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Abstract: 

The Monte-Carlo method is the standard method for computing the dosimetry of both ionizing 

and non-ionizing radiation. Because this technique is highly time-consuming in conventional 

implementations, several improvements have recently been developed to speed-up 

simulations. Among the improvements, the use of graphics processing units (GPU) to 

parallelize algorithms provides a cost-efficient solution to accelerate the Monte-Carlo method. 

Parallel implementation of Monte-Carlo using GPU technology is described in the context of 

photodynamic therapy (PDT) dosimetry. This algorithm has been optimized to compute light 

emitted from optical fibers with cylindrical diffusers that are used in interstitial PDT 

applications. A comparison of the experimental measurements used to assess the results of the 

Monte-Carlo method is detailed. Illumination profiles of several commercially available 

diffusers are measured using an optical phantom that mimics the optical properties of the 

brain. Additionally, this Monte-Carlo method is compared to ex-vivo measurements made by 

a device dedicated to intraoperative PDT treatment of brain tumors. 

The results of the GPU Monte-Carlo validation are in accordance with the recommendations 

of the American Association of Physicists in Medicine. The acceleration obtained with the 

GPU implementation is in accordance with the literature and is sufficiently fast to be 

integrated in a treatment planning system dedicated to planning routine clinical interstitial 

PDT treatments. 

 

Keywords: Monte-Carlo modeling, graphics processing unit algorithm, dosimetry, 

photodynamic therapy, cylindrical diffuser 

I. Introduction 

Photodynamic therapy (PDT) is a non-thermal, energy-based therapy that relies on light 

exposure after the accumulation of photosensitizers (PS) in tumor cells. The effects of PDT 

result from the synergy of three elements: a PS, the presence of oxygen and the energy 

delivered through light exposure at a specific wavelength to excite the PS. The combination of 

these three components leads to the formation of reactive oxygen species (ROS), including 

singlet oxygen, which are cytotoxic molecules that damage PS-targeted cells. 
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When using a PS with limited selectivity, light only needs to be applied on the areas to be 

treated (e.g., hematoporphyrin, Photofrin® [1, 2]), and the organs at risk must be avoided. 

When using a PS with high selectivity (e.g., temoporfin, Foscan® or protoporphyrin IX 

(PpIX) [3-6]), the margins that are required around the targeted tumor sites can be 

considerably relaxed. 

Several lighting modalities are available and can vary according to the topology of the target 

zone. Among them, optical fibers with cylindrical diffusers enable the illumination of a large 

tissue volume. These optical fibers produce an ellipsoidal illumination around the extremity of 

the diffusing tip. Currently, this type of diffuser is primarily used in clinical applications 

(interstitial or cavity treatments) because it maximizes the irradiated volume during the 

procedure and thus, minimizes both the number of fibers that need to be inserted and the 

treatment time [7]. 

Different surgical procedures can be considered according to the accessibility of the treatment 

target. When tumor tissues are easily reachable, such as on the skin or during a surgical 

procedure, dedicated lighting devices are preferred to better control the illumination. 

Otherwise, interstitial procedures are used by inserting cylindrical diffusers into the target 

tumor. Positioning optical fibers usually requires prior simulations to optimize the location of 

each fiber. Currently, these simulations can be performed with the assistance of a treatment 

planning system (TPS). Due to recent technological improvements (imaging and computing 

performance), a few TPSs have been developed for interstitial PDT and for different 

applications, but these systems remain a work in progress [8-12]. Among the planning steps, 

computing the impact of PDT on tissues is still a major challenge. PDT dosimetry is a 

dynamic, complex process that includes several time-dependent features that differ from one 

individual to another. PDT dosimetry requires the accurate computation of the light dose 

deposited in biological tissues. Among all models that enable the computation of light 

propagation, a Monte-Carlo model that simulates the interactions of photons in biological 

media is the prime candidate for use in PDT dosimetry [13]. However, this model is highly 

time-consuming when using conventional algorithm implementations. Thus, routine clinical 

use of the Monte-Carlo method is still limited because of the long simulation time. The 

improvement of the computing capacity and new technologies have led to recent techniques 

that accelerate Monte-Carlo simulations [14-17]. Among these improvements, the use of 

graphics processing units (GPUs) considerably speed up simulations at a limited cost. 

In this study, a Monte-Carlo algorithm for light modeling and accelerated using GPU 

parallelization is described. The purpose of this study is to provide a dosimetric algorithm that 

is optimized to compute light propagation emitted from interstitial cylindrical diffusers with a 

computing time that is acceptable for clinical use. The results obtained from Monte-Carlo 

simulations were then compared with experimental measurements. A homogeneous optical 

phantom was created to mimic the optical properties of biological tissues. The illumination 

profiles of five different cylindrical diffusers were measured and compared to the Monte-

Carlo results. The performance of the algorithm was optimized to a specific GPU card to 

obtain fast computations. Moreover, this Monte-Carlo algorithm was used to confirm 

experimental measurements by assessing the dosimetry of a lighting device used in brain 

surgery. This analysis enables the evaluation of the relevance of our Monte-Carlo model for 

realistic biological tissues.  
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II. Material and methods 

1. GPU Monte-Carlo implementation 

a. Architecture 

The Monte-Carlo method presented in this study was designed to be implemented in a 

future TPS dedicated to interstitial photodynamic therapy, with light delivered through 

cylindrical diffuser tips, for brain cancer treatment [18]. Monte-Carlo simulations rely on 

modeling light sources according to their location and shape in the patient’s brain. This brain 

is modeled by a 3D matrix of voxels that are classified according to the type of biological 

medium to which they belong (white matter, grey matter, tumor, edema, necrosis) [19]. These 

data can be obtained from magnetic resonance imaging (MRI).  

The particularity of the GPU programming lies in the architecture of the device used. The 

term “Host” refers to the CPU and its memory, and the term “Device” refers to the GPU. The 

parallelized code is equally distributed into several units called “kernels” similar to tiny 

processing units, that are located in the device. Kernels are grouped into several “blocks”, and 

each kernel instance is called a “thread.” 

Structure proposed by Fang et al. [15] and the mcxyz code by Jacques et al. inspired our GPU 

Monte-Carlo method [20, 21].  

The input features of the algorithm are defined as:  

- Nx,Ny, and Nzare the numbers of voxels in the X-, Y-, and Z-axes, respectively, of the 

3D matrix (i.e., the MRI volume). 

- dx, dy, and dz are the voxel sizes in the X-, Y-, and Z-axes, respectively. 

- (xin, yin, zin) are the triplet of coordinates corresponding to the beginning of a 

cylindrical diffuser tip (proximal). 

- (xout, yout, zout) are the triplet of coordinates corresponding to the end of a cylindrical 

diffuser tip (distal). 

Each thread generated on the GPU runs an entire photon history (from photon birth with the 

initial properties to photon death). Thus, depending on the hardware capacity, several photon 

histories are simultaneously and independently launched on multiple threads.  

 

The pipeline of the GPU Monte-Carlo simulation and the propagation process of photons is 

similar to those described by Fang et al. [15], namely: 

- A photon is first created at a random position between the two extremities, (xin, yin, zin) 

and (xout, yout, zout) of the emitting part of the cylindrical diffuser that is inserted into 

the body of the patient. The photon is isotropically orientated and has a weight of 1. 

- A given distance, called the step size,is deduced from the absorption and scattering 

coefficients. Step size denotes the displacement of the photon through matter at each 

iteration of the algorithm. 

o If the photon does not cross the boundaries of the voxel, it moves to its next 

location (“Hop” process) and loses weight according to the length of the step 

size and the absorption property of the voxel (“Drop” process). 

o If the photon crosses boundaries of the voxel, it moves at this boundary, loses 

weight according to the length of its distance to the voxel’s boundary and the 
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absorption property of the voxel. The remaining step size is computed to 

continue its propagation. 

- A new random direction is computed using optical properties (“Spin” process). 

- The steps above are repeated (from the generation of the step size) until the photon’s 

weight can be considered null (“Roulette” process) or the photon exits the entire 

volume. 

 

Depending on hardware capacities, the required number of simulated photons is typically 

larger than the number of kernels available. Thus, once a kernel completes a photon history, 

another photon propagation thread is repeated in the same kernel. Each kernel repeats the 

entire simulation process until the expected number of photons is reached. 

The output of the simulation is a Nx by Ny by Nz absorption matrix (photon_weight/bin), 

which is normalized to obtain the transport matrix (Mtransport[Nx, Ny, Nz], cm
-2

) and multiplied 

with the power source ((Psource, W) to obtain the fluence rate (F[Nx, Ny, Nz], W‧cm
-
²). 

b. Comparison between CPU and GPU implementations 

A comparison between CPU and GPU implementations of the Monte-Carlo algorithm was 

performed. The same algorithm was distributed on both an Intel Xeon CPU (E5-1603 v3 

2.80GHz) and an NVIDIA GPU Quadro K620 (CUDA 7.5 platform). 

The only difference of these two implementations was in the pseudorandom number generator 

(PRNG) used in each technology. The CPU implementation included the native PRNG 

provided by the standard library stdlib, which is based on a linear congruential generator, 

whereas the GPU used the tiny Mersenne Twister PRNG, as previously described. 

To compare these two implementations, 6 cylindrical diffusers with different lengths of the 

fiber tip were modeled: 10, 15, 20, 30, 40 and 50 mm, which correspond to the standard 

lengths provided in the market for PDT applications. The same experimental conditions were 

implemented in each simulation. All of the cylindrical diffusers were placed in the center of a 

40x40x80 mm homogeneous medium with the following optical properties: 

- Absorption coefficient: µa = 0.1 cm
-1

 

- Scattering coefficient: µs = 100 cm
-1

 

- Anisotropy coefficient: g = 0.8 

Photons (10
6
) were generated in each simulation. The deviation of the fluence rate values 

were computed in each voxel of the horizontal cut plane of the 40x40x80 mm homogeneous 

medium. The mean value of each deviation was then computed for each cylindrical diffuser: 

               
 

     
                        

  

    

  

    

 (1) 

c. Statistical noise 

The accuracy of the Monte-Carlo simulations improved with the increase of the number of 

modeled photons. Due to the randomness of this algorithm, the statistical noise was evaluated. 

Six cylindrical diffusers with different lengths of the fiber tip were modeled: 10, 15, 20, 30, 

40 and 50 mm. The same experimental conditions were implemented in each simulation. All 
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of the cylindrical diffusers were placed in the center of a 40x40x80 mm homogeneous 

medium with the following optical properties: 

- Absorption coefficient: µa = 0.1 cm
-1

 

- Scattering coefficient: µs = 100 cm
-1

 

- Anisotropy coefficient: g = 0.8 

Photons (10
6
) were generated in each simulation. Simulation were performed 10 times for 

each cylindrical diffuser; 60 Monte-Carlo simulations were achieved. 

The standard deviations of these 10 realizations were computed in each voxel of the 

horizontal cut plane of the 40x40x80 mm homogeneous medium, i.e., 3200 standard 

deviations were computed for each cylindrical diffusor simulation. 

d. Cylindrical diffuser modeling 

In most cases, cylindrical diffusers are preferred over flat-cleaved fibers for interstitial PDT 

applications because they allow a shorter treatment duration [7]. Several Monte-Carlo 

methods have already been described in the literature to model cylindrical diffusers [22-26]. 

Comprehensive modeling of the cylindrical tip has been detailed by Baran et al. [27] by 

describing four of the tip’s components: the core and cladding of the fiber, a diffusive 

medium and a dielectric reflector. This model produces a more realistic simulation of the light 

distribution by the diffuser tip. This model provides a better prediction of the fluorescence 

detection in surrounding tissues and a similar fluence rate distribution compared to a simple 

linear array of point sources as proposed in previous works [25, 28].Thus, regarding this 

literature, the linear point source model has been chosen to predict fluence rate distribution 

around cylindrical diffusers. 

Our Monte-Carlo method describes the cylindrical diffuser tip as an isotropic line source. The 

location of photon creation was uniformly randomized between the two triplets of coordinates 

(xin, yin, zin and xout, yout, zout) corresponding to the proximal and distal ends of the cylindrical 

diffuser tip. Each photon was then isotropically launched into the surrounding tissues. 

Modeling all of the different parts of the fiber tip was considered unnecessary because a voxel 

size equivalent to the standard MRI resolution (i.e., one millimeter) was used and the diameter 

of the fiber tip was smaller than one millimeter. 

Nevertheless, our Monte-Carlo model takes the light distribution profile of the cylindrical 

diffusers used in PDT into account. To implement this property, the light distribution profiles 

of five different cylindrical diffusers were measured and normalized based on both the light 

power and the length of the fiber tip (figure 1). 
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Figure 1: In grey, the normalized light emission profiles of five cylindrical diffusers (Medlight, 

Ecublens, Switzerland (RD and RD-ML models) and Biolitec GmbH, Jena, Germany (CD model)) are 

shown. In red, the mean normalized profile used in the Monte-Carlo model to weight photons at their 

creation are shown. 

 

Because these emission profiles were only measured in a single diffuser for each type of 

diffuser, a mean normalized profile was computed, and a 4
th

 order polynomial was used to 

estimate this mean normalized profile (equation 2). This empirical equation was then applied 

to all of the photons created in our Monte-Carlo model to adjust their initial weight         

according to the location of their creation along the diffuser tip, in order to tend toward a 

better approximation of the fluence rate emitted in tissues. 

                                                   

                                                     
(2) 

e. Performance 

Several configurations were tested to optimize the number of blocks and the threads used per 

block to obtain the fastest execution of the Monte-Carlo simulation. To compare the 

performance of the Monte-Carlo simulation with a reference framework, a homogeneous 

medium was implemented with the following optical properties: 

- Absorption coefficient: µa = 0.1 cm
-1

 

- Scattering coefficient: µs = 100 cm
-1

 

- Anisotropy coefficient: g = 0.8 



7 

Photons (10
5
)were generated to simulate the light distribution from a 40 mm cylindrical 

diffuser placed at the center of a 40x40x80 mm homogeneous slab of the previously described 

medium. By varying the distribution of threads used by the GPU, the mean computing time 

was reduced by empirically looking for the fastest configuration. 

Among the metrics available for measuring the performance of a parallelized code, Amdhal’s 

law [29, 30] defines the acceleration     due to parallelism as: 

    
 

      
 

  

 (3) 

where   is the proportion of execution time that benefits from parallelized implementation 

and np is the number of kernels. 

The parallelization efficiency     is the ratio of the acceleration     and the number of 

kernels np: 

    
   

  
 

 

          
 (4) 

2. Monte-Carlo validation by comparison with experimental measurements 

a. Phantom design 

For the purpose of validating this GPU Monte-Carlo implementation, a phantom of known 

optical properties was created to compare the experimental and simulated measurements. The 

most popular and easiest way to build such a phantom is to mix an Intralipid liquid, India ink 

and water [31-35]. Such phantoms have been extensively studied, and calculations of the 

quantities to be mixed rely on the multi-center study of Spinelli et al. [34], published in 2014. 

In the Spinelli study, the same optical phantom based on Intralipid and India ink was 

characterized using nine different methods in nine different research laboratories from six 

countries. They proposed a mathematical model for the masses of India ink and Intralipid that 

needed to be mixed to obtain the desired optical properties. The values of absorption µa = 0.2 

cm
-1

 and reduced scattering µ’s = 20 cm
-1

 correspond to the mean optical properties of human 

brain tissue [26, 36-38]. These values will be considered references in this study. 

b. Calibration and experimental setup 

An experiment was designed to characterize the fluence rate (W‧cm
-
²) of different diffusers 

that are commonly used in PDT treatment within the phantom. The only variable that can be 

measured in a light dosimetry experiment is the light power (W). To convert this power value 

Pmeasured (W) into a fluence rate  measured (W‧cm
-
²), a calibration factor CFmedium that depends 

on the probe and the surrounding medium was used: 

                             (5) 

In their two papers, Marijnissen and Star provide a complete methodology to obtain this 

calibration factor CFmedium[39, 40], which is also recommended by the American Association 

of Physicists in Medicine (AAPM) [41, 42]. This factor is the combination of a calibration 

factor determined in air CFair and four other corrective coefficients. This methodology has 

also been described in a previous study [43]. 
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A cylindrical diffuser was inserted in a 15x15x15 cm black box to avoid light reflection and 

fixed so that it was as straight as possible. An isotropic sensor (IP85, Medlight, Ecublens, 

Switzerland) was fixed to a mobile support and located at precise coordinates, e.g., against the 

cylindrical diffuser. Once the sensor and the optical fiber were in place, the phantom was 

poured inside the black box to completely fill it. A Ceralas 635 (Biolitec, Jena, Germany) 

laser source was then connected to the SMA connector of the fiber. Power measurements 

were obtained along the horizontal cut plane of the cylindrical diffuser. The sensor was 

moved with a step size of one millimeter (Δx, Δy) from the beginning to the end of the 

cylindrical diffuser (y-axis) until it reached a 1 cm distance from light source (x-axis) (see 

figure 2). 

 

 
Figure 2: Grid of the power measurement positions. 

 

A power of 500 mW was emitted from the laser source. Once the power was measured, the 

value was multiplied by the calibration factor to obtain a fluence rate. 

 

These fluence rates were then compared to those obtained by Monte-Carlo modeling. In each 

simulation, 10
7
 photons were modeled according to the previously described rules. The tip of 

the modeled cylindrical diffuser was placed at the center of a 40x40x80 homogeneous slab. 

The same optical properties (absorption, scattering and anisotropy) were applied to compare 

the experimental results with the Monte-Carlo results. 
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To compare the results from both the reference experimental fluence rate measurements 

          and the Monte-Carlo modeling    , the relative deviation at different locations 

from the fiber tip and the mean relative deviation were defined as: 

                       
  

    

 
                          

              

    

    

 (6) 

                         
 

 
                       

 

     

 (7) 

and 

                       
 

 
 

                          

              

 

     

 (8) 

                         
  

    

                       

    

     

 (9) 

where      is the length of the fiber tip (mm), 

               is the measured fluence rate (equation 5) (W‧cm
-
²), 

         is the fluence rate obtained with the Monte-Carlo algorithm (W‧cm
-
²), and 

   is the step size of the y-axis (mm) 

 

Values were measured every 1 mm from the light source (x = 0) to a distance of 

approximately x = 8 mm. After reaching this distance, the power measurements were under 

the microwatt scale. 

 

Finally, five different cylindrical diffusers were used for measurements and modeled with 

Monte-Carlo simulation. 

The light transmission coefficient for each cylindrical diffuser was measured using three 

different lasers equipped with an integrating sphere: Ceralas 635 (Biolitec, Jena, Germany), 

DIOMED 630 PDT (DIOMED, Cambridge, United Kingdom) and ML7710-630-6K 

(Modulight, Tampere, Finland). This coefficient defines the ratio of the light power emitted 

into the fiber and the output light power obtained around the cylindrical diffuser tip. The light 

transmission of each fiber was measured with the three laser sources. The mean of these 

measurements (Ttransmission, %) was used to weight the power source factor (Psource, W) that was 

used in combination with the transport matrix (Mtransport[Nx,Ny,Nz], cm
-2

) to obtain the fluence 

rate (F[Nx,Ny,Nz], W‧cm
-
²) matrix of the Monte-Carlo model (see equation 10). 

                                ‧      ‧              (10) 

 

Five different cylindrical diffusers were used to compare the Monte-Carlo simulation and the 

experimental measurements (see table 1). 

 

Manufacturer and 

model of the fiber 

Length of 

the tip 

(mm) 

Diameter 

(mm) 

Core 

diameter 

(µm) 

Numerical 

aperture 

(dimensionless) 

Transmission 

measured 

Biolitec, CD 603-20 20 1.65 600 0.37 93% 

Medlight, RD-ML 25 25 1 400 0.37 87% 
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Medlight, RD 30 30 0.98 500 0.48 71% 

Medlight, RD-ML 40 40 1 400 0.37 87% 

Medlight, RD-ML 50 50 1 400 0.37 87% 
 

Table 1: Characteristics of the five cylindrical diffusers used in experiments 

 

These five cylindrical diffusers, from two optical fiber manufacturers (Medlight, Ecublens, 

Switzerland and Biolitec GmbH, Jena, Germany), represent the standard optical fiber 

dimensions used in interstitial PDT. 

3. Monte-Carlo validation by comparison with ex-vivo measurements 

After assessing the Monte-Carlo algorithm in a homogeneous medium, evaluation in a more 

realistic environment was necessary. Thus, the Monte-Carlo model proposed here was used to 

confirm experimental ex-vivo measurements made by a specific device described in a 

previous study [43, 44]. 

This device has been designed for intraoperative PDT treatment of brain tumors (see figure 

3a) and is already being assessed in a phase I clinical study [45]. This device is composed of a 

balloon inflated with a diffusing solution and inserted into the patient’s brain during surgery. 

A 70 mm cylindrical diffuser is placed inside a fiber guide composed of a borosilicate glass 

tube and a stainless-steel tube.  

For different volumes of diffusing solution injected into the device, power measurements have 

been made in the brain tissue around the balloon to assess the fluence rate emitted and to 

compute the treatment time. The methodology is described in Dupont et al. [43]. 

These measurements were then compared to Monte-Carlo modeling to evaluate the relevance 

of the measurements and to validate the Monte-Carlo model in a heterogeneous environment 

(ex-vivo calf brain). Ten volumes of the injected diffusing solution were simulated: from 50 

mL to 500 mL with a step of 50 mL. The balloon was designed with an ellipsoidal shape. The 

dimensions of each configuration were measured (see table 2): 

 

Volume of the injected diffusing solution 

(mL) 

Width 

(cm) 

Length 

(cm) 

Volume of the ellipsoid 

(cm
3
) 

50 4.1 7.2 63.37 

100 5.1 7.5 102.14 

150 5.9 8.0 145.81 

200 6.4 8.7 186.59 

250 6.9 9.1 226.85 

300 7.2 9.6 260.58 

350 7.8 10.5 334.49 

400 8.5 11.1 419.91 

450 8.7 11.5 455.76 

500 8.9 11.8 489.4 
 

Table 2: Balloon dimensions used to generate the ellipsoid during Monte-Carlo simulations. 

 

Using these dimensions and their respective optical properties, four different materials that 

compose the device (see figure 3b) were modeled: standard brain tissues (µa = 0.2 cm
-1

, µs = 
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160 cm
-1

), diffusing solutions (µa = 10
-3 

cm
-1

, µs = 10 cm
-1

), stainless steel tubes (µa = 10
5 

cm
-

1
, µs = 1.0 cm

-1
) and borosilicate glass tubes (µa = 10

-4 
cm

-1
, µs = 0.3 cm

-1
). The 70 mm 

cylindrical diffuser (RD-ML 70, Medlight, Ecublens, Switzerland) was placed at the center of 

the borosilicate glass. 

 
Figure 3: a) Lighting applicator in which the fiber guide is inserted into the balloon to guide the 70 

mm cylindrical diffuser and its clinical application. b) Modeling of the device filled with 150 mL of a 

diffusing solution. The 70 mm long cylindrical diffuser was located at the center of the borosilicate 

glass tube. 

III. Results 

1. Monte-Carlo implementation 

a. Comparison between CPU and GPU implementations 

To validate the shift from CPU to GPU technology, 6 different cylindrical diffusers were 

modeled using the Monte-Carlo algorithm with CPU and GPU implementations. A 

comparison of the fluence rates led to a mean value of absolute deviation of 3.27 mW/cm² 

(relative deviation of 8.08 mW/cm², max value of 10.49 mW/cm²). These values were 

negligible compared to maximum values of the fluence rate achieved, which were on the 

order of several watts. Thus, the GPU implementation of the Monte-Carlo algorithm does not 

interfere with the accuracy of the modeled photons and provides the same results as the CPU 

implementation. 
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b. Statistical noise 

By running 60 Monte-Carlo simulations (10 realizations of 6 different cylindrical diffusers), 

standard deviations were computed in each voxel of the horizontal cut plane. In each 

simulation, the minimum computed standard deviation varied between 0 and 6.1x10
-

6
mW/cm². These low values can be explained by the absence of photons far from the light 

source due to the optical properties of the medium. The maximum standard deviation values 

varied between 6.8 to 13.3mW/cm². This maximum standard deviation is related to a fluence 

rate of 2.19x10
3
mW/cm². Using a 95% confidence interval, a margin of error of 26.6mW/cm² 

is defined (signal to noise ratio of about 82.3). This margin of error can be considered as a 

statistical noise. 

c. Performance 

All the following tests were performed with an Intel Xeon CPU E5-1603 v3 2.80GHz and an 

NVIDIA GPU Quadro K620. The CUDA 7.5 platform was used to implement our Monte-

Carlo algorithm. 

Several configurations of the number of blocks and the threads used per block were tested to 

obtain the fastest execution time for the algorithm. 

First, the number of threads per block was set to 512 and the number of blocks was varied 

from 1 to 1024. As shown in the figure 4a, a strong dependence of the number of employed 

blocks on computing time was observed. The best solution to improve GPU performance was 

the 32-block configuration. 

Then, with the 32-block configuration, the number of threads per block was varied from 8 to 

512 (see figure 4b). The fastest configuration for our GPU configuration was 32 blocks with 

256 threads per block. With this configuration, 8192 threads, or photon histories, were 

simultaneously generated. The time required to perform this simulation was approximately 

1762 ms. 
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Figure 4: Computing time (ms) (a) as a function of the number of blocks with 512 threads per block 

and (b) as a function of the number of threads per block with 32 blocks. 

 

The time required to perform the same Monte-Carlo simulation with a CPU configuration was 

approximately 1341.35 s. Thus, the resulting acceleration and efficiency, previously defined 

by the Amdhal’s law [29, 30], were 761.3 and 0.0929, respectively. The proportion of 

execution time  that benefited from parallelized implementation was 0.9988. 

2. Monte-Carlo validation 

Once the calibration factor was estimated, each power measurement was converted into a 

fluence rate using equation 5. The relative deviations in both x- and y-axes were obtained 

(equations 6 to 9) for each of the five cylindrical diffusers (see figure 5 and 6). 
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Figure 5: Box plot showing the relative deviations according to the x-axis (distances to the fiber tip) 

(equation 6). 

 

A mean of all the deviations along the x-axis (equation 6) of approximately 12.01 % ± 7.62 

was computed (see table 3). 

 

Manufacturer and model of the 

fiber 

Mean relative deviations along the x-axis (standard 

deviation) - (%) 

Biolitec, CD 603-20 14.55 (9.15) 

Medlight, RD-ML 25 11.19 (4.51) 

Medlight, RD 30 14.11 (9.78) 

Medlight, RD-ML 40 7.54 (4.03) 

Medlight, RD-ML 50 12.66 (10.63) 

Mean 12.01 (7.62) 
 

Table 3: Mean relative deviations and standard deviation for each cylindrical diffuser (equation 7). 
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Figure 6: Relative deviation along the y-axis (along the fiber tips of each cylindrical diffuser) 

(equation 8). For visibility purposes, the standard deviations are not displayed. 

 

A mean of all deviations along the y-axis (equation 8) of approximately 11.96 % ± 6.47 was 

computed (see table 4). 

 

Manufacturer and model of the 

fiber 

Mean relative deviations along the y-axis (standard 

deviation) – (%) 

Biolitec, CD 603-20 12.06 (7.90) 

Medlight, RD-ML 25 7.54 (5.24) 

Medlight, RD 30 14.11 (7.41) 

Medlight, RD-ML 40 11.19 (5.81) 

Medlight, RD-ML 50 14.93 (5.98) 

Mean 11.96 (6.47) 
 

Table 4: Mean relative deviations and standard deviation for each cylindrical diffuser (equation 9). 

3. Validation by comparison with ex-vivo measurements 

The relative deviation of the fluence rates against the balloon wall obtained from the power 

measurements and from the Monte-Carlo method were computed (see table 5). 

 

Volume of the 

balloon (mL) 

Fluence rate at the balloon border (standard 

deviation) - (mW‧cm
-
²)  

Relative deviation (%) 
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Monte-Carlo 

simulation 

Ex vivo experiments 

50 280.82 (18.47) 305.79 (72.86) 8.89 

100 192.93 (4.86) 215.94 (27.98) 11.93 

150 175.45 (21.13) 179.52 (7.02) 2.13 

200 139.06 (6.54) 115.54 (7.42) 16.91 

250 118.30 (6.42) 101.36 (14.74) 14.44 

300 98.23 (20.56) 84.65 (15.15) 13.82 

350 86.06 (14.32) 75.56 (6.76) 12.19 

400 66.28 (14.82) 70.50 (11.66) 6.38 

450 59.53 (22.37) 57.19 (5.33) 3.93 

500 53.10 (11.13) 52.02 (11.63) 2.03 

Mean 9.29% 
 

Table 5: Comparison of the fluence rates obtained from the Monte-Carlo simulations and ex vivo 

measurements. 

IV. Discussion  

Several different approaches enable the propagation of light to be computed. Among them, 

Monte-Carlo remains a standard method. Despite its high accuracy, this method is rarely used 

because of the long computational time required to perform a simulation. With recent high-

capacity computing and technologies that enable parallel computing, the Monte-Carlo method 

can now reach an acceptable computing time for routine clinical use. 

 

This study introduces a code fully dedicated to GPU modeling of the cylindrical diffusers 

used in PDT. To evaluate the output of the algorithm, i.e., the fluence rate emitted from light 

sources, a phantom was created to mimic particular optical properties. The experimental 

results were compared to Monte-Carlo simulations, and the mean relative deviations validated 

the accuracy of the Monte-Carlo model: 12.01 % in the x-axis (variation along the tissue 

depth) and 11.96 % in the y-axis (variation along the light emission profile of the cylindrical 

diffuser). Although these values may appear high, several biases can explain these relative 

deviations. 

The precision of the weight of every compound used to create the optical phantom is critical. 

Particularly, the mass of India ink injected into the phantom has a strong impact on the 

absorption coefficient. A slight measurement deviation during the weighing of the India ink 

can provoke a shift in the phantom absorption. Therefore, the optical coefficients used to 

simulate the phantom in the Monte-Carlo model are based on the assumption that the phantom 

is composed of these same coefficients. 

The precision of the location of the isotropic probe in the phantom with respect to the 

cylindrical diffuser position was manually evaluated. Once the liquid optical phantom was 

poured inside the black box, the isotropic probe could not be seen. It was then impossible to 

check the position of the bulb during the experiment. 

The inhomogeneity of the illumination profiles of the cylindrical diffusers was measured on 

each diffuser tip and showed a strong variation of illumination profiles. Additionally, the light 
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transmission of each cylindrical diffuser was measured with three different diode laser 

systems with an integrating sphere. Ideally, the heterogeneity and transmission of every 

cylindrical diffuser should be measured and considered when planning therapy to achieve an 

accurate dosimetry. Nonetheless, we decided to insert a mean light-emission profile in our 

Monte-Carlo model to obtain a more realistic linear distribution of photons and thus to model 

the heterogeneity of the cylindrical diffuser used in PDT. This refinement slightly improved 

the estimation of fluence rate around the diffuser tip.  

The American Association of Physicists in Medicine advised that due to the potential 

variations caused by many factors, the error in PDT light dosimetry can easily exceed 10% to 

20% [41, 42]. Considering the biases and measurement uncertainties encountered in this 

study, the proposed Monte-Carlo model can be accepted. 

 

In the clinical context, the strong optical heterogeneity of brain tissues, particularly in the 

GBM, induces multiple perturbations for light propagation. Additionally, the optical 

coefficients provided by different studies [46, 47] of the different structures encountered in 

patient brains show strong variations. It appears to be difficult to model real light propagation 

through heterogeneous structures using the optical coefficients measured from other brains. 

Nevertheless, the Monte-Carlo simulation remains the best alternative to reach an estimation 

of the light distribution. 

 

Regarding the speed gains of the GPU implementation, performance optimization leads to an 

acceleration of a factor of approximately 760 compared to the CPU version. One of the main 

drawbacks of the use of GPU technology is that each computing code is optimized to run on a 

specific GPU device. Thus, the optimization process of the GPU computing program is highly 

dependent on the type of GPU used during the development phase. Consequently, our Monte-

Carlo program is only optimized on an NVIDIA Quadro K620 card. To compare our 

performance with other GPU devices, a specific Monte-Carlo program should be developed 

and optimized for each individual device. 

Although it remains difficult to compare this value to the accelerations obtained in other 

studies [17, 42-53] due to different computing capacities and simulations, the acceleration 

provided by the Monte-Carlo method presented in this study is sufficient to enable use of the 

algorithm in routine clinical settings. 

 

Finally, the Monte-Carlo model presented here was validated using a device dedicated to 

intraoperative PDT, specifically a 70 mm long cylindrical diffuser located at the center of a 

balloon. The closeness of the results to the experimental data reinforce the validity of the 

Monte-Carlo algorithm. 

 

PDT dosimetry is a multifactor estimation used to compute impact on tissues. Predictive 

dosimetry includes computing the light, PS and oxygen distribution in biological tissues. 

Although it is highly time-consuming, the Monte-Carlo method remains the standard method 

for computing the propagation of light in heterogeneous media. Monitoring PDT treatment 

includes several features (PS fluorescence, detection of singlet oxygen) to improve the “PDT 
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dose” metric. Finally, a collaborative effort between biologists, chemists, physicists, and 

engineers will lead to a comprehensive definition of the PDT dose [58].  
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