF] of the water-waves equations will be used. For this ending, we introduce the trace of the velocity potential at the free surface

(13) ψ(t, X) = ϕ t, X, εζ(t, X) = ϕ | z=εζ ,
and the Dirichlet-Neumann operator G µ [εζ, βb]•, that is, linear with respect to ψ but highly nonlinear with respect to the surface and the bottom parametrization ζ and b, defined by

G µ [εζ, βb]ψ = -µ ε∇ζ • ∇ϕ | z=εζ + ∂ z ϕ | z=εζ = 1 + µε 2 ∇ζ 2 ∂ n ϕ | z=εζ
with ϕ solving ( see [START_REF] Lannes | The water waves problem[END_REF] for accurate analysis) the boundary value problem

   µ∂ 2 x ϕ + µ∂ 2 y ϕ + ∂ 2 z ϕ = 0 in -1 + βb(X) < z < εζ(t, X), ∂ n ϕ | z=-1+βb = 0, ϕ | z=εζ = ψ(t, X),
where ∂ n ϕ = n -• ∇ X,z ϕ refers to the upward normal derivative at the bottom. System [START_REF] Li | A shallow-water approximation to the full water wave problem[END_REF] is then reduced to a system of two scalar equation in a fixed horizontal domain R 2 (elimination of the vertical z-component) namely called the Zakharov model ( 14)

       ∂ t ζ - 1 µ G µ [εζ, βb]ψ = 0, ∂ t ψ + ζ + ε 2 |∇ψ| 2 -εµ ( 1 µ G µ [εζ, βb]ψ + ∇(εζ) • ∇ψ) 2 2(1 + ε 2 µ|∇ζ| 2 ) = - 1 Bo κ(ε √ µζ) ε √ µ .
The first equation of the model above is obtained by replacing the Dirichlet-Neumann operator in [START_REF] Li | A shallow-water approximation to the full water wave problem[END_REF] 3 . For the second equation, a consequence of chain rule and (13) yields the three relations below at the free surface elevation

     (∂ t ϕ) | z=εζ = ∂ t ψ -ε∂ t ζ • (∂ z ϕ) | z=εζ (∇ϕ) | z=εζ = ∇ψ -ε∇ζ • (∂ z ϕ) | z=εζ (∂ z ϕ) | z=εζ = µ 1 µ Gµ[εζ,βb]ψ+∇(εζ)•∇ψ (1+µε 2 |∇ζ| 2 )
.

Combining the third relation with the first two and after replacing ∂ t ζ by 1 µ G µ [εζ, βb]ψ the desired system will appear.

Shallow-water, large-amplitude models

(µ 2 < µ 1, ε ∼ 1)
Formally, in shallow water regime conditions, an approach is based on a perturbation method with respect to a small parameter µ when no assumptions are made on the nonlinearity parameter ε. At an error of order one in µ the Nonlinear Shallow Water or "Saint-Venant" equations who first derived them in 1871 [START_REF] De Saint-Venant | Théorie de mouvement non permanent des eaux, avec application aux crues des rivières et à lintroduction des marées dans leur lit[END_REF][START_REF] De Saint-Venant | Sur la houle et le clapotis[END_REF] in the one-dimensional case, which couple the evolution of the free surface to the evolution of the vertically averaged horizontal component of the velocity

u = 1 h(t, X) εζ(t,X) -1+βb(X)
∇ϕ(t, X, z)dz with h(t, X) = 1 + εζ(t, X) -βb(X) the non-dimensional height of the liquid that is always bounded from below by a non-negative constant, giving (15)

∂ t ζ + ∇ • (hu) = 0, ∂ t u + ∇ζ + ε(u • ∇)u = O(µ).
The first justification of such models goes back to Ovsjannikov [START_REF] Ovsjannikov | To the shallow water theory foundation[END_REF][START_REF] Ovsjannikov | Cauchy problem in a scale of Banach spaces and its application to the shallow water theory justification[END_REF], and Kano and Nishida [START_REF] Kano | Sur les ondes de surface de l'eau avec une justification mathématique des équations des ondes en eau peu profonde[END_REF] who proves when the shallowness parameter tends to zero, the solution of (15) converges to the solution of the water-waves equations under some restrictive assumptions. However, neglecting these assumptions a rigorous justifications for Shallow Water and Green-Naghdi equations was given by Y. A. Li in [START_REF] Li | A shallow-water approximation to the full water wave problem[END_REF] in the one-dimensional case with flat bottom, while T. Iguchi in 2D case for Shallow Water equations only. Note that, for such a symmetrizable hyperbolic system a classical local existence can be established see [START_REF] Alinhac | Opérateurs pseudo-différentiels et thoérème de Nash-Moser,Savoirs Actuels. InterEditions[END_REF][START_REF] Taylor | Partial Differential Equations II[END_REF].

At an error of order two in µ we get the so-called classical or standard Green-Naghdi model who was first derived in the 1D case and when the bottom is flat (β = 0) by Serre [START_REF] Serre | Contribution à l'étude des ecoulements permanents et variables dans les canaux[END_REF] and then rediscovered by Su and Gardner [START_REF] Su | Korteweg-de Vries equation and generalizations.III. Derivation of the Korteweg-de Vries equation and burgers equation[END_REF], then when the bottom is not flat (β = 0) in [START_REF] Seabra-Sanitos | Numerical experiment study of the transformation of tha solitary wave over a shelf or isolated obstacle[END_REF]. They can likewise be found in the media [START_REF] Wei | A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinea unsteady waves[END_REF] under the name fully nonlinear Boussinesq equations. We refer to reference [START_REF] Lannes | Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation[END_REF] for a general method of derivation of asymptotic nonlinear models in shallow and deep water starting from a general dimensionless version of the water wave equations ( 14) as mentioned in the introduction. Based on this, the equation reads ( 16)

∂ t ζ + ∇ • (hu) = 0 1 + µT [h, βb] ∂ t u + ∇ζ + ε(u • ∇)u + εµ Q[h]u + Q b [h, βb]u = O(µ 2 ),
where we recall that h = 1+εζ -βb and T [h, βb]u and the non-topographical quadratic form Q[h]u is defined as

T [h, βb]u = -1 3h ∇(h 3 ∇ • u) + 1 2h ∇ h 2 (β∇b) • u -h 2 (β∇b)∇ • u + β 2 (∇b • u)∇b,
and

Q[h]u = -1 3h ∇ h 3 (u • ∇)(∇ • u) -(∇ • u) 2 , while the purly topographical quadratic form Q b [h, βb]v is defined as Q b [h, βb]u = β 2h ∇ h 2 (u • ∇) 2 b -h 2 (u • ∇)(∇ • u) -(∇ • u) 2 ∇b + β 2 (u • ∇) 2 b ∇b.
A rigorous justification on the standard system ( 16) was given by several works. For example, as in [START_REF] Li | A shallow-water approximation to the full water wave problem[END_REF][START_REF] Israwi | Derivation and analysis of a new 2D Green-Naghdi system[END_REF][START_REF] Israwi | Large Time existence For 1D Green-Naghdi equations[END_REF][START_REF] Duchene | Well-posedness of the Green-Naghdi and Boussinesq-Peregrine systems[END_REF] a well-posedness result in 1D and 2D for flat and non-flat bottoms (β = 0, β = 0) cases respectively using a standard Picard iterative scheme so that there is no loss of regularity of the solution with respect to initial data. Also, extending [START_REF] Craig | Numerical modulation of gravity waves[END_REF] in µ (see for instance [START_REF] Khorbatly | Derivation and Well-Posedness of the extended Green-Naghdi system for flat bottoms with surface tension[END_REF][START_REF] Khorbatly | On the extended Green-Naghdi system for an uneven bottom with surface tension[END_REF]), the same method was followed to ensure the existence and uniqueness of the solution but taking the effect of surface tension on the water surface into consideration.

5. An equivalent system to the 2D Green-Naghdi equations

In this section, the main result of our work is presented. A new formulation of system ( 16) is derived. The importance of this new structure is to help and improve the study of the well-posedness and the numerical analysis of such models. We start by recalling some crucial vector identities needed for the method followed. In these identities, f = (f 1 , f 2 ) and g = (g 1 , g 2 ) are differential vector fields that satisfies ( 17)

f ⊥ curl(g) + ∇(f • g) = (f • ∇)g + (g • ∇)f -g ⊥ curlf and (u • ∇)(f ∇g) + f (∇g • ∇)u -(f ∇g) ⊥ curl(u) = (u • ∇)(f ∇g) + f ∇(∇g • u) -f (u • ∇)∇g = (u • ∇f )∇g + f ∇(∇g • u), ( 18 
)
where

f ⊥ = (-f 2 , f 1 ) T and curlf = ∇ × f = ∂ x f 2 -∂ y f 1 .
Here and throughout the rest of this section we work with these functional spaces, defined for n ∈ N

H n def = ζ ∈ L 2 loc (R 2 ), |ζ| 2 
H n def = |Λ n ζ| 2 L 2 < ∞ X n def = u ∈ L 2 loc (R 2 ) 2 , |u| 2 X n def = |Λ n u| 2 L 2 + µ|Λ n ∇ • u| 2 L 2 < ∞ Y n def = v ∈ L 2 loc (R 2 ) 2 , |v| Y n def = |Λ n v| (X 0 ) < ∞ Z n def = ψ ∈ L 2 loc (R 2 ), |ψ| Z n = |Λ n ∇ψ| L 2 < ∞ . Λ is the pseudo-differential operator Λ n = (1 -∆) n/2 = (1 -∂ 2 x -∂ 2 y ) n/2
, (X 0 ) is the topological dual space of X 0 endowed with the norm of the strong topology, and C ∞ b (R 2 ) is the space of the infinitely differentiable functions that are bounded together with all their derivatives.

Theorem 1. Let T > 0, b ∈ C ∞ b (R 2 ) and (ζ, u) ∈ C 1 [0, T ); H 2 × C 1 [0, T ); X 2 be a solution to the following new system (19)    ∂ t ζ + ∇ • (hu) = 0 ∂ t + εu ⊥ curl v + ∇ ζ + εu • v - 1 2 ε|u| 2 - 1 2 εµw 2 = 0, with v = u + µT [h, βb]u, and w 2 = (βu • ∇b -h∇ • u) 2 .
Then the solution (ζ, u) verifies the original model ( 16) and vice versa.

Proof. Lets us start by remarking that the first equations in the two systems are the same. Our focus will be on the second equations and we will work from (19) 2 towards (16) 2 . First of all, combine (19) 2 by the following vector identity

1 2 ∇(|u| 2 ) = u 1 ∂ x u 1 + u 2 ∂ y u 1 -u 2 ∂ y u 1 + u 2 ∂ x u 2 u 1 ∂ x u 2 + u 2 ∂ y u 2 -u 1 ∂ x u 2 + u 1 ∂ y u 1 = (u • ∇)u -u ⊥ curlu.
After cancelling similar terms and the µ's both side, then one may say that (19) 2 -( 16) 2 are equivalent if and only if u satisfies the equation below is satisfied

(20) [∂ t , T [h, βb]]u + εu ⊥ curl(T [h, βb]u) + ε∇(u • T [h, βb]u) - 1 2 ε∇ w 2 = εQ[h]u + εQ b [h, βb]u,
where the commutator [T, p] is defined by [T, p]q = T (pq) -p(T q) with p, q and pq belongs to the domain of T . The idea now is to simplify and decompose the l.h.s of ( 20) and then to show that the non-topographical and the purely topographical coincide with Q[h]u and Q b [h, βb]u respectively. Let us start by using identity [START_REF] Lannes | Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation[END_REF], to write

(21) u ⊥ curl(T [h, βb]u) + ∇(u • T [h, βb]u) = (u • ∇)(T [h, βb]u) + (T [h, βb]u • ∇)u -(T [h, βb]u) ⊥ curl(u).
Also, one may decompose

T [h, βb]u = -1 3h ∇(h 3 ∇ • u) + β 2h ∇ h 2 ∇b • u + β - 1 2 h∇b∇ • u + β∇b(∇b • u) (22) = 1 h ∇k 1 + βk 2 ∇b,
where

k 1 = -1 3 h 3 ∇ • u + 1 2 βh 2 (∇b • u) k 2 = -1 2 h∇ • u + β(∇b • u)
. Now, combining the r.h.s. of ( 21) with [START_REF] Ovsjannikov | Cauchy problem in a scale of Banach spaces and its application to the shallow water theory justification[END_REF]. Then using the vector identity [START_REF] Lannes | The water waves problem[END_REF] two times once for f = 1 h and g = k 1 and when f = βk 2 and g = b for a second time to get

(23) u ⊥ curl(T [h, βb]u) + ∇(u • T [h, βb]u) = - 1 h 2 ∇k 1 (u • ∇h) + 1 h ∇(∇k 1 • u) + β(u • ∇k 2 )∇b + βk 2 ∇(∇b • u).
However, to simplify and decompose the rest of the terms in [START_REF] De Saint-Venant | Sur la houle et le clapotis[END_REF] we use the fact that b is independent of the time t and from (16) 1 we replace ∂ t ζ = -∇ • (hu), to get

∂ t h = -ε∇ • (hv), ∂ t h 2 = -2εh∇ • (hv), ∂ t h 3 = -3εh 2 ∇ • (hv).
Therefore, we have

∂ t (T [h, βb]u) = - ε∇ • (hu) 3h 2 ∇(h 3 ∇ • u) + ε h ∇(h 2 ∇ • (hu))∇ • u) + εβ∇ • (hu) 2h 2 ∇(h 2 u • ∇b) - εβ h ∇(h∇ • (hu)∇b • u) + β ε∇ • (hu) 2 (∇ • u)∇b + T [h, βb]∂ t u,
that is after some arrangements

∂ t , T [h, βb] u = 1 h 2 ε∇ • (hu)∇k 1 + 1 h ε∇ ∇ • (hu)(h 2 ∇ • u -βhu • ∇b) + 1 2 εβ∇ • (hu)(∇ • u)∇b.
Using the fact that ∇ • (hu) = u • ∇h + h∇ • u, one may write

∂ t , T [h, βb] u = 1 h 2 ε∇k 1 (u • ∇h) + 1 h ε∇ • u∇k 1 + 1 h ε∇ (h 2 ∇ • u -βhu • ∇b)u • ∇h + 1 h ε∇ h(h 2 ∇ • u -βhu • ∇b)∇ • u + 1 2 εβ∇ • (hu)(∇ • u)∇b = 1 h 2 ε∇k 1 (u • ∇h) + 1 h ε∇ • u∇k 1 + 1 h ε∇ h 2 (∇ • u)(u • ∇h) -βh(u • ∇h)(∇b • u) + h 3 (∇ • u) 2 -βh 2 (∇ • u)(∇b • u) + 1 2 εβ∇ • (hu)(∇ • u)∇b. ( 24 
)
At last, combining ( 20)-( 23)- [START_REF] Su | Korteweg-de Vries equation and generalizations.III. Derivation of the Korteweg-de Vries equation and burgers equation[END_REF] and after some arrangements [START_REF] De Saint-Venant | Sur la houle et le clapotis[END_REF] and cancelling the ε's both sides, ( 20) becomes [START_REF] Seabra-Sanitos | Numerical experiment study of the transformation of tha solitary wave over a shelf or isolated obstacle[END_REF] 1

h ∇ • u∇k 1 + 1 h ∇ ∇k 1 • u + h 2 (∇ • u)(u • ∇h) + h 3 (∇ • u) 2 -βh∇ • (hu)(∇b • u) + 1 2 β∇ • (hu)(∇ • u)∇b + β(u • ∇k 2 )∇b + βk 2 ∇(∇b • u) - 1 2 ∇ (β∇b • u -h∇ • u) 2 = Q[h]u + Q b [h, βb]u.
The non-topographical contributions on the l.h.s. of [START_REF] Seabra-Sanitos | Numerical experiment study of the transformation of tha solitary wave over a shelf or isolated obstacle[END_REF] (that is setting β = 0) are easily seen to match

-1 3h (∇ • u)∇(h 3 ∇ • u) + 1 h ∇ - 1 3 h 3 (u • ∇)(∇ • u) + h 3 (∇ • u) 2 - 1 2 ∇ (h∇ • u) 2 = -1 3h ∇ h 3 (u • ∇)(∇ • u) - 1 3h (∇ • u)∇(h 3 ∇ • u) + 1 h ∇(h 3 (∇ • u) 2 ) - 1 2 ∇(h 2 (∇ • u) 2 ) =: A 1 + A 2 + A 3 + A 4 .
Remark that

A 2 + A 3 + A 4 = 1 h h 2 ∇h(∇ • u) 2 + 1 3 h 3 ∇(∇ • u) 2 ] = 1 3h ∇ h 3 (∇ • u) 2 .
Hence, gathering A 1 with the last equation leads the non-topographical terms to agree Q[h]u. On the other hand, the purely topographical contributions on the l.h.s. of ( 25) are

1 2h β(∇ • u)∇(h 2 ∇b • u) + 1 h β∇ 1 2 u • ∇(h 2 ∇b • u) -h∇ • (hu)(∇b • u) + 1 2 β∇ • (hu)(∇ • u)∇b + β u • ∇ β(∇b • u) - 1 2 h(∇ • u) ∇b + β β(∇b • u) - 1 2 h(∇ • u) ∇(∇b • u) - 1 2 ∇ β 2 (∇b • u) 2 -2β(∇b • u)(h∇ • u) .
For sake of simplicity, denote by f = ∇ • u and g = β∇b • u the two scalar functions, then we have

1 2 f h ∇(h 2 g) + 1 h ∇ 1 2 u • ∇(h 2 g) -h(u • ∇h + hf )g + β 2 (u • ∇h + hf )f ∇b + β u • ∇(g - 1 2 hf ) ∇b + (g - 1 2 hf )∇g - 1 2 ∇(g 2 -2ghf ) = 1 2 f h ∇(h 2 g) + 1 h ∇( 1 2 h 2 u • ∇g + 1 2 gu • ∇h 2 -hg∇h • u -h 2 f g) + β 2 hf 2 ∇b + β 1 2 f u • ∇h + u • ∇g - 1 2 u • ∇(hf ) ∇b + g∇g - 1 2 hf ∇g - 1 2 ∇(g 2 ) + ∇(ghf ) = 1 2 f h ∇(h 2 g) + 1 h ∇ 1 2 h 2 u • ∇g - 1 h ∇(h 2 f g) + β 2 hf 2 ∇b + β u • ∇g ∇b - 1 2 hu • ∇f ∇b - 1 2 hf ∇g + ∇(ghf ) = P 1 + ..... + P 8
Remarking that by decomposition we have P 1 + P 3 + P 7 + P 8 = 0. Also, note that

u • ∇(∇b • u) = (u 1 ∂ x + u 2 ∂ y )(u 1 ∂ x b + u 2 ∂ y b) = u 1 ∂ x u 1 ∂ x b + u 2 1 ∂ 2 x b + u 1 ∂ x u 2 ∂ y b + u 1 u 2 ∂ x ∂ y b + u 2 ∂ y u 1 ∂ x b + u 1 u 2 ∂ x ∂ y b + u 2 ∂ y u 2 ∂ y b + u 2 2 ∂ 2 y b = (u 1 ∂ x + u 2 ∂ y )(u 1 ∂ x + u 2 ∂ y )b = (u • ∇) 2 b, ( 26 
)
then replacing [START_REF] Wei | A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinea unsteady waves[END_REF] in P 2 and P 5 and summing the remaining terms one may realize that the purely topographical terms agree with Q b [hβb]u. Hence the result.

The theorem below is a direct consequence of theorem 1. Based on this, it notes that if the velocity v is irrotational at the beginning of time then it remains so all the time.

Theorem 2. Let

T > 0, b ∈ C ∞ b (R 2 ), and (ζ, u) ∈ C 1 [0, T ); H 3 × C 1 [0, T ); X 3 be a solution to (19) such that at time t = 0, curl(v |t=0 ) = curl(u + µT [h, βb]u) |t=0 = 0.
Then there exists ψ ∈ C 1 ([0, T ); Z 1 ) such that for any t ∈ [0, T ),

) v = u + µT [h, βb]u = ∇ψ. (27 
Moreover, (ζ, ψ) satisfies (28) [START_REF] Khorbatly | Derivation and Well-Posedness of the extended Green-Naghdi system for flat bottoms with surface tension[END_REF]. Then (ζ, u) defined as above satisfies [START_REF] De Saint-Venant | Théorie de mouvement non permanent des eaux, avec application aux crues des rivières et à lintroduction des marées dans leur lit[END_REF].

∂ t ζ + ∇ • (hu) = 0, ∂ t ψ + ζ + 1 2 |u| 2 = εµ R[h, u] + R b [h, βb, u] , with R[h, u] = 1 3h u • ∇(h 3 ∇ • u) + 1 2 h 2 (∇ • u) 2 , R b [h, βb, u] = - 1 2 1 h u • ∇ h 2 (β∇b • u) + h(β∇b • u)∇ • u + (β∇b • u) 2 . Conversely, assume that (ζ, ψ) ∈ C 1 [0, T ), H 1 × C 1 [0, T ), Z 1 satisfies
Proof. Let us apply first the operator curl(•) to the second equation of ( 19) and making use of the vector identity curl(∇φ) = 0, so one may write

curl(∂ t v) + εcurl(u ⊥ curlv) = 0, which implies that (29) (∂ t curlv, curlv) L 2 + ε curl(u ⊥ curlv), curlv L 2 = 0.
Using the fact that u(t) = 0 at the infinities, then by integration by parts one can make use of the vector identity

curl(u ⊥ curlv), curlv L 2 = -u 1 curlv, ∂ x curlv L 2 -u 2 curlv, ∂ y curlv L 2 = - 1 2 u 1 , ∂ x (curlv) 2 L 2 - 1 2 u 2 , ∂ y (curlv) 2 L 2 = 1 2 ∇ • u, (curlv) 2 L 2 . (30) Therefore, combining (29)-(30) one deduces that ∀t ∈ [0, T ), ∂ ∂t |curlv| L 2 e -ε|∇•u|∞t ≤ 0.
Thus, one may deduce ∀t ∈ [0, T ), curlv = 0. Moreover, this ensures that v is a gradient field and thus there exists the scalar potential ψ ∈ C 1 ([0, T ); Z 1 ) such that when 0 ≤ t < T , we have v = ∇ψ. On the other hand, recalling [START_REF] De Saint-Venant | Théorie de mouvement non permanent des eaux, avec application aux crues des rivières et à lintroduction des marées dans leur lit[END_REF] we have

∂ t ζ + ∇ • (hu) = 0 ∂ t + εu ⊥ curl v + ∇ζ + 1 2 ∇(|u| 2 ) = µε∇ R[h, u] + R b [h, βb, u] .
However, curlv = curl(∇ψ) = ∂ x ∂ y ψ -∂ x ∂ y ψ = 0. Thus, the second equation above becomes Taking c(t) = ∂ t ψ(t, +∞) = 0 gives [START_REF] Khorbatly | Derivation and Well-Posedness of the extended Green-Naghdi system for flat bottoms with surface tension[END_REF]. Conversely, take the gradient of the second equation of ( 28) and add the zero term εu ⊥ curlv to get the desired system [START_REF] De Saint-Venant | Théorie de mouvement non permanent des eaux, avec application aux crues des rivières et à lintroduction des marées dans leur lit[END_REF].

Numerical Results

The target of this section is to present a series of numerical experiments which serve to validate some theoretical results. The linear version problem ( 16) is considered (ε = µ = 0) with periodic boundary condition. We consider the Implicit Euler scheme in time and P 2 finite element in space. Note that when µ = ε = 0, the problem ( 16) and ( 19) are exactly them same. For the non linear case ( = 0), the resolution of the problem ( 16) is harder than [START_REF] De Saint-Venant | Théorie de mouvement non permanent des eaux, avec application aux crues des rivières et à lintroduction des marées dans leur lit[END_REF]. In fact, at each iteration in time, the inversion of the operator (I + µT [h, βb]) is unavoidable. However this is not happening for [START_REF] De Saint-Venant | Théorie de mouvement non permanent des eaux, avec application aux crues des rivières et à lintroduction des marées dans leur lit[END_REF]. The numerical study of the non linear problem will be the target of new paper. The domain Ω is the rectangle [-16, 16]×[-4, 4] and decomposed into 33962 triangles generated by FreeFem++ . the time step is τ = 0.1. The P 2 interpolate of -0.2 * x * exp(-x 2 -y 2 ), -0.2 * y * exp(-x 2 -y 2 ), and 0.1 * (x -y) consist of the initial condition u 0 and ζ 0 respectively . Figure 2 shows the evolution in time of curl(u) at the origin. It is clear that the value of curl(u) is O(10 -3 ), this confirm the result obtained in Theorem 2. In fact we have selected the initial condition u 0 such that curl(u 0 ) = 0, and according to theorem 2, curl(u) is zero. Figure 3 shows the evolution in time of u 1 at the origin. We note that u 1 tends Figure 2. Time evolution of curl(u)(0, 0) slowly to zero when t tends to infinity. Figure 4 shows the evolution in time of u 2 at the origin. We note that u 2 tends rapidly to zero when t tends to infinity. Figure 5 shows the evolution in time of ζ at the origin. We note that ζ tends rapidly to zero when t tends to infinity. 
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