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A MILP model and memetic algorithm for the Hub Location

and Routing problem with distinct collection and delivery tours

Abstract

In this paper, we study the capacitated single allocation Hub Location-Routing Problem
(CSAHLRP) with independent collection and delivery processes. We focus on the design
of less-than-truck load (LTL) transport networks for the transport of goods between
many shippers and their clients using flow concentration hubs. We seek to integrate
the hub location and vehicle routing strategies such that the location of the hubs, the
allocation of supplier/client nodes to hubs, the design of routes between nodes allocated
to the same hub, as well as the inter-hub freight transportations, can be determined
efficiently. We propose a mixed integer linear programming model for the problem with
the aim of minimizing the total fixed and variable costs. Computational experiments
based on the Australian Post (AP) data set geographical network are conducted with
the CPLEX solver. Furthermore, we propose a memetic algorithm (MA) to solve large
problems. Computational results show that the exact method can find optimal solutions
for small instances and good feasible solutions for some medium-sized tests. In addition
to also solving small problems to optimality, the MA succeeds in finding high quality
solutions for medium and large CSAHLRPs efficiently.

Keywords: Hub Location-Routing Problem, LTL transport, mixed integer
programming model, memetic algorithm

1. Introduction

In this paper, we study the design of freight transport networks for less-than-truckload
(LTL) shipments, when freight companies have to collect small freight or parcels from
many different origins before distributing them to various destinations. This is a well
known problem in freight transportation and logistics. Several applications are con-
cerned, such as the delivery of small parcels for classical business or the e-commerce, the
transportation of food products on pallets from producing factories to retail stores scat-
tered all over a territory, or the collection and distribution of mail between postal service
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facilities. Usually for LTL shipments, direct connection for origins to their destinations is
not economical, mainly due to the waste of vehicle capacity. Shipping goods through flow
concentration hubs is the most cost-effective option. It consists in combining demands
from several origins, consolidating them at hub facilities, and then shipping them to their
destinations, possibly through another hub. The collection and delivery processes can
be performed directly between suppliers/clients and a designated hub or through local
pick-up/delivery tours, depending on the characteristics of goods to be shipped. In the
scientific literature, the corresponding network design problem is referred to as the Hub
Location Problem (HLP) in the former case and the Hub Location and Routing Problem
(HLRP) in the latter case, which is the subject of this paper. Furthermore, depending
on specific circumstances, pick-ups and deliveries may be integrated within the same
tours, such as for postal services, or handled through separated collection and delivery
tours for logistical or scheduling reasons; for instance, it is the case for general freight
forwarders. In the latter case, which we focus on in this paper, collections from shippers
(i.e. suppliers or producers) may indeed be typically undertaken in the late afternoon,
while deliveries to clients (i.e. retail stores) are usually done during early hours in the
next morning.

Since terminal location and vehicle routing decisions are interrelated, the coordination
of these two aspects offers the promise of more effective and economical decisions and
avoids suboptimal solutions. However, it is a challenging problem to combine these
two decisions. A wide range of research on how to simultaneously deal with terminal
locations and planning of vehicle tours can be found and such problems are named
the Location-Routing Problems (LRP). The researched HLRP also integrates these two
decision problems. It belongs to the class of Many-to-Many Location-Routing Problem
(MMLRP) introduced by Nagy and Salhi (1998), which is a variant of the LRP. It deals
with terminal hub locations, planning of vehicle tours and determination of inter-hub
flow exchanges to satisfy customer demands. As a comparison, for the standard LRP, no
flows are exchanged between the facilities, whereas flow exchanges are to be determined
in the HLRP.

When one wants to design a transport network involving the location of facilities as
well as optimize the suppliers/clients nodes allocation and routes to these (unknown)
facilities, which is the problem we consider, solving location and routing problems in-
dependently of one another may lead to highly suboptimal solutions (increase of the
costs). Quoting Laporte (1988), “location and routing are intertwined decisions which
must be modelled and often optimized simultaneously”. This fact has been quantified
for the first time by Salhi and Rand (1989). Such integrated problems have been studied
for many years already. See the early papers or reviews by Balakrishnan et al. (1987),
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Laporte (1988), Nagy and Salhi (1998), or more recent reviews quoted in our State of
Art (i.e. Prodhon and Prins (2014), Schneider and Drexl (2017)). These network design
problems are therefore considered with a long term strategic approach. In this context,
routes have to be understood as itineraries to handle an average demand, and they are
meant to be adjusted over time on a daily basis.

Although the HLP, the LRP and the Vehicle Routing Problem (VRP) have been widely
investigated, previous research in the area of the HLRP is limited and devoted to specific
cases. There does not exist any “generic” formulation for the HLRP. The goal of this
paper is to propose a model and an efficient solution technique to solve the deterministic,
capacitated single allocation HLRP (CSAHLRP) for the LTL transport network where
collections of freight from suppliers and deliveries to clients are organized through distinct
tours. Applications of this problem lay in sectors like LTL goods distribution. Decisions
for solving it involve the determination of the number and location of hub facilities, the
allocation of suppliers/clients to hubs, as well as the design of collection and delivery
routes and the inter-hub transportation flows. The overall goal is to find solutions
minimizing the total fixed and variable costs. Computational experiments are conducted,
based on a set of instances generated from the geographical Australian Post (AP) network
and the parameters of the logistics and freight transport sectors. We compare solutions
obtained by solving a MILP model using the CPLEX solver for small instances and a
memetic algorithm, which is able to efficiently solve instances of small, medium and large
sizes.

The paper is structured as follows. Section 2 gives a literature review concerning the
HLRP and related problems. In Sections 3, a mixed integer linear programming model
is presented for the target problem. Section 4 proposes a memetic algorithm (MA) for
solving large instances of the problem. Computational experiments on both the exact
and metaheuristic methods are described and analyzed in Section 5, proving the efficiency
of our approach. Section 6 draws conclusions about this research and puts forward ideas
for further study.

2. Related literature

As indicated above, the Hub Location-Routing Problem (HLRP) is closely related to the
Hub Location Problem (HLP) and the Location-Routing Problem (LRP). For these two
classes of problem we refer the reader to the relevant reviews. Campbell (1994) gave
the first survey of the discrete HLP, Alumur and Kara (2008) provided a comprehensive
review of the HLP covering the period from 1987 to 2007, Campbell and O’Kelly (2012)
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presented the origins and motivations of 25 years of HLP research, and Farahani et al.
(2013) highlighted the aspects of HLP published after 2007 and current trends.

Early surveys of the Location-Routing Problem can be found in Balakrishnan et al.
(1987) and Laporte (1988). Recent reviews have also been carried out by, among others,
Nagy and Salhi (2007), Prodhon and Prins (2014) and Schneider and Drexl (2017).

To our best knowledge, little research has been published on the HLRP, which is the
subject of our work. The articles on the HLRP described in this section are listed and
their main characteristics compared in Table 1. The notations used are explained in Table
2. These tables illustrate the wide variety of the characteristics of problems addressed
and solution techniques used. Major specificities of these problems are illustrated by
the columns of Table 1, in terms of: hub characteristics (with or without capacity,
number of hubs fixed or not); non hub nodes (suppliers/clients) allocation; type of routing
constraints; solution method; application/data base; maximum problem size solved; type
of pick-up and delivery tours (simultaneous or distinct).

One can see from this description that the research problems may differ widely in their
characteristics. There does not exist a single generic problem allowing a comparison.
We first describe the problems for which the number of hubs to open and their location
needs to be decided within the optimization.

As already mentioned, the HLRP was introduced for the first time by Nagy and Salhi
(1998) under the name of Many-to-Many Location-Routing Problem (MMLRP). They
considered the demands to be satisfied for each pair of customers (suppliers and clients)
as well as capacity restrictions of terminals. The pick-up and delivery processes might be
simultaneous or distinct but local tours were subjected to a routing length constraint. A
single instance of 249 nodes was solved using a hierarchical heuristic. Wasner and Zäpfel
(2004) addressed the Austria parcel service problem as a case study and investigated the
possibility of direct connections between non-hub pairs for the capacitated single alloca-
tion MMLRP. Routes can combine deliveries and pick-ups in sequence. They developed
a hierarchical heuristic method due to the difficulty in solving the problem by standard
solvers. Only one small instance of 10 nodes was solved. Catanzaro et al. (2011) pro-
posed a Partitioning-Hub-Location-Routing Problem (PHLRP), partitioning the target
network into several sub-networks. For each sub-network, hub locations, multiple allo-
cations and traffic routings were scheduled with an LTL system. They developed an
Integer Programming (IP) model solved with a Branch and Cut algorithm and explored
some valid inequalities to strengthen it. Experimentations were made with randomly
generated instances of up to 450 nodes. de Camargo et al. (2013) provided a new for-
mulation of the MMLRP. In their assumptions, the hubs and vehicles were subjected to
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a fixed cost and each customer had to be visited once and was subjected to a charge,
called the handling cost, for each assignment. Furthermore, they allowed pick-ups and
deliveries to occur simultaneously and imposed a maximum tour duration but no ca-
pacity on vehicles. Their formulation led to a decomposition into two sub-problems,
handled by an efficient Bender’s decomposition algorithm. Computational experiments
were carried out based on the Australian Post (AP) standard data set. The approach
was compared to solving the MILP model with CPLEX, and succeeded in solving prob-
lems with up to 100 nodes. In the study of Setak et al. (2013), a comprehensive MILP
model of the HLRP was proposed. The aim was to build a general hub network topology
to minimize the total cost, establishing hub nodes and inter-hub links, and connecting
hub nodes and non-hub nodes. Paths containing only one hub node or a direct link from
origin to destination were allowed. Their model was solved with the CPLEX solver.
In their experiments, data from the Australian Post (AP) and Civil Aeronautics Board
(CAB) were used for problem sizes of up to 20 nodes. Mohammadi et al. (2013) fo-
cused on a stochastic green HLRP (SGHLRP) and tried to minimize the total cost along
with the environmental effect. A multi-objective MILP formulation was proposed and a
Multi-Objective Invasive Weed Optimization algorithm (MOIWO) was applied to obtain
Pareto optimal solutions. Computational results on randomly generated instances of up
to 100 nodes showed that the proposed algorithm outperformed other multi-objective
algorithms in the literature, such as the Non-dominated Sorting Genetic Algorithm-II
(NSGA-II), the Pareto Archived Evolution Strategy (PAES) and the Strength Pareto
Evolutionary Algorithm (SPEA). Mokhtari and Abbasi (2014) used a Variable Neigh-
bourhood Particle Swarm Optimization Algorithm (VNPSO) to solve the many-to-many
HLRP with uncapacitated hubs. The efficiency of the proposed algorithm was compared
to a Bender’s decomposition algorithm using numerous samples of up to 300 nodes cre-
ated randomly. Numerical results indicated that it performed better for large problems.
Bostel et al. (2015) studied the HLRP applied to the special features of postal service
systems in which collections and deliveries may occur simultaneously within the same
routes. A MILP model was solved using CPLEX and a memetic algorithm based on a
genetic algorithm and a local search was developed to solve the problem for problems
instances from the AP data set of up to 100 nodes.

In the following, we now describe articles focusing on problems with predetermined
open hub numbers (p hubs problems). Such problems are called Many-to-Many p Hub-
Location Routing Problems (MMpHLRP).

Çetiner et al. (2010) studied hubbing and routing for postal delivery systems. They
developed an iterative two-stage solution procedure for locating hubs and planning local
tours. In their assumptions, they allowed multiple allocations of non-hub to hub nodes
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and simultaneous pick-ups and deliveries, while imposing a maximum tour length con-
straint. They applied their procedure to a randomly-generated data set and studied a
case from the Turkish postal service of 81 nodes. Sun (2013) decomposed the HLRP
into two sub-problems: a HLP in the first stage and a multi-depot VRP in the second,
allowing simultaneous pick-ups and deliveries. An Ant Colony Optimization (ACO) al-
gorithm was applied to the two stages. They solved randomly generated instances of
200 nodes. Rieck et al. (2014) studied the Timbertrade industry and designed a many-
to-many network structure with three layers: the supplier layer, the potential hub layer
and the delivery layer. A mixed-integer linear model was proposed and applied to solve
15-node networks to optimality. For larger instances up to 140 nodes, the authors de-
veloped a multi-start procedure as well as a genetic algorithm. Rodŕıguez-Mart́ın et al.
(2014) introduced a Hub Location and Routing Problem that is very close to the Single
Allocation p-Hub Median Problem (SApHMP). This aimed to position p hubs, allocate
customer nodes to a single hub and connect within the same tour customer nodes that
have the same hub allocation. At most q nodes could be allocated to one hub and a sin-
gle travelling tour was allowed for each hub. A branch-and-cut algorithm was developed
to solve the problem on AP and CAB instances of 50 nodes. More recently, a solution
method based on an Endosymbiotic Evolutionary Algorithm (EEA) was proposed by
Sun (2015) to deal with the hub location and vehicle routing problems, with distinct
pick-ups and deliveries. They solved randomly generated instances of 200 nodes. Za-
meni and Razmi (2015) proposed a mixed-integer formulation for a multimodal p-hub
location-routing problem with simultaneous pick-ups and deliveries. They considered a
multimodal transportation system with different characteristics. The model was solved
with GAMS and a genetic algorithm was developed. They solved instances of 50 nodes
from AP and CAB.

Our work, developed in the next sections, is devoted to the CSAHLRP with distinct
pick-ups and deliveries for general many-to-many LTL transport of goods or parcels.
We indeed assume that the size/weight of freight to be transported from suppliers and
to clients is significantly smaller than the vehicle capacities to require vehicle routing
collection or delivery processes, which is generally the case in retail distribution. We
propose a new MILP model by integrating efficient flow variables and constraints of the
VRP into the classic HLP formulations. Solutions are obtained by solving the model
with the CPLEX solver, and developing a memetic algorithm. Instances adapted from
the network of the AP data set have been used as well as logistics and cost parameters
from professional data of freight transport. Instances up to 100 nodes have been solved.

As can be seen from this description and Table 1, our problem presents one or more
specificities which differ from other works. This justifies the development of a specific
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model and solution technique.

Table 1: Recent literature of the HLRP

Authors
Hub

capacity

Number

of hubs

Non-Hub

allocation

Routing

constraints
Solution method

Application

/Data

Problem

size

Pick-up

/delivery

Our research Yes Unfixed Single Capacitated CPLEX; MA1 AP 100 Distinct

Nagy and Salhi (1998) Yes Unfixed Single Length Hierarchical
One

instance
249 Simultaneous

Wasner and Zäpfel (2004) Yes Unfixed
Multiple

+ direct
Capacitated Hierarchical

Austrian

parcel
10 Simultaneous

Çetiner et al. (2010) No p hubs Multiple Length
Two-stage

heuristic

Turkish

postal
81 Simultaneous

Catanzaro et al. (2011) No Unfixed Multiple
Node

number
B&C2 Random

instances
450 Distinct

de Camargo et al. (2013) No Unfixed Single Time BDA3 AP4 100 Simultaneous

Setak et al. (2013) No Unfixed
Single

+ direct
No CPLEX

AP

& CAB5
20 Distinct

Sun (2013) Yes p hubs Single Capacitated
Two-stage

ACO9

Random

instances
200 Simultaneous

Mohammadi et al. (2013) Yes Unfixed Single
Capacitated;

Arrival time
MOIWO6 Random

instances
100 Simultaneous

Mokhtari and Abbasi (2014) No Unfixed Single Time VNPSO7 Random

instances
300 Simultaneous

Rodŕıguez-Mart́ın et al. (2014) No p hubs Single
Node

number
B&C

AP

& CAB
50 Distinct

Rieck et al. (2014) No p hubs
Single

+ direct
Capacitated

Multi-start

+ GA8

Timbertrade

industry
140 Distinct

Zameni and Razmi (2015) No p hubs Single Time GAMS; GA
AP

& CAB
50 Simultaneous

Sun (2015) Yes p hubs Single Capacitated EEA10 Random

instances
200 Distinct

Bostel et al. (2015) Yes Unfixed Single No CPLEX; MA
AP

postal
100 Simultaneous

Table 2: Method notation
1 MA Memetic Algorithm 2 B&C Branch-and-Cut algorithm

3 BDA Benders Decomposition Algorithm 4 AP Australian Post standard data set

5 CAB Civil Aeronautics Board data set 6 MOIWO Multi-Objective Invasive Weed Optimization

7 VNPSO
Variable Neighborhood Particle
Swarm Optimization algorithm 8 GA Genetic Algorithm

9 ACO Ant Colony Optimization algorithm 10 EEA Endosymbiotic Evolutionary Algorithm
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3. Problem definition and model formulation

The CSAHLRP studied here is defined on a complete directed graph G = (N,A) contain-
ing a set of vertices N and a set of arcs A where N = H ∪ I ∪ J . H = {k | k = 1, 2, ...h}
presents a set of potential hubs. Each potential hub is capacitated and subjected
to a fixed cost Fk once selected open. I = {i | i = h + 1, h + 2, ..., h + m} and
J = {j | j = h + m + 1, h + m + 2, ..., h + m + n} stand for the sets of customers
and clients who should be served. The numbers and locations of potential hubs, sup-
pliers and clients are known data. Each pair of i and j (i ∈ I, j ∈ J) is associated
with a given amount of freight flow qij to be shipped between them. The total supply
Oi =

∑
j∈J

qij of supplier i and demand Dj =
∑
i∈I
qij of client j should be satisfied. The set

A = A1∪A2∪A3 includes the collection arc set A1 = {(i, j) : i, j ∈ I∪H}, the delivery arc
set A2 = {(i, j) : i, j ∈ J ∪H} and the inter-hub transfer arc set A3 = {(l, k) : l, k ∈ H}.
A fleet of identical vehicles available for collections and deliveries is denoted as set V
with a fixed capacity Q. Once a vehicle travels from non-hub node i to non-hub node
j, a routing cost is incurred that is dependent on the distance dij. The transportation
costs between two hubs are determined by travelling distances and transferred flows and
inter-hub transport is not subject to capacity restrictions. To model the collection and
delivery routes, a flow variable fij is used (see Karaoglan and Altiparmak (2015)), repre-
senting the vehicle load on each arc(i, j). The following other constraints must hold: the
capacity of each hub and collection/delivery vehicle must not be exceeded; the collec-
tion and delivery processes are independent; each route must start and end at the same
selected hub; direct transportation for each supplier-client pair is forbidden; suppliers or
clients on the same route must be assigned to only one selected hub; each vehicle can
only be associated to one route.

The problem is to determine simultaneously the location of the hubs, the allocation of
the suppliers and clients to hubs, the collection and delivery routing processes between
nodes allocated to the same hub, as well as the inter-hub freight transportation. The
optimization goal is to minimize the total fixed and variable costs. Long term strate-
gic decisions costs (fixed costs for locating facilities) are thus considered together with
operational decisions costs such as handling costs at facilities, interhub transport costs
and routing costs between facilities and suppliers/clients considered on an average basis
like the demand of goods to be shipped. Table (3) summarizes all the notations used in
developing the corresponding HLRP model.

To model this problem, we propose a formulation of the HLRP containing binary vari-
ables with two indexes (|N |×|N | variables), and continuous variables with three indexes
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(|H|×|H|×|I| variables), which reduces the size of the model compared to the formu-
lations in other relevant articles (e.g., Mokhtari and Abbasi (2014), de Camargo et al.
(2013)).

Table 3: Notation used in the model
Sets Description

H Set of hub nodes, H = {k | k = 1, 2, ..., h}
I Set of supplier nodes, I = {i | i = h + 1, h + 2, ..., h + m}
J Set of client nodes, J = {j | j = h+m+1, h+m+2, ..., h+m+n}
N Set of all nodes, N = H ∪ I ∪ J

A1 Set of arcs in collection routing, A1 = {(i, j) : i, j ∈ I ∪H}
A2 Set of arcs in delivery routing, A2 = {(i, j) : i, j ∈ J ∪H}
A3 Set of arcs in inter-hub transfer, A3 = {(l, k) : l, k ∈ H}
A Set of all arcs, A = {(i, j) : i, j ∈ N}
Parameters

Fk Fixed cost of operating hub k

Γk Capacity of hub k

C Fixed cost of a vehicle

ck Handling cost to operate one unit product in hub k, k ∈ H

Q Capacity of a vehicle

qij Flow quantity from supplier i ∈ I to client j ∈ J

dij Distance between two nodes i and j, arc (i, j) ∈ A

cih Unit cost parameter for the inter-hub transport (e/km.t)

cc Unit cost parameter for the collection tour (e/km)

cd Unit cost parameter for the delivery tour (e/km)

Oi Total quantity of flow originating at supplier i, Oi =
∑
j∈J

qij

Decision variables

Y i
kl The fraction of flow shipped from supplier i via hubs k to l, k, l ∈

H, and i ∈ I

zik

The allocation variable of a node i to a hub k. It is equal to 1 if
the node i is allocated to the hub k, 0 otherwise; especially, zkk
= 1 if the hub k is selected to be open, i ∈ N, k ∈ H

xij Equal to 1 if a vehicle traverses arc (i, j), and 0 otherwise

fij
Vehicle load on arc(i, j) if a vehicle travels directly from node i to
node j, otherwise 0, (i, j) ∈ A1 ∪A2
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Using the above notation, the HLRP model for minimizing total costs can be formulated
as follows:

M-HLRP min
∑
k∈H

Fkzkk +
∑
i∈I

∑
(k,l)∈A3

cih · dklOiY
i
kl +

∑
(i,j)∈A1

cc · dijxij

+
∑

(i,j)∈A2

cd · dijxij +
∑
i∈I

∑
k∈H

ckOizik +
∑
i∈I

∑
(k,l)∈A3

clOiY
i
kl +

∑
k∈H

∑
i∈I∪J

Cxki
(1)

Subject to

— hub location constraints:

zik ≤ zkk ∀i ∈ N,∀k ∈ H (2)∑
k∈H

zik = 1 ∀i ∈ I ∪ J (3)∑
i∈I

Oizik ≤ Γkzkk ∀k ∈ H (4)∑
j∈J

Djzjl ≤ Γlzll ∀l ∈ H (5)∑
l∈H

Y i
kl = zik ∀i ∈ I,∀k ∈ H (6)∑

k∈H

Y i
klOi =

∑
j∈J

qijzjl ∀i ∈ I,∀l ∈ H (7)

— collection routing constraints:∑
j∈I∪H

xij = 1 ∀i ∈ I (8)∑
i∈I∪H

xij −
∑

i∈I∪H

xji = 0 ∀j ∈ I ∪H (9)

xki ≤ zik ∀i ∈ I, k ∈ H (10)

xik ≤ zik ∀i ∈ I, k ∈ H (11)

xij + zik + zjl ≤ 2 ∀i, j ∈ I, i 6= j,∀k, l ∈ H, k 6= l (12)
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∑
j∈I∪H

fij −
∑

j∈I∪H

fji = Oi ∀i ∈ I (13)∑
i∈I

fik =
∑
i∈I

zikOi ∀k ∈ H (14)

fij ≤ (Q−Oj)xij ∀i ∈ I ∪H,∀j ∈ I (15)

Oixij ≤ fij ∀i ∈ I,∀j ∈ I ∪H (16)∑
i∈I

fki = 0 ∀k ∈ H (17)

fik ≤ Qxik ∀i ∈ I, k ∈ H (18)

— domain of variables:

zik ∈ {0, 1} ∀i ∈ N,∀k ∈ H (19)

xij ∈ {0, 1} ∀i ∈ N,∀j ∈ N (20)

0 ≤ Y i
kl ≤ 1 ∀i ∈ I,∀k, l ∈ H (21)

fij ≥ 0 ∀(i, j) ∈ A1 ∪ A2 (22)

— valid inequalities:

xij + xji ≤ 1 ∀i, j ∈ I (23)∑
k∈H

zkk ≥ d
∑

i∈I
∑

j∈J qij

Γk

e (24)

∑
k∈H

∑
i∈I

xki ≥ d
∑

i∈I Oi

Q
e (25)

In addition, routing variables xij would be ignored in a preprocessing step whenever
Oi +Oj > Q,∀i, j ∈ I, i 6= j or Di +Dj > Q,∀i, j ∈ J, i 6= j (Karaoglan and Altiparmak
(2015)).

The objective function (1) minimizes the total fixed and variable costs of the CSAHLRP
network. More precisely, it includes the fixed cost for opening hubs, the transportation
cost between hubs, local collection and delivery routing costs, the freight operating cost
in hubs, and the fixed cost of routing vehicles once used. Constraints (2) ensure that non-
hub nodes can be allocated to a hub only if the hub is open. Constraints (3) force each
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non-hub node to be assigned to only one hub (single allocation). Hub capacity constraints
(4) and (5) limit the total collection and delivery load on hubs. Constraints (6) and (7)
are flow conservation equations. They impose the demand of each supplier or client to
be served by the allocated hub (Ernst and Krishnamoorthy (1999)). Constraints (8) to
(18) ensure a reasonable collection process. Indeed, constraints (8) guarantee that each
supplier is visited just once. Constraints (9) guarantee an equal number of incoming and
outgoing arcs. Constraints (10) - (12) eliminate illegal routes that do not start and end
at the same hub. Constraints (13) are the flow conservation constraints for collections.
Each time the vehicle serves a supplier, it must load all of its demand. Constraints (14)
ensure that the total collection load entering each open hub equals the total demand of
the suppliers who are allocated to the hub. Constraints (15) and (16) provide an upper
and lower bound for the collection flows. Constraints (17) guarantee that the load on
each vehicle is zero when leaving one open hub for the collecting process (Karaoglan and
Altiparmak (2015), Yu and Lin (2016)). Constraints (18) impose that if there is no arc
between a supplier node and a hub node, the flow should be zero. Constraints relative to
the delivery processes represent conditions similar to those for the collection constraints
((8) to (18)). Constraints (19)-(22) specify the variables zik, xij, Y

i
kl and fij, respectively.

Constraints (23) to (25) are valid inequalities. Constraint (23) are sub-tour elimination
constraints for collections, which have been proposed for the LRP by Karaoglan et al.
(2012) and are inspired from the classical sub-tour elimination constraints for the TSP
(Dantzig et al. (1954)). Constraint (24) restricts the minimum number of open hubs
considering that all the hubs have the same capacity. It was used by Karaoglan et al.
(2012) and has been inspired from Belenguer et al. (2011). Finally, Constraint (25)
provide a lower bound of the total number of vehicles required in any feasible solution.
This type of inequality was first proposed by Achuthan et al. (2003) for a vehicle routing
problem and adapted for the LRP by Karaoglan et al. (2012). Valid inequalities for
delivery process are similar to constraints (23) and (25).

4. Memetic algorithm

As the HLRP integrates a hub location problem (HLP) and a vehicle routing problem
(VRP), which are both NP-hard optimization problems, commercial solvers cannot solve
large instances and a limited number of exact solution methods have been proposed.
Thus, heuristic and metaheuristic algorithms have been developed in order to obtain
good quality solutions in a reasonable computing time. Since the memetic algorithm
(MA) has been proven efficient to solve similar problems such as the LRP and HLRP,
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in this article, we propose a MA, combining a genetic algorithm (GA) and an iterated
local search (ILS), to determine location and routing jointly.

The generic framework of the proposed MA is inspired from Derbel et al. (2012) and we
have precisely adapted each step to the specificities of our problem: the initial population
is generated using both heuristic methods to accelerate the convergence of the algorithm
and randomized solutions to keep its diversity; each individual is evaluated by a fitness
function corresponding to the objective function plus a penalty cost based on the capac-
ity violation; pairs of parent solutions are selected by a unique fitness binary tournament
selection, and a one-point crossover with a probability is applied to the selected parent
pairs, followed by a mutation procedure (Section 4.4); next, local searches are imple-
mented iteratively on the vehicle routing and hub location parts of the chromosomes to
create new offspring (Section 4.5) and the current best solution is updated; finally, the
newly-generated offspring is added to the current generation and the worst individual
is eliminated. The whole process stops when the maximum number of iterations of the
algorithm or the number of successive iterations without improvement is reached. The
following sections describe the main phases of the MA in detail.

4.1. Solution representation and evaluation

A fundamental issue in designing a GA is to represent individuals as a set of chromo-
somes. Different genetic representations are proposed depending on the problem and
they can affect the performance of the GA (Ardjmand et al. (2015), Deng et al. (2016)).
In our approach, each chromosome P (x) stands for one solution x and contains two
vectors: the selected hub vector H(x) and the non-hub nodes routing vector A(x), ac-
cording to the encoding scheme proposed by Prins et al. (2006). Vector H(x) contains
the selected hubs and their assignment configuration. Vector A(x) records the permu-
tation of suppliers and clients according to their sequence of service on a route. The
positions of the open hubs in vector H(x) are connected with their allocated suppliers
and clients in vector A(x). As one supplier/client must be served by only one hub,
the vector A(x) does not contain duplicates, that is, each supplier/client must appear
only once in the vector A(x). More specifically, consider a chromosome P (x) and its
two vectors H(x) = {h1, h2, ...hn} and A(x) = {a1, a2, ...an}. For every i = {1, 2, ...n},
if ai = j, hi = k, the non-hub node j is assigned to hub k. The tours for collections
and deliveries can be deduced following the allocation scheme. According to the fixed
sequence in vector A(x), one vehicle starts from the first open hub and visits suppliers
following the allocation scheme until the capacity of the vehicle is reached. Then for the
same hub, another vehicle is used to start a new collection tour. The process contin-
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ues until all the suppliers of all the hubs are routed. The same procedure takes place
for the delivery routes. Figure 1 illustrates one representation of the chromosome P (x)
and its corresponding network sketch. This method of representation is simple and fast
at simultaneously capturing locations and routings, which enables us to build feasible
solutions and apply GA operators efficiently.

In order to compare and select the chromosome solutions, every individual is evaluated
in terms of its fitness value, determined by a fitness evaluation function Feva(x). The
fitness function Feva(x) of a solution x is defined as:

Feva(x) = ObjV alue(x) + Penalty(x) (26)

Penalty(x) = σ
∑
k∈H

max{0,
∑
i∈I

zikOi − Γk}+ σ
∑
k∈H

max{0,
∑
j∈J

zjkDj − Γk} (27)

where ObjV alue(x) denotes the objective value of solution x calculated by Equation (1)
(see Section 3). σ is a penalty parameter with a large value,

∑
i∈I zikOi and

∑
j∈J zjkDj

represent the total demand of suppliers and clients allocated to an open hub k, Γk is the
capacity of hub k, for loading or unloading operations. Thus the sum of the collection
and delivery quantities violating the capacity of all open hubs is multiplied by the penalty
parameter σ to calculate the penalty cost Penalty(x) for solution x (Equation (27)).

4.2. Initialization of a population

To initialize the MA, an initial population must be generated. As mentioned in the
global framework of the MA, the set of initial solutions is determined by heuristics as
well as randomly. Some fast and simple heuristics guarantee a good quality of the initial
generation while the randomly generated solutions ensure the diversity of the population.

More specifically, the minimum number MinH of hubs to open is first calculated in
order to satisfy the total demand. Then, the subsets H1, H2, ...Hn of the potential hub
set H are generated. Each hub subset Hi must meet the minimum hub number re-
quirement such as MinH ≤ |Hi| ≤ |H|. Each time, one of the hub subsets is selected
non-repetitively as the current open hub configuration. Non-hub nodes are allocated
to these open hubs by the allocation procedure. Under such an allocation scheme, two
algorithms, the Nearest Neighborhood Algorithm (NN) and the Clarke and Wright Al-
gorithm (CWA), are applied to create two different local collection and delivery routing
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Figure 1: Representation of an HLRP solution

schemes. This means that two feasible solutions are generated at the same time with
the same hub locations and allocations but different local tours. The process iterates
until the predetermined population size is reached. Because of the limited number of
hub subsets, the heuristic procedure may fail to reach the required population size. The
remaining solutions are then randomly produced.

4.2.1. Allocation process

The allocation process is inspired from the allocation part of the Extended Clarke and
Wright Algorithm (ECWA) proposed by Karaoglan and Altiparmak (2015). The main
idea for allocating nodes to hubs is to determine for each non-hub node, the first and
second nearest hubs and calculate the saving (difference in costs/distances) between
the two allocations. Then, the non-hub nodes are sorted in non-increasing order of
their savings. The non-hub nodes with the largest saving are allocated first, then the
available hub capacity is updated and the process continues. When some nodes cannot
be allocated to their nearest hub, their saving is recalculated. Furthermore, random new
hubs may be opened if there are still suppliers/clients left because the remaining capacity
of the open hubs is not enough to serve them. Hubs without customers are closed. The
assignment procedures for collections and deliveries are independent.
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4.2.2. Routing process

For each hub, one has to solve a routing problem for the non-hub nodes allocated to
it. This routing problem is solved separately for suppliers and clients by two different
classical heuristics : NN (Nearest Neighbour) and CWA (Clarke and Wright Algorithm).
The NN approach is based on the simple idea of constructing routes progressively by
inserting the nearest neighbour of the last inserted node into the route until the capacity
of the vehicle is attained. New routes start from the hub until all the allocated non-hub
nodes of a given hub are inserted.

An improved version of the CWA, proposed by Caccetta et al. (2013), generates the
second routing solution. It calculates all the savings between non-hub nodes (difference
in the cost attained when joining these two nodes in a route), and creates a savings list
in a non-increasing order. The pairs of nodes are successively considered according to
the savings list to build the routes. Three situations may occur: (i) if neither of the
two nodes has been assigned to a route, a new route is built between them; (ii) if one
of the two nodes has been included in an existing route without violating the vehicle
capacity, the two nodes are connected and added to the same route; (iii) if both nodes
have already been inserted into two different routes, the two nodes are not connected.
The process repeats until all the nodes are inserted into a route.

4.3. Selecting parents for crossover

Since higher quality solutions can be captured with high-quality neighbourhoods, good
parents should be selected for the crossover process to form the new generation. Different
selection methods have been researched in the literature, such as tournament selection,
roulette wheel selection, ranking selection and so on (Reeves (2003)). After preliminary
experiments, we adopt a unique fitness binary tournament selection (Fortin and Parizeau
(2013)) to keep the diversity of the selected parents.

The unique fitness binary tournament selection defines a unique fitness set F , F =
{feva(i)|i ∈ |F|}, including the unique fitness of the individuals from the current gener-
ation without repeating values. Here, feva(i) stands for the value of the ith fitness in F .
If one fitness value is selected during the selection procedure, one of the solutions sharing
the fitness value is randomly included in a selection set S. The advantage lies in limiting
the chances of individuals with the same fitness to reproduce so that the preservation of
diversity is stimulated.
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4.4. Crossover and mutation

The selection procedure is followed by a one-point crossover operation on both the hub
location vector H(x) and the routing vector A(x) with a probability Pc, simultaneously
swapping nodes on selected parent pairs to form a new offspring. Two crossover points
PL and PR are defined for the location part and the routing part, respectively. The hub
location vector H(x) of a new offspring combines the code of Parent 1 before crossover
point PL and the code of Parent 2 after PL. On the routing vector A(x), the new offspring
takes the code of Parent 1 before PR as the first part. The second part sequentially copies
the code of A(x) of Parent 2 except for the nodes that have been copied from Parent 1.
Each time, two offspring are generated from each pair of selected parents.

The mutation operator mutates the chromosome by using two different methods on the
two sections A(x) and H(x). In the location section H(x), the hub assignment is modified
by randomly choosing hubs to be replaced by others. Such a procedure makes it possible
to open a new hub or close a hub. In the routing section A(x), the random locations of
two points are exchanged.

4.5. Local search method

The implemented local search (ILS) aims to improve further the newly generated off-
spring. Inspired by the method of Manzour-al Ajdad et al. (2012), first the local search
is applied to the routing part of the chromosome with swap and insertion operators. Af-
terwards, four operators are applied sequentially on the hub section: hub replacement,
hub closing, hub opening and hub swapping operators.

ILS on routing

The ILS procedure on the routing part of a selected chromosome uses the following two
neighbourhoods:

(1) Swap: Two non-hub nodes are selected to exchange their positions while other
nodes remain unchanged.

(2) Insertion: One non-hub node is shifted from its position and inserted into a random
position in the routing vector. The operation is conducted on all the non-hub nodes.
The insertion for each node is applied to all the positions to select the best one.
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ILS on hub location and allocation

During the ILS on the hub location part, four local search neighbourhoods are used
sequentially in order to better explore the hub location and non-hub allocation solutions.

(1) Replacement. If not all the potential hubs have been selected to be opened in
the hub location vector, one random open hub is chosen and replaced by a hub
previously closed.

(2) Closing. One open hub is randomly selected to be closed and is replaced by another
currently open hub.

(3) Opening. Several positions are randomly chosen and a new potential hub is opened
and placed on the selected positions. If all the potential hubs are open, the oper-
ation will be skipped and other operations will continue.

(4) Swap. Two positions are randomly selected and the corresponding hubs are ex-
changed while other nodes remain unchanged.

The two operators on the routing part of the chromosome provide two types of possible
changes to the real routing schemes: changing the service sequence in the same route
and conserving the same hub allocation; reassigning nodes to a new route, which alters
not only the routing schedule but also the allocation scheme. On the other hand, the
operators on the hub location part of the chromosome not only change the location and
allocation of hubs but also change the routing schemes accordingly.

This way of designing the local searches can easily be implemented on the chromosome by
just changing the positions of the nodes while altering the hub location, the allocation
and local tour at the same time. This method revealed itself to be effective for our
problem.

4.6. Illustration

As an example of our memetic procedure, we present a small example. The potential
hub set comprises six nodes, numbered from 1 to 6, the supplier set 10 nodes numbered
from 7 to 16 and the client set 10 nodes, numbered from 17 to 26 (some of the nodes
are located at the same geographical location, others not). The hub capacities, as well
as the vehicle capacities, are limited to 15 t. The total demand to be shipped from the
suppliers to the clients is of 26,05 t. Figure 2 illustrates the best solution of the initial
solution as well as the optimal solution of our memetic algorithm. Table 4 presents the
results after the main algorithmic steps. One can observe in this small example that
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the number of open hubs is stable (two), but open hubs change along the algorithmic
steps, as well as non hub nodes allocations to hubs and routes. The objective function
decreases regularly and significantly from 5122 to 4269, illustrating the efficiency of our
procedure.

Figure 2: Illustrative example: initial and final solution

Table 4: Results of the memetic steps
Step Open hubs Total cost

Initial 2, 5 5122.69
Crossover & Mutation 2, 4 4524.46

Local Search 1, 4 4449.71
Optimal solution 1, 2 4269.15

5. Computational experiments

In this section, we first describe the data sets and parameters used for all the exper-
iments in Section 5.1. Then, the implementation and assessment of the MILP model
are presented in Section 5.2, where we discuss the tuning of CPLEX parameters and
the efficiency of the valid inequalities of the MILP model. In Section 5.3, we describe
the parameters and variants of the implementation of the memetic algorithm. Compu-
tational results are presented in Section 5.4, where we investigate the results obtained
with CPLEX and the MA in terms of non-hub node allocation, hub location and collec-
tion/delivery routes depending on the sizes and parameters of instances. Lastly, some
sensitivity analysis questions are discussed in Section 5.5 regarding the stability of the
MA and the influence of fixed costs on the solutions.
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The proposed MILP model is coded in Visual studio C++ 2012 and solved with CPLEX
12.6.1.,while the MA approach is implemented in Visual studio C++ 2012 using PCs
with 3.07 GHz and 8 GB RAM memory.

The general notation used in the tables is explained below:

• UB : best objective value found by CPLEX in 3 hours for each instance;

• LB : lower bound found by CPLEX within three hours;

• %Gap: deviation in % between the best objective found by CPLEX and the lower

bound found by CPLEX for each instance. Here, %Gap =
UB − LB

UB
× 100%;

• Zbest: best objective value found by the MA in 10 runs for each instance;

• CPU time (s): total CPU time of CPLEX in seconds to obtain the best objective;

• %GapMA: deviation in % between the best objective found by MA and the lower

bound found by CPLEX for each instance. Here, %GapMA =
Zbest − LB

Zbest

×100%;

• Ttotal (s): total CPU time of 10 runs of the MA;

• Open hub: hub location scheme of the best solution;

• Route numbers: total number of collection and delivery routes of the best solution.

5.1. Data and parameters

Since there are no published benchmark instances corresponding to our problem, we
have generated the problem instance networks on the basis of the geographic network
of the Australian Post (AP) standard data set (Ernst and Krishnamoorthy (1999)).
According to our hypothesis, it is assumed that the processes of picking up the freight
from the suppliers and delivering it to the clients are distinct, and that the demand
flows between each supplier-client pair are predetermined. Hubs may be located at the
same geographical position as suppliers or clients or not. The distances between two
nodes have been extracted from the AP data set. The flows (in tons) for each supplier-
client pair have been generated uniformly within the interval [0.15, 1.0] in order to be
consistent with the capacity of the vehicles (15 tons, see Table 6) and the possibility of
loading the freight of several suppliers (resp. clients) within the same collection (resp.
delivery) routes.
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We have generated 27 instances, each with up to 100 non-hub nodes and 10 potential
hub nodes. Instances with 10 or 15 supplier and client nodes are referred to as “small
instances”; those with 20 to 30 supplier and client nodes as “medium instances”, and
those with 35 to 50 supplier and client nodes as “large instances”. In addition to different
configurations of potential hub numbers, we consider three scenarios for each instance,
with different hub capacities. By doing so, we can explore the influence of hub capacities
on the solutions. The names of the instances are denoted as |H|-|I|-|J |-Γ. H stands for
the candidate hub set, |H|∈ {3, 6, 10}. I and J are sets of supplier and client nodes:
|I|=|J |∈ {10, 15, 20, 25, 30, 35, 40, 45, 50}. Γ is equal to the hub capacity. Capacities are
integer numbers corresponding to 1/3, 1/2 or 1 of the total demand, depending on the
instance size.

Tables 5 and 6 show the values of the parameters for hubs and vehicles. The parameters
concerning the vehicles (fixed costs and unit transportation cost) are based on logis-
tics data from the French Comité National Routier CNR1 data base, the French road
freight transport economic committee. The unit cost of handling unit flow in hubs was
communicated by a French logistics company.

Table 5: The parameter values for hubs
Name Value Name Value

Fixed cost Fk (€) 1000 Handling cost ck (€/t) 1.78

Table 6: The cost parameter values for vehicles
Name Value Name Value

Load capacity Q (ton) 15 Fixed cost for tour C ( €) 100
Unit transfer cost cih (€ /km.t) 0.057 Unit collection cost cc (€ /km) 0.8
Unit delivery cost cd (€ /km) 0.8

5.2. CPLEX assessments

5.2.1. CPLEX parameter tuning

Since the solving strategy of CPLEX is controlled by a variety of parameters, tuning
them for a given model and instance set is an efficient way of improving the performance
of the solution process. Preliminary experiments were conducted using the tuning tool
of CPLEX to analyze the HLRP model and determine the values of the parameters that

1http://www.cnr.fr/en
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might provide the best performance as a possible alternative to the default parameter
setting. All the experiments of CPLEX in the article are conducted with a computing
time limitation of 3 hours. In addition, to avoid a failure due to running out of memory
for some instances, we set a tree memory limit of 1500 megabytes.

Experiments for tuning the CPLEX parameters with data sets of different sizes are con-
ducted. The first and most critical CPLEX parameter tested is called “MIPEmphasis”,
which controls the trade-offs between feasibility, optimality and speed in MILP solving.
The second important CPLEX parameter, “Probe”, sets the extent of probing to be
performed on variables before MILP branching. The results show that, in most cases,
setting “MIPEmphasis” to 2 (emphasizing optimality over feasibility) yields competitive
upper bounds and lower bounds with smaller gaps; the very aggressive probing level
(value of ”Probe” equal to 3) improved the solutions for most of the instances, especially
by obtaining competitive lower bounds. These tuned CPLEX parameter values were
retained in our further experiments. Note from the above tables that different pre-set
CPLEX parameters may affect the solutions, generating different location, allocation
and routing plans for the solutions of our problems.

5.2.2. Efficiency of valid inequalities in the MILP model

To analyze the efficiency of valid inequalities that we proposed in our MILP model, some
tests were conducted to compare the results obtained with and without implementing
these valid inequalities. Table 7 compares the results obtained for different sizes of
instances. They show that including the valid inequalities in the proposed model provides
a better performance in terms of improving lower bounds and decreasing gaps under the
same time limitations (3 hours). It also decreases the upper bounds for most of the
instance tests by up to more than 10%. The resulting solutions may consequently be
changed in terms of opened hubs and the number of routes, which are generally reduced.
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Table 7: Efficiency assessment of the valid inequalities

Model without valid inequalities Model with valid inequalities

Instance

|H|-|I|-|J |-Γ UB LB %Gap
Open

hub

Number

of routes
%UB1 %LB2 %Gap

Open

hub

Number

of routes

3-15-15-30 8828.59 8390.40 4.96 1, 2, 3 11 1.79 0.91 5.78 1, 2, 3 11

6-15-15-30 8707.18 7295.05 16.22 2, 4, 5 12 -3.04 5.16 9.14 1, 5, 6 13

10-15-15-30 8524.27 6680.63 21.63 5, 7, 10 12 1.32 7.89 16.55 1, 4, 5 12

3-20-20-45 10200.29 9593.82 5.95 1, 2, 3 18 -2.25 0.23 3.56 1, 2, 3 17

6-20-20-45 10435.48 8418.60 19.33 2, 3, 5 18 -0.74 7.30 12.79 3, 4, 5 17

10-20-20-45 10395.17 7901.05 23.99 2, 5, 10 19 -4.40 7.70 14.37 2, 8, 9 18

3-25-25-45 11811.05 10154.53 14.03 1, 2, 3 18 -2.62 -0.15 11.85 1, 2, 3 18

6-25-25-45 13502.91 8963.01 33.62 1, 2, 3 19 -10.13 4.18 23.05 1, 2, 3 17

Note: UB
′

and LB
′

are denoted as the upper bound and lower bound obtained by CPLEX with valid
inequalities.

1 Decreased/increased level of the upper bound (objective value): %UB= (UB
′ − UB)/UB × 100%

2 Decreased/increased level of the lower bound: %LB= (LB
′ − LB)/LB × 100%

5.3. MA assessments

5.3.1. Parameter settings for the MA

The parameters of the proposed MA were tuned in terms of population size, maximum
number of iterations and probabilities used for crossover and mutation. Preliminary
experiments show that when the population size increases to 200, the overall performance
of the MA is improved, but larger population sizes lead to no further improvement.
Thus the size of the population for all the problem instances is set to 200. Furthermore,
setting the probability of crossover and mutation to 0.8 and 0.7, respectively, is the best
combination. In order to obtain high quality solutions, the MA was run 10 times for
each instance (this policy will be evaluated later on in view of the experimental results).
Below are some justifications to support these parameter settings.

We iterated the MA process up to 1000 iterations and recorded the results every 100
iterations for 10 runs each, i.e. for iteration number {100, 200, 300,..., 1000}. The
results show that the solutions of small and medium instances remain unchanged after
100 iterations in all 10 runs of the MA. On the other hand, the MA can improve solutions
of large instances until the iterations reach 200. For example, Figure 3 plots the average
results of 10 runs for successive iterations of the MA for the large instance 10-40-40-75.
The solutions are improved continuously until the generation of 140. More iterations
lead to no more improvement.

Therefore, two stopping criteria were set for each run of the MA: the algorithm stopped if
no improvement was obtained after 100 iterations or after a maximum of 200 iterations.
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Figure 3: Average results of the MA in 10 runs up to 1000 iterations for instance 10-40-40-75

5.3.2. Implementation of the MA

In order to find the most efficient way to combine the operators of the MA for the
allowed number of iterations (200), several variants were tested, especially the following
two, denoted MA-1 and MA-2. Finally MA-2 was retained for our experiments with our
complete set of instances.

For each iteration of the algorithm, MA-1 actually ignores the mutation process and
executes systematically the full local search procedure on every newly generated offspring
of the population after the crossover. This variant of the MA implementation yields good
quality solutions but needs a very long computing time for large instances. In fact, the
CPU running time of the LS phase consumes more than 95% of the total time of the
algorithm. Alternatively, MA-2 fully executes the mutation step of the genetic part of
the algorithm with a probability after the crossover process, but the LS is called only
after 10 iterations of the genetic part, with the goal of reducing the computing time.
Furthermore, the LS step is applied on three offspring only, which are randomly selected
from the ten best offspring of the current generation. In addition, for each operator of
the LS, once the target of the current offspring is improved, the procedure jumps to the
next operator without considering the other offspring.

Table 8 presents the MA results of some small, medium and large instances run 10 times.
Item %Time indicates the reduced percentage of the computing time when comparing
MA-2 and MA-1. %Time=(T2−T1)/T1×100% where T1 and T2 are the CPU time of MA-
1 and MA-2, respectively. Item %Cost indicates the increased or decreased percentage
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of the total cost when comparing MA-2 to MA-1. %Cost=(Z2 − Z1)/Z1 × 100% where
Z1 and Z2 are the total cost of MA-1 and MA-2. For small and medium instances (e.g.
instances 3-10-10, 3-25-25 and 6-30-30), the performance of MA-2 is comparable to that
of MA-1 in terms of solution quality while MA-2 greatly reduces the total computing
time compared to MA-1. For large instances (e.g. instances 10-45-45 and 10-50-50), the
solutions found by MA-2 are slightly higher than those provided by MA-1 (from 0.45%
to 3.72%). However, the computing time of MA-2 is reduced by almost 90% compared to
MA-1. Thus, in order to achieve a good overall performance in terms of solution quality
and computing time, we finally retained MA-2 for the experiments on our complete
instance set. The results are presented in the next section.

Table 8: Computational tests on the two variants of the MA
MA-1 MA-2

Instance
|H|-|I|-|J |

Hub
capacity

Zbest
CPU

time(s)
Open
hub

Zbest
CPU

time(s)
Open
hub

%Time %Cost

3-10-10
10 5750.33 22.01 1, 2, 3 5746.53 16.52 1, 2, 3 -24.94% -0.07%
15 4269.15 23.49 1, 2 4269.15 12.60 1, 2 -46.36% 0.00
30 3277.36 42.73 2 3277.36 14.36 2 -66.39% 0.00

3-25-25
45 11626.37 295.02 1, 2, 3 11676.80 83.38 1, 2, 3 -71.74% 0.40%
60 10568.01 255.67 1, 3 10557.60 97.25 1, 3 -61.97% -0.10%
120 9938.67 372.607 1 9834.14 98.24 1 -73.64% -1.05%

6-30-30
60 13114.97 1143.10 2, 4, 6 13052.10 306.87 4, 5, 6 -73.15% -0.48%
90 11976.11 1224.82 4, 6 11973.20 411.62 2, 6 -66.39% -0.02%
165 11408.26 1631.38 2 11401.80 338.96 2 -78.93% -0.06%

10-45-45
75 13209.28 ≥4h 3, 5, 9 13486.70 2630.10 3, 5, 9 -83.18% 2.10%
105 12501.18 ≥5h 8, 9 12557.00 2471.17 8, 9 -88.41% 0.45%
195 12033.95 ≥8h 8 12134.90 3025.74 1 -89.50% 0.84%

10-50-50
75 16284.53 ≥4h 2, 3, 5, 10 16441.56 2953.06 2, 5, 10 -85.98% 0.96%
120 15242.27 ≥8h 2, 5 15471.72 5645.03 8, 10 -82.51% 1.51%
225 14185.63 ≥13h 8 14712.64 4960.14 8 -89.41% 3.72%

5.4. Analysis of computational results

Tables 9 and 10 present the problem solutions obtained by CPLEX and the MA. Table 9
reveals that the CPLEX solver can find optimal solutions for the smallest instances only.
It encounters difficulties in solving medium size problems, obtaining low quality solutions
with gaps of up to 39.91% (instance 10-30-30-165). The computing time with CPLEX
reaches 3 hours for most of the instances, even small ones. The CPLEX solutions for
large instances are not presented, as their gaps reach as high as 70%. The proposed
MA finds solutions for all instance sets and is capable of solving some small problems to
optimality. Moreover, for medium problems, it reduces the biggest gap of CPLEX from
39.91% to 13.64%. Most importantly, the MA dramatically reduces the computing time
for the small and medium problems. Computing times for 10 runs for each instance lie
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between 16 and 850 seconds for small- to medium-sized instances. In Table 10, Zaver and
Zbest represent the average and best objective values of 10 runs by the MA, respectively.
Column %Zaver records the average deviation with %Zaver = (Zaver−Zbest)/Zbest×100%;
column %Zmax records the deviation between the maximum and the minimum objective
values in 10 runs and %Zmax = (Zmax−Zbest)/Zbest×100%. The small gaps (up to 3.84%
for %Zaver and 7.69% for %Zmax) for large instances prove the robustness and usefulness
of the MA. Moreover, large instances are solved in no more than 6000 seconds for the
largest of them (Instance 10-50-50-120). In terms of logistics solutions, the numbers of
open hubs are usually identical for CPLEX and the MA but they may not correspond
to the same hubs. The numbers of routes are comparable.

Figure 4 provides an insight into how the solutions are found by CPLEX and the MA
within the optimization process for a small instance set (3-10-10-15) (the X axis has
been limited to the first seconds of the optimization process). The time and relevant
objective value of the MA refer here to the average values of the 10 runs. UB and LB
indicate the upper bound and lower bound found by CPLEX. We observe that the MA
can find the optimal solutions in a few seconds. Similar results are observed with larger
instances. The initial solution found by the MA is much smaller than that found by
CPLEX and the solution is improved continuously and quickly to obtain a good quality
solution whose cost value is smaller than that of the solution found by CPLEX in 3
hours.

Figure 5 shows that the instance sets are more difficult to solve when the total number
of nodes increases, and when the number of potential hubs increases. It also shows that
for a given node number, increasing the hub capacity yields an equal or decreasing cost.

Figure 4: The evolution of solutions by CPLEX and the MA for instance 3-10-10-15
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Table 9: Computational results for small- and medium-sized instances
CPLEX MA

Instance
|H|-|I|-|J |

Hub
capacity

UB LB %Gap
CPU

time(s)
Open
hub

Number
of routes

Zbest
%Gap
MA

Ttotal

(s)
Open
hub

Number
of routes

3-10-10
10 5666.52 5665.96 0.00 593.79 1, 2, 3 6 5746.53 1.40 16.52 1, 2, 3 6
15 4269.15 4268.74 0.00 217.22 1, 2 4 4269.15 0.00 12.60 1, 2 4
30 3277.36 3277.06 0.00 18.80 2 4 3277.36 0.00 14.36 2 4

6-10-10
10 5666.52 5379.10 5.07 10800.10 1, 2, 3 6 5659.78 4.96 58.57 3, 4, 6 6
15 4269.15 4180.61 2.07 10800.00 1, 2 4 4269.15 2.07 59.04 1, 2 4
30 3272.23 3271.92 0.00 157.76 4 4 3272.23 0.00 73.36 4 4

10-10-10
10 5792.80 5054.14 12.75 9192.72 1, 2, 8 6 5659.78 10.70 91.94 3, 4, 6 6
15 4363.80 4169.43 4.45 10800.20 8, 10 4 4258.45 2.09 82.25 2, 10 4
30 3245.62 3245.35 0.00 591.82 10 4 3245.62 0.00 87.76 10 4

3-15-15
30 8986.43 8467.11 5.78 10754.40 1, 2, 3 11 9015.79 6.09 22.89 1, 2, 3 11
45 7584.04 7298.24 3.15 10536.69 1, 3 12 7638.35 4.45 34.19 1, 3 12
90 6484.38 6279.90 3.15 10800.06 3 11 6539.41 3.97 60.63 3 11

6-15-15
30 8442.86 7671.57 9.14 10471.90 1, 5, 6 13 8127.86 5.61 32.68 1, 3, 5 12
45 7107.65 6854.66 3.56 10800.15 3, 5 12 7107.65 3.56 40.88 3, 5 12
90 6247.91 5977.35 4.33 10454.62 5 12 6179.78 3.28 89.62 5 11

10-15-15
30 8637.04 7207.55 16.55 10800.30 1, 4, 5 12 7863.46 8.34 114.30 5, 7, 10 12
45 7013.07 6331.47 9.72 10800.11 7, 10 12 6861.88 7.73 131.45 7, 10 12
90 6199.35 5974.59 3.63 10800.14 5 11 6199.35 3.63 145.86 5 11

3-20-20
45 9970.62 9615.48 3.56 10800.10 1, 2, 3 17 10024.00 4.08 65.34 1, 2, 3 16
60 8825.23 8671.00 1.75 10800.09 2, 3 16 9048.58 4.17 82.64 2, 3 17
120 8046.43 7749.60 3.69 10314.67 3 16 8057.46 3.82 83.86 3 16

6-20-20
45 10357.90 9033.56 12.79 10800.10 3, 4, 5 17 9806.10 7.88 113.05 2, 4, 5 17
60 9257.22 8183.36 11.6 10800.23 4, 5 16 9022.21 9.30 116.44 3, 4 17
120 8046.43 7684.09 4.50 10800.53 3 16 8041.56 4.45 128.07 3 16

10-20-20
45 9938.18 8509.61 14.37 10800.10 2, 8, 9 18 9632.53 11.66 280.64 8, 9, 10 18
60 9520.10 7618.43 19.98 10800.30 5, 9 17 8725.87 12.69 244.04 7, 8 17
120 7982.97 7017.70 12.09 10800.30 10 16 7885.86 11.01 257.96 7 16

3-25-25
45 11502.00 10139.00 11.85 9145.94 1, 2, 3 18 11676.80 13.17 83.38 1, 2, 3 18
60 10602.79 9488.80 10.51 9369.65 1, 2, 3 18 10557.60 10.12 97.25 1, 3 16
120 9865.98 9154.83 7.23 7024.90 1 16 9834.14 6.91 98.24 1 16

6-25-25
45 12135.20 9337.74 23.05 10800.30 1, 2, 3 17 11125.50 16.07 154.74 1, 2, 5 16
60 12148.32 8963.21 26.22 10800.20 2, 5 19 10252.00 12.57 205.04 1, 5 16
120 9036.62 8376.68 7.30 10800.09 5 16 9062.72 7.57 181.49 5 16

10-25-25
45 13209.30 8868.87 32.86 10800.20 1, 2, 3 18 10856.20 18.31 378.57 1, 8, 10 17
60 13154.29 8043.80 38.85 10800.40 1, 3 24 10159.40 20.82 367.40 1, 8 16
120 10281.30 7478.24 27.26 10800.19 5, 6 17 9056.17 17.42 406.98 5 16

3-30-30
60 15402.67 12812.91 16.82 10800.10 1, 2, 3 27 14732.00 13.03 124.47 1, 2, 3 25
90 12945.41 11688.06 9.71 10800.20 1, 2 24 12994.00 10.05 164.00 1, 2 24
165 11498.92 10928.82 4.96 10800.10 2 24 11401.80 4.15 147.97 2 23

6-30-30
60 14296.41 11439.38 19.98 10800.20 2, 4, 5 27 13052.10 12.36 306.87 4, 5, 6 24
90 13838.82 10461.64 24.40 10800.90 2, 6 27 11973.20 12.62 411.62 2, 6 24
165 12246.40 10531.57 14.00 10800.20 4 25 11401.80 7.63 338.96 2 23

10-30-30
60 17617.62 11161.86 36.64 10800.70 1, 5, 7 33 12952.60 13.83 653.84 2, 6, 7 23
90 15289.92 10301.50 32.63 10800.70 4, 5, 8 27 11987.10 14.06 847.83 4, 6 22
165 16362.83 9831.77 39.91 10800.90 1, 7, 8 34 11384.40 13.64 773.67 8 23
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Table 10: Computational results of the MA for large-sized instances
Instance
|H|-|I|-|J |

Hub
capacity

Zbest Zaver %Zaver Zmax %Zmax
Ttotal

(s)
Open
hub

Number
of routes

3-35-35
60 15303.30 15332.62 0.19 15389.20 0.56 97.10 1, 2, 3 27
90 12704.90 12825.50 0.95 12938.80 1.84 178.36 1, 2 26
180 11895.80 12096.61 1.69 12208.10 2.63 209.94 1 24

6-35-35
60 13486.80 13515.46 0.21 13597.20 0.82 364.61 1, 4, 6 27
90 12747.70 12780.62 0.26 12798.70 0.40 301.76 1, 6 26
180 11997.80 12114.40 0.97 12168.60 1.42 500.38 6 25

10-35-35
60 13579.80 13862.39 2.08 14318.20 5.44 552.54 1, 4, 6 27
90 12655.50 12997.95 2.71 13498.50 6.66 1116.98 1, 2 26
180 11975.80 12191.16 1.80 12682.20 5.90 1246.83 6 25

3-40-40
75 16172.60 16232.34 0.37 16315.00 0.88 200.44 1, 2, 3 30
105 15233.90 15488.97 1.67 15914.20 4.47 295.92 2, 3 29
210 13442.10 13615.45 1.29 13895.50 3.37 280.27 2 28

6-40-40
75 15257.80 15339.58 0.54 15391.70 0.88 324.14 3, 4, 5 31
105 14317.30 14361.29 0.31 14442.70 0.88 507.60 4, 5 30
210 13296.30 13395.88 0.75 13583.90 2.16 736.69 5 28

10-40-40
75 14586.30 14941.40 2.43 15630.40 7.16 1355.50 2, 7, 10 30
105 13838.00 14369.58 3.84 14902.30 7.69 2591.37 2,10 29
210 13267.60 13507.67 1.81 14029.70 5.74 2021.55 4 28

3-45-45
75 14364.90 14485.52 0.84 14615.40 1.74 698.43 1, 2, 3 26
105 13282.50 13399.95 0.88 13518.40 1.78 582.82 1, 3 25
195 12165.40 12252.92 0.72 12370.70 1.69 483.29 1 25

6-45-45
75 13808.20 13964.20 1.13 14156.80 2.52 839.39 1, 2, 5 27
105 12808.70 13234.49 3.32 13625.60 6.38 1153.75 1, 5 26
195 12158.20 12261.14 0.85 12479.40 2.64 1067.82 1 25

10-45-45
75 13486.70 13838.82 2.61 14373.10 6.57 2630.10 3, 5, 9 28
105 12557.00 12846.71 2.31 13224.00 5.31 2471.17 8, 9 26
195 12134.90 12345.26 1.73 12598.30 3.82 3025.74 1 25

3-50-50
75 17242.60 17304.01 0.36 17387.10 0.84 219.578 1, 2, 3 33
120 16324.10 16464.26 0.86 16539.80 1.32 723.49 1, 2 32
225 14848.40 15007.79 1.07 15081.90 1.57 375.73 2 32

6-50-50
75 16669.30 16865.87 1.18 17003.30 2.00 2175.56 2, 3, 5 34
120 15564.30 15733.77 1.09 15956.40 2.52 2558.65 2, 5 32
225 14719.20 14967.48 1.69 15220.70 3.41 1231.40 2 30

10-50-50
75 16441.56 16811.56 2.25 17236.60 4.84 2953.06 2, 5, 10 33
120 15471.72 15883.81 2.66 16496.90 6.63 5645.03 8, 10 32
225 14712.64 15021.89 2.10 15842.10 7.68 4960.14 8 32

5.5. Sensitivity analysis

5.5.1. Stability assessment of the MA

In this section, we analyse the stability of the MA over the ten runs for the different
instances. We computed the coefficient of relative standard deviation (RSD), RSD =
SD

Z̄
×100%, with ten runs. This indicator shows the variance in % of the objective values

of ten runs compared to the average value. Here, SD is denoted as the standard deviation
between the average objective value Z̄ in 10 runs and the best value Zi found by the MA
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Figure 5: Solution gaps with different potential hub numbers obtained by the MA: the gap increases
when the number of nodes and the number of potential hubs increase

for the ith run, SD =

√∑10
i=1 (Z̄ − Zi)

2

10
. Most of the RSD values are below 1%, and

the average RSD is 0.86 % for all the instances. Figure 6 shows the average RSD value
for different problem scales. Regarding the instances with different potential hub values,
the average RSD values show relatively smooth curves without significant fluctuations.
The stability of the MA proves its robustness and usefulness for decision-making. The
small values of the RSD also suggest that just one or a few runs could be performed
instead of ten to determine meaningful solutions of real-life problems in a dramatically
reduced computing time. This would make it possible to test more alternative scenarios
and sensitivity analysis, which is essential for decision-making.

Figure 6: Average values of indicators with different numbers of instance nodes
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5.5.2. Influence of the hub fixed cost

In the previous experiments, a value of 1000 was used for the hub fixed cost. However for
real-life applications, the fixed cost of logistic facilities may be highly dependent on the
particular case. In this section, we report a sensitivity analysis conducted on a possible
range of fixed costs Fk = {1000, 500, 200, 100, 0}. All the results presented in Table 11
were obtained with the MA. In this table, the Fk column indicates the fixed cost value
of opening one potential hub. The Fix hub column represents the total fixed cost of the
opened hubs. Column Cost′ records the total cost of the solutions excluding the fixed
hub cost, Cost′ = Zbest− Fix hub. The following five columns detail Cost′ and stand
for the collection cost, the delivery cost, the inter-hub transfer cost, the handling cost
and the fixed cost of using the vehicles, respectively. It can be observed in Table 11 that,
for a given hub capacity, the fixed hub cost has no obvious influence on the solutions
of small instances (e.g. instance 6-20-20) until it is set to a small value of 100 or even
0, which leads logically to opening more hubs and a reduced value of Cost′. For large
instances (e.g. instance 10-35-35), when the fixed hub cost decreases, the number of open
hubs and the inter-hub transfer cost increase while the collection cost, delivery cost and
Cost′ decrease. When there is no fixed hub cost, all the potential hubs are open and
the best solution (the lowest Cost′ ) is obtained. This confirms the fact that a larger
number of open hubs yields a lower value of the total cost (excluding fixed hub costs).
The total cost on an HLRP network is reduced by increasing the volume of inter-hub
transportation, which is a fundamental hypothesis of the Hub Location Problems. It can
also be observed that, for most cases, no matter the hub fixed cost, some potential hub
locations are always chosen, which is a robust feature for decision making in real life.

6. Conclusions

In this paper, we studied the deterministic Single Allocation Capacitated Hub Location
Routing Problem (CSAHLRP) for the design of transport networks from many suppli-
ers to many clients. We addressed the specific case where the collection of goods from
suppliers and the deliveries to clients allocated to the same hub have to be organized
within different routes for logistical or scheduling reasons. This is a situation frequently
encountered in logistic systems for less-than-truckload (LTL) transport. Therefore, this
problem is of theoretical and practical significance in order to determine feasible and
efficient solutions of realistic problems in a reasonable computing time. The main con-
tribution of our work is the proposition and validation of a MILP model and a memetic
metaheuristic for the CSAHLRP with the problem characteristics described above. This
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Table 11: Sensitivity analysis on the hub fixed cost
Instance Hub

Fk
Open

Zbest Fix hub Cost′
Collect

Deliv cost
Inter-hubHandle

Fix V|H|-|I|-|J |capacity hub cost cost cost

6-20-20

45

1000 2, 3, 5 9786.87 3000 6786.87 2527.13 1789.44 548.92 321.38 1600
500 2, 3, 5 8286.87 1500 6786.87 2527.13 1789.44 548.92 321.38 1600
200 2, 3, 5 7386.87 600 6786.87 2527.13 1789.44 548.92 321.38 1600
100 2, 3, 4, 6 7094.27 400 6694.27 2431.23 1571.51 762.95 328.59 1600
0 1,2,3,4,5,6 6593.05 0 6593.05 2380.97 1489.97 782.03 340.09 1600

60

1000 3, 4 9022.21 2000 7022.21 2745.16 1835.18 458.48 283.39 1700
500 3, 4 8022.21 1000 7022.21 2745.16 1835.18 458.48 283.39 1700
200 3, 4 7422.21 400 7022.21 2745.16 1835.18 458.48 283.39 1700
100 3, 4, 6 7120.05 300 6820.05 2745.16 1659.98 528.57 286.35 1600
0 1,2,3,4,5,6 6585.17 0 6585.17 2380.97 1493.44 767.86 342.90 1600

120

1000 3 8118.95 1000 7118.95 3014.13 2320.09 0.00 184.73 1600
500 3 7618.95 500 7118.95 3014.13 2320.09 0.00 184.73 1600
200 3 7334.59 200 7118.95 3029.77 2320.09 0.00 184.73 1600
100 2, 3, 6 7185.71 300 6885.71 2737.47 1700.26 558.20 289.78 1600
0 1,2,3,4,5,6 6585.17 0 6585.17 2380.97 1493.44 767.86 342.90 1600

10-35-35

60

1000 1, 4, 6 13579.80 3000 10579.80 3184.48 3073.48 1102.38 519.44 2700
500 1, 2, 4, 6 12096.50 2000 10096.50 2901.26 2727.64 1127.09 540.52 2800

200
1, 2, 4,

10791.40 1200 9691.40 2473.98 2367.77 1495.23 554.38 2700
5, 6, 8

100
1, 2, 3,

10375.90 600 9775.90 2359.16 2265.70 1597.45 553.55 3000
4, 6, 8

0
1, 2, 3, 4, 5,

9544.05 0 9544.05 1993.95 2166.77 1717.42 565.92 3100
6,7,8,9,10

90

1000 1, 2 12655.50 2000 10665.50 3664.28 3270.35 672.05 448.86 2600
500 1, 2, 7 11690.00 1500 10190.00 2981.73 3063.52 1060.79 484.00 2600
200 1,2,4,6,8 10767.40 1000 9767.40 2474.04 2419.48 1425.76 548.10 2900
100 1,2,4,6,8 10228.00 500 9728.00 2481.83 2474.24 1424.43 547.46 2800

0
1, 2, 4,

9477.82 0 9477.82 2157.88 2237.03 1619.83 563.07 2900
5, 6, 7, 8

180

1000 6 11975.80 1000 10975.80 4011.31 4162.94 0.00 301.55 2500
500 2, 6 11579.80 1000 10571.80 3423.21 3304.53 803.78 448.33 2600
200 1,2,4,6,8 10748.70 1000 9748.70 2596.53 2387.85 1423.35 541.00 2800

100
1, 2, 4,

10211.90 600 9611.90 2429.35 2305.50 1520.47 556.85 2800
5, 6, 8

0
1,2,3,4,5,

9526.86 0 9526.86 1952.32 2103.72 1800.78 570.04 3100
6,7,8,9,10
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framework corresponds to a realistic LTL network design problem for the delivery of
goods of small to medium sizes from a set of suppliers to their clients through concen-
tration hubs and it is frequently used by LTL carriers.

Our MILP formulation of the problem combines recent flow formulations that are usually
used in vehicle routing and location-routing problems. Our memetic algorithm combines
a constructive heuristic for the generation of the initial population, a specifically designed
genetic algorithm and several local searches on the location and routing parts of the
problem.

For the purpose of experiments, we generated our own benchmark of 27 instances of
different sizes and characteristics, since no appropriate benchmark corresponding to our
applications was available and we compared the results obtained with the CPLEX solver
and our memetic algorithm. In order to enhance the performance of the solution tech-
niques, we did preliminary tuning of the main parameter of CPLEX as well as those of
the memetic algorithm and we compared different implementations of the algorithm. We
then conducted extensive comparative experiments to solve the problem and model with
the CPLEX solver and with the memetic metaheuristic. The results show that CPLEX
can solve the model to optimality only for small instances and finds feasible solutions for
medium size instances with difficulty. The gap increases with the size of the instances.
Computing times reach 3 hours even for medium-sized instances and convergence is slow.
This prevents solving large realistic instances in this fashion. Alternatively, our memetic
algorithm finds feasible solutions to the problem for all types of instances in a reasonable
computing time and with limited gaps compared to the lower bounds of CPLEX. Con-
vergence of the memetic algorithm to good solutions is fast and the solutions are very
stable.

Decision making for real applications do not reduce to experimenting on a single data
set. It involves evaluating and comparing a significant number of alternative scenarios
and performing sensitivity analysis on significant parameters as well as assessing the
robustness of the determined hub locations. Having to conduct a significant number of
experiments to solve a real problem is a reason to develop an efficient solution technique
capable to find realistic solutions of this complex strategic problem in a reasonable
computing time. Conducting such an application was beyond the scope of this paper.
However we performed some sensitivity analysis on key parameters, such as the fixed
cost of opening hubs, potential hub numbers and capacities.

Our approach could also be adapted to solve different variations of the HLRP, such as
the p-HLRP where the number of hubs to be selected is imposed, or the HLRP with
simultaneous pick-ups and deliveries. With the growing concern for green logistics and
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especially for the reduction of air pollution from transport, another research direction
would consist in extending our models and algorithm to a bi-objective approach, mini-
mizing both costs and GHG emissions from transport.
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