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Average State Estimation in Large-scale Clustered
Network Systems

Muhammad Umar B. Niazi, Carlos Canudas-de-Wit, and Alain Y. Kibangou

Abstract—For the monitoring of large-scale clustered network
systems (CNS), it suffices in many applications to know the
aggregated states of given clusters of nodes. This paper provides
necessary and sufficient conditions such that the average states of
the pre-specified clusters can be reconstructed and/or asymptoti-
cally estimated. To achieve computational tractability, the notions
of average observability (AO) and average detectability (AD) of
the CNS are defined via the projected network system, which is of
tractable dimension and is obtained by aggregating the clusters.
The corresponding necessary and sufficient conditions of AO
and AD are provided and interpreted through the underlying
structure of the induced subgraphs and the induced bipartite
subgraphs, which capture the intra-cluster and inter-cluster
topologies of the CNS, respectively. Moreover, the design of an
average state observer whose dimension is minimum and equals
the number of clusters in the CNS is presented.

Index Terms—Clustered network systems, average observabil-
ity, average detectability, average state observer.

I. INTRODUCTION

State reconstruction of large-scale network systems is chal-
lenging because of limited computational and sensing re-
sources, [1]. However, knowing the entire state vector is
often unnecessary for monitoring purposes, and it suffices to
reconstruct some aggregated states of a system, [2]-[4]. In
this paper, we study the reconstruction and estimation of the
average states of given clusters (or sectors) of nodes in a
network system, which is meaningful in many applications
such as urban traffic networks [5], building thermal systems
[6], epidemic spread over networks [7], and power grids [8].

We consider a large-scale clustered network system (CNS)
with few measured nodes—the nodes where sensors are
placed. The remaining unmeasured nodes are partitioned into
multiple clusters. The dimension of a CNS can be very
large, which presents computational difficulties. Therefore,
by aggregating the clusters of nodes, we obtain a projected
network system (PNS), which is of tractable dimension and
provides the dynamics of the average states of the clusters. In
this regard, [9] is among the earliest to study the aggregated
dynamics of large-scale systems. Later, [10] builds on [9] and
introduces the notion of exact lumpability, which has several
interpretations. Algebraically, a linear time-invariant network
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system is exactly lumpable if and only if the projection is A-
invariant, [11], where A is the state matrix of the network
system. Graph theoretically, this condition of A-invariance
is satisfied only if the clusters of a network system are
chosen according to an (almost) equitable partition, [12]-[16].
However, achieving exact lumpability by network partitioning
is quite difficult, as remarked in [17]. This is due to the
constraints on sensor locations and number of clusters, and, in
physical network systems, the clusters are also required to be
connected, [18]. Therefore, in general, the PNS is influenced
by a vector of average deviation of the clusters, which can be
considered as a structured unknown input.

Average state estimation by clustering-based model reduc-
tion technique [19] has been studied in [20]. The advantage
of this approach is that the states of the reduced system
approximate the average states of the network clusters. Thus,
it suffices to design an average observer by employing the
reduced system. However, this approach becomes irrelevant
when the clusters are a priori specified. In such a case, we
aim to provide conditions under which the average states of the
clusters can be reconstructed and/or asymptotically estimated.

First, we study average observability, a notion that ensures
the reconstruction of the average states of clusters from the
dedicated state measurements at the measured nodes. Average
observability falls under the notion of functional observability,
[21]-[23], which concerns the reconstruction of a set of
linear functionals of the state. However, the approach followed
in [21]-[23] is computationally intractable for large-scale
systems. Therefore, we define average observability via the
PNS, which allows for computationally tractable necessary
and sufficient conditions. We also provide a graph-theoretic
interpretation for average observability through the induced
bipartite subgraph that captures the topology between the
measured and the clusters of unmeasured nodes. By assuming
average observability, we provide a necessary and sufficient
condition for an average state observer that asymptotically
estimates the average states of clusters at an arbitrary rate.

Second, we study average detectability, a notion that en-
sures the asymptotic stability of the average states of clusters.
We show that average detectability allows for the open-loop
estimation of the average states. We provide a graph-theoretic
interpretation of average detectability through the structure of
induced subgraphs and induced bipartite subgraphs formed by
the clusters of unmeasured nodes. These subgraphs capture
the intra-cluster and the inter-cluster graph topology of the
network system, respectively.

In summary, average observability mainly concerns the
graph topology between the unmeasured and measured nodes,



and average detectability relates to the graph topology of
the clusters of unmeasured nodes. The initial investigation of
average observability and average detectability for a single
cluster of unmeasured nodes is presented in [24]. Here, we
extend the results to multiple clusters and also devise average
observers for the asymptotic estimation of the average states.

II. PROBLEM FORMULATION

We provide the preliminaries leading to the problem state-
ment in this section. First, we define a clustered network
system (CNS), then, by aggregating the clusters, we define
the projected network system (PNS).

A. Notations

The sets of real and complex numbers are denoted as R and
C, respectively. Vectors are denoted by bold lowercase letters
and matrices by uppercase letters. A column vector of ones
and an identity matrix are denoted as 1; and I}, respectively,
where the subscript k£ (sometimes omitted for brevity) indicates
their dimensions. The standard basis vector e,, € R¥ is the v-th
column of I. We denote by [A];; the ij-entry of a matrix
A e R™ ™ When A € R"*"™ is a square matrix, eig(A) C C
denotes the set of eigenvalues of A. By diag[A;y,---, Ax] we
denote a block diagonal matrix with Ay, --- | Ay at its diagonal
blocks. The Euclidean norm is denoted by || - ||.

B. Clustered network system

Consider a network system represented by a weighted
digraph G = (V,€) with the set of nodes V = {1,--- ,n}
and the ordered set of edges £ C V x V. The edge (7,j) is a
directed arc from node j to 4, i.e., ¢ < j, with a weight a;; > 0
associated to it. The state of each node evolves according to

p
Lt'i(t) = a“‘l‘i(t) + Z aij:cj(t) + Zbilul(t)7 (1)
JeNt =

where z;(t) € R, for i € V, are the states; u;(t) € R,
for | = 1,---,p, are the known external inputs; and
Nb={jeV: (i,j) €& j+#i} is the set of ’s in-
neighbors. The first term on the right-hand side of (1) refers
to the local feedback at each node ¢ with the weight a;; < 0.
The second term corresponds to the aggregated inflow from
j € N to i weighted by a,; > 0, respectively. The third term
depicts the inputs at ¢ weighted by b;; € R, respectively.

Remark 1: The local feedback corresponds to the self-
loops in the graph, which are omitted from the figures in
this paper and are considered implicit. We further remark
that the self-loop weights a;;, for all © € V), considered in
(1) are quite general. There might be a network structure
associated to these scalars as in consensus-seeking multi-
agent systems [16], reaction-diffusion systems [19], and linear
compartmental systems [25]. o

By considering x(t) = [z1(¢) - -+ zo(t)]" € R™ as a state
vector and u(t) = [u1(t) - -+ up(t)]" € RP as an input vector,

we have
= Ax(t) + Bu(t)

)
y(t) = Cx(b),

where y(t) € R¥ is the output vector. The system X is a
large-scale system, i.e., the number of nodes n is very large,
where the state matrix A € R™*" is given by

a;;, if (i,7) € € and i # j;
Aij, ifi = j;
0, otherwise.

[A];; =

The input matrix B € R"*P contains the weights of the
input configurations, namely [B]; = b; € R for all i € V
and [ = 1,---,p. The output vector y(¢t) € R¥ contains the
measurements of the dedicated sensors at £ nodes, which are
called the measured nodes. Thus the output matrix C' € RF*"
is such that CT = [e,, --- e, ], where vy, -+ vy are the
measured nodes and e, € R” is the v-th standard basis vector.
The remaining nodes are called the unmeasured nodes. We
assume k < m, where m = n—k is the number of unmeasured
nodes. Also, the pair (C, A) need not be observable.

Suppose the nodes V are partitioned into r disjoint clusters,
where 2 < r < m. That is, we are given a clustering (or
partition) P = {Cy,---,C,} of the network nodes such that
Y=_CU---UC, and, for any p,q = 1,--- ,r and p # g,
CpNCqy=0. Let Gy, = (Cp,Epp) be an induced subgraph,
where £,, = £ N (C, x Cp) is the ordered set of edges
within G,,,. The subgraph G, captures the intra-cluster graph
structure of the cluster Cp,. The inter-cluster graph structure, on
the other hand, is captured by an induced bipartite subgraph
Gpq = (Cp, Cq, Epq), Where Epq = EN(Cp x Cy) is the ordered
set of directed edges from C, to C, with p # ¢. Here, and in
what follows, the subscripts p,q =1,--- , 7.

Without loss of generality, we suppose that C; is the set
of measured nodes and the nodes V are ordered such that
Ci ={1,---k}, Co = {k+1,--- ,k + mg}, and so on;
where |Cp,| = my, for h =2, ,r,and >, _,m, =n — k.
Then, the state vector of the network system 3 is partitioned
as x(t) = [xI(t) -+ x%(t)]T € R", where x;(t) € R¥ is the
state of measured nodes and xj,(t) € R™" is the state of the
unmeasured nodes in C, for h = 2,--- ,r. In what follows,
the subscripts h,g =2,--- 7.

The clustered network system (CNS) is defined as ¥ with
clustering P, where the system matrices are partitioned as

A= [ {111 /}12

By
B=1|72
Agp Ap } ’ [ Bs } ’ )

c=[ I 0 ]

with BQZ [B; BZ]T, A12: [A12 Alr]v
Agy Az Aoy

Ao = | s Ap=| :
Arl Ar2 Ar'r

The submatrices A,, and A,, contain the weighted edge
configurations of the induced subgraphs G,, and the induced
bipartite subgraphs G,,, respectively, for p # q.



C. Projected network system

Let Q@ = {Cq, - ,C,} C P be the partition of unmeasured
nodes. The characteristic matrix of Q, [26], is defined as

Q = diag[1,,,, ---, 1,,, ]. Let the projection matrices be
| Iy 0 + | Iy O
P_[OAQT}andP_[OQ}’

where A = (Q'Q)~! = diag[;, -, -] and PP+ = I.
Let z(t) = Px(t) = [x}(t) 2%(t) --- 2¥(¢)]" € R’ be the
projected state, where

1
zy (t) = p— 1, (t)

is the average state of the cluster C, and £ = k+r — 1. Note
that x(t) = P*z(t) + (I — Pt P)x(t), [27], where

EC

and J = [0 I,, — QAQ" ]. The vector o(t) := Jx(t) € R™
is called the average deviation vector, which is given as
o(t) =[o5(t)--- orn(t)]", where o, (t) := x5 (t) — 123 (¢).
We project the state dynamics of X on a lower-dimensional
state space RY, where ¢ < n, and obtain the projected network

system (PNS)

(I - PHP)x(t) = {

) z(t) = FEz(t)+ Fo(t) + Gu(t)
:¢ 0 = Q'o(1),
y(t) = Haz(t),

where E = PAP*, Fo(t) = PA(I — P*P)x(t), G = PB,
and H = C Pt with

po | An o AnQ ] F:[ Ay ]
AQT Az AQTA2Q |’ AQ"Ass |7 )
B
H=[ I 0 ],G:[AQ;B?].

Remark 2: Since the average deviation vector o (t) is the
function of unmeasured part of the state x(t), we consider
o (t) to be an unknown input in 3 with the structural property
Q"o = 0. This doesn’t change the definition that o = Jx.
Moreover, note that the output y(¢) in 3 is same as in X. This
is because the projection P only aggregates the clusters of
unmeasured nodes Cj,, and not the cluster of measured nodes
Cy, thus we have that Cx(t) = Hz(t) since C(I— PTP) = 0.
This aggregation process is illustrated in Fig. 1, where the
black nodes are measured and the given clusters of unmeasured
nodes are aggregated and treated as a single (super) node. ©

The purpose of 3 is to attain computational feasibility since
the dimension of its state space is much lower than that of
Y. In our analysis, we don’t consider the dynamics of o (t)
and only consider its structural property. That is, o = Jx
is unknown, however, it satisfies QTo = 0, which is the
only known information about o. Even though considering
the dynamics & (t) may allow for more information about the
system, however, it will make X a transformed system whose
state evolves in higher dimension than X. In such a case, the
computational tractability cannot be achieved for large-scale
systems.

u(t) o(t)q u(t)

N i
RN

= | {7

NV

X 3 L i3
l l
y(t) y(t)

Fig. 1: Obtaining the PNS 3 from the CNS = by aggregating
the clusters of unmeasured nodes. Here, o () is the average
deviation vector which is considered as an unknown input
satisfying Q"o = 0. Note that both systems yield the same
output y(t), i.e., the sensor measurements at black nodes.

We define outflow centrality of i as ¢; = a;; + ZjeNT @ji,s
where N := {j € V: (j,i) € &, j # i} is the set of node 4’s
out-neighbors. Then, the internal outflow centrality of i € Cy,
in the induced subgraph Gy}, is computed as

Gin =i+ Y aj, 4)

JENT,

where ./\/7T n= J\/;T NCp, are the internal out-neighbors of ¢ € Cp,.
The relative out-degree of i € C, in the induced bipartite
subgraph G, is computed as

dip= > aj, )

JENT,

where p # ¢ and ,/\/fp :/\/iT NCp.

We further remark that 3 only requires the aggregated
information about the network. That is, apart from the induced
subgraphs Gi; and Gy, i.e., the matrices Ay; and Ajp, we
require the internal outflow centrality of nodes in Cj in the
induced subgraphs Gy, i.e., the entries of 1;rnh Appn, and the
relative out-degree of nodes in C, in the induced bipartite
subgraphs G, for p # ¢, i.e., the entries of 1;fnpqu.

D. Problem statement

Given a CNS X with the set of measured nodes C; and the
clusters Co, - -+ ,C, of unmeasured nodes, we investigate the
following:

(P1) Is it possible to reconstruct the average states %' (¢) from
PNS 20), for h = 2,--- r, by using the measurements
of the dedicated sensors y(¢) and the knowledge of the
external input u(¢)?

(P2) Do the average states x"(t) converge to 0 as t — oo if
y(t) =0 and u(t) = 0 for all ¢t > 0?

The problem (P1) concerns the observability of average states

of given clusters, which is called average observability of the

CNS, and (P2) concerns the detectability of average states

of given clusters, which is called average detectability of the

CNS.



III. AVERAGE OBSERVABILITY

The resulting problem of interest in a CNS is the recon-
struction of the average states of given clusters Cs,- - ,C,.
We address this reconstruction problem through the PNS to
attain computational feasibility. In other words, we define the
average observability of 3 via the observability of 3.

The CNS X with a given set C; of k measured nodes and a
clustering @ = {Cs,---,C,} of m unmeasured nodes is said
to be average observable (AO) if it is possible to reconstruct
the average states z3'(t), -,z (t) of the clusters from the
PNS 3 using the knowledge of the output y(t) and the input
13(16), for all ¢ > 0. For reconstructing the average states from
3, itis necessary and sufficient that 32 is observable. Thus, the
observability of X is equivalent to the average observability
of 32 by definition.

To put it precisely, suppose u = 0 (since it is a known input
and can be subtracted from the output) and consider the output
trajectory from 3

Vo(t,z0) = H <exp(Et)z0 + /Ot explE(t — T)]FU(T)dT> ,

where zo = z(0) is the initial state of 3. Then, 3 is AO if, for
all t > 0 and zo € RY, y,(t,20) = 0 implies that 23'(¢) = 0,
forall h=2,---,r, where f =k +7r—1 and Q"o = 0.

The definition given above matches the definition of strong
observability in the presence of arbitrary unknown inputs, see
[28] and [29, section 7.5]. In our case, however, the unknown
input o(t) in 3 satisfies the structural property Q"o = 0,
which means that o : R>o — ker(QT). Notice that a set of
such signals includes the originally defined o (t) = Jx(t),
because the columns of J form a complete basis of ker(QT).
This implies that the property QYo = 0 is independent of
x(t) € R™ for all ¢ > 0, which is the essential fact used in
proving the necessity of results in this paper.

A. Necessary and sufficient conditions

In this subsection, we first state a necessary and sufficient
condition for AO of X¥. Then, we derive a necessary condition
and a sufficient condition based on the structure of X.

Proposition 1: The CNS X is average observable if and only
if there exists a matrix N € R®*¢ such that the following two
conditions hold:

(i) NFo(t)=0 forall t > 0.

(i) rank sN ;{NE } =/ for all s € C.

Here, £ € R, [ ¢ R™™ and H € R**¢ are given in (3),
and o(t) € R™ satisfies Q"o = 0.

Proof: (Sufficiency) By multiplying the state equation of >
by N € R, we obtain a descriptor system

gN:{ Ni(t) = NEz(t)+ NFo(t)+ NGu(t)

y(t) = Hz(t).
Assume N Gis such that (i) holds, then, according to [30]
and [31], Xy 1is observable if and only if (ii) holds.
Therefore, if both (i) and (ii) hold, we can reconstruct
z(t) = [x](¢) 2&(t) -+ 2®(t)]" from Xy.

T

(Necessity) To prove the necessity of (i) and (ii), we need
to show that if (i) and/or (ii) do not hold, then X is not AO.
If we show that X is not AO if (i) ‘or’ (ii) does not hold,
then it follows that 3 is not AO if (i) ‘and’ (ii) do not hold.
Therefore, in the following, we address only the two cases:

Case 1 — (i) doesn’t hold: Since (i) dg)esn’t hold, therefore,
to reconstruct the average states from 3, it is necessary and
sufficient, according to [28], to satisfy

sol —E F

rank [ H 0

} =/{+rank F, Vso €C. (6)

But (6) does not hold for sqg = 0, i.e.,

so]l —EF] B, -FQ F
rank [ H 0 ] = rank { I 0 0 } o
< £+ rank F,
where E, = A and E = [E; FQ] from (3).
AQT Ay

This is because rank] —F'Q) F | < rank(FQ) + rank(F').
Therefore, the average states cannot be reconstructed from 3.

Case 2 — (ii) doesn’t hold: If there exists N such that (i)
holds, then we have X N.OSince (i1) doesn’t hold, therefore,
according to [30]-[32], X is not observable. Therefore,
8 (t), -+ , a2 (t) cannot be reconstructed.

We have shown that 3 is not AO if (i) and/or (ii) doesn’t
hold. Adding this with the sufficiency part, it is proved that
3 is AO if and only if both (i) and (ii) hold. ]

Based on Proposition 1(i), we provide the following neces-

sary condition of average observability.

Theorem 2 (Necessary condition): The CNS X is average
observable only if

rank{ Cl; } = rank F| (8)

where Q € R”™*("=1) jg the characteristic matrix of the
clustering Q of unmeasured nodes and F' is given in (3).

Proof: First, note that o : R>¢ — ker(QT) since o = Jx,
where J = [ 0 I —QAQ" ]. The columns of I — QAQT
form the basis of ker(Q") because QT(I — QAQT) = 0 and
rank(I — QAQT) = m — (r — 1), which equals the dimension
of ker(QT) since rank(QT) = — 1 and QT € RU"=1*™ with
m > r— 1. Second, note that (8) is equivalent to the existence
of N € R such that NF = VQ", where V € R*("=1) g
a nonzero arbitrary matrix. That is, we can obtain the ¢ rows
of VQT by performing ¢ elementary row operations on F if
and only if (8) holds. Finally, to prove the necessity of (8),
we prove that it is equivalent to Proposition 1(i):

Suppose (8) holds, then there exists N € R‘*¢ such that
NF =VQ". Thus, NFo(t) = VQTo(t) = 0 for all £ > 0.
In the other direction, suppose there exists N € R‘*¢ such
that NFo(t) = 0 for all ¢ > 0. Then, it holds that
ker(NF) D ker(Q"). Hence, there exists V € R**("~1) such
that NF =V Q. [ ]

Notice that (8) is not sufficient for AO of ¥ because it
may not satisfy Proposition 1(ii). We provide the following



sufficient condition, which has an intuitive graph-theoretic
interpretation.

Theorem 3 (Sufficient condition): The CNS X is average
observable if

rank [ gT

where A, is given in (2) and @ = diag[1,,,, -, 1,,,] is the
characteristic matrix of the clustering Q of unmeasured nodes.

} = rank [112, ©)]

Proof: We show that (9) satisfies Proposition 1. First, to
prove Proposition 1(i), assume (9) holds. Then, there exists
N =[N; No] € R** with Ny = 0 such that NF =
NiAjs = VQT, where Ny € Rk and V e R*(=1),
Therefore, for all ¢t > 0, NFo(t) = VQTo(t) = 0.

Second, to prove Proposition 1(ii), we show that

sN-NE k sNy — NE; —VA~!
H I, 0

rank {

= k4 rank(VA~

for all s € C, where E = [E; FQ], N =[Ny 0], and
NE = [NE; VA~!]. Note that rank(VA~!) = rankV
since A~! = QTQ is a diagonal matrix with positive diagonal
entries. Therefore, for Proposition 1(ii) to hold, it is necessary
and sufficient that rank V = r — 1, i.e., full column rank. We
have, by definition,

D=k+r—1,

Ap Ags Ay
_ 17 0 . 0
Ag | 0 1T ... 0
QT - )
0 0 . 17
where Ajp € RFX™ and A;;, € RFXmn for h = 2, , 1, are
given in (2). Thus, it holds that
rank[ A12 } Zrank[ A”’ } )
If (9) holds, then
rank/iu = irank { A ]
1T
h=2
and there exists p1, € R* such that plhAlh = 1m} and

pi,Aiy = 0, for all h,g = 2,---,r and h # g. Therefore,

we can choose N1 = [pi12 P13 " Pir kag]T such that
N1A12 = VQT, where V = [Ir—l O(rfl)xk]T with
rank V = r — 1. This concludes the proof. [ ]

Based on (9), we can provide a closed-form expression for
reconstructing the average states of the clusters.

Corollary 3.1: Suppose a CNS X that satisfies the sufficient
condition (9) of AO. Then, the average states of the clusters
are given by
(10)

QTQ)™!

za(t) = AQTA12Y( ),

where zo(t) = [2%(t) - 22 ()T, A =
y(t) =y(t) — Any(t) -

T _ 11

A12_ 12

13

14

15

17

\) 18
19

Fig. 2: Example of a CNS with a single cluster of unmeasured
nodes (shown as blue) that is average observable, where the
measured nodes (shown as black) span all the unmeasured
nodes.

CO00OO0OORHROOOOOO K
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A= !

Fig. 3: Example of a CNS with three clusters of unmeasured
nodes (shown as blue, green, and brown). The network is
average observable with the dedicated state measurements
at the hubs (shown as black) that respectively span distinct
clusters of unmeasured nodes.

Proof: Notice that the state vector of the PNS 3 is z(t) =
[y (t) z9 (t)]7, and the derivative of its output of X is

y(t) = Hz(t) = H [E1y(t) + FQz2(t) + Fo(t) + Gu(?));

where HE, = Ay;, HF = Ay, and HG = Bj. Recall that
the output y(¢) and the input u(¢) trajectories are assumed to
be known for all £ > 0. Thus, theoretically, in the sense of
Kalman’s observability, the derivative y(¢) can be computed.
Therefore, y(t) = y(t) — Any(t) — Biu(t) is a known
quantity, and y(t) = A12Qz(t) + A120(t). Now, if (9) holds,
then there exists N; € R‘** such that Ny A, = vVQT,
where V' = [I,_1 O¢—_1)xx]", as shown in the proof of
Theorem 3. Therefore, for all ¢ > 0, lehgo'(t) = 0, where
= VQTA{, with A5 AT, = I}.. Thus, we have

N1y (t) = N A1aQzs(t) = VQTALY (1) = VQQza(t).
Realizing that V'V = I,_; and that QTQ is invertible, we
obtain (10). |

B. Graph-theoretic interpretation

We provide a graph-theoretic interpretation to the sufficient
condition (9) of average observability, which only concerns
the induced bipartite subgraphs Gy, for h = 2,--- | r, which
capture the topology of directed edges from unmeasured to



measured nodes. This is quite intuitive because the information
received by the measured nodes from the clusters of unmea-
sured nodes is crucial for average observability.

Consider the example of Fig. 2 with a single cluster Cy of
unmeasured nodes, i.e., 7 = 2 and () = 1,,,,. For the condition
(9) to hold, it is necessary that all the columns of Ao are
nonzero. In other words, for all j € Cs, there must exist an
edge (i,5) € £, where i € Cy is the measured node. That is to
say, the measured nodes, at least minimally, cover (or span)
all the unmeasured nodes. Since the graph in Fig. 2 satisfies
this condition, therefore it is average observable. This can be
verified by observing that QT = 17 is in the rowspace of A,
(given in Fig. 2).

We can directly extend the single cluster interpretation to the
case of multiple clusters of unmeasured nodes. That is, every
measured node spans a distinct cluster of unmeasured nodes.
This is illustrated by a CNS shown in Fig. 3, where the hubs
are the measured nodes and the three clusters of unmeasured
nodes are shown with different colors. For this network, we
have ) = diag[1g, 1g, 17] which equals 12111‘2 (given in Fig. 3).
Therefore, (9) is satisfied.

C. Average state observer

Average observability is a property of 3 that allows for the
reconstruction of the average states of given clusters of nodes
in 3. It is, however, a theoretical notion. That is, in practice,
the closed-form solution (10) should not be used because it
requires the derivative of the output, which is very sensitive
to the measurement noise.

To reconstruct the average states of clusters in real-time, we
consider an average state observer of the form:

a9 { w(t) = Mw(t)+ Ky(t)+ NGu(t)
LC) = w(t)+ Ly(t) ’
where M € RO-Dx0=L N e RO-Dxt and K, L €
R=1xk and w(t) € R is the state of £ and ¢(t) € R"~*
is the estimate of the average states. Let &.(t) := z2(t) — ¢(¢)
be the estimation error, where z(t) = [2%'(¢) - -+ 3V (¢)] T is
the vector of average states of clusters. Then, we have
éc = (AQ"A2Q — LA12Q)é¢ + (AQ"A22Q — LA12Q — M)w
+ I:(AQTAQQQ — LAng)L — LA + AQTAM — K] y
+(AQ"By — LB1 — NG)u + (AQ" Az — LAs2)o.

Thus, we can choose M, K, N matrices as follows

M = AQ™A»Q - Lz‘imQN
K = ML-LA; +AQ™Ay (11
N = [-L L]
where L is such that, for some V5 € R(r—1x(r=1)
NF = AQ" Ay, — LA;» = V2Q", (12a)
M = AQ"45,Q — LA1»Q is Hurwitz. (12b)

The design criteria (12a) is to cancel the effect of o from
the error dynamics, and (12b) is to ensure the exponential
convergence of the error to zero. Choosing M, K, N as in
(11), we obtain the error dynamics as

ec(t) = Méc(t) + NFo(t). (13)

Note that M = N F(Q. We say that the average state observer
Q exists if (12) holds and the pair (Ang,AQTflggQ) is ob-
servable. That is, we have &;(t) — 0 as t — co exponentially
and at an arbitrary rate. Due to the ability to adjust the rate
of convergence arbitrarily by the appropriate choice of M, the
term ‘tunable’ average observer can be used for €2, [33].

Theorem 4: The average state observer Q exists if and only
if _
AQT Az

Qr
where @ € R™*(r=1) ig the characteristic matrix of Q and
A=(QTQ)~ L.

Proof: (Sufficiency) Assume (14) holds. Then,

L= (AQTAD - V2QT)AB,

rank = rank /112, (14)

5)

where A, is the pseudoinverse of A}y, is the solution to (12a)
if and only if
Arp

AQTAQQ BTNk = rankfilg,

rank (16)
for some Vo € R=DX("=1) From this, it is clear that if
(14) holds, then (16) holds for all V5 € RC"—D*("—1) Thys,
NF =V5Q"and M = NFQ = V,Q"Q, where QTQ = A1
Then, let Vo = WA, where W is an arbitrary Hurwitz matrix.
Therefore, (12b) is satisfied since M = W, and &.(t) — 0 as
t — oo at an arbitrary rate since the eigenvalues of W can be
chosen arbitrarily. R

(Necessity) Assume €2 exists, then (12) holds and M can
be assigned arbitrary eigenvalues. In other words, (16) holds
for all Vo = MA, where M € RC"=Ux(=1) i any Hurwitz
matrix with arbitrary eigenvalues. Let M; € R("=1>("=1) and
M,y € R=Dx(r=1) pe two Hurwitz matrices of full rank such
that all the corresponding rows (or columns) of M; and M, are
pairwise linearly independent. That is, row-i of Mj is linearly
independent from row-i of M, for ¢+ = 1,--- ,r — 1. By
assumption, (16) holds for both V5 = M;A and Vo = MsA,
which implies

Ai2

AQ™ Az — M1AQT
AQ™ Az — M>AQT

rank = rank /112. (17

Using the fact that the corresponding rows (or columns) of M;
and M, are linearly independent and rank(M; ) = rank(Ms) =
r — 1, we have

K I —-MA | K I —-M; I 0
AT M A | T T My |0 A
_ I —M;
= rank [ I M, }
=2(r—1),
That is, the above matrix is invertible, which implies that
I 0 0
the matrix 0 I —-MA is invertible.
0 I —-MA



Finally, notice that

Alg I 0 0 Aqa
AQT Ay —MIAQT | = | 0 I —MA AQT Ay |,
AQT Ay — MaAQT 0 I —MA QF
therefore,
_ 12112 Al%
rank | AQTAss — M1AQT | =rank | AQT Ay, (18)
AQTAgy — MaAQT Q"
From (17) and (18), we obtain (14). [ |

Example 1: Consider a linear compartmental system, [25],
with the dynamics at each node j given by

2
Bi(t) =D ajmi(t) = Y agzi(t)+ Y buw(t), (19)
=1

iENY oeNT

where a;; = 1 and a,; = 1 forall j € V, i € J\/ji, and
0o € j\/]T Note that b;; = 1 if w(t) is applied on j, and
bj; = 0 otherwise. Let the system be defined on the graph
shown in Fig. 2, where the measured nodes are shown as
black and the unmeasured nodes as blue. We consider a single
cluster of unmeasured nodes, i.e., » = 2 and (Q = 14, and
estimate its average state z,(t) = x%'(¢). Let the input vector

| w(®) | | sin(¢)+5 . .
be u(t) = [ s () } = [ sin(3t) and the input matrix
(B - [15 0
B = [ Bg } with By = 0 and By = [ 0 1g ].Theoutput

matrix C' = [I; 0]. Note that AQT Ay = — 15174 since the
internal outflow centrality of each blue node with respect to
the induced subgraph Goo is —1 and A = —1/16. Thus, in
this example, the condition (9) and (14) are equivalent, i.e.,
the system is AO and € exists. The parameters of €2, for
Vo = —3/64, are computed from (11) and (15) as

M = -075, N = [&41] 1],
— 3 — 1
K = 217, L = —41l

The average state can be estimated asymptotically by the
observer €2, as shown in Fig. 4, where the rate of convergence
can be set by choosing different values of V5. o

Remark 3: Similar to the functional observer of Darouach
[4], the average state observer €2 has a minimum dimension,
i.e., it equals the number of unmeasured clusters r — 1.
Following the literature [21]-[23] of functional observers,
however, one can design an average state observer of higher
dimension if (14) is not satisfied. The dimension of the
observer is determined iteratively. For instance, to reconstruct
zo(t) = Px(t), where P = | Opr—1)xk AQT ], we can
employ the design procedure of [23], where the observer is

of dimension v(r — 1) with v = 1,2,3,--- such that
PAY o
rank | Oc.a, | =rank CAv (20)
Y Op.a
OP,A,'U Y
with Oca, = [CT (CA)T (CA*=1)T " and

[
Op an = | Pt (PA)T (PA*~1)T ]T. However, to

0 5 10 15 20
Time ¢

Fig. 4: Asymptotic estimation of the average state of a
cluster of unmeasured nodes in the graph shown in Fig. 2
by Q. The solid line shows the average state trajec-
tory of the cluster of unmeasured nodes, and the dotted
line shows the estimation of the average state at different
rates. Different rates of convergence are set by choosing
Vo =-3/64,-1/32,—1/40,—-3/160,—1/80 from faster to
slower, respectively.

determine v, we have to compute (20) iteratively, which is not
computationally feasible for large-scale systems. Moreover,
the dimension scales with v, which may yield an observer of
very high dimension. Therefore, it is computationally feasible
to design Q of order  — 1 by choosing Vo € R"=D*("=1) jp
(11) and (15) such that lim sup,_, ., ||€¢(¢)| is minimum, [34],
under the assumption that ||o"(¢)|| is bounded for all £ > 0. ¢

IV. AVERAGE DETECTABILITY

If the clustered network system 3 is not average observable,
the average states of given clusters Cs,--- ,C, can still be
asymptotically estimated if all the average states are stable.
Such a property can be characterized as average detectability
of a CNS.

Assume u(t) = 0 for all ¢ > 0. Then, the CNS X
with a given set of measured nodes C; and a clustering
Q ={Cs,---,C,} of unmeasured nodes is said to be average
detectable (AD) if, for all t > 0 and z(0) = zo € R y(t) =0
implies that the average states z3'(¢) in X converge to zero

as t — oo, where h = 2,---,r. That is, z2(t) — 0 as
t — oo when y(t) = 0 for all t > 0 and z»(0) € R" 1,
where zo(t) = [23(t) --- 2]

A. Necessary and sufficient condition

Theorem 5: Assume that lim; . ||o7(¢)]] # 0. Then, the
CNS X is average detectable if and only if the following two
conditions hold:

(i) AQTA2Q is Hurwitz.
(i) QTAsy = VQT for some V € R—1x(r=1),
Here, A, is given in (2), Q € R™*("=1) s the characteristic
matrix of the clustering Q, and A = (Q"Q)~*.
Proof: Let R = AQT Ay,.
(Sufficiency) The dynamics of z,(t) from 3 is given as

23(t) = RQz3(t) + Ro(t) + AQ"[As1y(t) + Bau(t)].
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Fig. 5: Examples of CNSs that are average detectable with
a single cluster of unmeasured nodes. The measured nodes
Cy are shown as black. The local feedback gains a;; = —3,
for all i € Cy, where Co are the unmeasured nodes (blue).
The subgraph Gso, highlighted by darker edges, is negatively
balanced in both networks.

The solution, when u(t) = 0 and y(¢) = 0 for all ¢ > 0, is

Zo(t) = exp(RQt)z2(0) + /0 exp[RQ(t — 7)|Ro(T)dT.

If (i) holds, then exp(RQt) — 0 as t — oo. If (ii) holds, then
Ro(t) = 0 for all ¢ > 0 since Q"o = 0. Hence, z2(t) — 0
as t — oo for all z5(0) € R"L.

(Necessity) Assume (i) doesn’t hold, then R() is not Hur-
witz, exp(RQt) — oo as t — oo, and, therefore, z2(t) — 0.
Now, assume (i) holds but (ii) doesn’t hold, then we have

t
Jim lza(0)] = Jim | [ exp(RQn)Rer(t = n)i.

which must be 0 for average detectability. Since we assume
that lim; , ||o(¢)|| # 0 and (ii) doesn’t hold, we have
limy o0 ||Z2(t)]| = O only if exp(RQt)R = 0 for all ¢t > 0.
This is not possible because it requires R € ker (exp(RQt)),
where ker (exp(RQt)) = @ for all ¢ > 0, i.e., exp(RQt) is
always non-singular (see Ch. 5, Sec. 5.6, Prob. 43 in [35]).
This proves the necessity of (ii). ]

B. Graph-theoretic interpretation

For a CNS with a single cluster of unmeasured nodes, AD
requires certain regularity of the induced subgraph formed by
unmeasured nodes. In such a case, the conditions in Theorem 5
boil down to 17, Ay = —17, _, where 1,,, = Q and v > 0.
That is, for average detectability of a network system with
a single cluster of unmeasured nodes, the induced subgraph
Gas = (Ca, E92) must be negatively balanced, i.e., the internal
outflow centrality ¢, » of every node i € C; in (4) with respect
to Goo must be equal and negative. This is illustrated by the
graphs shown in Fig. 5, where the internal outflow centrality
of every unmeasured node with respect to Goo in the left and
right graph is —1 and —2, respectively.

For a CNS with multiple clusters of unmeasured nodes, in
addition to having each subgraph Gy, negatively balanced,
we also require that the clustering Q is almost equitable (see
[15], [16] for definition), which means that the relative out-
degree d; 4 in (5), for all + € Cp, with respect to cluster C,
is equal, for all g # h. This is illustrated with an unweighted
graph shown in Fig. 6, where each of the subgraphs Gy, is
negatively balanced for h = 2,3,4,5 shown with red, green,
brown, and blue nodes, respectively. It is because for all nodes

. vﬂ e 9
xq € 5 . AO‘
e )ﬁ; ]
_'OV,, ‘ 40 » R bv v
A e .7 1.‘, a 'S
»404... ‘.
o - o

Fig. 6: Example of a CNS that is average detectable with
measured nodes C; shown as black and the four clusters of un-
measured nodes Cs, Cs3,Cy4,C5 shown as red, green, brown, and
blue, respectively. The local feedback gains a;; = Zj ent Gji-
Each induced subgraph Gy, highlighted by darker edges, is
negatively balanced. The clustering Q = {C3,Cs5,C4,Cs} is
almost equitable. The induced bipartite subgraphs Gy, are
highlighted by dotted edges, for h,g = 2,3,4,5 and h # g.

in red, green, brown and blue clusters, we have internal outflow
centrality equal to —2, —1, —2 and —1, respectively. Moreover,
considering the induced bipartite subgraphs Gy, we see that
the relative out-degree of all the nodes in a certain cluster
are also equal. For instance, consider the induced bipartite
subgraph G45 with directed edges from blue to brown nodes.
Each blue node has relative out-degree with respect to brown
nodes equal to 1. Similarly, in both G35 and Gss5, the relative
out-degree of blue nodes with respect to Cs and Cs is 0.
Therefore, the clustering of unmeasured nodes Q is almost
equitable, which is also known as externally equitable [14]
when the graph is unweighted. Hence, the CNS shown in Fig. 6
is average detectable.

C. Open-loop average state estimation

Consider the following open-loop average state observer:
@ 0(t) = RQO(t) + AQ"[An1y(t) + Bou(t)],
where R = AQTAQQ. Let the estimation error be
€p(t) := za(t) — 0(t).

We say that the open-loop average state observer U exists if
&p(t) — 0 as t — oo.

2y

Theorem 6: The open-loop average state observer U exists
if and only if the CNS X is average detectable.
Proof: Consider &y(t) = z2(t) — 6(t), then

&o(t) = RQ&(t) + Ra(t), (22)

whose solution is given as

&(t) = exp(RQt)ég(O)Jr/O exp[RQ(t—7)|Ro(T)dr. (23)
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Fig. 7: Average state estimation of clusters of unmeasured
nodes Cs,C3,Cy4,C5 in a network shown in Fig. 6.

From here, the arguments for sufficiency and necessity follow
the same lines of the proof of Theorem 5. ]
Note that Theorem 6 coincides with the strong detectability
definition of [36], which considers arbitrary unknown inputs.
However, as discussed earlier, o (t) is not arbitrary.

Example 2: Consider an unweighted graph shown in Fig. 6,
where measured nodes C; = {1,2,3,4} are shown as black.
The state of each node j evolves according to (19). The input
is given by

wi(t) = {

and the input matrix B = [I; 0]'. Note that Theorem 5 (i)
is satisfied since

sin (0.5t 4+ (i — 1)w/4),
0, otherwise;

ifi=1,-,4

)

-2 1 0 O
RQ = (1) _i B ; (1) ,  which is Hurwitz,
0o o0 1 -1

where R = AQTﬁgg. Also, Theorem 5 (ii) is satisfied since
QTAQQ = AilQTAQQQQT, where Q\Z diag[].g,lg,lg,lg].
Therefore, the open-loop observer W converges to the av-
erage state of unmeasured clusters Cy,Cs,C4,Cs5 as shown
in Fig. 7, where the initial states x(0) are chosen uni-
formly in the interval (—0.5,0.5). The rate of conver-
gence of the estimation error is determined by eig(RQ) =
{—3.5321, —2.3473, —1.0000, —0.1206 }, respectively. o

Consensus case: The question we ask is that if the nodes
in each of the clusters in Q@ = {Cy,---,C,.} reach a con-
sensus, [37], then “is 3 average detectable?” Equivalently, if
lim;_, o |lo(2)|| = O, then “does W exist?”

Theorem 7: Assume that R(Q) is a Hurwitz matrix. Then, U
exists if lim;_, o ||o(2)] = 0.

Proof: Consider the estimation error €y(t) = z2(t) — 0(t)
with dynamics given in (22) and the trajectory given

in (23). Since RQ is assumed to be Hurwitz, therefore
lim; o || exp(RQt)&y(0)|| = 0 for all &5(0) € R"~1. Let

v(t) = fot exp[RQ(t — 7)|Ro (T)dT

_ [t/

= |,/ " exp[RQ(t — 7)|Ro(T)dT

+ 1) exp[RQ(t — 7)] Ror(7)dr

= ftt/Q exp(RQT)Ro (t — 7)dr
+ ftf/Q exp[RQ(t — 7)]Ro(7)dr

and let [|-]| denote the matrix norm induced by || - ||, then, by
the triangle and Cauchy-Schwarz inequalities, we have

vl < 15, \Hexp(RQT)\HQdT]% I IIRU(t—T)HQdT]%

1
2

S8 NlexolRQU — MlIdr]* [, I Ro(o)2ar]

First, we have lim;_, ftt/Q llexp(RQ7)||*dr = 0 since RQ

is Hurwitz. Second, we have lim;_, . ftt/Z |Ro(7)||?dT = 0
since lim;_, o ||o7(t)|| = 0. Thus, lim;_, ||v(t)|| = 0, which
implies lim;_,  ||€¢(t)|| = 0. [ |

V. CONCLUDING REMARKS

We addressed the problem of reconstruction of the average
states of given clusters in a large-scale clustered network
system (CNS). For computational tractability, we aggregated
the clusters in CNS and obtained the projected network system
(PNS). We defined average observability, which enables the
reconstruction of the average states through the PNS, and pro-
vided its necessary and sufficient condition in Proposition 1.
Then, from Proposition 1, we derived a necessary condition
(Theorem 2) and a sufficient condition (Theorem 3) of average
observability based on the structure of the CNS. We provided
a graph-theoretic interpretation of Theorem 3 that concerns the
topology between unmeasured nodes and measured nodes in
the CNS. Average observability is essential for the design of a
tunable average state observer that can reconstruct the average
states of the clusters at an arbitrary rate (Theorem 4).

If the network system is not average observable, we can still
asymptotically reconstruct the average states by an open-loop
average state observer if the CNS is average detectable (The-
orem 5 and 6). However, the rate at which the average states
are estimated cannot be adjusted arbitrarily, and it depends on
the eigenvalues of the state matrix of PNS. Moreover, in The-
orem 7, we showed that if the consensus is reached in every
cluster, the average states can be asymptotically estimated by
the open-loop observer. On the other hand, if the consensus is
not reached, then, in Theorem 5, the necessary and sufficient
condition of average detectability requires a certain regularity
not only in the induced subgraphs of the clusters, but also in
the induced bipartite subgraphs that capture the inter-cluster
topology.

The conditions derived in this paper provide a framework
to study the problem of sensor location and cluster selection
in large-scale network systems in order to achieve average
observability and/or average detectability.
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