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Combining Formation Seismic Velocities while Drilling and a PDE-ODE
observer to improve the Drill-String Dynamics Estimation

Jean Auriol1, Nasser Kazemi2, Kristopher Innanen3, Roman J. Shor4

Abstract— In this paper we consider the axial motion of
a drill-string and the interaction of the drill-bit with the
formation. We design an observer that estimates, in real time,
the axial speed and force along the drill-string and at the drill-
bit using only topside measurements (force and velocity). More
generally, our approach enables the design of robust observers
for systems of Ordinary Differential Equation coupled with
a first order Partial Differential Equation in their actuation
path (a class of systems to which belongs the considered drill-
string axial dynamics). However, such an observer requires
the knowledge of different physical parameters among which
the rock intrinsic energy which is a priori unknown. Thus, we
combine our observer with an algorithm that provides a near
real-rime estimation of the seismic velocities of rocks interacting
with the drill-bit, using seismic-while-drilling. The efficiency of
the proposed approach is shown through simulation results.

I. INTRODUCTION

Accessing subsurface deposits of hydrocarbons and other
forms of energy, geothermal for example, requires both
a detailed knowledge of the subsurface reservoirs as well
as an efficient method for accessing them. Currently, our
knowledge of the subsurface mainly comes from the use
of seismic data, which contains information about geologic
structures through reflections of energy across reflection
boundaries, from the sparse well log and well core data
in certain areas, and from the study of outcrops, where
formations are exposed at the surface. In seismic data pro-
cessing, the depth velocity model building is an integral
part of migrating the reflected energy and tying the events
to the well logs [14]. Direct velocity inversion of seismic
data is another possibility [8]. However, depending on the
complexity of the subsurface structure, the velocity model
provided by seismic data processing may suffer from uncer-
tainties. Seismic-while-drilling (SWD) is another tool that
can provide the velocity of subsurface and can, in theory,
reduce the uncertainties of depth velocity models. SWD
method has existed for some time [21], but has been limited
in use due to sensing and operational requirements [19]. By
combining a field validated, real-time model of the axial
dynamics of a drill-string, the sensing requirements may
be reduced if bit-rock interaction is estimated using surface
measurements. This paper introduces such a model and then
presents the necessary observer construct to estimate both the
drill-string dynamics as well as the seismic wave velocity of
the rock at the bit. Our approach for the observer design
relies on the backsteppping method.
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This paper presents the axial drill-string model in Section
II, and then derives the general observer for ODE-PDE type
systems in Section III. This construct is then applied to
estimate the intrinsic energy of the rock in Section IV and
we conclude with a simulation example in Section V.

II. DRILL-STRING MODEL

In this section we describe the mechanical dynamics of
the drilling system.

A. Distributed axial dynamics of the drill-string
The drilling system we consider is composed of three

parts: a top-drive, the drill-string and the drill-bit. We con-
sider the case of a vertical well with a roller-cone drill-bit.
The top-drive is typically a large geared AC motor which
imparts rotary motion to the drill-string around its main axis.
The drill-string is a segmented pipe which extend from the
top-drive at surface to the drill-bit at the bottom of the hole
and is composed of 10-25 meters long segments of jointed
pipe. The drill-string may have a bottom hole assembly
(BHA) consisting of heavier pipe at the bottom. Assuming
elastic deformations, we can obtain the dynamics of interests
using the equations of continuity and state. We denote ξ(t, x)
the axial displacement of the drill-string. It is a function
of (t, x) which is evolving in {(t, x) | 0 < t < T, x ∈ [0, L]}
(where L is the total length of the drill-string and T is a
positive time). Using the distributed model given in [12],
[15], the axial motion satisfies the following wave Partial
Differential Equation

∂2ξ

∂t2
(t, x)− c2ξ

∂2ξ

∂x2
(t, x) = −kξ

∂ξ

∂t
(t, x), (1)

where cξ =
√

E
ρ , ρ is the pipe mass density, E its Young’s

modulus, and kξ is a damping coefficient representing the
viscous shear stresses acting on the pipe. The axial force
associated to ξ can be found from the strain, given as the
local relative compression:

w(t, x) = As(x)E
(ξ(t, x)− ξ(t, x+ dx))

dx
, (2)

As(x) being the cross-sectional area of the drill-string and
may vary with length and dx → 0 the infinitesimal axial
position increment. We will however assume here that it is
constant. The axial velocity satisfies

v(t, x) =
∂ξ(t, x)

∂t
.

Using (1), we have that the axial velocity and force satisfy
the following set of PDEs

∂w(t, x)

∂t
+AsE

∂v(t, x)

∂x
= 0, (3)



∂v(t, x)

∂t
+

1

Asρ

∂w(t, x)

∂x
= −kξv(t, x). (4)

Below we introduce the two boundary conditions (top-drive
actuation and downhole boundary condition).

The topside weight on the drill-string, w(t, 0), corresponds
to the system actuation. The downhole boundary condition
at x = L is obtained from a force balance on the lumped
Bottom-Hole Assembly (BHA). These two boundary condi-
tions will be discussed in the following.

B. Topside boundary condition
For the considered drilling system, the top-drive suspended

over the drill floor by the traveling block and is connected to
the drill-string at the top. The traveling block is connected by
several drill lines with one attached to the deadline anchor
and the other being spooled on a drum controlled by AC
induction motors [10]. Thus, we can consider that the system
actuation corresponds to the topside weight w0(t) = w(t, 0).
Considering w0 as an input, we have

−EAs
∂ξ(t, x)

∂x
= w0(t). (5)

C. Downhole boundary condition: bit-rock interaction
The lowermost part of the drilling system is usually

composed of drill collars that (due to their added inertia)
have an impact on the global dynamics. The change in
characteristic line impedance due to the transition from
pipes to collars causes reflections in the traveling wave [1].
Rigorously speaking, we have to write a new wave PDE
(similar to (1) but using the BHA density and Young’s
modulus) for the BHA. Nevertheless, the effect of this PDE
can be lumped into an ODE coupled with the drill-string [12]
as the length of the BHA (≈ 200m) is much smaller than
the one of the drill-string (≈ 2000m). Thus, the downhole
boundary condition at x = L can be obtained from a force
balance on the lumped BHA. This yields

Mb
∂v

∂t
(t, L) = −wb(v(t, L), w(t, L)) + w(t, L), (6)

where Mb is the mass of the lumped BHA and wb(·, ·) the
force acting from the rock on the BHA through the drilling
bit, known as the weight on bit (WOB). The WOB is related
to the bit velocity by considering the combined depth of cut
per revolution [10], [15], [23]. The combined depth of cut
per revolution d(t) verifies,

d(t) =
v(t, L)

ωbit
,

where, for simplicity, the bit angular velocity ωbit is assumed
constant here. We have previously presented a fully validated
torsional model to estimate ωbit which may be integrated with
the model presented here through a coupling at the drillbit,
but this is left for future work [4]. The cutting force is finally
expressed as

wb(v(t, L), w(t, L)) = wf +Kd(t) = wf + aζεd(t), (7)

where wf is a friction weight independent of the bit velocity
(and therefore constant) while K = aζε, with a being the
bit radius, ζ a characterization of the cutting angle and ε
the intrinsic specific energy of the rock [11], [23]. Thus, the
boundary condition (6) rewrites as

Mb
∂2ξ

∂t2
(t, L) = −aζε

ωbit

∂ξ(t, L)

∂t
− wf − EAs

∂ξ(t, L)

∂x
. (8)

D. Derivation of Riemann invariants
The Riemann invariants of a hyperbolic PDE are the states

corresponding to a transformation of the system which has a
diagonalized transport matrix, i.e. the system can be written
as a series of transport equations only coupled through the
source terms [18]. On the set {(t, x)| 0 < t < T, x ∈
[0, L]}, we define the Riemann invariants as

u(t, x) = (
∂

∂t
ξ(t, x)− cξ

∂

∂x
ξ(t, x))e

kξ
2cξ

x
, (9)

z(t, x) = (
∂

∂t
ξ(t, x) + cξ

∂

∂x
ξ(t, x))e

−
kξ
2cξ

x
. (10)

The exponential term is used to remove some diagonal terms
that appear when performing the change of variables. This
transformation enables us to rewrite (1) as the PDE system

∂

∂t
u(t, x) + cξ

∂

∂x
u(t, x) = −kξ

2
e
kξ
cξ
x
z(t, ξ), (11)

∂

∂t
z(t, x)− cξ

∂

∂x
z(t, x) = −kξ

2
e
−
kξ
cξ
x
u(t, ξ). (12)

The boundary condition (5) rewrites

u(t, 0) = z(t, 0) +
2cξ
EAs

w0(t), (13)

while the boundary condition (8) rewrites

z(t, L) = −e
kξ
cξ
L
u(t, L) + 2e

−
kξ
2cξ

L
X(t), (14)

Ẋ(t) = − aζε

Mbωbit
X(t)− wf

Mb

− EAs
2cξMb

(z(t, L)e
kξ
2cξ

L − u(t, L)e
−
kξ
2cξ

L
). (15)

Note that the parameter ε depends on the nature of the rock
and may be unknown.

E. Problem under consideration
The objective of this paper is to design an observer that

estimates, in real time, the axial velocity and force all along
the drill-string using only topdrive measurements. More
precisely, we assume that we measure w(t, 0) and v(t, 0).
To design the observer we will use the Riemann coordinates
and work on the system (11)-(15) considering that u(t, 0)
and z(t, 0) are known. Although the considered system is
stable, the proposed observer will have a faster convergence
rate and will be combined with an estimation of ε in real
time. The system (11)-(15) is actually a specific case of
an interconnected ODE-PDE system. In the next section we
design an observer for this general class of system.

III. A GENERAL OBSERVER FOR INTERCONNECTED
ODE-PDES SYSTEM

Let us consider the following general system composed
of an ODE coupled through its actuation path with a linear
first-order hyperbolic system:

∂tu(t, x) + λ∂xu(t, x) = σ+(x)v(t, x), (16)
∂tv(t, x)− µ∂xv(t, x) = σ−(x)u(t, x), (17)

Ẋ(t) = AX(t) +Bu(t, L) +D, (18)

evolving in {(t, x) s.t. t > 0, x ∈ [0, L]}, with the
boundary conditions

u(t, 0) = qv(t, 0) + V (t),



v(t, L) = ρu(t, L) + CX(t), (19)

where X ∈ Rp is the ODE state, and u(t, x) ∈ R, v(t, x) ∈
R are the PDE states. We assume that −µ < 0 < λ.
The constant real boundary coupling defined by q (distal
reflection) and ρ 6= 0 (proximal reflection) are constants.
The in-domain coupling terms σ+ and σ− are continuous
functions. The initial conditions (u0, v0) of the state (u, v)
are L2([0, L],R) functions. The actuation is denoted V (t) ∈
R. The matrices A, B, C and D are constant. The initial
condition of the ODE (18) is denoted X0. Such a system is
well-posed [7]. It is straightforward to rewrite the Riemann
axial motion equations (11)-(15) in the form (16)-(17). We
consider that we have collocated measurements, i.e., we
measure y(t) = v(t, 0). In the rest of this section, we design
an observer for the system (16)-(19) that will provide an
estimation of the states u(t, x), v(t, x), X(t) in real time.
In what follows we denote τ as the sum of the transport
velocities in both directions: τ = 1

λ + 1
µ . We will consider

the norm || · || defined by

||(u, v,X)|| = ||u||L2 + ||v||L2 + ||X||Rp .

We make the following assumptions
Assumption 1: The boundary couplings verify |ρq| < 1.
Assumption 2: The pair (A,C) is observable, that is there

exists a matrix L such that A− LC is Hurwitz.
This second assumption is necessary to estimate the ODE
state X(t), while the first one guarantees the possibility to
design a delay-robust observer (see [3] for details). These
assumptions are satisfied for the system (11)-(15).

A. Observer equations
Inspired by [26], the observer equations read as follows

∂tû+ λ∂xû = σ+(x)v̂ − p1(x)(v(t, 0)− v̂(t, 0)), (20)
∂tv̂ − µ∂xv̂ = σ−(x)û− p2(x)(v(t, 0)− v̂(t, 0)), (21)

˙̂
X(t) = AX̂(t) +Bû(t, L) +D

− P0(v(t, 0)− v̂(t, 0)), (22)

with the boundary conditions

û(t, 0) = qv̂(t, 0) + V (t),

v̂(t, L) = ρû(t, L) + CX̂(t), (23)

where (û, v̂, X̂) is the estimate of the state (u, v,X), the
terms, p1, p2 are output injection gains (L∞ functions defined
on ([0, L])2) that have to be designed. We have P0 that
is a linear operator acting on v(t, 0) − v̂(t, 0). More
precisely, P0 is an operator defined on D, where we have
denoted D = L2([−τ − 1

λ , 0];R) the Banach space of L2

functions mapping the interval [−τ − 1
λ , 0] into R. For

a function z: [−τ − 1
λ ,∞) → R, we define its partial

trajectory z[t] ∈ D by z[t](θ) = z(t+ θ), − τ − 1
λ ≤ θ ≤ 0.

The initial conditions of this observer are L2 functions.
Defining the error estimates ũ = u − û, ṽ = v − v̂ and
X̃ = X− X̂ , the error system is obtained by subtracting the
observer equations in (20)-(23) from (16)-(19),

∂tũ+ λ∂xũ = σ+(x)ṽ + p1(x)ṽ(t, 0), (24)
∂tṽ − µ∂xṽ = σ−(x)ũ+ p2(x)ṽ(t, 0), (25)
˙̃X(t) = AX̃(t) +Bũ(t, L) + P0(ṽ(t, 0)), (26)

with the boundary conditions

ũ(t, 0) = qṽ(t, 0),

ṽ(t, L) = ρũ(t, L) + CX̃(t). (27)

We now need to find the output injection gains p1, p2 and
the operator P0 such that the error system decays to zero
(which implies the convergence of the estimated state to the
real one).

B. Backstepping transformation
In this section, we use a backstepping transformation [17]

to map the system (24)-(26) into a target system for which
the analysis is simpler. The original system and the cor-
responding target system have equivalent properties [17].
More precisely, inspired by [9], we consider the following
transformation

ũ = α̃−
∫ x

0

Kαα(x, ξ)α̃(ξ) +Kαβ(x, ξ)β̃(ξ)dξ, (28)

ṽ = β̃ −
∫ x

0

Kβα(x, ξ)α̃(ξ) +Kββ(x, ξ)β̃(ξ)dξ, (29)

Ỹ = X̃ −
∫ L

0

Lα(ξ)α̃(ξ) + Lβ(ξ)β̃(ξ)dξ, (30)

where the different kernels Kαα,Kαβ ,Kβα,Kββ are L∞

functions defined on T = {(x, ξ) ∈ [0, L]2 | x ≥
ξ}, while the kernels Lα and Lβ are defined on [0,1].
The transformation (28)-(30) is invertible as it corresponds
to an invertible Volterra transformation [28]. The kernels
Kαα,Kαβ ,Kβα,Kββ , Lα, Lβ satisfy the following set of
PDEs and ODEs

λ∂xK
αα + λ∂ξK

αα = σ+(x)Kβα, (31)

λ∂xK
αβ − µ∂ξKαβ = σ+(x)Kββ , (32)

µ∂xK
βα − λ∂ξKβα = −σ−(x)Kαα, (33)

µ∂xK
ββ + µ∂ξK

ββ = −σ−(x)Kαβ , (34)

with the ODEs

λ∂ξL
α(ξ) = −BKαα(L, ξ) +ALα(ξ), (35)

µ∂ξL
β(ξ) = BKαβ(L, ξ)−ALβ(ξ), (36)

and the boundary conditions

Kαβ(x, x) = −σ
+(x)

λ+ µ
, Kβα(x, x) =

σ−(x)

λ+ µ
, (37)

Kββ(L, ξ) = ρKαβ(L, ξ)− CLβ(ξ), (38)

Kαα(L, ξ) =
1

ρ
Kβα(L, ξ) +

C

ρ
Lα(ξ), (39)

Lβ(L) = 0, Lα(L) = 0. (40)

The well-posedness of the system (31)-(40) is assessed by
the following lemma

Lemma 1: Consider system (31)-(40). There exists a
unique solution Kαα,Kβα,Kαβ ,Kββ in L∞(T ) and two
C1 functions Lα and Lβ .

Proof: The proof can be found in [5, Lemma 1] which
is adjusted from the one given in [13].
We now set the observer gains as

p1(x) = µKαβ(x, 0)− λqKαα(x, 0), (41)

p2(x) = µKββ(x, 0)− λqKβα(x, 0). (42)



Differentiating (28)-(29) with respect to time and space, and
using the fact that β̃(t, 0) = ṽ(t, 0), we can show that it
maps the system (24)-(26) to the target system

∂tα̃(t, x) + λ∂xα̃(t, x) = 0, (43)

∂tβ̃(t, x)− µ∂xβ̃(t, x) = 0, (44)
˙̃Y (t) = AỸ (t) + P̃0(β̃(t, 0)), (45)

with the boundary conditions

α̃(t, 0) = qβ̃(t, 0),

β̃(t, L) = ρα̃(t, L) + CỸ (t), (46)

where P̃0 is the linear operator defined on D by

P̃0(β̃(t, 0)) =P0(β̃(t, 0)) +Bqβ̃(t− 1

λ
, 0)

+ (λqLα(0)− µLβ(0))β̃(t, 0). (47)

C. Design of the linear operator P̃0

Equations (43) and (44) are transport equations. Conse-
quently, for t ≥ τ , using the boundary conditions (46), we
obtain

β̃(t, 0) = ρqβ̃(t− τ, 0) + CỸ (t− 1

µ
). (48)

Let us now define P̃0 as the linear operator defined on D by

P̃0 : D → R

z[t] 7→ −e
A
µ L(P̃1(z[t](0))− ρqP̃1(z[t](−τ))), (49)

where L is a matrix such that A − LC is Hurwitz (see
Assumption 2) and where the linear operator P̃1 defined on
D still has to be designed. We have the following Theorem

Theorem 1: Let us denote P̄1(t) = P̃1(β̃(t, 0)) the func-
tion defined by

P̄1(t) = β̃(t, 0)− C
∫ t

t− 1
µ

eA(t−ν)LP̄1(ν)dν, (50)

Then, the state Y (t) solution of (45) exponentially converges
to 0.

Proof: Let us consider the operator P̄1 defined by (50).
Let us denote P0(t) = P̄1(t) − ρqP̄1(t − τ). With this
operator equation (45) rewrites

˙̃Y = AỸ − e
A
µ LP0(t), (51)

P0(t) = β̃(t, 0)− ρqβ̃(t− τ, 0)

− C
∫ t

t− 1
µ

eA(t−ν)LP0(ν)dν. (52)

Using (48), equation (52) rewrites

P0(t) = CỸ (t− 1

µ
)− C

∫ t

t− 1
µ

eA(t−ν)LP0(ν)dν (53)

This corresponds to the error system for the observer with
delayed measurements given in [16, Remark 3]. We can then
conclude Ỹ exponentially converges to zero.

Remark 1: As explained in [16], the proposed operator
observer (50) is not the only possible design. Reduced-
order observers have been designed in [27] for instance. The

benefit of employing such a full-order observer is the reduced
sensitivity to measurement noise.
With this definition for the operator P0, equation (26) can
be rewritten as

˙̂
X(t) = AX̂(t) +Bû(t, L) + (λqLα(0)− ρLβ(0))ṽ(t, 0)

+ e
A
µ L(P (t)− ρqP (t− τ)) +Bqṽ(t− 1

λ
, 0), (54)

P (t) = ṽ(t, 0)− C
∫ t

t− 1
µ

eA(t−ν)LP (ν)dν. (55)

Theorem 2: The observer (20)-(23), and (54), where p1
and p2 are defined by (41) and (42) exponentially converges
to the real solution of (16)-(19)

Proof: Due to the analysis done above and due to
Theorem 1, we have that Y (t) exponentially converges to
0. Since |ρq| < 1 (which means that the complex operator
s 7→ 1 − ρqe−τs has all its roots on the complex left half
plane), we have from (48) that the state β(t, 0) converges to
zero, which in turn implies from (44) that β(t, ·) converges
exponentially to zero. This implies from (43) and the bound-
ary condition (46) the convergence of α(t, ·) to zero. Using
the invertibility of the transformation (28)-(30), we have the
exponential convergence of the state (ũ, ṽ, X̃) to zero. This
concludes the proof.

Remark 2: Note that due to the fact that we do not cancel
the reflection term ρ in the observer (20)-(23) guarantees
some robustness margins (see [5] for details). However, the
convergence rate can be increased by cancelling a part of
this reflection.
This observer can now be applied on the original sys-
tem (11)-(15) to determine the axial force and velocity.
However, in equation (15), the parameter ε depends on the
nature of the drilled rock. This coefficient is not known a
priori. In the next section we describe an algorithm used to
estimate it.

IV. ESTIMATION OF THE SPECIFIC INTRINSIC ENERGY ε

The specific intrinsic energy of rocks that the system is
drilling into is one of the main input parameters to the
observer. In this section, we show how to estimate this value
for different rocks. The intrinsic specific energy refers to the
amount of energy that is required to cut a unit volume of
rock. This value is dependent on cutter geometry, depth of
cut, and rock. However, similar to scratch test studies in rock
mechanics, we assume that the specific intrinsic energy is a
constant quantity characterizing a particular combination of
cutter geometry and rock. Richard and Dagrain [24], by using
different rock types, study the relationship between the ε and
the Uniaxial Compressive Strength (UCS). They show that
by expressing the ε as a stress rather than energy, the ε is
correlated with UCS

ε(MPa) ≈ UCS(MPa). (56)

Also, several recent works aim at relating the rock strength
to the seismic velocity of primary wave [25]. For example,
by comprehensive analysis of different rock types, ranging
from sedimentary to metamorphic, Sharma and Singh [25]
show that the seismic velocity of primary wave and UCS are
linearly correlated and the relationship is as follows

UCS = 0.0642Vp − 117.99, (57)



where Vp(m/s) is the seismic velocity of primary wave.
This relationship is derived based on linear regression and
a strong correlation R2 = 0.9022 is reported. By plugging
equation (57) into equation (56), we get

ε ≈ 0.0642Vp − 117.99. (58)

Hence, by knowing the seismic velocity of the rock that the
system is drilling into the estimation of ε is possible. Next,
we show how to estimate the primary wave velocity of rocks
while drilling.

Seismic while drilling (SWD) measurement records the
radiated elastic energy from the drillbit-rock interaction that
is traveled through the earth’s structure. SWD measurements
can provide the drill-bit position through checkshots, sonic
calibrations through reflectivity characterization, prediction
ahead of the bit through reverse VSP, and subsurface struc-
ture around and ahead of the drill-bit through multi-offset
VSP. Moreover, variations in the amplitude of the direct
arrivals of P-waves and S-waves in the processed SWD mea-
surements, after removing the source signature, reflect the
changes in the rock properties near the drill-bit. For example,
changes in the energy of the direct arrivals of P-waves and
S-waves can imply that the bit is turning right and that the
trajectory of well is modified. The direct arrivals can be used
in a relative sense to infer the relative changes in the rock
properties such as their seismic velocities or unconstrained
rock strengths. However, Rector and Hardage [22] show that
the radiation patterns of the direct arrival depend on the
primary wave velocity of the rock interacting with the drill-
bit, and, in our recent work [6], we develop an inversion
algorithm to solve for such velocity. The radiation pattern
for the primary wave is as follows

Ur(r, φ, t) =
A1 cos(φ)

ρfV 2
p r

ŵ(t− r

Vp
, L), (59)

where r is the distance from drill-bit to the receiver, φ is the
opening angle between the drill-bit and receiver, measured
relative to the drill-string, t is time, L is the length of drill-
string, ρf is the density of the interacting rock with the drill-
bit, ŵ = w � w is the auto-correlation of drill-bit source
signature, A1 is a constant, and Ur is the radial component
of the primary wave radiation pattern. In most rocks we have
ρf = 1.74V 0.25

p , hence equation (58) simplifies to

Ur(r, φ, t) =
A1 cos(φ)

1.74V 2.25
p r

ŵ(t− r

Vp
, L). (60)

By matching the direct arrival of the primary wave in the
source compensated SWD data to the radiation pattern in
equation (60), we can estimate the velocity of rock inter-
acting with the drill-bit. However, there are two unknowns
in equation (60), i.e., Vp and w. Hence, first, we need to
estimate the drill-bit source signature. To do so, in our
recent work [6], we show that by distributed modeling of
the dynamics of the drill-string, it is possible to express the
drill-bit source signature as a function of top-drive force and
velocity measurements

w(t, L) =
EA

2cξ
(e
−
kξL

2cξ v(t− L

cξ
, 0)− e

kξL

2cξ v(t+
L

cξ
, 0))

+
1

2
(e
−
kξL

2cξ w(t− L

cξ
, 0) + e

kξL

2cξ w(t+
L

cξ
, 0))

+

∫ L
cξ

− L
cξ

(fu(s) + fz(s))v(t− s, 0)ds

+

∫ L
cξ

− L
cξ

cξ
EA

(fu(s)− fz(s))w(t− s, 0)ds. (61)

where the functions fu, fz depend on the parameters of the
problem. Now that we have the estimate of the drill-bit
source signature w, the only unknown in equation (60) is the
primary velocity of rock, i.e., Vp. The cross-correlation of the
estimated source signature by using equation (61) with the
SWD data gives the primary direct arrival. By least-squares
matching of the primary direct arrival in the source com-
pensated SWD data, Uobsr (r, φ, t), with the radiation pattern
represented in equation (60) and after plugging the auto-
correlation of the estimated source signature, we estimate the
primary wave velocity of the rock. Finally, after estimating
the primary wave velocity of rock, we estimate ε using (58).

V. SIMULATION RESULTS

In this section we illustrate our results with simulation
of a simple field scenario. A vertical wellbore is placed
into a layered homogeneous geology model simulating a
simple deep conventional reservoir. We consider a drill-string
whose axial motion satisfies the PDE given by equation (1)
subject to the boundary conditions given in (5)-(8). Table I
shows the numerical values of parameters for the drill-
string system. The drill-bit is interacting with unconsolidated
sands ( ε = 11 Jcm−3). The PDE system is simulated
using a classical finite volume method based on a Godunov
scheme [18]. The control input w0 is chosen as a sinusoidal
function, thus allowing this to simulate either roller cone
or PDC bits. A numerical solution to equations (31)-(40)
can be reached with the method of characteristics and a
fixed point algorithm (see [2]). We want to estimate in
real time the state (w, v, v(t, L)) (where w is the force,
v the velocity and v(·, L) the state at the bit) using the
observer given in Section III combined with an estimation
of ε. The predictor given in (54) is adjusted from the one
presented in [20]. Figure 1 pictures the ||·||-norm of the error
state (w̃, ṽ, ṽ(·, L)), difference between the real state and the
estimated state (ŵ, v̂, v̂(t, L)) for three different situations.
Note that the force has been expressed in MN. In the first
case, we assume that ε is perfectly known. This results to a
convergence of the error to zero. Then, we consider that ε
known but set to a wrong value (here ε is set to 20 Jcm−3

instead of 11 Jcm−3). This results in an important error
in the estimation. Finally, using the algorithm described in
Section IV, we update the estimation of ε in real time. The
function Uobsr is obtained using the simulated weight-on-
bit and the (known) value of Vp,A white Gaussian noise
with signal-to-noise ratio (SNR) equal to 10 (the SNR is the
ration between the mean-square amplitude of the noise-free
signal and the variance of the noise). By using the top-drive
force and velocity measurements, which are given by the
simulation of the PDE, we estimate the weight-on-bit (see
equation (61)). As it can be seen in Figure 1, this results to
a good estimation of the state (w, v, v(t, L)).

VI. CONCLUDING REMARKS

In this paper, we presented the model for the axial dy-
namics of a drill-string which included the topside boundary
condition and the bit-rock interaction boundary condition.



Param. Value Param. Value
E 2× 1011 Pa ρ 8000 kg.m−3

cξ 5000 m.s−1 kξ 0.23s−1

A 3.5× 10−3 m2 L 2000 m
Mb 30000 kg ωbit 30ms−1

a 0.1m ζ 0.6
wf 71280 N φ 0.1745 rad

TABLE I
NUMERICAL VALUES OF THE PARAMETERS
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Fig. 1. Time evolution of the error-state using the observer given in
Section III for a perfectly known ε (Case a)), a wrong value of ε (Case
b)), estimating ε using the algorithm given in Section IV (Case c)).

We then derived an observer of the coupled ODE-PDE
system and showed exponential convergence. Finally, we
applied this construct to estimate, in real-time, the intrinsic
rock strength of the rock based on the bit-rock interaction
law. In simulation, we showed rapid convergence to the true
model parameter, even in the case where the original guess
of the parameter was incorrect. This presents an important
advance, first in parameter estimation in ODE-PDE coupled
systems and secondly for applications of seismic-while-
drilling methodology where rock properties may be estimated
using solely surface data. Future work will combine this
axial model with a similar, also validated, torsional model,
to account for fully coupled axial-torsional dynamics.
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