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Abstract. According to the Church-Turing Thesis, effectively calculable functions are func-
tions computable by a Turing machine. Models that compute these functions are called Turing-
complete. For example, we know that common imperative languages (such asC,Ada or Python)
are Turing complete (up to unbounded memory).

Algorithmic completeness is a stronger notion than Turing-completeness. It focuses not only on
the input-output behavior of the computation but more importantly on the step-by-step behavior.
Moreover, the issue is not limited to partial recursive functions, it applies to any set of functions.
A model could compute all the desired functions, but some algorithms (ways to compute these
functions) could be missing (see [10, 27] for examples related to primitive recursive algorithms).

This paper’s purpose is to prove that common imperative languages are not only Turing-complete
but also algorithmically complete, by using the axiomatic definition of the Gurevich’s Thesis and a
fair bisimulation between the Abstract State Machines of Gurevich (defined in [16]) and a version
of Jones’ While programs. No special knowledge is assumed, because all relevant material will
be explained from scratch.
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1. Introduction

The notion of “algorithm” is currently a work in progress in the theoretical computer science commu-
nity. Most of the ancient algorithms1 were sequential algorithms, but nowadays there are also parallel,
distributed, real-time, bio-inspired or quantum algorithms. Although this paper focuses only on se-
quential algorithms (on Section 1), there is still no consensus on a formal definition of algorithms as
there is for functions or programs.

To formalize the sequential algorithms we followed the axiomatization2 of Yuri Gurevich, based
on the three postulates of sequential time, abstract states and bounded exploration. He proved in
[16] that his axiomatic approach is identical to his Abstract State Machines3, which can be seen as
if cond then actions commands like in [2]. Moreover, the ASMs are closer to the imperative frame-
work, therefore they seemed more appropriate for our purpose, which is to characterize algorithmic
classes by using imperative programming languages.

We know that an imperative language such as Albert Meyer and Dennis Ritchie’s Loop defined
in [25] can compute any primitive recursive function, but cannot compute some “better” algorithms4

(see [10] for the min and [27] for the gcd ). This Loop language has been extended in [1] with an exit

command to obtain every Arithmetical Primitive Recursive Algorithm5. This work inspired us in our
attempt to define an algorithmically complete imperative programming language.

An imperative language such as Jones’ While defined in [19] is Turing-complete, which means
that it can simulate the input-output relation of a Turing machine (see [29]). In other words (according
to the Church Thesis) it can compute (see [28]) every function calculable by a human using pen and
paper. But this is only functional completeness. For example, a one-tape Turing machine can simulate
the results of a two-tape Turing machine, but the palindrome recognition can be done in O(n) steps
with a two-tape Turing machine while requiring at least (see [3]) O(n2/log(n)) steps with a one-tape
Turing machine.

So algorithmic completeness is not an input-output behavior but a step-by-step behavior.
We will define at Section 1 that a model is algorithmically complete if for a given initial state it

can compute the same execution as a given algorithm. According to the Gurevich Thesis, it means
computing the same execution as a given ASM. We will formalize the imperative programming lan-
guage While at Section 2 by using only sequences, updates, conditionals and (unbounded) conditional
loops. We will prove at Section 3 our main theorem:

Theorem 1.1. While and ASM can fairly simulate each other.

1Such as the famous Euclidean algorithm, or the Babylonian method for approximating square roots.
2There are other formalizations of the notion of algorithm, such as the equivalence class of Yanofsky in [30, 31] (criticized
in [6] by Gurevich) and the recursors of Moschovakis in [26] (also criticized in [4] by Gurevich).
3Gurevich implemented his ASMs via the programming language AsmL (see [9] for a comparison).
4But in general the “best” algorithm computing a desired function may not exist. Blum proved in [7] that there exists a total
recursive function f such that for every machine Mi computing f there exists a machine Mj computing f exponentially
faster for almost inputs.
5APRA is defined as the set of the sequential algorithms with a primitive recursive time complexity, using only booleans
and unary integers as data structures, and using only variables as dynamical symbols.
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We will define the notion of “fair simulation” at the end of Section 1. Notice that the While lan-
guage of our paper is different from Jones’ language not because of its control structures (we consider
sequences, updates, if and while commands as the core features of “real” imperative programming
languages) but because of its data structures. Jones’ language only uses lists, but we wanted to study
the algorithmic completeness with respect to the oracular nature6 of algorithms. Therefore, our the-
orem is not about data structures (which frees us from any particular technological implementation)
but about control structures: we will prove that sequences, updates, if and while commands are
sufficient to simulate every sequential algorithm by using available data structures.

2. Sequential algorithms (Algo)

In [16] Gurevich introduced an axiomatic presentation of the sequential algorithms, by giving the three
postulates of Sequential Time, Abstract States and Bounded Exploration. In our paper the set of the
“objects” satisfying these postulates is denoted by Algo.

We will introduce them briefly in the first subsection, as well as other notions from Gurevich’s
framework such as execution, time, structure and update. In the second subsection we will introduce
our definition of a fair simulation between computation models.

2.1. Three postulates

Postulate 1. (Sequential Time)
A sequential algorithm A is given by:

• a set of states S(A)

• a set of initial states I(A) ⊆ S(A)

• a transition function τA : S(A)→ S(A)

Remark 2.1. According to this postulate, two sequential algorithms A and B are the same (see [6])
if they have the same set of states S(A) = S(B), the same set of initial states I(A) = I(B), and the
same transition function τA = τB .

An execution of A is a sequence of states ~X = X0, X1, X2, ... such that:

• X0 is an initial state

• for every i ∈ N, Xi+1 = τA(Xi)

A state Xm of an execution is final if τA(Xm) = Xm. An execution is terminal if it contains a
final state. The duration of an execution is defined by the number of steps7 done before reaching a
final state:

time(A,X) =def min{i ∈ N ; τ iA(X) = τ i+1
A (X)}

6By “oracular nature” we mean that every algorithm is written using a set of static functions considered as oracles. For
example, moving the head, reading the scanned symbol and changing the state are static operations given for free in Turing
machines.
7In the definition of time, f i is the iteration of f defined by f0 = id and f i+1 = f(f i).
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Remark 2.2. Two algorithms A and B have the same set of executions if they have the same set of
initial states I(A) = I(B) and the same transition function τA = τB . In that case, they can only be
different on the states which cannot be reached by an execution.

To state the second postulate, we need to introduce the notion of structure. Gurevich formalized
the states of a sequential algorithm with first-order structures. A (first-order) structure X is given by:

• A language LX

• A universe (or base set) UX

• An interpretation8 sX : UkX → UX for every k-ary symbol s ∈ LX

In order to have a uniform presentation, Gurevich considered constant symbols of the language
as 0-ary function symbols, and relation symbols R as their indicator function χR. Therefore every
symbol in LX is a function. Moreover, partial functions can be implemented with a special value
undef .

This formalization can be seen as a representation of a computer data storage. For example, the
interpretation sX of the symbol s in the structure X represents the value in the register s for the
state X .

The second postulate can be seen as a claim assuming that every data structure can be formalized as
a first-order structure9. Moreover, since the representation of states should be independent from their
concrete implementation (for example the name of the objects), isomorphic states will be considered
as equivalent:

Postulate 2. (Abstract States)

• The states of an algorithm A are first-order structures. The states of A have the same (finite)
language LA. The transition function τA preserves the universe of a state.

• S(A) and I(A) are closed under isomorphisms.

Every isomorphism between X and Y is an isomorphism between τA(X) and τA(Y ).

The symbols of LA are distinguished between the dynamic symbols whose interpretation can
change during an execution, and the static symbols. More specifically, the interpretation of the static
symbols is fixed by the initial state.

Moreover we distinguish the constructors (for example true, false, 0, S, etc.) whose inter-
pretation is uniform (up to isomorphism) for every initial state, from the parameters. The symbols
depending only on the initial state are the dynamic symbols and the parameters, so we call them the
inputs.

8In our paper we use the notations from [11] for the interpretation of terms and the restriction of structures in order to have
more concise expressions.
9We will discuss in the conclusion a constructive second postulate for common data structures (integers, words, lists, arrays,
and graphs) but this is not the point of this article.
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The logical variables are not used in this paper: every term and every formula will be closed,
and the formulas will be without quantifier. In this framework the variables are the 0-ary dynamic
function symbols.

For a sequential algorithm A, let X be a state of A, f ∈ LA be a dynamic k-ary function symbol,
a1, . . . , ak, b ∈ UX . (f, a1, . . . , ak) denotes a location of X and (f, a1, . . . , ak, b) denotes an update
on X at the location (f, a1, . . . , ak).

If u is an update then X + u is a new structure of language LA and universe UX such that the
interpretation of a function symbol f ∈ LA is:

f
X+u

(~a) =def

{
b if u = (f,~a, b)

f
X

(~a) else

If f
X

(~a) = b then the update (f,~a, b) is trivial in X , because nothing has changed. Indeed, if
(f,~a, b) is trivial in X then X + (f,~a, b) = X .

If ∆ is a set of updates then ∆ is consistent on X if it does not contain two distinct updates with
the same location. If ∆ is inconsistent, there exists (f,~a, b), (f,~a, b′) ∈ ∆ with b 6= b′, so the entire
set of updates clashes:

f
X+∆

(~a) =def

{
b if (f,~a, b) ∈ ∆ and ∆ is consistent on X

f
X

(~a) else

If X and Y are two states of the same algorithm A then there exists a unique consistent set ∆ =

{(f,~a, fY (~a)) ; f
Y

(~a) 6= f
X

(~a)} of non trivial updates such that Y = X + ∆. This ∆ is the
difference between the two sets and is denoted by Y −X .

Let ∆(A,X) = τA(X)−X be the set of updates done by a sequential algorithmA on the stateX .
During an execution, if more and more updates are done10 then the algorithm will be said mas-

sively parallel, not sequential. The two first postulates cannot ensure that only local and bounded
explorations/changes are done at every step. The third postulate states that only a bounded number of
terms must be read or updated during a step of the execution:

Postulate 3. (Bounded Exploration)
For every algorithm A there exists a finite set T of terms (closed by subterms) such that for every

state X and Y , if the elements of T have the same interpretations on X and Y then ∆(A,X) =
∆(A, Y ).

This T is called the exploration witness of A.
Gurevich proved in [16] that if (f, a1, . . . , ak, b) ∈ ∆(A,X) then a1, . . . , ak, b are interpretations

in X of terms in T . So, since T is finite there exists a bounded number of a1, . . . , ak, b such that
(f, a1, . . . , ak, b) ∈ ∆(A,X). Moreover, since LA is finite there exists a bounded number of dynamic
symbols f . Therefore, ∆(A,X) has a bounded number of elements, and for every step of the algorithm
only a bounded amount of work is done.
10For example, in a graph such that at every step a vertex becomes blue whenever one of its neighbors is already blue. We
will give a more formal example p.6 with the parallel lambda-calculus.
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2.2. Fair simulation

A model of computation can be defined as a set of programs given with their operational semantics.
In our paper we only study sequential algorithms, which have a step-by-step execution determined by
their transition function. So, this operational semantics can be defined by a set of transition rules, such
as:

Example 2.3. (The Lambda-Calculus)

Syntax of the Programs: t =def x | λx.t | (t1)t2

β-reduction: (λx.t1)t2 →β t1[t2/x]

In order to be deterministic the strategy of the transition system must be specified. An example is
the call-by-name strategy defined by context:

Call-by-Name Context: Cn{.} =def . | Cn{.}t
Transition Rule: Cn{(λx.t1)t2} →n Cn{t1[t2/x]}

This rule can be implemented in a machine:

Operational semantics: t1t2 ? π �0 t1 ? t2, π

λx.t1 ? t2, π �1 t1[t2/x] ? π

These notations and this machine are directly taken from Krivine’s [21]. In this machine π is a
stack of terms. The symbol ? is a separator between the current program and the current state of the
memory. � represents one step of computation, where only substitutions have a cost, not explorations
inside a term, as is the case in the contextual transition rule. Programs in the machine are closed terms,
so final states have the form λx.t ?∅.

Notice that if the substitution is given as an elementary operation this model satisfies the third
postulate, because only one term is pushed or popped per step. This is not the case with the lambda-
calculus with parallel reductions. For example, with the term t = λx.(x)x(x)x applied to itself:

(t)t→p (t)t(t)t→p (t)t(t)t(t)t(t)t→p (t)t(t)t(t)t(t)t(t)t(t)t(t)t(t)t→p . . .

Indeed, at the step i exactly 2i−1 β-reduction are done, which is unbounded.

Sometimes, not only the simulation between two models of computation can be proven, but also
their identity. As an example, Serge Grigorieff and Pierre Valarcher proved in [14] that Evolving Mul-
tiAlgebras (a variant of the Gurevich’s ASMs) can unify common sequential models of computation.
For instance, a family of EMAs can not only simulate step-by-step the Turing Machines, it can also be
literally identified to them. The same applies for Random Access Machines, or other common models.

But generally it is only possible to prove a simulation between two models of computation. In
our framework, a computation model M1 can simulate another computation model M2 if for every
program P2 of M2 there exists a program P1 of M1 producing in a “reasonable way” the “same”
executions as those produced by P2. The following two examples will detail what can be used in a
“fair” simulation:
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Example 2.4. (Temporary Variables)
In this example a programmer is trying to simulate a repeat n {s} command in an imperative

programming language11 containing while commands. The well-known solution is to use a temporary
variable i in the new program:

{i := 0; while i < n {s; i := i+ 1; }; }

This simulation is very natural, but a fresh variable i is necessary. So, the language L1 of the
simulating program must be bigger than the language L2 of the simulated program.

Notation 2.5. We follow the notation from [11], where X|L2 denotes the restriction of the L1-
structure X to the language L2. The language of X|L2 is L2, its universe is the same than X , and
every symbol s ∈ L2 has the same interpretation in X|L2 than in X .

This notation is extended to a set of updates:

∆|L =def {(f,~a, b) ∈ ∆ ; f ∈ L}

But fresh function symbols could be “too powerful”, for example a dynamical unary symbol env
alone would be able to store an unbounded amount of information. In order to obtain a fair simulation,
we assume that the difference L1 \ L2 between the two languages is a set containing only a bounded
number of variables (0-ary dynamical symbols).

The initial values of these fresh variables could be a problem if they depend on the inputs. For
example, the empty program could compute any f(~n) if we assume that an output variable contains in
the initial state the result of the function f on the inputs ~n.

So, in this paper we use an initialization which depends12 only on the constructors13. Because
this initialization is independent (up to isomorphism) from the initial states, we call it a uniform
initialization.

Example 2.6. (Temporal Dilation)
At every step of a Turing machine, depending on the current state and the symbol in the current

cell:

• the state of the machine is updated

• the machine writes a new symbol in the cell

• the head of the machine can move left or right

Usually these actions are considered simultaneous, so only one step of computation is necessary
to execute them. This is our classical model M1 of the Turing machines. But if we consider that every

11We will define p.11 the precise syntax of the imperative programs.
12Even the values of the fresh variables in the initial states can be irrelevant. See the program PΠ p.21 where the variables ~v
are explicitly updated with the value of the terms ~t before being read.
13See the program ΠP p.16 where the boolean variable bP is initialized with true and the others with false.
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action requires one step of computation then we could imagine a model M3 where three steps are
necessary to simulate one step of M1.

In other words, if we only observe an executionX0, X1, X2, X3, X4, X5, X6, ... ofM3 every three
steps (the unobserved states are in gray) then we will obtain an execution defined by Yi = X3×i, which
is an execution of M1.

Imagine thatM1 andM2 are implemented on real machines such thatM3 is three times faster than
M1. In that case if an external observer starts both machines simultaneously and checks their states at
every step of M1 then both machines cannot be distinguished.

In the following a (constant) temporal dilation d is allowed. We will say that the simulation is
step-by-step, and strictly step-by-step if d = 1. Unfortunately, contrary to the previous example this
constant may depend on the simulated program.

But this temporal dilation is not sufficient to ensure the termination of the simulation. For ex-
ample, a simulated execution Y0, . . . , Ym, Ym, ... could have finished, but the simulating execution
X0, . . . , Xmd, Xmd+1, . . . , Xmd+(d−1), Xmd, Xmd+1, ... may continue forever. So, an ending condi-
tion like time(A,X) = d× time(B,X) + e is necessary, and corresponds to the usual consideration
for asymptotic time complexity.

Definition 2.7. (Fair Simulation)
Let M1,M2 be two models of computation.
M1 simulates M2 if for every program P2 of M2 there exists a program P1 of M1 such that:

1. L(P1) ⊇ L(P2), and L(P1) \ L(P2) is a finite set of variables (with a uniform initialization)

and there exists d ∈ N? and e ∈ N (depending only on P2) such that, for every execution ~Y of P2

there exists an execution ~X of P1 satisfying:

2. for every i ∈ N, Xd×i|L(P2) = Yi

3. time(P1, X0) = d× time(P2, Y0) + e

If M1 simulates M2 and M2 simulates M1 then these models of computation are algorithmically
equivalent, which is denoted by M1 'M2.

Remark 2.8. The second condition Xd×i|L(P2) = Yi implies for i = 0 that the initial states are the
same, up to temporary variables.

3. Models of computation

In this section the Gurevich’s Abstract State Machines are defined, and we use his theorem Algo =
ASM to get a constructive (from an operational point of view) occurrence of the sequential algorithms.
So, we will say that a model of computation M is algorithmically complete if M ' ASM. For
example, in [12], Marie Ferbus-Zanda and Serge Grigorieff proved that the lambda-calculus is algo-
rithmically complete up to the oracular nature of the algorithms.
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We use the same method in this paper. Using Jones’ While language as core for imperative
languages, we will prove in the next section the algorithmic completeness of While. In order to do
so, we will prove a bisimulation between ASM and While, using the same data structures in these two
models of computation.

3.1. Abstract State Machines (ASM)

Without going into details, the Gurevich’s Abstract State Machines (ASM) require only the equality =,
the constants true and false, the unary operation ¬ and the binary operations ∧.

Definition 3.1. (ASM programs)

Π =defft1...tk := t0

| if F then Π1 else Π2 endif

| par Π1‖...‖Πn endpar

where f is a dynamic k-ary function symbol, t0, t1, . . . , tk are closed terms, and F is a formula.

Notation 3.2. For n = 0 a par command is an empty program, so let skip be the command par endpar.
If the else part of an if is a skip we only write if F then Π endif.

The sets Read(Π) of the terms read by Π and Write(Π) of the terms written by Π can be used to
define the exploration witness of Π. But we will also use them in the rest of the article, especially to
define the µ-formula FΠ p.23.

Read(Π) is defined by induction on Π:

Read(ft1 . . . tk := t0) =def {t1, . . . , tk, t0}
Read(if F then Π1 else Π2 endif) =def {F} ∪Read(Π1) ∪Read(Π2)

Read(par Π1‖ . . . ‖Πn endpar) =def Read(Π1) ∪ · · · ∪Read(Πn)

Write(Π) is defined by induction on Π:

Write(ft1 . . . tk := t0) =def {ft1 . . . tk}
Write(if F then Π1 else Π2 endif) =def Write(Π1) ∪Write(Π2)

Write(par Π1‖ . . . ‖Πn endpar) =def Write(Π1) ∪ · · · ∪Write(Πn)

Remark 3.3. The exploration witness of Π is the closure by subterms of Read(Π) ∪Write(Π) and
not only Read(Π) because the updates of a command could be trivial.

As said p.6, defining the syntax of the programs is not enough to obtain a model of computation,
we still have to define their semantics. An ASM program Π determines a transition function τΠ(X) =
X + ∆(Π, X), where the set of updates ∆(Π, X) done by Π on X is defined by induction:
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Definition 3.4. (Operational Semantics of the ASMs)

∆(ft1 . . . tk := t0, X) =def {(f, t1
X
, . . . , tk

X
, t0

X
)}

∆(if F then Π1 else Π2 endif, X) =def ∆(Πi, X)

where i = 1 if F is true on X
and i = 2 if F is false on X

∆(par Π1‖ . . . ‖Πn endpar, X) =def ∆(Π1, X) ∪ · · · ∪∆(Πn, X)

Notice that the semantics of the par is a set of updates done simultaneously, contrary to the
imperative language defined in the next subsection, which is strictly sequential.

Remark 3.5. For every states X and Y , if the terms of Read(Π) have the same interpretation on X
and Y then ∆(Π, X) = ∆(Π, Y ).

We can now define the set ASM of Abstract States Machines:

Definition 3.6. An Abstract State Machine M with language L is given by:

• an ASM program Π on L
• a set S(M) of L-structures closed by isomorphisms and τΠ

• a subset I(M) ⊆ S(M) closed by isomorphisms

• an application τM , which is the restriction of τΠ to S(M)

For every sequential algorithm A, the finiteness of the exploration witness in the third postulate
allows us (see [16]) to write a finite ASM program ΠA, which has the same set of updates than A for
every state. These programs ΠA have the same normal form:

par if F1 then Π1 endif

‖ if F2 then Π2 endif
...

‖ if Fc then Πc endif

endpar

where Fi are “guards”, which means that for every state X one and only one Fi is true, and the
programs Πi have the form par u1‖...‖umi endpar, where u1, . . . , umi are update commands.

Remark 3.7. ∆(ΠA, X) = ∆(A,X) = τA(X) − X , so ∆(ΠA, X) is consistent without trivial
updates.

The proof that the set of sequential algorithms is identical to the set of ASMs uses mainly the fact
that every ASM has a finite exploration witness. Reciprocally, for every sequential algorithm we can
define an ASM with the same transition function:
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Theorem 3.8. (Gurevich, 2000)

Algo = ASM

So, Gurevich proved that his axiomatic presentation for sequential algorithms defines the same
objects than his operational presentation of the ASMs.

Remark 3.9. According to this theorem, every ASM is a sequential algorithm and every sequential
algorithm can be simulated by an ASM in normal form. So, for every ASM there exists an equivalent
ASM in normal form.

3.2. Imperative programming (While)

We use a variant of Neil Jones’ While (see [19]) language, because this language is minimal. The
programs are only sequences of updates, if or while commands. So, if While is algorithmically
complete then every imperative language containing these control structures (including common pro-
gramming languages such as C, Java or Python) will be algorithmically complete too.

The difference with Neil Jones’ While is that the data structures are not fixed. As is the case
for the ASMs, the equality and the booleans are needed, but the other data structures are seen as
oracular. If they can be implemented in a sequential algorithm then they are implemented using the
same language, universe and interpretation in this programming language. So, the fair simulation
between ASM and While is proven for control structures, up to data structures.

Definition 3.10. (Syntax of the While programs)

(commands) c =def ft1...tk := t0

| if F {s1} else {s2}
| while F {c; s}

(sequences) s =def ε | c; s
(programs) P =def {s}

where f is a dynamic k-ary function symbol, t0, t1, . . . , tk are closed terms, and F is a formula.

Notation 3.11. The symbol ε denotes the empty sequence. For the sake of simplicity, the empty
program will be written {} instead of {ε}. As is the case for the ASM programs, if the else part of an
if is empty then we will only write if F {s1}. Let skip be the command if true {}, which changes
nothing but costs one step.

The sequence c; s of commands can be generalized by induction to a sequence of sequences s1; s2

by ε; s2 = s2 and (c; s1); s2 = c; (s1; s2).

As seen in example 2.3 p.6 the operational semantics of this While programming language is
formalized by a state transition system. A state of the system is a pair P ?X of a While program and
a structure. Its transitions are determined only by the head command and the current structure:
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Definition 3.12. Operational semantics of the While programs:

{ft1...tk := t0; s} ? X �{s} ? X + (f, t1
X
, . . . , tk

X
, t0

X
)

{if F {s1} else {s2}; s3} ? X � {s1; s3} ? X if FX = true

{if F {s1} else {s2}; s3} ? X � {s2; s3} ? X if FX = false

{while F {s1}; s2} ? X � {s1; while F {s1}; s2} ? X if FX = true

{while F {s1}; s2} ? X � {s2} ? X if FX = false

The successors are unique, so this transition system is deterministic. We denote by�i a succession
of i transition steps, which can be defined by induction on i.

Remark 3.13. If P1 ? X1 �i P2 ? X2 and P2 ? X2 �j P3 ? X3 then P1 ? X1 �i+j P3 ? X3, so in a
sense �i is a transitive relation.

Only the states {} ? X have no successor, so they are the terminating states.
We could have introduced a rule {} ? X � {} ? X and defined the termination like Gurevich did

for Algo: P ? X is terminal if P ? X � P ? X . But if FX = true then {while F {}; s} ? X �
{while F {}; s} ? X . So it should be seen as a terminal state too, which seems weird.

Because this problem occurs in the following simulations, we forbade in definition 3.10 the com-
mands while F {}. As a consequence, if P1 ? X1 � P2 ? X2 then P1 6= P2.

Notation 3.14. P terminates on X , denoted by P ↓ X , if there exists i and X ′ such that:

P ? X �i {} ? X ′

Because the transition system is deterministic, i and X ′ are unique. So X ′ is denoted P (X) and i is
denoted time(P,X). A program is terminal if it terminates for every initial state.

Example 3.15. This program computes the minimum of two integers m and n in O(min(m,n))
steps, and stores the result in the output variable x:

Pmin = {x := 0; while ¬(x = m ∨ x = n) {x := x+ 1; }; }

The execution of this program for m = 2 and n = 3 on a structure X is:

{x := 0; while ¬(x = 2 ∨ x = 3) {x := x+ 1; }; } ? X
� {while ¬(x = 2 ∨ x = 3) {x := x+ 1; }; } ? X + (x, 0)

� {x := x+ 1; while ¬(x = 2 ∨ x = 3) {x := x+ 1; }; } ? X + (x, 0)

� {while ¬(x = 2 ∨ x = 3) {x := x+ 1; }; } ? X + (x, 1)

� {x := x+ 1; while ¬(x = 2 ∨ x = 3) {x := x+ 1; }; } ? X + (x, 1)

� {while ¬(x = 2 ∨ x = 3) {x := x+ 1; }; } ? X + (x, 2)

� {} ? X + (x, 2)

So time(Pmin, X) = 2 + 2×min(mX , nX) = O(min(mX , nX))

Notation 3.16. Let sP be the sequence such that P = {sP }. The composition P1P2 of the imperative
programs P1 and P2 is defined by P1P2 = {sP1 ; sP2}.
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while F P1 P2 can be read as while F {sP1}; sP2 or while F {sP1 ; sP2}. In order to avoid this
ambiguity, braces will be added when necessary.

It can be convenient to consider a command c as a program, so let {c; } be the program c. In
particular, cP is a notation for the program {c; sP }.

We can now prove that the composition of programs behaves as intended. It can be done by using
only the determinism and the transitivity of the transition system. The proof is admitted in this paper,
but can be checked in the longer version [23].

Proposition 3.17. (Composition of Programs)
P1P2 terminates on X if and only if P1 terminates on X and P2 terminates on P1(X), such that

P1P2(X) = P2(P1(X)) and time(P1P2, X) = time(P1, X) + time(P2, P1(X)).

As a consequence, we can prove by induction that every imperative program using only sequences
of updates and conditionals terminates for every initial state:

Corollary 3.18. (Termination of Programs without while)
If the imperative program P has no while command then P is terminal.

Because the transition system is deterministic, if i ≤ time(P,X)14 then there exists a unique P ′

and X ′ such that P ? X �i P ′ ? X ′. Let τ iX(P ) be that P ′ and τ iP (X) be that X ′, so:

P ? X �i τ iX(P ) ? τ iP (X)

If i > time(P,X) we can assume that τ iX(P ) = {} and τ iP (X) = P (X).

Remark 3.19. τ iP is not a transition function in the sense of the first section, because:

τ iP (X) 6= τP ◦ · · · ◦ τP (X)

Indeed, if P0 ? X0 � P1 ? X1 � · · · � Pi−1 ? Xi−1 � Pi ? Xi then :

τ iP0
(X0) = Xi = τPi−1(Xi−1) = · · · = τPi−1 ◦ · · · ◦ τP1 ◦ τP0(X0) 6= τP0 ◦ · · · ◦ τP0(X0)

The succession of updates made by P on X is τ1
P (X)− τ0

P (X), then τ2
P (X)− τ1

P (X), then... In
our transition system a structure is updated only with an update command and only one update per
update command. Therefore, τ i+1

P (X)− τ iP (X) is empty or is a singleton.

Definition 3.20. The set of updates made by P on X is:

∆(P,X) =def

⋃
i∈N

τ i+1
P (X)− τ iP (X)

Remark 3.21. If P terminates on X then the cardinal of ∆(P,X) is bounded by time(P,X).

14If P does not terminate on X , we could assume that time(P,X) =∞.



14 Y. Marquer / Algo. Completeness of Imperative Programming Languages

In imperative programming languages, an overwrite occurs when a variable is updated to a value,
then is updated to another value later in the execution. In our framework, this means that there exists
in ∆(P,X) two updates (f,~a, b) and (f,~a, b′) with b 6= b′, which makes ∆(P,X) inconsistent. So,
we say that P is without overwrite on X if ∆(P,X) is consistent.

Proposition 3.22. (Updates of a Non-Overwriting Program)
If P terminates on X without overwrite then ∆(P,X) = P (X)−X .

Proof:
The proof is admitted in this paper, but is detailed in the longer version [23]. ut

4. Algorithmic completeness

We want to prove that While is algorithmically complete. According to Gurevich’s theorem p.11, this
would mean that While ' ASM. Considering our definition p.8, we will have to prove that ASM fairly
simulates While, and that While fairly simulates ASM.

4.1. ASM simulates While

The intuitive idea for translating While programs into ASM programs is to translate separately every
command, and to add a variable (for example, the number of the line in the program) to keep track of
the current command15.

Example 4.1. The imperative program Pmin of the example 3.15 p.12:

0 : x := 0

1 : while ¬(x = m ∨ x = n)

2 : x := x+ 1

could be translated into the following ASM program:

par if line = 0 then

par x := 0 ‖ line := 1 endpar

endif

‖ if line = 1 then

if ¬(x = m ∨ x = n) then line := 2 else line := 3 endif

endif

‖ if line = 2 then

par x := x+ 1 ‖ line := 1 endpar

endif

endpar
15Programs of this form are called control state ASMs (see [8]).
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Remark 4.2. The number of a line is between 0 and length(P ). So, a finite number of booleans
b0, b1, . . . , blength(P ) can be used16 instead of an integer line.

This approach has been suggested in [15], and is fitted for a line-based programming language
(for example with goto instructions) but not the structured language While. Indeed, the positions in
the program can distinguish two commands even if they are identical for the operational semantics of
While:

Example 4.3. (Marked While)
To make an easy example, let’s compare the two updates x := x+ 1 in the program:

P = {while true {x := x+ 1; while true {x := x+ 1; }; }; }

Because their position is not the same in the program they have a different number of line. So,
we mark them with boxes x := x+ 1 and x := x+ 1 to distinguish each one from the other. The
conditionals are always true, so we can ignore the structures and focus only on the evolution of the
program:

P1 � P2 � P3 � P4 � . . .

while true x := x+ 1 while true x := x+ 1

x := x+ 1 while true x := x+ 1 while true

while true x := x+ 1 while true x := x+ 1

x := x+ 1 while true x := x+ 1 while true

x := x+ 1 while true x := x+ 1

while true x := x+ 1 while true

x := x+ 1 x := x+ 1

We could have replaced P2 by P4 in this execution without changing anything except the boxes.
x := x+ 1 and x := x+ 1 are identical for the operational semantics, so we should find another

way to keep track of the current command.

We will not use booleans b0, b1, . . . , blength(P ) indexed by the lines of the program, but booleans
indexed by the possible states of the program during the execution. The possible executions of a
program will be represented by a graph where the edges are the possible transitions, and the vertices
are the possible programs:

Example 4.4. (The Graph of Execution of Pmin)

x := 0

while ¬(x = m ∨ x = n)

x := x+ 1

while ¬(x = m ∨ x = n)

x := x+ 1

x := x+ 1

while ¬(x = m ∨ x = n)

x := x+ 1

{}

16Remember that booleans must be in the data structure, but integers may not.
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In the following only the vertices of the graph are needed, so the graph of execution of Pmin will
be denoted by the set of possible programs:

G(Pmin) = {{{ {x := 0; while ¬(x = m ∨ x = n) {x := x+ 1; }; },
{while ¬(x = m ∨ x = n) {x := x+ 1; }; },

{x := x+ 1; while ¬(x = m ∨ x = n) {x := x+ 1; }; },
{}

}}}

Notation 4.5. In order to define graphs of execution we need to introduce the notation:

GP =def {PGP ; PG ∈ G}

where G is a set of imperative programs and P is an imperative program.

Let P be an imperative program. G(P ) is the set of every possible τ iX(P ) programs, which does
not depend on an initial state X:

Definition 4.6. (Graph of Execution)

G({}) =def {{{{}}}}
G(cP ) =def G(c)P ∪ G(P )

G(ft1 . . . tk := t0) =def {{{{ft1 . . . tk := t0; }}}}
G(if F then {P1} else {P2}) =def {{{{if F then {P1} else {P2}; }}}} ∪ G(P1) ∪ G(P2)

G(while F {P1}) =def G(P1){while F {P1}; }

As intended, we can prove (see [23]) that card(G(P )) ≤ length(P ) + 1. So, only a finite number
of guards depending only on P are necessary. Notice that for some programs (like Pmin in example
4.4 p.15) which do not follow example 4.3 p.15, card(G(P )) = length(P ) + 1 can be reached, so the
bound is optimal.

Again, to focus on the simulation, we admit in this paper the proof (see [23]) stating that a graph
of execution is closed for the operational semantics of the imperative programs:

Proposition 4.7. (Operational Closure of Graph of Execution)
If ft1 . . . tk := t0 P

′ ∈ G(P ) then P ′ ∈ G(P )

If if F then {P1} else {P2} P ′ ∈ G(P ) then P1P
′ and P2P

′ ∈ G(P )

If while F {P1} P ′ ∈ G(P ) then P1 while F {P1} P ′ and P ′ ∈ G(P )

Notation 4.8. The fresh boolean variables will be denoted bPG where PG ∈ G(P ). Only one bPG will
be true for each step of an execution, so in the following we will write X[bPi ] if bPi is true and the
other bPj are false, where X denotes a LP -structure. Notice that X[bPi ]|LP = X .
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The proposition 4.7 ensures that the following translation is well-defined:

Definition 4.9. (Translation of imperative programs into ASM)

ΠP =def par
PG∈G(P )

if bPG then P
tr
G endpar

where P tr is defined by induction:

{}tr =def skip

(ft1 . . . tk := t0 P
′)tr =def par bft1...tk:=t0 P ′ := false

‖ ft1 . . . tk := t0

‖ bP ′ := true

endpar

(if F then {P1} else {P2} P ′)tr =def par bif F then {P1} else {P2} P ′ := false

‖ if F then bP1P ′ := true else bP2P ′ := true endif

endpar

(while F {P1} P ′)tr =def par bwhile F {P1} P ′ := false

‖ if F then bP1 while F {P1} P ′ := true else bP ′ := true endif

endpar

Notice that for every PG ∈ G(P ), ∆(ΠP , X[bPG ]) = ∆(P trG , X[bPG ]). We use this fact in [23] to
prove by exhaustion on τ iX(P ) that the translation of the imperative program P behaves as intended:

Proposition 4.10. (Step-by-Step Simulation)

For every i < time(P,X), τΠP
(τ iP (X)[bτ iX(P )]) = τ i+1

P (X)[bτ i+1
X (P )]

Theorem 4.11. ASM fairly simulates While.

Proof:
We prove the three conditions of the fair simulation defined p.8:

1. LΠP
= LP ∪ {bPG ; PG ∈ G(P )}

where card({bPG ; PG ∈ G(P )}) ≤ length(P ) + 1.

2. Using proposition 4.10, we can prove by induction on i ≤ time(P,X) that:

τ iΠP
(X[bP ]) = τ iP (X)[bτ iX(P )]

So τ iΠP
(X[bP ])|LP = τ iP (X)

And the temporal dilation is d = 1 .
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3. If i = time(P,X) then τ iX(P ) = {}
So ∆(ΠP , τ

i
P (X)[bτ iX(P )]) = ∅, and τ i+1

ΠP
(X[bP ]) = τ iΠP

(X[bP ])

So time(ΠP , X[bP ]) ≤ time(P,X) (1)

But remember (p.12) that if P1 ? X1 � P2 ? X2 then P1 6= P2

So for every i < time(P,X), bτ iX(P ) is updated, so τ i+1
ΠP

(X[bP ]) 6= τ iΠP
(X[bP ])

So time(ΠP , X[bP ]) ≥ time(P,X) (2)

Therefore, according to (1) and (2), time(ΠP , X[bP ]) = time(P,X), and e = 0 .
ut

4.2. While simulates ASM

Let Π be an ASM program. The purpose of this section is to find a While program simulating the same
executions than Π. Remember that Π contains only updates, if and par commands. The intuitive
solution is to translate the commands directly, without paying attention to the parallelism:

Definition 4.12. (Syntactical Translation of the ASM programs)

(ft1 . . . tk := t0)tr =def {ft1 . . . tk := t0; }
(if F then Π1 else Π2 endif)tr =def {if F then Πtr

1 else Πtr
2 ; }

(par Π1‖ . . . ‖Πn endpar)tr =def Πtr
1 . . . Πtr

n (composition)

Updates and if commands are the same in these two models of computation, but the simultaneous
commands of ASM must be sequentialized in While, so this translation does not respect the semantics
of the ASM programs:

Example 4.13. Let X be a structure such that xX = 0 and yX = 1, and Π be the program:

Π = par x := y‖y := x endpar

Since both updates are done simultaneously, the semantics of Π is to exchange the value of x and
y. In that case ∆(Π, X) = {(x, 1), (y, 0)}, so τΠ(X) = X + {(x, 1), (y, 0)}.

Πtr = {x := y; y := x; }

But the semantics of Πtr is to replace the value of x by the value of y and leave y unchanged. In
that case, we have the following execution:

{x := y; y := x; } ? X
� {y := x; } ? X + {(x, 1)}
� {} ? X + {(x, 1), (y, 1)}

So τΠ(X) = X + {(x, 1), (y, 0)} 6= X + {(x, 1), (y, 1)} = Πtr(X).
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To capture the simultaneous behavior of the ASM program, we need to store the values of the
variables read in the imperative program. For example, if v = x and w = y in X then:

{x := w; y := v; } ? X
� {y := v; } ? X + {(x, 1)}
� {} ? X + {(x, 1), (y, 0)}

Indeed, even if x has been updated, its old value is still in v.

Definition 4.14. (Substitution of a Term by a Variable)

{}[v/t] =def {}
(cP )[v/t] =def c[v/t]P [v/t]

(ft1 . . . tk := t0)[v/t] =def ft1[v/t]...tk[v/t] := t0[v/t]

(if F then {P1} else {P2})[v/t] =def if F [v/t] {P1[v/t]} else {P2[v/t]}
(while F {P1})[v/t] =def while F [v/t] {P1[v/t]}

where t1[v/t2] =def

{
v if t1 = t2

t1 else

Remark 4.15. If P is an imperative program, t1 and t2 are distinct terms, and v1 and v2 are fresh
distinct variables then P [v1/t1][v2/t2] = P [v2/t2][v1/t1]. As a consequence, for k distinct terms
t1, t2, . . . , tk and k fresh distinct variables v1, v2, . . . , vk, the notation P [~v/~t] is not ambiguous, be-
cause the substitutions can be made in any order.

We defined p.9 the set Read(Π) of the terms read by Π. Let r = card(Read(Π)), and t1, . . . , tr
be the distinct terms read by Π. We substitute them by the fresh variables vt1 , . . . , vtr , each one
distinct from the other.

According to the Gurevich’s Theorem, every ASM is equivalent to an ASM in normal form, so we
can assume that Π is in normal form (see p.11). Its translation Πtr[~vt/~t] has the form shown at figure
1 p.20. But two issues remain:

1. The variables ~vt must be initialized with the value of the terms ~t.

Because the fresh variables must have a uniform initialization (see p.7), we have to update the
variables ~vt explicitly at the beginning of the program with a sequence of updates:

vt1 := t1; . . . ; vtr := tr;

2. The execution time is not constant.

Because the ASM is in normal form, every F is a guard, which means that one and only one Fi
is true for the current state X . The block of updates requires mi steps to be computed by the
imperative program, so the number of steps depends on the current state.
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Π = Πtr[~vt/~t] = {
par if F1 then if vF1

then {
par f1

1 (~t11) := t11
‖ f1

2 (~t12) := t12
...

‖ f1
m1

(~t1m1
) := t1m1

endpar

f1
1 (~vt11) := vt11 ;

f1
2 (~vt12) := vt12 ;

...
f1
m1

(~vt1m1
) := vt1m1

;

endif };
‖ if F2 then if vF2 then {

par f2
1 (~t21) := t21

‖ f2
2 (~t22) := t22

...
‖ f2

m2
(~t2m2

) := t2m2

endpar

f2
1 (~vt21) := vt21 ;

f2
2 (~vt22) := vt22 ;

...
f2
m2

(~vt2m2
) := vt2m2

;

endif };
...

...
‖ if Fc then if vFc then {

par f c1(~tc1) := tc1
‖ f c2(~tc2) := tc2

...
‖ f cmc

(~tcmc
) := tcmc

endpar

f c1(~vtc1) := vtc1 ;

f c2(~vtc2) := vtc2 ;
...
f cmc

(~vtcmc
) := vtcmc

;

endif };
endpar }

Figure 1. Translation of a Normal Form ASM

This is an issue because, according to our definition of the fair simulation p.8, every step of the
ASM Π must be simulated by d steps, where d depends only on Π.

In order to obtain a uniform temporal dilation, we will add m − mi skip commands17 at the
end of each block, where m is defined by:

m =def max{mi ; 1 ≤ i ≤ c}

17It may seem strange in an algorithmic purpose to lose time, but these skip commands do not change the asymptotic
behavior and are necessary for our strict definition of the fair simulation. It is possible to weaken the definition of the
simulation to simulate one step with ≤ d steps and not = d steps, but we wanted to prove the result for the strongest
definition possible.
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PΠ =def {
vt1 := t1;

vt2 := t2;
...
vtr := tr;

if vF1
then {

f1
1 (~vt11) := vt11 ;

f1
2 (~vt12) := vt12 ;

...
f1
m1

(~vt1m1
) := vt1m1

;

skip;
... (m−m1 times)
skip;

};
if vF2

then {
f2

1 (~vt21) := vt21 ;

f2
2 (~vt22) := vt22 ;

...
f2
m2

(~vt2m2
) := vt2m2

;

skip;
... (m−m2 times)
skip;

};
...
if vFc

then {
f c1(~vtc1) := vtc1 ;

f c2(~vtc2) := vtc2 ;
...
f cmc

(~vtcmc
) := vtcmc

;

skip;
... (m−mc times)
skip;

};
}

Figure 2. Translation PΠ of one step of Π
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We obtain at figure 2 p.21 the translation PΠ of one step of the ASM program Π. Let X be a state
of the ASM with program Π, extended with the variables ~vt. As intended, we prove that PΠ simulates
one step of Π in a constant time tΠ:

Proposition 4.16. (Semantical Translation of the ASM programs)
There exists tΠ, depending only on Π, such that for every state X of PΠ:

• (PΠ(X)−X)|LΠ
= ∆(Π, X|LΠ

)

• time(PΠ, X) = tΠ

Proof:
The sequence of updates vt1 := t1; . . . ; vtr := tr; requires r steps. Because the variables ~vt are fresh
they don’t appear in the terms ~t. So, in the state Y after these updates, vtk

Y = tk
X . Moreover, in the

rest of the program the variables ~vt are not updated, so for every following state Y , vtk
Y = tk

X .

In particular, for every 1 ≤ j ≤ c, vFj
Y = Fj

X . Since these conditionals are guards, one and only
one is true in X . Let Fi be this formula. Therefore, in every following state Y , vFi

Y = true, and for
every j 6= i, vFj

Y = false.
i− 1 steps are required to erase the conditionals before Fi, one step is required to enter the block

of Fi, and after the commands in that block c− i steps are required to erase the conditionals after Fi.
So, (i− 1) + 1 + (c− i) = c steps are required for the conditionals.

Since for every following state Y , vtk
Y = tk

X , the set of updates done in the block of Fi is
∆(Π, X|LΠ

). These updates require mi steps, then the skip commands require m−mi steps. So the
commands in the block require mi+(m−mi) = m steps, and the execution time depends only on Π:

time(PΠ, X) = r + c+m = tΠ

The updates done by PΠ are the initial updates and the updates done in the block of Fi:

∆(PΠ, X) = {(vt1 , t1
X

), . . . , (vtr , tr
X

)} ∪∆(Π, X|LΠ
)

PΠ contains only updates and conditionals, so according to proposition 3.18 p.13 this program
is terminal. Moreover, the fresh variables are updated only once, and since Π is in normal form,
∆(Π, X|LΠ

) is consistent. So, PΠ terminates without overwrite on X , and according to proposition
3.22 p.14:

∆(PΠ, X) = PΠ(X)−X

So (PΠ(X)−X)|LΠ
= ∆(Π, X|LΠ

). ut

More generally, we can use this result to prove by induction on i that:

Corollary 4.17. P iΠ(X)|LΠ
= τ iΠ(X|LΠ

)
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For any initial state, the fresh variables ~vt store the value of the interpretation of the terms ~t, then
the terms ~t are updated. This means that at the end of the program the variables ~vt have the old values
of the terms. For example, if the initial state is P iΠ(X), after one execution of PΠ we have:

vtk
P i+1

Π (X) = tk
P i

Π(X)

This remark is particularly useful because it allows us to detect the end of the execution of Π. The
program PΠ simulates one step of Π so we need to repeat it a sufficient number of times to simulate
the full execution. So, a program like while F {PΠ} is our candidate to fairly simulate Π, but we
need to define an appropriate F .

Π terminates when no more updates are done. In that case, the old values of the terms read by Π
are the same as the new values. Therefore, since the old values are stored in the variables ~vt, every vtk
is equal to tk in the terminating state:

FΠ =def

∧
t∈Read(Π)

vt = t

We call it the “µ-formula” because it is similar to the minimization operator µ from recursive
functions (see [11]):

Lemma 4.18. (The µ-formula)

time(Π, X|LΠ
) = min{i ∈ N ; FΠ

P i+1
Π (X)

= true}

Proof:
time(Π, X|LΠ

) = min{i ∈ N ; τ iΠ(X|LΠ
) = τ i+1

Π (X|LΠ
)}, so all that is left to prove (see [23])

is that τ iΠ(X|LΠ
) = τ i+1

Π (X|LΠ
) if and only if FΠ

P i+1
Π (X)

= true, by using the remark p.10 on
Read(Π). ut

Notice that FΠ becomes true after time(Π, X|LΠ
) + 1 steps, so we execute the program PΠ one

more time after the end of Π. This is not an issue because we can estimate a bound for the ending
time, as required by the third condition of the fair simulation.

Moreover, in the program while ¬FΠ {PΠ} the variables ~vt must be properly initialized to obtain
a correct value for the µ-formula FΠ. We do that simply by adding an occurrence of PΠ at the
beginning of the program. So, in a sense, the correct control structure should be a do while and not a
while.

Theorem 4.19. While fairly simulates ASM.

Proof:
We prove that the imperative program simulating Π is P = PΠ while ¬FΠ {PΠ}.

1. There are r = card(Read(Π)) fresh variables ~vt.
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2. According to lemma 4.18 p.23, the execution of this program on X is:

PΠ while ¬FΠ {PΠ} ? X �tΠ while ¬FΠ {PΠ} ? PΠ(X)

� PΠ while ¬FΠ {PΠ} ? PΠ(X)

�tΠ while ¬FΠ {PΠ} ? P 2
Π(X)

� PΠ while ¬FΠ {PΠ} ? P 2
Π(X)

...

� PΠ while ¬FΠ {PΠ} ? P
time(Π,X|LΠ

)

Π (X)

�tΠ while ¬FΠ {PΠ} ? P
time(Π,X|LΠ

)+1

Π (X)

� {} ? P time(Π,X|LΠ
)+1

Π (X)

So, for every 0 ≤ i ≤ time(Π, X|LΠ
) + 1, τd×iP (X) = P iΠ(X), where d = tΠ + 1 .

But, according to corollary 4.17 p.22, P iΠ(X)|LΠ
= τ iΠ(X|LΠ

), so:

τd×iP (X)|LΠ
= τ iΠ(X|LΠ

)

3.
time(P,X) = (tΠ + 1)× (time(Π, X|LΠ

) + 1)

= d× time(Π, X|LΠ
) + e

where e = tΠ + 1 . ut

According to theorem 4.11, every program in While can be simulated by an ASM Π, which itself
can be simulated by PΠ while ¬FΠ {PΠ}. So, an interesting corollary of theorem 4.19 is that every
program in While is equivalent to a program using only one while command. This result can be seen
as an algorithmic Kleene’s Normal Form Theorem (see [20]).

Conclusion

We have proven the two sides of the simulation p.17 and p.23. Therefore, according to our definition
p.8, While ' ASM. Consequently, imperative programming languages are algorithmically complete,
up to data structures.

The cost in space of the simulation is O(length) in both cases. Indeed, an ASM requires ≤
length(P ) + 1 fresh variables to simulate an imperative program P , and an imperative program
requires card(Read(Π)) ≤ (k + 1) × length(Π) fresh variables to simulate an ASM Π, where k is
the maximal arity of the dynamic symbols of Π.

But the cost in time is not the same. Indeed, an ASM requires a temporal dilation of d = 1 to
simulate an imperative program, but an imperative program requires d = r+c+m+1 steps to simulate
one step of an ASM Π, where r is the number of terms read by Π, c is the number of conditionals of
Π, and m is the maximal number of updates per block of Π.
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So, in an Orwellian sense, ASM is “more equivalent” than While, because they are algorithmically
equivalent but ASM seems stronger.

This is because, contrary to ASM, only one update can be done per step of computation in While.
Moreover, the exploration of control structures is free in ASM but not in While. In all fairness, we can
imagine a stronger While with tuples of updates and free exploration of the control structures:

{(f1~t1, . . . , fk~tk) := (t1, . . . , tk); s} ? X �1 {s} ? X + {(f1,~t
X
1 , t1

X
), . . . , (fk,~t

X
k , tk

X
)}

{if F {s1} else {s2}; s3} ? X �0 {si; s3} ? X

where i =

{
1 if FX = true

2 if FX = false

{while F {s1}; s2} ? X �0 {s; s2} ? X

where s =

{
s1; while F {s1}; if FX = true

ε if FX = false

The simulation between this stronger While and ASM is not only step-by-step, but strictly step-
by-step (the temporal dilation is d = 1). But this model for imperative programming language is not
common, and the theorem is stronger with a minimal core for imperative behavior.

So, the algorithmic difference between ASM and While does not really lie on control structures, but
on data structures. According to the second postulate these data structures are first-order structures,
which can hardly be seen as “real” data structures. The remaining issues are:

1. Data Structures

Is it possible to fairly represent any data structure from any model of computation as first-order
structures ? In other words, is it possible to prove a constructive second postulate? We tried to
characterize common data types (such as integers, words, lists, arrays, and graphs) in [22], but
the general problem remains open.

2. Implicit Complexity

What is the “size” of an element, or the “cost” of an operation? How can we characterize classes
of algorithms depending on the size of the inputs and the available operations? More specifi-
cally, is it possible to characterize relevant classes of algorithms in an imperative framework?
We proved in [22] that LoopC with PR data structures characterizes PR-time algorithms, and
in [24] that PLoopC characterizes P-time algorithms, but the problem remains open for other
classes such as polynomial or logarithmic space algorithms.
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