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Summary. Despite the importance of expectiles in fields such as econometrics, risk man-
agement, and extreme value theory, expectile regression — or, more generally, M-quantile
regression — unfortunately remains limited to single-output problems. To improve on this,
we define hyperplane-valued multivariate M-quantiles that show strong advantages over their
point-valued competitors. Our M-quantiles are directional in nature and provide centrality re-
gions when all directions are considered. These regions define new statistical depths, the
halfspace M-depths, that include the celebrated Tukey depth as a particular case. We study
thoroughly the proposed M-quantiles, halfspace M-depths, and corresponding regions. M-
depths not only provide a general framework to consider Tukey depth, expectile depth, L,-
depths, etc., but are also of interest on their own. However, since our original motivation was
to consider multiple-output expectile regression, we pay more attention to the expectile case
and show that expectile depth and multivariate expectiles enjoy distinctive properties that will
be of primary interest to practitioners: expectile depth is maximized at the mean vector, is
smoother than the Tukey depth, and exhibits surprising monotonicity properties that are key
for computational purposes. Finally, our multivariate expectiles allow defining multiple-output
expectile regression methods, that, in risk-oriented applications in particular, are preferable to
their analogs based on standard quantiles.

1. Introduction

Whenever one wants to assess the impact of a vector of covariates X on a scalar response Y,
mean regression, in its various forms (linear, nonlinear, or nonparametric), remains by far
the most popular method. Mean regression, however, only captures the conditional mean

u(x) =EY|X=x] = argreneiﬂlgE[(Y —0)*|X = x]

of the response, hence fails to describe thoroughly the conditional distribution of Y given X.
Such a thorough description is given by the Koenker and Basset (1978) quantile regression,
that considers the conditional quantiles

Ga(x) i= arg i B, (V —0)X = x], a€(0,1), (1)
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where po.1,(t) == {(1 — @)Lt < 0] + al[t > 0]}|¢| is the check function (throughout, I[A]
stands for the indicator function of A). An alternative to quantile regression is the Newey
and Powell (1987) expectile regression, that focuses on the conditional expectiles

eq(x) = arg%nel]IR}E[pa,Lz Y -0)X=x|, ac(0,1), (2)

where pa.1,(t) == {(1 — @)I[t < 0] + al[t > 0]}¢? is an asymmetric quadratic loss function,
in the same way the check function is an asymmetric absolute loss function. Conditional
expectiles, like conditional quantiles, fully characterize the conditional distribution of the
response and nicely include the conditional mean u(x) as a particular case. Sample condi-
tional expectiles, unlike their quantile counterparts, are sensitive to extreme observations,
but this may actually be an asset in some applications; in financial risk management, for
instance, quantiles are often criticized for being too liberal (due to their insensitivity to ex-
treme losses) and expectiles are therefore favoured in any prudent and reactive risk analysis
(Daouia et al., 2018).

Expectile regression shows other advantages over quantile regression, of which we men-
tion only a few here. First, inference on quantiles requires estimating nonparametrically the
conditional density of the response at the considered quantiles, which is notoriously difficult.
In contrast, inference on expectiles can be performed without resorting to any smoothing,
bootstrap or Bayesian technique, which makes it easy, e.g., to test for homoscedasticity
or for conditional symmetry in linear regression models (Newey and Powell, 1987). Sec-
ond, since expectile regression includes classical mean regression as a particular case, it is
closer to the least squares notion of explained variance and, in parametric cases, expectile
regression coefficients can be interpreted with respect to variance heteroscedasticity. This
is of particular relevance in complex regression specifications including nonlinear, random
or spatial effects (Sobotka and Kneib, 2012). Third, expectile smoothing techniques, based
on kernel smoothing (Yao and Tong, 1996) or penalized splines (Schnabel and Eilers, 2009),
show better smoothness and stability than their quantile counterparts and also make expec-
tile crossings far more rare than quantile crossings; see Schnabel and Eilers (2009), Eilers
(2013) and Schulze Waltrup et al. (2015). These points explain why expectiles recently
regained much interest in econometrics; see, e.g., Kuan et al. (2009), De Rossi and Harvey
(2009), and Embrechts and Hofert (2014).

Despite these nice properties, expectile regression still suffers from an important draw-
back, namely its limitation to single-output problems. In contrast, many works devel-
oped multiple-output quantile regression methods. We refer, among others, to Chakraborty
(2003), Cheng and De Gooijer (2007), Wei (2008), Hallin et al. (2010), Cousin and Di Bernardino
(2013), Waldmann and Kneib (2015), Hallin et al. (2015), Carlier et al. (2016, 2017), and
Chavas (2018). This is in line with the fact that defining a satisfactory concept of multivari-
ate quantile is a classical problem that has attracted much attention in the literature (we
refer to Serfling (2002) and to the references therein), whereas the literature on multivariate
expectiles is much sparser. Some early efforts to define multivariate expectiles can be found
in Koltchinski (1997), Breckling et al. (2001) and Kokic et al. (2002), that all define more
generally multivariate versions of the M-quantiles from Breckling and Chambers (1988) (a
first concept of multivariate M-quantile was actually already discussed in Breckling and
Chambers (1988) itself). Recently, there has been a renewed interest in defining multi-
variate expectiles; see, e.g., Cousin and Di Bernardino (2014), Maume-Deschamps et al.
(2017a,b), and Herrmann et al. (2018). Multivariate risk handling in finance and actuarial
sciences is mostly behind this growing interest, as will be discussed in Section S.3 of the
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supplementary materials.

This paper introduces multivariate expectiles—and, more generally, multivariate M-
quantiles—that enjoy many desirable properties, particularly in terms of affine equivari-
ance (while this equivariance property is a standard requirement in the companion prob-
lem of defining multivariate quantiles, the available concepts of multivariate expectiles or
M-quantiles are at best orthogonal-equivariant). Like their competitors, our multivariate
M-quantiles are directional quantities, but they are hyperplane-valued rather than point-
valued. Despite this different nature, they still generate centrality regions when all direc-
tions are considered. While this has not been discussed in the multivariate M-quantile
literature (nor in the multivariate expectile one), this defines an M-concept of statistical
depth. The resulting halfspace M-depths generalize the Tukey (1975) halfspace depth and
satisfy the desirable properties of depth from Zuo and Serfling (2000). Remarkably, these
M-depths can alternatively be obtained by replacing, in the Tukey depth, standard quantile
outlyingness with M-quantile outlyingness, which a posteriori shows that our multivariate
M-quantile concept is a (if not the) most natural one. This is a key result that allows us
to study the structural properties of M-depths, which will apply generically to the Tukey
depth, expectile depth, L,-depths, etc. While M-depths are of interest on their own (they
allow, e.g., achieving a balance between robustness and efficiency), we pay more attention
to the particular case of expectile depth, in line with our original motivation to consider
multiple-output expectile regression. Expectile depth actually offers many properties that,
in comparison with Tukey depth, should be appealing to practitioners: it is maximized at
the mean vector, it is smooth, and it shows a surprising monotonicity that is key for its
computation. Finally, our multivariate expectiles allow us to define multiple-output expec-
tile regression methods, that, in risk-oriented applications in particular, will be preferable
to their analogs based on standard quantiles.

The outline of the paper is as follows. In Section 2, we carefully define univariate M-
quantiles by extending a result from Jones (1994). In Section 3, we introduce our concept
of multivariate M-quantiles and compare the resulting M-quantile regions with those asso-
ciated with alternative M-quantile concepts. In Section 4, we define the halfspace M-depths
and investigate their properties, whereas, in Section 5, we focus on the particular case of
expectile depth. In Section 6, we explain how these expectiles allow performing multiple-
output expectile regression, which is illustrated on simulated and real data. For the sake of
completeness, a supplement describes some of the main competing multivariate M-quantile
concepts and provides asymptotic results for the proposed M-depths. It also discusses the
relation between multivariate M-quantiles and risk measures, and it shows that our expec-
tiles satisfy the coherency axioms of multivariate risk measures. Finally, the supplement
proves all results of this paper.

2. On univariate M-quantiles

As mentioned in Jones (1994), the Breckling and Chambers (1988) M-quantiles are related
to M-estimates (or M-functionals) of location in the same way standard quantiles are related
to the median. In line with (1)-(2), the order-o M-quantile of a probability measure P over R
may be thought of as

0a(P) == argmin OZ(6), ~ with O(6) := E[pa(Z —0) = pa(Z)], 3)
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where po(t) = {(1 — a)I[t < 0] + al[t > 0]}p(t) is based on a suitable symmetric loss
function p and where the random variable Z has distribution P. Standard quantiles are
obtained for the absolute loss function p(t) = |t|, whereas expectiles are associated with the
quadratic loss function p(t) = 2. One may also consider the Huber loss functions

2

pelt) = -1l <+ (1 = 5)I =, e >0, (4)
c 2

that allow recovering, up to an irrelevant positive scalar factor, the absolute value and

quadratic loss functions above. The resulting M-quantiles §2¢(P) thus offer a continuum

between quantiles and expectiles.

The M-quantiles in (3) may be non-unique: for instance, if p(¢t) = [t| and P = P,
is the empirical probability measure associated with a sample of size n, then 62 (P), for
any o = 1/n,...,(n—1)/n, is an interval with non-empty interior. We will therefore adopt
an alternative definition of M-quantiles, that results from Theorem 1 below. The result, that
is of independent interest, significantly extends the theorem in Jones (1994) (in particular,
Jones’ result excludes the absolute loss function and all Huber loss functions). To state the
result, we define the class C of loss functions p : R — R™ that are convex, symmetric and
such that p(t) = 0 for t = 0 only. For any p € C, we write ¢_ for the left-derivative of p
(existence follows from convexity of p) and we denote as PP the collection of probability
measures P over R such that (i) P[{6}] < 1 for any 6 € Rand (i) [*_ |¢—(2—6)| dP(z) < oo
for any 8 € R. We then have the following result.

Theorem 1 Fiz o € (0,1), p € C and P € PP. Let Z be a random variable with distribu-
tion P. Then, (i) 0 — O£ (0) is well-defined for any 0, and it is left- and right-differentiable
over R, hence also continuous over R. (i) The corresponding left- and right-derivatives sat-
isfy OF_(0) < OF..(0) at any 0. (iii) The sign of O, (0) is the same as that of G*(9) — a,
where we let
_Elly_(Z-0)|l[Z < 0]

Elly_(Zz-0)]
(iv) 0 — GP(0) is a cumulative distribution function over R. (v) The order-a M-quantile
of P, which we define as

G(0) :

05,(P) :=inf {§ € R: G*(0) > a}, (5)

minimizes 0 — OF(0) over R, hence provides a unique representative of the argmin in (3).
(vi) If ¥_ is continuous over R (or if P is non-atomic), then G is continuous at 0% (P),
so that GP(0%.(P)) = a.

For the absolute and quadratic loss functions, one has

1Z - 01[Z < 0]}
E[|Zz-0]

GrO)=PZ<6] and G(6) = 2

respectively (throughout, P refers to the probability space (2,.4,P) on which all random
variables and random vectors are defined). When case (vi) applies (as it does for the
quadratic loss function and any Huber loss function), G*(0%(P)) = « plays the role of the
first-order condition associated with (3); when it does not, this first-order condition is to
be replaced by the more general one in (5), which provides the usual definition of standard
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quantiles. For our later purposes, it is important to note that the larger G*(6)(< 1/2)
(resp., 1 — GP(6 — 0)(< 1/2), where H(6 — 0) denotes the limit of H(t) as t * 6), the
less 6 is outlying below (resp., above) the “median” 9’;’/2(P). Therefore, MD*(60, P) :=
min(G*(0),1 — GP(6 — 0)) measures the centrality—as opposed to outlyingness—of 6 with
respect to P. In other words, MD? (0, P) defines a measure of statistical depth over R; see
Zuo and Serfling (2000). In the sequel, we will extend this “M-depth” to R?. Note that,
for d =1 and p(t) = |t|, the depth MD?(6, P) reduces to the Tukey (1975) halfspace depth.

3. Our multivariate M-quantiles

The first multivariate M-quantiles were defined in Breckling and Chambers (1988) (and
include the celebrated geometric quantiles from Chaudhuri (1996), as well as the geometric
expectiles recently studied in Herrmann et al. (2018)). Since then, several concepts of
multivariate M-quantiles have been proposed. For the sake of completeness, we describe
the multivariate M-quantiles above, as well as those from Breckling et al. (2001) and Kokic
et al. (2002), in Section S.1 of the supplement. For now, it is only important to mention
that, possibly after an unimportant reparametrization, all aforementioned multivariate M-
quantiles can be written as functionals P — 6%, ,(P) that take values in R? and are indexed
by a scalar order a € (0,1) and a direction u € S ! := {z € R? : ||z||? := 2’z = 1}; here,
P is a probability measure over R%. Typically, 02711(]3) does not depend on u for o = 1/2;
and the resulting common location is the center (the “median”) of P. Our multivariate
M-quantiles will also be of a directional nature but they will be hyperplane-valued rather
than point-valued. For d = 1, it is often important to know whether some test statistic
takes a value below or above a given quantile, that is used as a critical value; for d > 1,
hyperplane-valued quantiles, unlike point-valued ones, could similarly be used as critical
values with vector-valued test statistics.

To be able to define our M-quantiles, denote as P, the distribution of u’Z when the
random d-vector Z has distribution P; here, u € S%'. Consider then the collection P1 of
probability measures P over R? such that (i) no hyperplane of R? has P-probability one and
such that (i) [ [¢—(z—0)|dPu(z) < oo for any § € R and u € S?~! (note that P{ = P*,
where PP was defined in Section 2). Our concept of multivariate M-quantiles is then the
following.

Definition 1 Fiz p € C and P € P!. Let Z be a random d-vector with distribution P.
Then, for any o € (0,1) and u € S?~!, the order-a M-quantile of P in direction u is the
hyperplane

mhu(P) = {z e R u'z = 02(Py) |,

where 02 (Py) is the order-a M-quantile of Py; see (5). The corresponding upper-halfspace
HY (P) = {z € R* : u'z > 04(Py)} will be called order-ax M-quantile halfspace of P in
direction u.

For p(t) = |t|, these quantile hyperplanes reduce to those from Paindaveine and Siman
(2011) (see also Kong and Mizera, 2012), whereas p(t) = t2 provides the proposed multivari-
ate expectiles. For any loss function p, the hyperplanes 7/ ,, are linked in a straightforward
way to the direction u: they are simply orthogonal to u. In contrast, the point-valued
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competitors mentioned above typically depend on u in an intricate way, and in particu-
lar 0%, ,,(P) usually does not belong to the halfline with direction u originating from the
corresponding median (see above). Note that the “intercepts” of our M-quantile hyper-
planes are the univariate M-quantiles of the projection W'Z of Z onto u, hence also allow
for a direct interpretation.

Irrespective of the loss function p, competing multivariate M-quantiles fail to be equiv-
ariant under affine transformations. Our M-quantiles improve on this.

Theorem 2 Fiz p € Cag and P € P!, where Cog(C C) is the collection of power loss
functions p(t) = |¢|” with r > 1. Let A be an invertible d x d matriz and b be a d-vector.
Then, for any o € (0,1) and u € S 1,

7rgc7uA (PAJ)) = Aﬂ-gz}u(P) +b and Hg,uA (PAJ)) = AHg,u(P) + b,
where ua == (A7Y)u/||(A~1)u|| and where Pa v, is the distribution of AZ +b when Z is
a random d-vector with distribution P.

In the univariate case, the M-quantiles associated with p € C,g are known as L,.-quantiles
and were used for testing symmetry in nonparametric regression (Chen, 1996); the estima-
tion of extreme L,-quantiles was also recently investigated in Daouia et al. (2019). While
Theorem 2 above shows in particular that quantile and expectile hyperplanes are affine-
equivariant, the restriction to C,g cannot be dropped. For instance, for fixed ¢ > 0, the
M-quantile hyperplanes 7%, (P), associated with the Huber loss functions in (4), fail to be
affine-equivariant. Our multivariate extension is not to be blamed for this, however, since
the corresponding univariate M-quantiles 62<(P) themselves fail to be scale-equivariant.

At first sight, a possible advantage of any point-valued M-quantiles 87, ,(P) is that they
naturally generate contours and regions. More precisely, they allow considering, for any a €
(0, 1], the order-ow M-quantile contour {67, ,(P) : u € S471}, the interior part of which is
then the corresponding order-a M-quantile region. Our hyperplane-valued M-quantiles,
however, also provide centrality regions, hence corresponding contours.

Definition 2 Fiz p € C and P € P!]. For any o € (0,1), the order-oc M-quantile region
of P is RE(P) = Nyese—1 HE w(P) and the corresponding order-oc contour is the bound-
ary OR? (P) of RA(P).

Theorem 1 entails that the univariate M-quantiles 62(P) in (5) are monotone non-
decreasing functions of a. A direct corollary is that the regions R?(P) are nested (the
larger «, the smaller the corresponding region). The proposed regions enjoy many nice
properties compared to their competitors resulting from point-valued M-quantiles, as we
show on the basis of Theorem 3 below. To state the result, we define the C-support of P
as Cp = {z € RY: P[W'Z < u'z] > 0 for any u € S}, where the random d-vector Z has
distribution P. Clearly, Cp can be thought of as the convex hull of P’s support. We then
have the following result.

Theorem 3 Fizp € C and P € PY|. Then, for any a € (0,1), the region R?(P) is a convex
and compact subset of Cp. Moreover, if p € Ca, then RS (Pap) = ARS(P)+ b for any
invertible d X d matriz A and d-vector b.
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No competing M-quantile regions combine these properties. For instance, the original
M-quantile regions from Breckling and Chambers (1988), hence also the geometric quantile
regions from Chaudhuri (1996) and their expectile counterparts from Herrmann et al. (2018),
may extend far beyond the convex hull of the support; see below. This was actually the
motivation for the alternative proposals in Breckling et al. (2001) and Kokic et al. (2002).
The regions introduced in these two papers, however, may fail to be convex, which is
unnatural. More generally, none of the competing M-quantile or expectile regions are affine-
equivariant. This may result in quite pathological behaviors: for instance, Theorem 2.2 from
Girard and Stupfler (2017) implies that, if P is an elliptically symmetric probability measure
admitting a density f, then, for small «a, the geometric quantile contours from Chaudhuri
(1996) are “orthogonal” to the principal component structure of P, in the sense that these
contours are furthest (resp., closest) to the symmetry center of P in the last (resp., first)
principal direction. In contrast, the affine-equivariance result in Theorem 3 ensures that, in
such a distributional setup, the shape of our M-quantile contours will match the principal
component structure of P.

We illustrate this on the “cigar-shaped” data example from Breckling et al. (2001) and
Kokic et al. (2002), for which P = P, is the empirical probability measure associated
with n = 200 bivariate observations whose z-values form a uniform grid in [-1,1] and
whose y-values are randomly drawn from the normal distribution with mean 0 and vari-
ance .01. Figure 1 draws, for several orders «, the various quantile and expectile contours
mentioned in the previous paragraph (our contours OR?(P,) were computed by replacing
the intersection in Definition 2 by an intersection over 500 equispaced directions u in S';
all competing contours require a similar discretization). Clearly, both the geometric quan-
tiles from Chaudhuri (1996) and geometric expectiles from Herrmann et al. (2018) extend
much beyond the convex hull of the data points. Moreover, the aforementioned pathological
behavior of the extreme geometric quantiles relative to the principal component structure
of P not only shows for these quantiles but also for the corresponding expectiles. Finally,
the outer quantile/expectile regions from Breckling et al. (2001) and Kokic et al. (2002) are
non-convex in most cases. In line with Theorem 3, our M-quantile regions and contours do
not exhibit these deficiencies.

4. Halfspace M-depth

Our M-quantile regions RF(P) are centrality regions, in the sense that they group loca-
tions z in the sample space R? according to their centrality with respect to the underlying
distribution P. This defines the following concept of statistical depth.

Definition 3 Fiz p € C and P € PY. Then, the corresponding halfspace M-depth of z with
respect to P is MD?(z, P) = sup{a > 0:z € R2(P)} (here, supf) := 0).

Other M-depth concepts could similarly be defined from competing M-quantile regions.
However, these M-depths would, irrespective of p, fail to meet one of the most classical
requirements for depth, namely affine invariance; see Zuo and Serfling (2000). Our M-depths
are better in this respect; see Theorem 6(i) below.

For any depth, the corresponding depth regions, that collect locations with depth larger
than or equal to a given level «, are of particular interest. The following result shows that
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Fig. 1: (Top:) the geometric expectile contours from Herrmann et al. (2018) (left) and geo-
metric quantile contours from Chaudhuri (1996) (right), for the cigar-shaped data described
in Section 3 and for o = .00001, .0005, .005, and .25 (for the smallest o, the quantile con-
tour is outside the plot). (Bottom left:) the expectile contours from Breckling et al. (2001)
(blue), the (6 = 10)-version of the Kokic et al. (2002) expectile contours (orange), and the
proposed expectile contours (green), for the same data and for o = 1/n = .005 and .25; we
use the same value of § as in Kokic et al. (2002). (Bottom right:) the quantile versions of
the contours in the bottom left panel. In each panel, the (n = 200) data points are shown
in grey.
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halfspace M-depth regions strictly coincide with the centrality regions introduced in the
previous section.

Theorem 4 Fiz p € C and P € P. Then, for any o € (0,1), the level-a depth region {z €
R?: MD*(z, P) > a} coincides with RA(P).

This result has several interesting consequences. First, it implies that MD? reduces
to the Tukey (1975) halfspace depth for p(t) = |¢| (since the corresponding centrality re-
gions RA(P) are known to be the Tukey depth regions; see, e.g., Theorem 2 in Kong
and Mizera, 2012). Second, Theorems 3—4 show that halfspace M-depth regions are con-
vex, so that our M-depth is quasi-concave: for any zg,z; € R? and A € (0,1), one has
MDP((1 — N)zg + Az1, P) > min(MD*(zg, P), MD?(zy, P)). Third, since Theorems 3—4
imply that the mapping z — MD?*(z, P) has closed upper level sets, this mapping is upper
semicontinuous over R? (it is actually continuous over R? if P assigns probability zero to all
hyperplanes of R?; see Lemma S.7). Fourth, the compactness of halfspace M-depth regions
for a > 0, which results again from Theorems 3—4, allows us to establish the existence of
an M-deepest location.

Theorem 5 Fizp € C and P € PY. Then, sup,cgra MD?(z, P) = MD?(z,, P) for some z, €
R,

The M-deepest location z, may fail to be unique. For the halfspace Tukey depth,
whenever a unique representative of the deepest locations is needed, a classical solution
consists in considering the Tukey median, that is defined as the barycenter of the deepest
region. The same solution can be adopted for our M-depth and the convexity of the M-
deepest region will still ensure that this uniquely defined M-median has indeed maximal
M-depth.

The following result shows that, for p € C.g¢ (a restriction that is required only for

Part (i) of the result), the halfspace M-depth MD?* is a statistical depth function, in the
axiomatic sense of Zuo and Serfling (2000).

Theorem 6 Fiz p € C,g and P € P. Then, MD?(z, P) satisfies the following proper-
ties: (i) (affine invariance:) for any invertible d x d matriz A and d-vector b, MDP(Az +
b, Pa b) = MDP?(z, P), where Pp v, was defined in Theorem 2; (ii) (mazimality at the cen-
ter:) if P is centrally symmetric about @, (i.e., P|0.+ B] = P[0.— B] for any d-Borel set B),
then MD? (0., P) > MD?(z, P) for any d-vector z; (iii) (monotonicity along rays:) if @ has
mazimum M-depth with respect to P, then, for any u € S¥1, v+ MD?(@+ru, P) is mono-
tone non-increasing in r(> 0) and MDP(0+ru, P) = 0 for any r > ry(P) :=sup{r > 0: 0+
ru € Cp}
(€ (0,400]); (i) (vanishing at infinity:) as ||z|| — oo, MD*(z, P) — 0.

As mentioned above, MD? reduces to the Tukey depth for p(t) = |t|. For any other p
function, the depth MD? is, to the authors’ best knowledge, original. In particular, the
(halfspace) expectile depth obtained for p(t) = t? has not been considered so far. While, as
already mentioned, competing concepts of multivariate expectiles would provide alternative
concepts of expectile depth (through the corresponding expectile regions as in Definition 3),
the following result hints that our construction is a (if not the) most natural one.



10 Daouia and Paindaveine
Theorem 7 Fiz p € C and P € PY. Then, for any z € R,

by e Bl (w(Z— 2)[IW(Z — 2) < 0]
MD*(z,P) = inf | Ellv_(w(Z - 2))] ’

where Y_ s the left-derivative of p and where Z has distribution P.

(6)

For p(t) = [t|, we have ¢_(t) = I[t > 0] — I[t < 0], so that this result confirms that our

M-depth then coincides with the halfspace Tukey depth
HD(z,P)= inf P[u'Z <u'z,
ueSd-1
that records the most extreme (lower-)outlyingness of u'z with respect to the distribution
of u'Z. The M-depth in (6) can be interpreted in the exact same way but replaces standard
quantile outlyingness with M-quantile outlyingness; see the last paragraph of Section 2.
For p(t) = t2, Theorem 7 states that our expectile depth can be equivalently defined as
o E[u(Z —2)[I[u'(Z — z) < 0]]
ED(z,P) = i , E[[w(Z —2)]] (™)

Of course, we could similarly consider the continuum of halfspace M-depths associated with
the Huber loss functions p. in (4) or the one made of L,-depths associated with p(t) =
[t|” (r > 1). The M-depth formulation provides a framework that allows deriving results
that apply generically for Tukey depth, expectile depth, or these Huber or L,-depths (in
Section S.2 of the supplement, we provide in particular general asymptotic results for M-
depth, M-deepest points and M-depth regions). M-depths are of interest on their own,
as they may allow achieving a nice balance between robustness and efficiency (this is in
line with the fact that Tukey depth is maximized at a multivariate median, whereas, as
we will see in the next section, expectile depth is maximized at the mean vector). Rather
than pursuing the investigation of M-depths, however, we will mainly focus on expectile
depth below, as our work was mainly motivated by expectiles and multiple-output expectile
regression.

5. Halfspace expectile depth

Below, we derive further properties of (halfspace) expectile depth that show why this partic-
ular M-depth should be particularly appealing to practitioners. Throughout, we write P, for
the collection P/ of probability measures over R? for which expectile depth is well-defined,
that is, the one associated with p(t) = t2. Clearly, P, collects the probability measures that
(i) do not give P-probability one to any hyperplane of R? and that (ii) have finite first-order
moments. Note that this moment assumption is required even for d = 1; as for (i), it only
rules out distributions that are actually over a lower-dimensional Euclidean space.

5.1. Distinctive properties of expectile depth

For halfspace Tukey depth, which is an L;-concept, the deepest point is not always unique
and its unique representative, namely the Tukey median, is a multivariate extension of the
univariate median. Also, the depth of the Tukey median may depend on the underlying
probability measure P. Our expectile depth, that is rather of an Lo-nature, is much different
in these respects.
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Theorem 8 For any P € Py, the expectile depth ED(z, P) is uniquely mazimised at z =
pp = E[Z] (where Z is a random d-vector with distribution P) and the corresponding
mazimum depth is ED(up, P) = 1/2.

Expectile depth regions therefore always provide nested regions around the mean vec-
tor pp, which should be appealing to practitioners. Also, the fact that the corresponding
maximal depth is always 1/2 will allow practitioners to better interpret what it means that
another location would have expectile depth equal to, say, 1/4 (this would be, irrespective of
the distribution, half as deep as any location can get). In contrast, there is no way to evalu-
ate the “relative” depth of a location with Tukey depth 1/4 without evaluating the depth of
the Tukey median, which, at least in moderate to high dimensions, is notoriously difficult.
Moreover, since the maximal expectile depth is 1/2 for any P, a natural affine-invariant
test for Ho : pwp = pg, where p, € R? is fixed, is the one rejecting H, for large values of
T, := (1/2) — ED(pg, Py,), where P, is the empirical probability measure associated with
the sample Z1,...,Z, at hand. Due to the relation between expectile depth and the mean
vector, this can be regarded as a nonparametric version of the Hotelling test.

We turn to another distinctive aspect of expectile depth. Theorem 6(iii) shows that
halfspace M-depth decreases monotonically when one moves away from a deepest point
along any ray. This decrease, however, may fail to be strict (in the sample case, for instance,
the halfspace Tukey depth is piecewise constant, hence will fail to be strictly decreasing).
In contrast, expectile depth always offers a strict decrease (until, of course, the minimal
depth value zero is reached, if it is).

Theorem 9 Fiz P € Py and u € S 1. Let ry(P) = sup{r > 0 : pp +ru € Cp}(€
(0, +0<)]). Then, r — ED(pp+ru, P) is monotone strictly decreasing in [0, 74 (P)] and ED(pp+
ru, P) =0 for r > ry(P).

This also has practical advantages in several applications of depth, where ties in the
depth values of several locations are problematic (if Z1, ..., Z, are randomly sampled from
a distribution P admitting a density, then the corresponding depths ED(Z;, P,) will be
pairwise different with probability one). An application where it is desirable to avoid ties is
supervised classification: for instance, the maz-depth classifiers from Ghosh and Chaudhuri
(2005) (see also Li et al., 2012) classify z as arising from P; rather that P if z is deeper
with respect to P; than it is with respect to P», but obviously ties will lead to an unpleasant
randomization.

Our M-depths are upper semicontinuous functions of z; see Section 4. However, continu-
ity does not hold in general (in particular, the piecewise constant nature of the Tukey depth
for empirical distributions rules out continuity in the sample case). In contrast, expectile
depth is smooth even in the sample case, which also should be appealing to practitioners
who typically find it unpleasant that a small location change has a strong impact on the
corresponding depth.

Theorem 10 Fiz P € Py. Then, (i) z — ED(z, P) is uniformly continuous over R%; (ii)
ford =1, z+— ED(z, P) is left- and right-differentiable over R; (iii) for d > 2, if P is smooth
in a neighbourhood N of zg (meaning that for any z € N, any hyperplane containing z has
P-probability zero), then z — ED(z, P) admits directional derivatives at zg in all directions.



12 Daouia and Paindaveine

Before going to another, key, distinctive property of expectile depth in Section 5.3, we
illustrate the theoretical results above on the basis of some examples.

5.2. Some examples

We start with both following univariate examples. If P is the uniform measure over the
interval Z = [0, 1], then

min(z2, (1 — 2)?) I

ED(z,P) = Ry s

[z €Z] and HD(z,P)=min(z,1—2)I[z €Z], (8)
whereas if P is the uniform over the pair {0,1}, then
1
ED(z,P) =min(z,1 — 2)I[z € Z] and HD(z, P) = 5 Iz € ZJ; (9)

see Figure 2. This illustrates uniform continuity of expectile depth, as well as left- and right-
differentiability. Although both distributions are smooth in a neighborhood of zg = 1/2,
plain differentiability does not hold at zp, which results from the non-uniqueness of the
corresponding minimal direction; see Demyanov (2009). For the sake of comparison, the
figure also plots the Tukey depth HD(z, P) and the zonoid depth ZD(z, P) from Koshevoy
and Mosler (1997). Comparison with the latter depth is natural as it is also maximized
at pp, hence has an Lo-flavor. Both the Tukey and zonoid depths are less smooth than
the expectile one, and in particular, the zonoid depth is not continuous for the discrete
uniform. Also, the zonoid depth region {z € R : ZD(z,P) > a} in the left panel is
the (L) interquantile interval [§,1 — §], which is not so natural for a depth of an Lo-
nature. In contrast, for any P, the level-a expectile depth region is the interexpectile
interval [02(P),0]__(P)], with p(t) = t?, which reflects, for any a (rather than for the
deepest level only), the La-nature of expectile depth.

Before considering multivariate examples, we state a further distinctive property of
expectile depth, that is specific to the multivariate case. A direction ug is said to be
minimal for the depth MD?(z, P) if it achieves the infimum in (6). For the halfspace Tukey
depth, such a minimal direction does not always exist (consider, e.g., z = (1,0)" € R?
and P = %Pl + %Pg, where P; is the bivariate standard normal distribution and P is the
Dirac distribution at (1,1)’). In contrast, the continuity, for any P € Py, of the function
whose infimum is considered over S?~! in (7) (see Lemma S.10(i)) and the compactness
of S4=1 imply that

E[lW(Z — 2)|I[W(Z —2z) <0
(. P) - i FIWE =Dl (Z =) <0] w0
wist T Bz 2]
so that a minimal direction always exists for expectile depth (in the bivariate mixture
example above, ug = (—1,0)’ is a minimal direction for ED(z, P)).

Consider then the case where P(€ Py) is the distribution of Z = AY + p, where A is
an invertible d x d matrix, p is a d-vector and Y = (Y1,...,Yy)’ is a spherically symmetric
random vector, meaning that the distribution of OY does not depend on the dx d orthogonal
matrix O. In other words, P is elliptical with mean vector g and scatter matrix ¥ =
AA’. In the standard case where A = I; (the d-dimensional identity matrix) and g = 0,
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Fig. 2: Plots, as functions of z, of the zonoid depth ZD(z, P) (blue), of the halfspace
Tukey depth HD(z, P) (orange) and of the expectile depth ED(z, P) (green), when P is the
uniform over the interval [0,1] (left) and the uniform over the pair {0,1} (right). For both
probability measures, all depth functions take value zero outside [0, 1].

Theorem 1(iv) provides

. E[|]Y1 —u'z|I[Y; < u'z]|
ED(z,P) =
(2, P) uesin E[|Y7 — u'z|]

_ B0 A DI < —fl=ll] _
_ B, 1 2] cg(l1zlD),

so that, for arbitrary g and X, affine invariance entails that ED(z, P) = ¢(||z|,,»), with ||Z||iz =
(z — p)'S " (z — p). Expectile depth regions are thus concentric ellipsoids that, under ab-
solute continuity of P, coincide with equidensity contours. The function g depends on
the distribution of Y: if Y is d-variate standard normal, then it is easy to check that
gr) ={1-1/2¢(r)/r+ 2®(r) —1)}/2, where ¢ and ® denote the probability density func-
tion and cumulative distribution function of the univariate standard normal distribution,
respectively. If Y is uniform over the unit ball B := {z € R? : ||z|| < 1} or on the unit

sphere S%~1, then one can show that

1 Var(l — )~ @d+D/2p(d£3) )]I[ < 1]
- r<

2 () (14 (d+ Dr2aFy (1, H2; 2:02))

+3
2
2

otr) =aalr) =

and g(r) = wg—2(r), respectively, where I' is the Euler Gamma function and 2 F7 is the hy-
pergeometric function. From affine invariance, these expressions agree with those obtained
for d =1 in (8) and (9), respectively. In all cases considered, thus, the function g is con-
tinuous and monotone strictly decreasing on its support, which illustrates the theoretical
results of Section 5.1.
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Our last multivariate example is a non-elliptical one. Consider the probability mea-
sure P, (€ Py) having independent standard (symmetric) a-stable marginals, with 1 < o <
2. ¥ Z = (Zy,...,Zy)" has distribution P,, then u'Z is equal in distribution to |ju||oZ1,
where we let ||x||& := Z?zl |z;|*. Thus, (10) provides

E[|Z1 — Vv'z|l[Z; < V'
ED(z,Po) = min 21— VelllZy < vial]
vesi—! E[|Z) - v'z]]

where S¢=1 := {v € R : ||v||, = 1} is the unit L,-sphere. Theorem 1(iv) implies that the
minimum is achieved when v’z takes its minimal value —||z||g, where 8 = /(v — 1) is the
conjugate exponent to «; see Lemma A.1l in Chen and Tyler (2004). Denoting as f, the
marginal density of P,, this yields

E[(Z1 + |l2l[p)1[Z1 < —|l=lls]] _ S wfale = |iz]p) da
E[|Z1 + ||z|]] JZo |zl falz — ||z]lg) dz’

which shows that expectile depth regions are concentric Lg-balls. For o = 2, these results
agree with those obtained in the Gaussian case above.

ED(z,P,) = —

5.3. Computational aspects

The sample M-depth regions R?(P,) can be computed by replacing the intersection in
Definition 2 with an intersection over finitely many directions uy, £ = 1,...,L, with L
large; see Section 3. Many applications, however, do not require computing depth regions
but rather the depth of a given location z only. An important example is supervised
classification through the max-depth approach; see Ghosh and Chaudhuri (2005) or Li
et al. (2012). While the halfspace M-depth of z can in principle be obtained from the depth
regions (recall that MD?(z, P) = sup{a > 0:z € RA(P)}), it will be much more efficient in
such applications to compute MD?(z, P) through the alternative expression in (6). Recall
that, for the halfspace Tukey and halfspace expectile depths, this alternative expression
reduces to
HD(z,P) = uei‘rgl(’i[l1 hy(u) and ED(z,P)= ugsi£1 ez (u),
respectively, where we let
_ E[u'(Z — 2)|I[u'(Z — z) < 0]]

hy(u) :=Pu'Z <u'z] and ez(u):= i (Z —2)] : (11)

The function u — h,(u) that is to be minimized to compute Tukey depth does not allow
using standard algorithms such as Newton-Raphson-type methods, as such iterative meth-
ods may converge to one of the many local minima of this function; see Figure 3(a) (another
reason why Newton-Raphson methods are ruled out is that, in the sample case, u — h,(u)
is a piecewise constant, hence non-smooth, function). Computation of Tukey depth is ac-
tually a very difficult task, that generated a vast literature and can be performed in small
to moderate dimensions only.

Remarkably, a further, quite unexpected, distinctive property of expectile depth opens
the door to Newton-Raphson-based computation of this depth. More specifically, the fol-
lowing result ensures that the function u — e,(u) that is to be minimized to compute
expectile depth is not only smooth but also has no local-but-not-global minimizers.
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Fig. 3: Plots of the Tukey depth outlyingness (left) and expectile depth outlyingness (right)
in (11), with z = (%, %)/ and P the probability measure over R? whose marginals are
independent exponentials with mean one. Global minimizers providing the respective depths
are marked in green, whereas local-but-not-global minimizers preventing the use of Newton-
Raphson-type methods are marked in red. The shaded area shows the range considered in

Theorem 11.

Theorem 11 Fiz P € Py and z € R? such that ED(z, P) > 0. Assume that P[I1\{z}] =0
for any hyperplane 11 containing z. Fiz a great circle G of S¥~1 and let ug be an arbitrary
minimizer of e5(-) on G. Let uy, t € [0, 7], be a path on G from uy to —ug. Then, there
exist tq,ty with 0 < t, < tp, < 7 such that t — ez(us) is constant over [0,t,], admits a
strictly positive derivative at any t € (tq,ty) (hence is strictly increasing over [tq,tp]), and
is constant over [ty, ].

The result is illustrated in Figure 3, that draws, for z = (%, %)/ and for P the probability
measure over R? whose marginals are independent exponentials with mean one, the plots
of @ — hy((cosf,sinf)’) and 6 +— e,((cosf,sinf)’) over [0,27]. Clearly, the figure also
shows that the result may fail for Tukey depth. Jointly with the fact that, in the sample
case, t — ez(u;) will be left- and right-differentiable, Theorem 11 opens the door to fast
computation of expectile depth, also in high dimensions, through Newton-Raphson-type
methods. An algorithm evaluating expectile depth in this way will be developed in a later,

more computational, work.
6. Multiple-output expectile regression
We now consider the multiple-output regression framework involving a d-vector Y of re-

sponses and a p-vector X of (random) covariates. Denoting as Px the conditional distri-
bution of Y given X = x, our interest lies in the conditional M-quantile halfspaces and
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regions
Hf = Hg’u(Px) and Rf , = R (Py),

a,u,x

with o € (0,1) and u € S?~!. If a random sample (X1,Y1),...,(X,,Y,,) is available, then
one may consider the estimates

HG, = {y € RY :u'y > 020} and R = Myesa s HEQ, (12)
where Ggfﬁ?x is the estimate of 62 (P YIX=x]) ohtained from a single-output, linear or non-
parametric, regression using the responses u'Yy,...,u’Y,, and covariates Xy,..., X, (in
the examples below, that focus on d = 2, the intersection in (12) was replaced with an inter-
section over L = 200 equispaced directions in S'). For expectiles, single-output linear and
nonparametric regression can respectively be performed via the functions expectreg.ls and
expectreg.boost from the R package expectreg (nonparametric regression here is thus based
on the expectile boosting approach from Sobotka and Kneib, 2012). Multiple-output quan-
tile regression can be achieved in the same way, by performing single-output linear quantile
regression (via the function rq in the R package quantreg) or single-output nonparametric
quantile regression (via, e.g., the function cobs in the R package cobs, which relies on the
popular quantile smoothing spline approach). Whenever we use expectreg.boost and cobs
below, it is with the corresponding default automatic selection of smoothing parameters.

6.1. Simulated data illustration

To illustrate these regression methods on simulated data, we generated a random sample
of size n = 300 from the heteroscedastic linear regression model

(1) =1(%)+V5(2) (13)

where the covariate X is uniform over [0,1], 1 + 1,62 + 1 are exponential with mean one,
and X, e1,e9 are mutually independent. For several orders a and several values of z, we
evaluated the conditional quantile and expectile regions RZ(;), in each case both from the
corresponding linear and nonparametric regression methods above. The resulting contours
are provided in Figure 4. While both expectile and quantile methods capture trend and
heteroscedasticity, expectiles dominate quantiles in many respects: (i) unlike quantiles, ex-
pectiles provide very similar linear and nonparametric regression fits (which is desirable since
the model is linear).
(ii) Expectiles yield smoother contours than quantiles. (iii) Inner expectile contours, that
do not have the same location as their quantile counterparts, are easier to interpret as they
relate to conditional means of the marginal responses (inner quantile contours refer to the
Tukey median, which is not directly related to marginal medians). (iv) Last but not least,
unlike expectile contours, several quantile contours associated with a common value of z do
cross (see the bottom right panel of Figure 4), which obviously is incompatible with what
occurs at the population level.

6.2. Real data illustration

We now conduct multiple-output expectile (and quantile) regression to investigate risk fac-
tors for early childhood malnutrition in India. Prior studies typically focused on children’s
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Fig. 4: (Left:) conditional expectile contours 3}?’;(,7;), for a € {.01,.03,.05,.10, .15,...,.40}
and for values of x that are the 10% (yellow), 30% (brown), 50% (orange), 70% (light green)
and 90% (dark green) empirical quantiles of X1, ..., X,,, obtained by applying a linear (top)
or nonparametric (bottom) regression method to a random sample of size n = 300 from the
linear regression model in (13). (Right:) conditional quantile contours associated with the
same values of a (but .01) and the same values of x. Again, both linear regression (top)
and nonparametric regression (bottom) are considered; see Section 6.1 for details. Bivariate
responses (Y;1,Y;2), 4 =1,...,n, are shown in black.
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height as an indicator of nutritional status (Koenker, 2011; Fenske et al., 2011). Given that
the prevalence of underweighted children in India is among the highest worldwide, we con-
sider here determinants of children’s weight (Y7; in kilograms) and height (Ya; in centimeters)
simultaneously. We use a selected sample of 37,623 observations, coming from the 2005,/2006
Demographic and Health Survey (DHS) conducted in India for children under five years of
age. Since a thorough case study is beyond the scope of this paper, we restrict to assessing
the separate effects of the following covariates on the response Y = (Y7,Y2)": (a) the child’s
age (in months) and (b) the mother’s Body Mass Index (defined as BMI := weight /height?,
in kilograms/meters?). Koenker (2011) investigated the additive effects of these covariates
on low levels of the single response height through a quantile regression with small «.

Figure 5 plots, for each of the two covariates, nonparametric conditional expectile and
quantile contours associated with the extreme levels o € {.005,.01} and several covariate
values z (while growth curves are known to be highly nonlinear, the dependence on both
other covariates might be linear, so that we further provide linear fits in Figure 6). At the
very large sample size considered, quantile contours are not subject to the lack of smoothness
nor to the crossing issue they exhibited for the simulated data above, but they would be
subject to these for small to moderate sample sizes (see, e.g., the real data example treated in
Section S.3 of the supplement, that provides, with sample size n = 3,134, quantile contours
that lack smoothness and touch each other). For the age covariate, it is seen that both
expectiles and quantiles capture well the trend (and heteroscedasticity), but it should be
noted that expectile and quantile contours are not centered at the same locations—recall
from Section 6.2 that the location of expectile contours is easier to interpret than their
quantile counterparts. Also, note that quantile contours tend to be more elliptical than the
expectile ones, hence are less flexible. In particular, expectiles reveal that mothers with a
BMI above median may lead to overweigthed tall children, but not to overweighted short
ones; at such BMI levels, both green expectile contours indeed show (for nonparametric and
linear fits) an asymmetry to obesity in the upper-right direction, but not in the lower-left
one (this is arguably not related to malnutrition, but it is still pointing to some risk factor).
The more elliptical, hence more symmetric, quantile contours fail to reveal such subtle risks,
which is due to their smaller sensitivity to extreme observations (compared to expectiles).
Like the simulated data of the previous section, the present real data therefore shows that
multiple-output expectile regression may reveal aspects of the dependence of the response
on the covariates to which quantile regression will remain blind. This is particularly the
case in risk-oriented applications, where robustness is not a desirable property.
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