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Optimized weak coupling of boundary element and finite element
methods for acoustic scattering

B. Caudron1,2,3, X. Antoine1 and C. Geuzaine2

Abstract

In this paper we present an optimized weak coupling of boundary element and finite element
methods to solve acoustic scattering problems. This weak coupling is formulated as a non-
overlapping Schwarz domain decomposition method, where the transmission conditions are
constructed through Padé localized approximations of the Dirichlet-to-Neumann map. The
performance of the resulting formulations is analyzed on several three-dimensional examples,
with both homogeneous and inhomogeneous scatterers.

1. Introduction

Acoustic scattering problems in the frequency domain have multiple applications in sci-
ence, engineering and medicine, from sonar to ultrasound imaging. Fundamentally, the
numerical solution of such problems is based on the discretization of the three-dimensional
Helmholtz equation in an unbounded homogeneous domain, but where the scatterer can be
inhomogeneous, i.e. with spatially-varying density and wave speed. The important charac-
teristic to be computed is often the far field response, e.g. through the calculation of the
Sonar Cross Section (SCS) that encapsulates the acoustic response of the scatterer.

Solving the Helmholtz equation in such configurations at high frequencies (when the
wavelength is small compared to the size of the scatterer) is a challenging problem. A
standard approach is to truncate the computational domain using Artificial Boundary Con-
ditions [1, 4, 20] or Perfectly Matched Layers [6, 8, 38], and to use e.g. the Finite Ele-
ment Method (FEM) to discretize the Helmholtz equation in the resulting bounded do-
main. The main advantage of FEM is its flexibility in dealing with complex media, in
particular for heterogeneous scatterers. Another approach is to couple FEM with a sur-
face integral equation set on the boundary of the scatterer [32], discretized e.g. using the
Boundary Element Method (BEM). The main advantage of BEM is its ability to accurately
deal with the unboundedness of the domain: the integral formulation provides an exact
representation of the exterior scattered field (through the Green’s function) unlike ABCs
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and PMLs. Moreover, advances in compression techniques like Hierarchical Matrices (H-
Matrices) [9, 25] or Fast Multipole Methods (FMM) [24] allow to alleviate the fact that
BEM naturally leads to dense matrices, whereas FEM yields sparse matrices. FEM-BEM
coupling [5, 11, 12, 15, 16, 23, 27, 29, 33, 39] thus combines the advantages of both methods
to solve complex acoustic scattering problems.

Classically, FEM-BEM coupling is constructed by coupling the variational volume for-
mulation and the surface integral formulation within a single equation [12, 15, 16, 23, 27,
29, 33, 39], leading to a so-called strong FEM-BEM coupling. While natural and easy to
set up, this approach however exhibits several drawbacks. First, the resulting system com-
bines dense and sparse blocks and is not directly amenable to efficient compression through
H-Matrices and FMM. Moreover, no robust preconditioner exists for iterative linear solvers
for the FEM-BEM coupling at high-frequencies [21, 28]. Finally, if two existing optimized
solvers for FEM and BEM already exist, implementing an efficient strong FEM-BEM cou-
pling is non trivial—or downright impossible.

As an alternative to strong FEM-BEM coupling, other FEM-BEM couplings have been
proposed [5, 11], which correspond concretely to Schwarz domain decomposition methods
iterating between the two domains, i.e. the scatterer and the outside domain. Conceptually,
constructing the FEM-BEM coupling as a domain decomposition method presents a major
advantage: it allows to only weakly couple the volume variational formulation and the surface
integral equation, each using e.g. an optimized code. From an industrial perspective, using
two independent solvers can also be very interesting: different partners can exchange only
interface data without sharing the underlying detailed models for each subproblem.

The robustness and the convergence rate of domain decomposition methods strongly de-
pends on the transmission conditions between the subdomains [17], the optimal transmission
operators being, for each subdomain, the Dirichlet-to-Neumann (DtN) maps correspond-
ing to the complementary subdomains [18]. The DtN operator being a nonlocal operator,
approximate local versions are rather used in practice. Recently, new accurate approxima-
tions of the DtN map have been proposed [2, 10], based on the Padé approximation of a
square-root operator. In the context of domain decomposition methods for FEM, these new
conditions led to a convergence rate that is almost independent of the frequency and mesh
size. In this paper, we derive optimized weak FEM-BEM coupling formulations based on
these transmission boundary conditions. We also propose a BEM-BEM coupling, which can
be advantageously used when the scatterer is homogeneous.

The paper is organized as follows. In Section 2, we define the transmission scattering
boundary-value problem under study. Section 3 is devoted to the derivation of the weak
coupling approach, while the formulations for the subproblems are developed in Section 4.
The Padé approximation of the DtN map is detailed in Section 5. The performance of the
resulting optimized weak BEM-BEM and FEM-BEM coupling formulations is analyzed on
several numerical examples in Section 6. Finally, we conclude in Section 7.
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2. The transmission scattering boundary-value problem

Let us consider Ω− as a three-dimensional bounded obstacle of R3, with boundary Γ :=
∂Ω−, and Ω+ := R3\Ω− as the associated exterior domain of propagation. The vector
n designates the outwardly directed unit normal vector to Ω−. We consider an incident
pressure wave, denoted by uinc, travelling into the unbounded domain Ω+, and satisfying
the exterior Helmholtz equation

∆uinc + k2
+uinc = 0 in Ω+.

The wave number k+ is real-valued assuming that Ω+ is homogeneous and non dissipative,
the incident wave field being a plane wave: uinc = e−ik+·x, with k+ = k+σinc and ‖σinc‖ = 1.
Hereabove, the inner hermitian product is defined by a · b and the associated norm is ‖a‖,
for two complex-valued vectors a and b in C3.

Let us now introduce the transmission problem that we want to solve: find the acoustic
field u solution to

div(ρ∇u) + ρk2
−u = 0 in Ω−, (1a)

∆u+ k2
+u = 0 in Ω+, (1b)

∂ru− ik+u = O
r→+∞

(r−2), (1c)

γ−Du = γ+
Du+ γ+

Duinc on Γ, (1d)
γ−n (ρ∇u) = γ+

Nu+ γ+
Nuinc on Γ, (1e)

where the relative density ρ is defined as ρ = ρ+/ρ−, with ρ± the density in the domain
Ω±, and where the interior wave number k− in Ω−, as well as ρ−, can be space-dependent
functions of x to account for inhomogeneous materials in Ω−. The operators div and ∇
denote the divergence and gradient operators, respectively, and the Laplacian is defined by
∆ := div∇. The first equation of the system is called the Bergmann equation [7] while
the second one is the exterior Helmholtz equation. The third equation is the Sommerfeld
radiation condition at infinity, which also writes

lim
r→∞ r(∂ru− ik+u) = 0,

where r is the radial variable. The two last equations, called continuity equations, involve
the Dirichlet and Neumann trace operators, i.e. γ±D and γ±N , for the domains Ω±. In addition,
we define γ±n u = u|Γ · n, for a smooth enough vector field u ∈ C3.

3. The weak coupling approach

When solving the transmission problem (1), a system of two coupled equations has to
be written equivalently and is then numerically discretized. These formulations involve
integral or/and volume equations, which are then discretized thanks to boundary (BEM)
or/and finite element methods (FEM) according to the situation. In this way a linear system
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of two equations with two unknowns has to be solved: this coupling between the interior
and exterior problems is usually referred to as strong coupling.

We propose here an alternative approach which consists in decoupling the two equations
through an iterative process that exchanges suitable information at the interface Γ between
the interior and exterior domains. Therefore, our point of view is related to a domain decom-
position method without overlap, with two subdomains [37]. For Helmholtz-type problems,
it is well-known that considering a decomposition related to the continuity boundary condi-
tions (1d)-(1e) can lead to a divergent algorithm, as an eigenvector of the Laplace operator
can exist in the interior subdomain which satisfies the boundary conditions [30]. A solution
to get a convergent iterative method is to write a Schwarz domain decomposition method
between the interior and exterior domains of (1) using transmission conditions combining
Dirichlet and Neumann data [30]. In their simplest form, the transmission conditions are
of Fourier-Robin type with constant coefficients [17]. More advanced conditions, related
to approximations of the Dirichlet-to-Neumann (DtN) operators for (1), lead to improved
convergence properties [10]–which is crucial in the context of this work as aim to minimizing
of the number of calls to the resolution procedure for the interior and exterior problems.
The resulting methods are called optimized Schwarz non-overlapping domain decomposition
methods [10, 22].

3.1. Transmission and resolution operators
To reformulate the boundary conditions (1d)-(1e), let us introduce two transmission

operators T± : H 1
2 (Γ) → H− 1

2 (Γ). From now on, we assume that T− − T+ is injective. The
transmission conditions (1d)-(1e) are then equivalent to the following transmission boundary
conditions {

γ−n (ρ∇u) + T−γ
−
Du = γ+

Nu+ T−γ
+
Du+ γ+

Nuinc + T−γ
+
Duinc,

γ+
Nu+ T+γ

+
Du = γ−n (ρ∇u) + T+γ

−
Du− γ+

Nuinc − T+γ
+
Duinc.

(2)

Let us remark that if the transmission boundary conditions (1d)-(1e) are satisfied, then this
implies that we also have (2). Conversely, the injectivity of T−− T+ proves the equivalence.
Usual domain decomposition methods assume that T+ = −T− (see e.g. [5, 10, 17]). Here,
we nevertheless consider that the two operators may be different to get a more general
framework but also to gain in flexibility. As previously mentioned, rewriting the initial
problem (1) through well-adapted transmission boundary conditions is required to design
a converging domain decomposition method. In particular, the conditioning of the method
is directly impacted by the choice of the transmission operators. In this paper, we use an
iterative Krylov subspace method (GMRES) [34].

To obtain the new formulation of the diffraction-transmission problem (1), we need a
few definitions. First, we introduce the two following trace operators

B− = γ−n (ρ∇) + T−γ
−
D, B+ = γ+

N + T+γ
+
D,

from which we define the new surface fields g± = B±u. Even if this will only appear later, the
domain decomposition method allows to interpret g− and g+ as some transmitted quantities
from Ω+ to Ω− and from Ω− to Ω+. Since we reformulate the diffraction-transmission
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problem (1), we also need to introduce some resolution operators, denoted by R− and R+,
and defined by: ∀g ∈ H− 1

2 (Γ), R±g = γ±Du±, the functions u− ∈ H1(Ω−) and u+ ∈ H1
loc(Ω+)

being the solutions to the respective boundary-value problems

div
(
ρ∇u−

)
+ ρk2

−u− = 0 in Ω−, B−u− = g, (3)

and
∆u+ + k2

+u+ = 0 in Ω+, B+u+ = g, ∂ru+ − ik+u+ = O( 1
r2 ). (4)

In practice, the resolution operators are the continuous versions of the corresponding pre-
existing solvers related to the interior and exterior problems. They are well-defined if the
problems (3) and (4) are well-posed. This clearly depends on the choice of the transmission
operators. From now on, we assume that this is indeed the case. Let us remark that (3)
and (4) correspond to the subproblems associated to the domain decomposition method for
the weak coupling.

3.2. Weak coupling formulation
We can now introduce the weak coupling formulation of (1).

Proposition 3.1. If u is solution to the diffraction-transmission problem (1), then g− and
g+ are solutions to

(Id− Sπ)
(
g−
g+

)
=
(
γ+
Nuinc + T−γ

+
Duinc

−γ+
Nuinc − T+γ

+
Duinc

)
, (5)

the operator Sπ being defined from S− and S+ by

Sπ =
(

0 S+
S− 0

)
, S− = Id− (T− − T+)R−, S+ = Id+ (T− − T+)R+.

Proof The new transmission conditions (2) can be rewritten as

B−u = B+u+ (T− − T+)γ+
Du+ γ+

Nuinc + T−γ
+
Duinc,

B+u = B−u− (T− − T+)γ−Du− γ+
Nuinc − T+γ

+
Duinc.

Since u is solution to

div
(
ρ∇u

)
+ ρk2

−u = 0 in Ω−, B−u = g−,

and
∆u+ k2

+u = 0 in Ω+, B+u = g+, ∂ru− ik+u = O
(

1
r2

)
,

we deduce that: γ±Du = R±g±. Then, one gets

g− = g+ + (T− − T+)R+g+ + γ+
Nuinc + T−γ

+
Duinc,

g+ = g− − (T− − T+)R−g− − γ+
Nuinc − T+γ

+
Duinc.

Finally, it is sufficient to check that the new transmission boundary conditions (2) are
satisfied, which can be easily proved. �
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As said before, a GMRES solver will be applied to the weak coupling formulation (5).
Clearly, the rate of convergence of the iterative method strongly depends on the choice of the
transmission operators. Even worse, a bad choice of the transmission operator could yield a
divergence of the algorithm. We propose here some optimal transmission operators leading
to a trivial resolution of the weak coupling formulation (5). This provides a guideline for
designing well-adapted transmission operators for practical computations. Concretely, the
optimal transmission operators correspond to DtN operators.

Let us introduce the interior (respectively exterior) DtN operator Λ−,k,σ (respectively
Λ+,k) associated to the problem (3) (respectively (4)). We then have

(Λ−,k−,ρ + T−)R− = Id, (Λ+,k+ + T+)R+ = Id,

leading to
T− = −Λ+,k+ ⇒ S+ = 0,
T+ = −Λ−,k−,ρ ⇒ S− = 0.

This result is particularly interesting since suitably choosing one of the transmission opera-
tors T± implies that Sπ is null, leading to a trivial resolution of the weak coupling (5). In
fact, this result is even deeper. Indeed, let us assume that the transmission operators are
such that S− = 0 or S+ = 0. Then the operator Sπ is non null. Nevertheless, it is nilpotent
and its spectrum is reduced to {0}. As a consequence, Id− Sπ is a priori well-adapted to a
GMRES procedure since its eigenvalues cluster around (1, 0) in the complex plane, providing
then a fast convergence rate of the method.

4. Formulations for solving the subproblems

We now present the formulations used for solving both the interior (3) and exterior (4)
problems. We introduce the general formulations without specifying yet the transmission
operators. This generic approach allows us to state a few theoretical results concerning the
related formulations. The transmission operators used in practice as well as the associated
formulations are presented in section 5.

4.1. Basic results about integral representations for the Helmholtz equation
For k ∈ R∗+, we denote by Gk the three-dimensional Green’s function defined by

∀x ∈ R3\{0}, Gk(x) = eik‖x‖

4π‖x‖ .

Let us introduce the surface single- (Sk) and double-layer (Dk) potentials, the adjoint double-
layer (D∗k) operator and the hypersingular (Nk) operator, as continuously defined between
the corresponding spaces following

Sk : H− 1
2 (Γ)
p

→
7→

H 1
2 (Γ)
Skp

,
Dk : H 1

2 (Γ)
p

→
7→

H 1
2 (Γ)
Dkp

D∗k : H− 1
2 (Γ)
p

→
7→

H− 1
2 (Γ)

D∗kp
,
Nk : H 1

2 (Γ)
p

→
7→

H− 1
2 (Γ)
Nkp
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where ∀x ∈ Γ. We have

Skp(x) =
∫

Γ
Gk(x− y)p(y) dy, Dkp(x) =

∫
Γ
∂n(y)Gk(x− y)p(y) dy,

D∗kp(x) =
∫

Γ
∂n(x)Gk(x− y)p(y) dy, Nkp(x) =

∫
Γ
∂n(x)∂n(y)Gk(x− y)p(y) dy.

Trace relations [14] can be obtained for these integral operators over Γ. Finally, setting
[γDu] = γ−Du− γ+

Du and [γNu] = γ−Nu− γ+
Nu, we have

∀x ∈ Ω− ∪ Ω+, u(x) =
∫

Γ
Gk(x− y)[γNu](y)− ∂n(y)Gk(x− y)[γDu](y)dy.

4.2. Exterior problem formulations
Let us start by introducing an equivalent integral equation formulation for the exterior

problem (4). This formulation corresponds to a generalization of the one proposed in [3] for
the electromagnetic scattering problem with impedance boundary condition.

Proposition 4.1. Let g ∈ H− 1
2 (Γ) and u ∈ H1

loc(Ω+) such that:

∆u+ k2
+u = 0 in Ω+ , γ+

Nu+ T+γ
+
Du = g , ∂ru− ik+u = O

(
1
r2

)
.

We then have
1
2T
−1
+ γ+

Nu+Dk+γ
+
Du− Sk+γ

+
Nu = 1

2T
−1
+ g,

1
2T+γ

+
Du−D∗k+γ

+
Nu+Nk+γ

+
Du = 1

2g.
(6)

Conversely, if g ∈ H− 1
2 (Γ), p ∈ H 1

2 (Γ) and q ∈ H− 1
2 (Γ) are such that

1
2T
−1
+ q +Dk+p− Sk+q = 1

2T
−1
+ g,

1
2T+p−D∗k+q +Nk+p = 1

2g,

then the function u ∈ H1
loc(Ω+) defined by u = −Sk+q +Dk+p in Ω+ satisfies

∆u+ k2
+u = 0 in Ω+, γ+

Nu+ T+γ
+
Du = g, ∂ru− ik+u = O

(
1
r2

)
.

Proof Let u be the solution to the exterior problem (4). Extending u by 0 in Ω−, one gets
the following integral representation formula

u = −Sk+γ
+
Nu+Dk+γ

+
Du in Ω+.

By taking the Dirichlet and Neumann traces of this relation, we obtain
1
2γ

+
Du−Dk+γ

+
Du+ Sk+γ

+
Nu = 0, 1

2γ
+
Nu+D∗k+γ

+
Nu−Nk+γ

+
Du = 0.

Finally, we use the boundary condition to conclude.
To prove the equivalence, it is sufficient to remark that the Dirichlet and Neumann traces

of u are given by

γ+
Du = −Sk+q + 1

2p+Dk+p, γ+
Nu = 1

2q −D
∗
k+q +Nk+p.

A calculation then shows that the boundary condition is fulfilled. �
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In the present paper, the integral formulation (6) is written in a variational way and next
is discretized thanks to the boundary element method. However, alternative approximations
could also be considered as for example based on collocation techniques.

4.3. Interior problem formulations
The formulation used for the interior problem (3) depends on the property that the

obstacle is homogeneous or heterogeneous. For a homogeneous scatterer, we can solve the
interior problem (3) by using an integral equation discretized by a boundary element method
(weak BEM-BEM coupling) or the finite element discretization of a volume variational for-
mulation (weak FEM-BEM coupling). In the case of an inhomogeneous obstacle, a volume
finite element discretization of the interior problem (3) is needed.

For a weak BEM-BEM coupling, the integral formulation for (3) is similar to the one for
the exterior problem (4).

Proposition 4.2. A system of integral equations for solving (3) is

1
2ρT

−1
− γ−Nu−Dk−γ

−
Du+ Sk−γ

−
Nu = 1

2T
−1
− g,

1
2ρT−γ

−
Du+D∗k−γ

−
Nu−Nk−γ

−
Du = 1

2ρg. (7)

For the numerical simulations, the variational form of (7) is again used and discretized
thanks to the BEM.

To derive a weak FEM-BEM coupling, the interior problem (3) is solved by a standard
variational formulation.

Proposition 4.3. The weak formulation of the interior problem (3) is

∀v ∈ H1(Ω−),
∫

Ω−
ρ∇u ·∇v dΩ− −

∫
Ω−
ρk2
−uv dΩ− + 〈T−γ−Du; γ−Dv〉 = 〈g; γ−Dv〉. (8)

The discretization of this variational formulation is done using second-order hierarchical
finite elements [36] in order to achieve a better accuracy (by reducing the pollution error)
in the high frequency regime compared to linear finite element methods [26].

4.4. Conflicts for the choice of the optimal operators
Let us recall that for the weak coupling (5), the optimal operators are given by

T− = −Λ+,k+ , T+ = −Λ−,k−,ρ. (9)

However, for the subproblems (3) and (4), the optimal operators are

T− = Λ−,k−,ρ, T− = −ρΛ+,k− , T+ = −Λ−,k+,1, T+ = Λ+,k+ ; (10)

the operators for the interior problem (3) being indeed only optimal if the weak coupling
(5) is of type BEM-BEM. We therefore observe a conflict appearing for the choice of the
optimal operators.
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Let us recall that our first objective is to precondition the weak coupling (5). This
will be illustrated later but the transmission operators (10) do not reach this objective as
efficiently as for the transmission operators (9). In addition, the transmission operators
(10) are interesting when one tries to iteratively solve the subproblems (3) and (4) through
integral equations, for example by a Krylov solver. In this paper, we only consider the
direct solution of these linear systems. Consequently, the transmission operators (9) are
more adapted.

5. Approximations of the DtN map

Since the DtN operators are usually not available for a general shape Γ, and even if
their evaluation would be computationally expensive, we propose to rather use well-suited
approximations which were proven to be accurate and efficient [10] for other applications,
most particularly in the high frequency regime.

5.1. Nonlocal approximation of the DtN operators
A well-adapted approximate exterior DtN operator derived in [2] is given by the square-

root operator

Λsq
+,k = ik

√√√√Id+ divΓ

(
1
k2
ε

∇Γ

)
, (11)

with kε = k+ iε. The parameter ε > 0 is optimized thanks to the expression [2] ε = 0.4k 1
3κ

2
3 ,

where κ is the local mean curvature of Γ. Here, we simplify this choice by replacing κ by the
inverse of the radius of the smallest sphere containing Ω−. In (11), the operators ∇Γ and
divΓ designate the surface gradient and divergence of a surface field, respectively. Let us
remark that the definition (11) also includes a symmetrical Helmholtz-type operator which is
well-adapted to a surface finite element approximation [2]. We will see later that the operator
Λsq

+,k is well-suited to improve the convergence rate of the weak coupling formulation (5).
Similarly, we introduce the operator Λsq

+,k for the interior problem

Λsq
−,k,ρ = −ikρ

√√√√Id+ divΓ

(
1
k2
ε

∇Γ

)
. (12)

Both operators are nonlocal but they nevertheless can numerically be computed almost
locally thanks to Padé approximants (see subsection 5.2). If k and ρ are spatially variable,
we will extend the above operators formally, which can be justified thanks to the theory of
pseudodifferential operators and the associated microlocal analysis techniques [2].

As said above, the operators can be simulated locally thanks to Padé approximations.
This is expected for the exterior operator Λsq

+,k, most particularly for a convex domain and
for the high frequency regime since the rays are locally scattered. However, for the interior
problem, the transmitted waves have a nonlocal behavior since multiple scattering effects
must be included. In practice, this partially limits the quality of Λsq

−,k,ρ. For k and ρ
constant, we propose to build a new nonlocal approximation as follows. The starting point
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is to remark that Λ−,k,ρ = ρΛ−,k,1 and that Λ−,k,1 and Λ+,k are linked by an integral formula.
More precisely, we have the following proposition [13].

Proposition 5.1. If k2 is not an eigenvalue of the interior Dirichlet Laplacian boundary-
value problem, we then have

Sk(Λ−,k,1 − Λ+,k) = Id.

As a consequence, one gets the following relation

Λ−,k,1 = S−1
k + Λ+,k.

Concretely, this result shows that we can easily build some approximations of Λ−,k,ρ from
approximations of Λ+,k. It is then natural to use the square-root approximation of Λ+,k to
construct the following integral operator approximation of Λ−,k,ρ, denoted by Λint

−,k,ρ,

Λint
−,k,ρ = ρS−1

k + ikρ

√√√√Id+ divΓ

(
1
k2
ε

∇Γ

)
. (13)

For variable k and ρ, the relation Λ−,k,ρ = ρΛ−,k,1 is no longer fulfilled, limiting the above
approach to k and ρ constant. Since the operator Λint

−,k,ρ is defined through an integral op-
erator, its evaluation requires a larger computational cost and an increased memory storage
which are also a key parameter for choosing the transmission operator. Let us finally re-
mark that S−1

k could be inverted explicitly up to a compact operator thanks to the Calderón
relations, i.e. by using −4Nk as an approximation. Nevertheless, it appears that it strongly
deteriorates the quality of the approximation when used in practice.

5.2. Local approximation of the transmission operators
The operator Λsq

+,k can first be approximated by the following zeroth-order Taylor ap-
proximation

Λ0
+,k = ikId. (14)

This approximation is valid as long as the wavenumber k is large enough, but should nev-
ertheless be less accurate as Λsq

+,k. Similarly, one gets the interior approximation of order
zero

Λ0
−,k,ρ = −ikρId. (15)

To increase the accuracy of the approximate DtN map while keeping the localization
property, one could alternatively use suitable rational approximations [2, 10] of the square-
root. More precisely, the Np-th order Padé approximation of the square-root with rotating
branch-cut of angle θp is given by

∀z ∈ C,
{
R(z) > −1
∀j ∈ {1; · · · ;Np} z 6= −B−1

j
⇒ (1 + z) 1

2 ≈ R0 −
Np∑
j=1

Aj
Bj(1 +Bjz) ,

10



with

R0 = C0 +
Np∑
j=1

Aj
Bj

, Aj = e−i
θp
2 aj(

1 + bj(e−iθp − 1)
)2 , Bj = e−iθpbj

1 + bj(e−iθp − 1) ,

aj = 2
2Np + 1 sin2

(
jπ

2Np + 1

)
, bj = cos2

(
jπ

2Np + 1

)
, C0 = ei

θp
2

1+
Np∑
j=1

aj(e−iθp − 1)
1 + bj(e−iθp − 1)

.
Based on this approximation, we will consider the following formal evaluations of the square-
root operator√√√√Id+ divΓ

(
1
k2
ε

∇Γ

)
≈ R0Id−

Np∑
j=1

Aj
Bj

[
Id+BjdivΓ

(
1
k2
ε

∇Γ

)]−1

. (16)

As a consequence, the square-root operator appearing in the approximations Λsq
+,k, Λsq

−,k,ρ and
Λint
−,k,ρ of the DtN operator can be evaluated via (16), leading to new approximations of the

DtN operator. They are called Padé approximations and are designated by Λsq,Np,θp
+,k , Λsq,Np,θp

−,k,ρ
and Λint,Np,θp

−,k,ρ . These new approximations are much easier to use since their numerical
evaluation can be obtained at low computational cost and memory storage. Indeed, it
requires the solution to Np complex-valued dissipative Helmholtz-type PDEs on Γ [10].
After discretization by a surface finite element method, Np indefinite complex-valued linear
systems then have to be solved.

6. Numerical results

For all the numerical tests, BEMPP [35] has been used to build the matrices approxi-
mating the integral operators and GetDP [19] to obtain the finite element matrices. The
weak iterative coupling procedure, in particular GMRES, has been implemented in Mat-
lab. Four scatterer geometries are considered: the unit sphere, the ellipsoid of equation
x2

1.52 + y2

0.52 + z2

0.52 = 1, a cube centered at the origin and of side-length 2, and the same cube
with a reentrant corner (see Fig. 1). For all the simulations, an incident plane wave with
incidence σinc = (−1, 0, 0) has been chosen. In the following, we also evaluate the far-field
solution through the Sonar Cross Section (SCS) defined by

SCS(σ,σinc) := 10 log10(4π lim
r→+∞

r2 |u(r,σ)|2
|uinc|2

) (dB).

6.1. Weak BEM-BEM coupling
In the case of the weak BEM-BEM coupling, both the exterior and the interior problems,

as well as the weak coupling unknowns, are discretized using P1 triangular elements. In
order to assess the numerical properties of the weak coupling, we analyze the influence of
the Padé approximation, the choice of the pair of transmission operators, as well as the
mesh refinement on the convergence rate of the iterative linear solver. In addition, we also
evaluate the link between the tolerance of the GMRES with the accuracy of the SCS.
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Figure 1: Scatterer geometries: sphere, ellipsoid, cube and cube with reentrant corner.

Influence of the Padé approximation. We present in Fig. 2 the evolution of the number of
iterations of GMRES for the weak BEM-BEM coupling in terms of the interior wavenumber
when the transmission operators correspond to the approximations Λsq,Np,θp

+,k+ and Λsq,Np,θp
−,k−,ρ of

the DtN operator. In this figure, the scatterer is the unit sphere, k+ = 10, ρ = 5 and several
pairs of parameters (Np; θp) are considered. The GMRES tolerance is set to 10−6. In the
first graph, the value of θp is fixed to π

2 . In the second, Np is set to 4. The mesh size h is
equal to one fifth of the smallest wavelength in the diffraction-transmission problem, i.e.:

h = 1
5 min(λ−;λ+) with λ± = 2π

k±
.
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Figure 2: Influence of parameters Np and θp on the convergence of the weak BEM-BEM coupling.

Results from Fig. 2 indicate that it is sufficient to consider 4 terms in the Padé approxi-
mations to obtain a good GMRES convergence for the weak BEM-BEM coupling. Moreover,
the optimal value for the rotation of the branch cut is π

2 . Consequently, from now on we
will always set Np = 4 and θp = π

2 .
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Influence of the transmission operators. Fig. 3 shows the evolution of the number of GMRES
iterations vs. the interior wavenumber. For each scatterer, six curves associated each to a
pair of transmission operators (T−;T+) are plotted. The transmission operators correspond
to the approximations Λsq,Np,θp

+,k+ , Λ0
+,k+ , Λint,Np,θp

−,k−,ρ , Λsq,Np,θp
−,k−,ρ and Λ0

−,k−,ρ of the DtN operators.
The physical parameters k−, k+ and ρ depend on the scatterer and are indicated on the
figure. The mesh size and the GMRES tolerance are set as in the previous paragraph.

Results from Fig. 3 suggest that the weak BEM-BEM coupling should be based on the
following pairs of transmission operators:(

Λsq,Np,θp
+,k+ ; Λsq,Np,θp

−,k−,ρ
)
,

(
Λsq,Np,θp

+,k+ ; Λ0
−,k−,ρ

)
, (17)

in order to be robust and well-suited for large wavenumbers. Indeed, while these pairs
are not optimal for all the scatterer geometries, they allow to achieve excellent GMRES
convergence for all the considered objects. Moreover, while they might not be optimal for
some geometries (sphere and ellipsoid), the convergence is still very good. This is linked
to the fact that Λsq,Np,θp

+,k+ is an accurate approximation of Λ+,k+ , which ensures the quasi-
nilpotence of Sπ. In effect, Λsq,Np,θp

+,k+ compensates the fact that Λsq,Np,θp
−,k−,ρ and Λ0

−,k−,ρ are quite
poor approximations Λ−,k−,ρ.

It is interesting to notice that convergences for the pair (17) are quasi-identical when
the wavenumber is large. This is due to the fact that the following approximation becomes
more accurate as k− increases:

Λsq
−,k−,ρ ≈ Λ0

−,k−,ρ.

When the interior wavenumber is small however, Λsq,Np,θp
−,k−,ρ leads to better results than Λ0

−,k−,ρ.
In practice, one could thus envision the implementation of the weak BEM-BEM coupling
using two pairs of transmission operators: one could choose Λsq,Np,θp

−,k−,ρ as exterior transmission
operator when the interior wavenumber is small to moderate; and replace Λsq,Np,θp

−,k−,ρ by Λ0
−,k−,ρ

for large interior wavenumbers. The operator pairs (17) present another advantage that
makes them particularly well suited for high-frequency calculations: they lead to the lowest
dependency of the GMRES iteration count as the interior wavenumber increases.

The increase in the number of iterations depends on the scatterer geometry: it is very
small for the sphere, slightly larger for the ellipsoid and significant for the cube and the
cube with the reentrant corner. This is expected, as the sphere is the most favorable object
for Λsq

+,k+ to be a good approximation of Λ+,k+ : it is a smooth convex object with constant
curvature. The ellipsoid is smooth and convex but with non-constant curvature, while the
cube is convex but non-smooth. The cube with the reentrant corner is neither smooth nor
convex. Novel high-order absorbing boundary conditions for polyhedral domains [31] could
be used to improve this behavior: this is the subject of current work.

Let us now comment the results obtained with the following pairs of transmission oper-
ators: (

Λsq,Np,θp
+,k+ ; Λint,Np,θp

−,k−,ρ
)
,

(
Λ0

+,k+ ; Λint,Np,θp
−,k−,ρ

)
. (18)

For the sphere, they lead to good convergence of the weak BEM-BEM coupling. The conver-
gence for

(
Λ0

+,k+ ; Λint,Np,θp
−,k−,ρ

)
allows to confirm that Λint

−,k−,ρ is a good approximation of Λ−,k−,ρ.
13
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Figure 3: Number of GMRES iterations for the weak BEM-BEM coupling vs. the interior wavenumber.
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Indeed, Λ0
+,k+ is not a sufficiently good approximation of Λ+,k+ to make Sπ quasi-nilpotent.

For the ellipsoid, the cube and the cube with reentrant corner, the results obtained with the
pair (18) are not as convincing. (Note that the maximum number of GMRES iterations was
set to 50, which explains the plateaus in the curves.)

In order to explain the results obtained for the ellipsoid, the cube and the cube with the
reentrant corner, recall that the approximation Λint

−,k−,ρ is constructed as follows:

Λint
−,k−,ρ = ρ

(
S−1
k− + Λsq

+,k−

)
.

Moreover, we know that the quality of Λint
−,k−,ρ as an approximation of Λ−,k−,ρ is directly linked

to the quality of Λsq
+,k− as an approximation of Λ+,k− . For the cube and the cube with reen-

trant corner, we have established that Λsq
+,k− is not a good approximation of Λ+,k− . It is thus

normal that Λint,Np,θp
−,k−,ρ does not approximate Λ−,k−,ρ very accurately. It is however surprising

that the pair
(
Λsq,Np,θp

+,k+ ; Λint,Np,θp
−,k−,ρ

)
leads to a worse convergence than

(
Λsq,Np,θp

+,k+ ; Λsq,Np,θp
−,k−,ρ

)
.

This suggests that the quality of the approximations of Λ−,k−,ρ obtained from

Λ−,k−,ρ = ρ
(
S−1
k− + Λ+,k−

)
,

strongly depends on the quality of the approximation used for Λ+,k− . More precisely, a
small error in the approximation of Λ+,k− leads to a much larger error in the approximation
of Λ−,k−,ρ. Finally, for the ellipsoid we have already mentioned that Λsq

+,k− is a suitable
approximation of Λ+,k− , albeit slightly worse than for the sphere. The results obtained for
the pair

(
Λ0

+,k+ ; Λint,Np,θp
−,k−,ρ

)
seem to indicate that this is sufficient to degrade Λint

−,k−,ρ. However,
this degradation is quite moderate since the pair

(
Λsq,Np,θp

+,k+ ; Λint,Np,θp
−,k−,ρ

)
gives the best GMRES

convergence. Concretely, Λsq
+,k+ allows to compensate the degradation of Λint

−,k−,ρ.
Finally, the transmission condition pairs

(Λ0
+,k+ ; Λ0

−,k−,ρ), (Λ0
+,k+ ; Λsq,Np,θp

−,k−,ρ ),

are not well-suited for the weak BEM-BEM coupling in the high-frequency case. Indeed,
the number of GMRES iterations strongly increases with this pair for all geometries. This
is due to the fact that Λ0

+,k+ , Λ0
−,k−,ρ and Λsq

−,k−,ρ are not accurate approximations of Λ+,k+

and Λ−,k−,ρ.
Fig. 4 shows the GMRES convergence history for the weak BEM-BEM coupling. Con-

vergence histories are useful to estimate the number of GMRES iterations necessary to reach
a prescribed relative residual. For example, for the following transmission operator pairs:(

Λsq,Np,θp
+,k+ ; Λsq,Np,θp

−,k−,ρ
)
,

(
Λsq,Np,θp

+,k+ ; Λ0
−,k−,ρ

)
,

the convergence rate seems to be identical for each iteration, while for(
Λsq,Np,θp

+,k+ ; Λint,Np,θp
−,k−,ρ

)
,

(
Λ0

+,k+ ; Λint,Np,θp
−,k−,ρ

)
,

the rate strongly decreases after the first iteration, most dramatically for the ellipsoid, the
cube and the cube with reentrant corner.
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Figure 4: GMRES convergence histories for the weak BEM-BEM coupling.
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Influence of mesh refinement. Fig. 5 shows the evolution of the number of GMRES iterations
in terms of mesh refinement, quantified in terms of the number of points per wavelength nλ.
More precisely, the mesh size is given by:

h = 1
nλ

min(λ−;λ+) with λ± = 2π
k±
.

For the following pairs of transmission operators(
Λsq,Np,θp

+,k+ ; Λsq,Np,θp
−,k−,ρ

)
,

(
Λsq,Np,θp

+,k+ ; Λint,Np,θp
−,k−,ρ

)
, (Λ0

+,k+ ; Λsq,Np,θp
−,k−,ρ ),

(
Λ0

+,k+ ; Λint,Np,θp
−,k−,ρ

)
,

mesh refinement does not significantly degrade the GMRES convergence, while convergence
clearly deteriorates with the pairs:(

Λsq,Np,θp
+,k+ ; Λ0

−,k−,ρ
)
, (Λ0

+,k+ ; Λ0
−,k−,ρ).

As a consequence, to construct a robust weak BEM-BEM coupling, it seems preferable to
avoid “mixing” transmission operators(

Λsq,Np,θp
+,k+ ; Λsq,Np,θp

−,k−,ρ
)
,

(
Λsq,Np,θp

+,k+ ; Λ0
−,k−,ρ

)
,

and limit the choice to the following pair of transmission operators:(
Λsq,Np,θp

+,k+ ; Λsq,Np,θp
−,k−,ρ

)
.

Influence of the GMRES tolerance. Figures 6 and 7 show the bistatic SCS for the sphere,
the ellipsoid, the cube and the cube with reentrant corner obtained with the recommended
pair of transmission operators: (

Λsq,Np,θp
+,k+ ; Λsq,Np,θp

−,k−,ρ
)
.

For each considered geometry, two graphs are provided. The first represents the evolution of
the bistatic SCS in the z = 0 plane, the polar angle varying from 0◦ to 360◦ with a GMRES
tolerance equal to 10−4. The second graph presents bistatic SCS curves on small angular
ranges, obtained with different GMRES tolerances. As expected, the results confirm that
the SCS converges when the GMRES tolerance decreases. More importantly, the results
show that the GMRES tolerance should not exceed 10−3 to correctly estimate the SCS. In
view of the GMRES convergence histories presented in Fig. 4, this allows us to conclude
that sufficient accuracy on the SCS can be achieved for all the considered geometries with
between 5 and 10 GMRES iterations—a very promising results for the engineering usefulness
of the proposed weak coupling strategy.

6.2. Weak FEM-BEM coupling
For the weak FEM-BEM coupling, we use again P1 triangular finite elements for BEM

and the weak coupling unknowns, and hierarchical second-order elements for FEM. The
coupling between the second-order and first-order unknowns is done naturally thanks to the
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Figure 5: Number of GMRES iterations for the weak BEM-BEM coupling vs. mesh refinement.
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hierarchical basis, by setting to zero the edge degrees of freedom of the FEM unknowns on
the coupling interface Γ. We restrict our study to the inhomogeneous case to validate the
optimized FEM-BEM formulation. The four scatterers are the same as for the BEM-BEM
coupling. However, we consider k− and ρ as the functions given by

k−(x) = k−,0e
−‖x‖2

, ρ(x) = 2ρ0e
− ln 2 ‖x‖

2

r2max ,

where rmax is the radius of the scatterer, i.e. rmax = maxx∈Ω− ‖x‖. Concerning the sphere,
the ellipsoid and the cubes, rmax is respectively equal to 1, 1.5 and

√
3. In addition, ρ is

equal to 2ρ0 at the origin and to ρ0 for the points of Ω− which are further from the origin,
and k−,0 and 2ρ0 correspond to the maximal values of the functions k− and ρ, respectively.

Influence of the transmission operators. In Figure 8, we report the number of GMRES
iterations required for solving the weak FEM-BEM coupling vs. k−,0. The GMRES tolerance
is fixed to 10−6 and the meshsize is one fifth of the smallest wavelength, i.e.

h = 1
5 min(λ−;λ+) with λ− = 2π

max(k−) = 2π
k−,0

, λ+ = 2π
k+
.

The results are in accordance with the ones for the homogeneous case solved through the
optimized weak BEM-BEM coupling. The best convergence rate is obtained for the pair of
transmission operators (

Λsq,Np,θp
+,k+ ; Λsq,Np,θp

−,k−,ρ
)
.

Let us remark that, when the interior wavenumber is larger, the curves associated with the
pairs of transmission operators(

Λsq,Np,θp
+,k+ ; Λsq,Np,θp

−,k−,ρ
)
,

(
Λsq,Np,θp

+,k+ ; Λ0
−,k−,ρ

)
,

are much more distant from each other than for the weak BEM-BEM coupling. Indeed, for
example for the sphere, the value of k− on Γ is given by k−,0e−1 ≈ 0.37k−,0, which is too
small to have an accurate approximation

Λsq,Np,θp
−,k−,ρ ≈ Λ0

−,k−,ρ.

In the previous section, we have observed that, for some pairs of transmission operators, the
number of GMRES iterations for solving the weak BEM-BEM coupling significantly increases
with respect to the interior wave number. This is weaker here on Figure 8. However, this is
probably more related to our specific test case than to a general situation. As an informal
remark, it seems that the convergence rate of the GMRES is much more sensitive to the
values of k− on Γ than globally in Ω−.

Influence of mesh refinement. Figure 9 presents the effect of the mesh refinement over the
number of GMRES iterations (with tolerance 10−6) for the weak FEM-BEM coupling. The
meshsize is defined by the number of points per wavelength following

h = 1
nλ

min(λ−;λ+) with λ− = 2π
max(k−) = 2π

k−,0
, λ+ = 2π

k+
.
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Figure 8: Number of GMRES iterations for the weak FEM-BEM coupling vs. the interior wavenumber.
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Conversely to the case of the weak BEM-BEM coupling, the number of iterations varies
more with the mesh refinement when using the pair of transmission operators(

Λsq,Np,θp
+,k+ ; Λsq,Np,θp

−,k−,ρ
)
.

This sensitivity is probably due to the fact that the quality of the approximation of Λ−,k−,ρ
by Λsq,Np,θp

−,k−,ρ deteriorates for variable k− and ρ. Nevertheless, this should not be too much
penalizing in a practical computation.

Influence of the GMRES tolerance. To end, Figures 10 and 11 report the SCS obtained by
the weak FEM-BEM coupling and illustrate the accuracy vs. the GMRES tolerance. They
are obtained by fixing nλ = 5 for the pair of transmission operators(

Λsq,Np,θp
+,k+ ; Λsq,Np,θp

−,k−,ρ
)
.

These results show that the tolerance of the FEM-BEM coupling, similarly to the BEM-BEM
case, must be smaller than 10−3 for an accurate SCS computation.

7. Conclusion

In this paper, we have presented an optimized weak coupling of boundary element and
finite element methods to solve acoustic scattering problems. The weak coupling was for-
mulated as a non-overlapping Schwarz domain decomposition method, where the transmis-
sion conditions are constructed through Padé localized approximations of the Dirichlet-
to-Neumann map. Several choices of transmission conditions were analyzed on several
three-dimensional examples, highlighting the potential of the proposed approach for high-
frequency scattering simulations. The extension to electromagnetic scattering is currently
being developed.
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