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Simultaneous Stabilization of Traffic Flow on Two Connected Roads

Huan Yu∗, Jean Auriol †, Miroslav Krstic∗

Abstract— In this paper we develop a boundary state feed-
back control law for a cascaded traffic flow network system: one
incoming and one outgoing road connected by a junction. The
macroscopic traffic dynamics on each road segment are gov-
erned by Aw-Rascle-Zhang (ARZ) model, consisting of second-
order nonlinear partial differential equations (PDEs) for traffic
density and velocity. Different equilibrium road conditions are
considered for the two segments. For stabilization of stop-and-
go traffic congestion on the two roads, we consider a ramp me-
tering located at the connecting junction. The traffic flow rate
entering from the on-ramp to the mainline junction is actuated.
The objective is to simultaneously stabilize the upstream and
downstream traffic to given spatially-uniform constant steady
states. We design a full state feedback control law for this under-
actuated network of two systems of two hetero-directional
linear first-order hyperbolic PDEs interconnected through the
junction boundary. Exponential Convergence to steady states
in L2 sense is validated by a numerical simulation.

I. INTRODUCTION

Freeway traffic modeling and management has been inten-
sively investigated over the past decades. Motivations behind
are to understand the formation of traffic congestion, and
further to prevent or suppress instabilities of traffic flow.
Macroscopic modeling of traffic dynamics is used to describe
the evolution of aggregated traffic state values on road.
Traffic dynamics are governed by hyperbolic PDEs. The most
widely-used macroscopic traffic PDE models include the
first-order Ligthill-Whitham-Richards (LWR) model and the
second-order Aw-Rascle-Zhang (ARZ) model [2] [27]. The
LWR model corresponds to a conservation law of the traffic
density. It can predict the formation and propagation of traffic
shockwaves on freeway, but fails to describe the stop-and-
go phenomenon [11] [20] [25]. The oscillations of densities
and velocities travel with traffic stream, cause unsafe driving
conditions, increased consumptions of fuel and delay of
travel time. The second-order ARZ traffic model is developed
to describe this common phenomenon. It consists of a set of
nonlinear hyperbolic PDEs describing the evolution of the
traffic density and velocity. More recently, the macroscopic
modeling of road networks based on the ARZ model has
been developed in [15] [17]. We consider to use the second-
order macroscopic model to describe the stop-and-go traffic
congestion in this work.

Traffic control strategies are developed and implemented
for the traffic management infrastructures, including ramp
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Fig. 1: Boundary feedback control of freeway traffic through
a ramp metering, upstream freeway traffic and downstream
traffic of the ramp are simultaneously stabilized.

metering and varying speed limits. Boundary feedback con-
trol algorithms are studied for traffic regulation on a freeway
segment in [18] [19] [29] [30] [31]. In authors’ previous
work [29]-[30], backstepping boundary control laws for ramp
metering are designed to suppress the stop-and-go traffic
oscillations on freeway either upstream or downstream of
the ramp. In Fig 1, the traffic flux is actuated through the
traffic lights located on the ramp so that the upstream traffic
in domain U or the downstream traffic in domain D can
be controlled. However, the upstream and the downstream
traffic can not be stabilized simultaneously and distinct traffic
scenarios are not considered for different traffic segments. In
this paper, we aim to solve two questions that remained unan-
swered in the previous work by reformulating the problem
in a network setting and providing a more applicable control
design approach. The first question is how the ramp metering
control of the upstream traffic affects the downstream traffic.
The second question is how we can control the downstream
and the upstream traffic simultaneously. Furthermore, the
control of this fundamental structure of the two connected
freeway segments will be an important milestone for the
control problem of the macroscopic modeling of a traffic
road network.

We adopt the traffic network model proposed in [17]. The
modeling of junction of the two connected roads conserves
mass and the other traffic property as detailed later in the
paper. This property is not smooth across the junction in [15].
In comparison, the solution in [17] is a weak solution of the
conservative variables that guarantees the well-posedness of
the closed-loop system for our control design. The mathemat-
ical model is a network of two interconnected PDE systems
coupled through their boundaries. Each subsystem corre-
sponds to a 2×2 coupled hyperbolic system. Despite the fact
that numerous theoretical results in the literature are focused
on boundary control of this class of hyperbolic system based
on backstepping approach [1] [6] [10] [12] [26] [28], control
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Fig. 2: Traffic flow on an incoming road and an outgoing
road connected with a junction, actuation is implemented at
the junction.

of the network of PDEs remains a challenging research topic.
This is due to the fact that in most cases, these systems are
underactuated (only the PDE located at one extremity of the
network can be actuated). To tackle this problem, multiple
approaches have been proposed: PI boundary controllers [7],
[8], flatness based design of feedforward control laws [23],
[24] and more recently backstepping-based control laws [4].
The main contribution of this paper is to provide an explicit
control design that simultaneously stabilizes the traffic flow
on the cascaded roads.

The paper is organized as follows. In Section II, we
introduce the system under consideration. In particular, we
give the PDEs describing the dynamics of the traffic density
and velocity. These equations are then linearized around a
given steady-state. A stabilizing state-feedback control law
is obtained in Section III for this underactuated system
using a backstepping approach. Some simulation results are
presented in Section IV. Finally, some concluding remarks
are given in Section V.

II. PROBLEM STATEMENT

We consider a road network that contains two cascaded
road segments with unidirectional traffic flow. The road
conditions and properties are different for the two segments.
They are assumed to have the same length L for simplicity.
We can easily rescale the PDEs that describing segments
with different lengths in space and the control design we
propose can be directly applied. The outgoing road segment
is defined on [0,L] while the incoming road segment is
defined on [−L,0]. These two segments are connected at
the junction boundary x = 0. The traffic dynamics of road
segments are described with PDEs and boundary conditions
for the junction between the two segments, an inlet and an
outlet. This allows the existence of weak solutions for the
traffic network problem [17].

A. ARZ PDE model

The evolution of traffic density ρ1(x, t) and velocity v1(x, t)
(with (x, t) ∈ [0,L]× [0,∞)) on the outgoing road segment
and traffic density ρ2(x, t) and velocity v2(x, t) ((x, t) ∈
[−L,0]× [0,∞)) on the incoming road segment is modeled
by the following ARZ model.

∂tρi +∂x(ρivi) =0, (1)

∂t(ρi(vi + pi(ρi)))+∂x(ρivi(vi + pi(ρi))) =− ρi(vi −V (ρi)))

τi
,

(2)

where i ∈ {1,2} represents either the outgoing road segment
or the incoming road segment. The traffic pressure pi(ρi) is
defined as an increasing function of the density

pi(ρi) = ciρ
γi
i , (3)

where γi,ci ∈ R+ is defined as

ci =
vm

ργi
m,i

. (4)

The coefficient γi represents the overall drivers’ aggres-
siveness, the positive constant vm represents the maximum
velocity and the positive constant ρm,i are the maximum
densities defined as the number of vehicles per unit length.
The equilibrium density-velocity relation Vi(ρi) is given as

Vi(ρi) = vm

(
1−
(

ρi

ρm,i

)γi
)
. (5)

Based on the definitions of (3),(4) and (5), the following rela-
tion between Vi(ρi) and pi(ρi) is satisfied on both segments,

V (ρi)+ pi(ρi) = vm, (6)

where the marginal stability is satisfied for each segment.
The linear stability analysis of one-segment traffic can be
found in [30]. We define the following variables

wi = vi + pi(ρi), (7)

which are interpreted as traffic ”friction” or drivers’ property
which transport in the traffic flow with the vehicles’ velocity.
This property represents the heterogeneity of the traffic
flow with respect to the equilibrium density-velocity relation
Vi(ρi). The maximum velocity vm is assumed to be the same
for the two segments while the maximum density ρm,i and
coefficient γi are allowed to vary. The positive constant τi
are the relaxation time that represent the time scale for
traffic velocity vi adapting to the equilibrium density-velocity
relation Vi(ρi). Finally, we denote the traffic flow rate on each
road as

qi = ρivi. (8)

The equilibrium flow and density relations, also known as
the fundamental diagram, are then given by

Qi(ρi) =ρiV (ρi) = ρivm

(
1−
(

ρi

ρm,i

)γi
)
. (9)

We assume that the equilibrium traffic relations are differ-
ent for the two segments due to the change of road situations.
The illustration is given in Fig 3. The critical density ρc
segregates the free and congested regimes of traffic states.
For the fundamental diagram in (9), the critical density is
given by ρc,i =

ρm,i

(1+γi)
1/γi

. The traffic is in the free regime
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Fig. 3: The equilibrium density and velocity relation Vi(ρ)
on the left, the equilibrium density and flux relation Qi(ρ)
on the right

when the density satisfies ρi < ρc,i. The traffic is defined as
the congested traffic when the density satisfies ρi > ρc,i. The
traffic flux reaches its maximum equilibrium value at the
critical density Q1(ρc,i) which is smaller than road capacity
(maximum allowable flow rate by road attributes).

In this work, we are concerned with the congested traffic
and assume that both segments are in the congested regime.
Fig.3. illustrates the situation that the upstream road segment
for x ∈ [−L,0] has more lanes than the downstream road
segment for x ∈ [0,L]. Therefore, the maximum density
ρm,2 > ρm,1 and the maximum speed limit vm is assumed to
be the same for the two segments. The upstream maximum
traffic flux Q2(ρc) is reduced in the downstream for Q1(ρc),
due to change of road conditions from the segment 2 to
segment 1.

B. Boundary conditions

In this paper we consider the weak solution of the net-
work (1)-(2). Regarding the boundary conditions connecting
the two PDE systems, the Rankine-Hugoniot condition is
satisfied at the junction. This condition implies a piecewise
smooth solution and corresponds to the conservation of mass
and of drivers’ properties defined in (7) at the junction, i.e.

ρ1v1(0−, t) =ρ2v2(0+, t), (10)
ρ1v1w1(0−, t) =ρ2v2w2(0+, t). (11)

Thus, the flux and drivers’ property are continuous across
the boundary x = 0, that is

ρ1(0, t)v1(0, t) =ρ2(0, t)v2(0, t), (12)
w2(0, t) =w1(0, t). (13)

For open-loop system, we assume a constant incoming flow
q⋆ entering the inlet boundary x = −L and a constant
outgoing flow q⋆ at the outlet boundary for x = L, as also
depicted in Fig.3:

q2(−L, t) =q⋆, (14)
q1(L, t) =q⋆. (15)

The control problem we solve consists in stabilizing the
traffic flow in both segments around the given steady-states.
We consider the actuator U0(t) with a ramp metering located
at the junction boundary x = 0, controlling the traffic flux
entering from the ramp to the mainline road. Given the

flux continuity condition, we have the following boundary
condition at the junction

ρ1(0, t)v1(0, t) =ρ2(0, t)v2(0, t)+U0(t), (16)

where the downstream segment flow consists of the incoming
flow from the mainline upstream segment and the actuated
traffic flow from the on-ramp.

C. Steady states

The control objective is to stabilize the traffic flow in
the two segments around the steady states. The steady
states (ρ⋆

1 ,v
⋆
1), (ρ⋆

2 ,v
⋆
2) are chosen such that the boundary

conditions (12) and (13) are satisfied, i.e.

ρ⋆
1 v⋆1 =ρ⋆

2 v⋆2 = q⋆, (17)
w⋆

1 =w⋆
2 = vm, (18)

where the steady state velocities satisfy the equilibrium
density-velocity relations v⋆i = Vi(ρi). The constant flux in
(17)

Q1(ρ⋆
1 ) = Q2(ρ⋆

2 ), (19)

and the definition of Qi(ρi) in (9) yield the following relation
for the steady state densities of the two segments

ρ⋆
1 ργ1

m,1 − (ρ⋆
1 )

γ1+1

ρ⋆
2 ργ2

m,2 − (ρ⋆
2 )

γ2+1
=

ργ1
m,1

ργ2
m,2

. (20)

According to (7), the constant driver’s property in (18)
implies that we have the same maximum velocity vm for the
two segments which corresponds to our initial assumption:

v⋆1 + p⋆1 = v⋆2 + p⋆2 = vm. (21)

Note that when vehicles’ property follows the equilibrium
relation vi = V (ρi), the above relation always holds given
(6). In summary, we first choose the steady states density ρ⋆

1
and ρ⋆

2 such that the relation in (20) is satisfied. Then the
steady states velocities are obtained as v⋆i =V (ρ⋆

i ).

D. Linearized model

We linearize the ARZ based traffic network equations
(ρi,vi) in (1), (2) with the boundary conditions (12), (13),
(14), (15) around the steady states (ρ⋆

i ,v
⋆
i ) defined in the

previous section. In order to simplify the model for control
design, the linearized model is given in the following Rie-
mann variables defined as

w̃i =
γi p⋆i
q⋆

(ρivi −ρ⋆
i v⋆i )+

1
ri
(vi − v⋆i ), (22)

ṽi =vi − v⋆i , (23)

where the constant coefficients ri are defined as

ri =− v⋆i
γi p⋆i − v⋆i

. (24)

Given the controlled boundary at x = 0 in (16) and steady
states condition in (17) ,

q̃1(0, t) = q̃2(0, t)+U0(t). (25)
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Fig. 4: Control diagram for the closed-loop system

Then we obtain the linearized model with boundary condi-
tions

∂t w̃i + v⋆i ∂xw̃i =− 1
τi

w̃i, (26)

∂t ṽi − (γi p⋆i − v⋆i )∂xṽi =− 1
τi

w̃i, (27)

ṽ1(L, t) =r1w̃1(L, t), (28)
w̃1(0, t) =w̃2(0, t), (29)

w̃2(−L, t) =
1
r2

ṽ2(−L, t), (30)

ṽ2(0, t) =δ
r2

r1
ṽ1(0, t)+ r2(1−δ )w̃2(0, t)

+
v⋆2(1− r2)

q⋆
U0(t). (31)

Detailed calculations regarding the linearization can be ob-
tained following [30].

For the congested regime of traffic flow, ρ⋆
i >

ρm,i

(1+γi)
1/γi

is satisfied so that the characteristic speed γi p⋆i − v⋆i > 0.
The velocity variations ṽi(x, t) transport upstream which
means the action of velocity acceleration or deceleration is
repeated from the leading vehicle to the following vehicle.
The following inequality is satisfied for the characteristic
speeds ratio defined in (24),

−1 < ri < 0. (32)

The more congested of the traffic, the smaller of the ratio
constant ri. The control diagram for the closed-loop system
(26)-(31) is given in Fig. 4. Using a spatial transformation,
we get rid of the diagonal terms − 1

τi
w̃i that appear in the

two equations describing the evolution of the state w̃i. More
precisely, we define for all x ∈ [−L,0] and all t > 0 the state
w̄2 as

w̄2(x, t) = exp
(

x
τ2v⋆2

)
w̃2(x, t). (33)

Similarly, the state w̄1 is defined for all x∈ [0,L] and all t > 0
by

w̄1(x, t) = exp
(

x
τ1v⋆1

)
w̃1(x, t). (34)

One can easily check that with such a change of variables,
the system (26)-(31) rewrites (for i ∈ {1,2}) as

∂t w̄i + v⋆i ∂xw̄i =0, (35)

∂t ṽi − (γi p⋆i − v⋆i )∂xṽi = ci(x)w̄i, (36)

ṽ1(L, t) =r1 exp
(
− L

τ1v⋆1

)
w̄1(L, t), (37)

w̄1(0, t) =w̄2(0, t), (38)

w̄2(−L, t) =exp
(

−L
τ2v⋆2

)
1
r2

v̄2(−L, t), (39)

ṽ2(0, t) =δ
r2

r1
ṽ1(0, t)+ r2(1−δ )w̄2(0, t)

+
v⋆2(1− r2)

q⋆
U0(t), (40)

where the spatially varying coefficients ci(x) are defined as
ci(x) = − 1

τi
exp
(
− x

τiv⋆i

)
, and the constant coefficient δ is

δ =
γ1 p⋆1
γ2 p⋆2

, which represents the ratio related to the traffic
pressure on the two segments. The corresponding initial
conditions are denoted as (ṽ0)i = ṽi(·,0) and (w̄0)i = v̄i(·,0).
The objective is to design the control law U0 to stabilize
the system (35)-(40) in the sense of the L2-norm. Such an
interconnected system has already been considered in [4]
in the case of an actuator located at one of the extremity
of the network. It has been proved in [21] that a system
can be delay-robustly stabilized only if its open-loop transfer
function has a finite number of zeros on the complex right
half plane. For the considered class of linear hyperbolic
system, it is proved in [5] that such a condition is equiv-
alent to requiring (35)-(40) with zero in-domain couplings
(i.e. c1 ≡ c2 ≡ 0) to be exponentially stable in open-loop.
Necessary and sufficient stability conditions to guarantee
such an open-loop stability can be obtained by writing the
corresponding characteristic equations. However for the case
of system (35)-(40), a simpler condition has been given in [9]
in the form of the following Assumption.

Assumption 1: The boundary couplings of the system
(35)-(40) are such that

δ <
1+ exp( L

τ2v⋆2
)

1+ exp( −L
τ1v⋆1

)
. (41)

Indeed, if ci ≡ 0, it is straightforward to express w̄2(t,0)
as a solution of a neutral system using the method of
characteristics. The stability of the neutral system is only
guaranteed if Assumption 1 holds. Due to the transport
structure of (35)-(40), the convergence to zero of w̄2(t,0)
implies the stabilization of the system. Then, the system (35)-
(40) with zero in-domain couplings is exponentially stable in
open-loop and can be robustly stabilized. For example, both
the upstream and downstream segments are congested and
the downstream traffic with denser traffic such that δ < 1. It
is easily observed that the assumption holds.

III. STATE FEEDBACK CONTROL DESIGN

In this section we design a full-state feedback law that
guarantees the stabilization of the system (26)-(31). Our ap-
proach is based on the backstepping methodology. Using two
Volterra transformations we map the original underactuated
system to a target system for which the in-domain coupling



terms c1 and c2 are moved to the actuated boundary in the
form of integral couplings. We can then use the control input
U0(t) to eliminate these terms, leading the target system to be
exponentially stable. As such a control law does not modify
the boundary couplings, robustness margins are preserved
under Assumption 1 (see [3], [5] for details).

We consider the following backstepping transformations

αi(x, t) =w̄i(x, t), (42)

β1(x, t) =ṽ1(x, t)−
∫ L

x
Kvw

1 (x,ξ )w̄1(ξ , t)dξ

−
∫ L

x
Kvv

1 (x,ξ )ṽ1(ξ , t)dξ , (43)

β2(x, t) =ṽ2(x, t)−
∫ x

−L
Kvw

2 (x,ξ )w̄2(ξ , t)dξ

−
∫ x

−L
Kvv

2 (x,ξ )ṽ2(ξ , t)dξ , (44)

where the kernels Kvw
1 and Kvv

1 are L∞ functions defined
on the set T1 = {(x,ξ ) ∈ [0,L]2, ξ ≥ x}, while the
kernels Kvw

2 and Kvv
2 are L∞ functions defined on the set T2 =

{(x,ξ ) ∈ [−L,0]2, ξ ≤ x}. On their corresponding domains
of definition, they satisfy the following set of PDEs:

(γi p⋆i − v⋆i )∂xKvw
i − v⋆i ∂ξ Kvw

i = ci(ξ )Kvv
i , (45)

∂xKvv
i (x,ξ )+∂ξ Kvv

i (x,ξ ) = 0, (46)

along with the boundary conditions

Kvw
1 (x,x) =

c1(x)
γ1 p⋆1

, Kvw
2 (x,x) =−c2(x)

γ2 p⋆2
, (47)

Kvv
1 (x,L) =−exp

(
L

τ1v⋆1

)
Kvw

1 (x,L), (48)

Kvv
2 (x,−L) =−exp

(
−L
τ2v⋆2

)
Kvw

2 (x,−L). (49)

The well-posedness of this kernel PDE-system is guaranteed
by the following lemma.

Lemma 1: [10] Consider system (45)-(49). There exists a
unique solution Kvw

1 , Kvv
1 in L∞(T1) and Kvw

2 , Kvv
2 in L∞(T2).

The transformation (43)-(44) maps the original system (35)-
(40) to the following decoupled target system

∂tαi + v⋆i ∂xαi =0, (50)
∂tβi − (γi p⋆i − v⋆i )∂xβi =0, (51)

β1(L, t) =r1 exp
(
− L

τ1v⋆1

)
α1(L, t), (52)

α1(0, t) =α2(0, t), (53)

α2(−L, t) =exp
(

−L
τ2v⋆2

)
1
r2

β2(−L, t), (54)

β2(0, t) =δ
r2

r1
β1(0, t)+ r2(1−δ )α2(0, t).

(55)

The controlled boundary (55) is obtained by defining the
control input U0(t) as

U0(t) =
q⋆

v⋆2(r2 −1)

(∫ 0

−L
Kvw

2 (0,ξ )w̄2(ξ , t)+Kvv
2 (0,ξ )ṽ2(ξ , t)dξ

−δ
r2

r1

∫ L

0
Kvw

1 (0,ξ )w̄1(ξ , t)+Kvv
1 (0,ξ )ṽ1(ξ , t)dξ

)
.

(56)

We have the following theorem.
Theorem 1: Consider the PDE system (35)-(40) with the

feedback law U0 defined in (56). Then for any L2 initial con-
dition (w̄i(0, ·), ṽi(0, ·)) the system (35)-(40) exponentially
converges to 0.

Proof: Using the method of characteristics (see [5] for
details), it is possible to express the state β2(L, t) as the
solution of the difference equation

β2(0, t) = exp
(

−L
τ2v⋆2

)
(1−δ )β2(0, t −κ2)

+δ exp
(

−L
τ2v⋆2

)
exp
(
− L

τ1v⋆1

)
β2(0, t −κ1 −κ2),

where κi =
1
v⋆i

+ 1
γi p⋆i −v⋆i

. This difference system is expo-
nentially stable due to Assumption 1. Then, it implies
that β2(0, t) converges to zero. Using the transport structure
of (50)-(55) , we have the convergence of (αi,βi) to zero. Due
to the invertibility of the Volterra transformations (43)-(44),
the systems (35)-(40) and (50)-(55) have equivalent stability
properties. This implies the exponential stability of (35)-(40).

IV. SIMULATION RESULTS

The length of each freeway segment is chosen to be
L = 2 km so the total length of the two connected seg-
ments are 4 km. The maximum speed limit is vm = 40 m/s.
We consider six lanes for the downstream freeway seg-
ment 1. The maximum density of the road is obtained
as ρm,1 = 6/7.5 vehicles/m = 800 vehicles/km based on
the assumption that the average vehicle length is 5 m
plus the minimum safety distance of 50% vehicle length,.
The upstream segment has less functional lanes thus its
maximum density is chosen as ρm,2 = 700 vehicles/km.
We take γi = 0.5. The steady states (ρ⋆

1 ,v
⋆
1) and (ρ⋆

2 ,v
⋆
2)

are chosen respectively as (600 vehicles/km,19.4 m/s) and
(488.6 vehicles/km,23.8 m/s), both of which are in the
congested regime and satisfy (17),(18). The equilibrium
steady state of the downstream road is more congested with
higher density and lower velocity. The relaxation time of
each segments are τ1 = 120 s and τ2 = 90 s. The sinusoid
initial conditions are highlighted with blue lines. The closed-
loop simulation show that the exponential convergence to the
steady states is achieved simultaneously for the upstream and
downstream segments in Fig 5. The ramp metering control
input at junction is highlighted with red line. The stop-and-
go traffic in the two cascaded segments are suppressed.

V. CONCLUDING REMARKS

We design a stabilizing state feedback boundary control
that guarantees the simultaneous stabilization of the stop-
and-go on two connected roads around given steady states.
The flow rate actuation is realized with a ramp metering
located at the middle junction. Our approach is based on



Fig. 5: Closed-loop flow rate and velocity evolution of upstream and downstream of the ramp metering in the middle.

the backstepping methodology. This is a first step towards
the stabilization of traffic networks. We will consider in
future work the design of an observer (in view of output-
feedback stabilization) for this class of system. It is also
of authors’ interest to validate the model with traffic field
data and to further develop control strategy to address lane-
changing behaviors that arise in multi-lane congested traffic.
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