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Abstract: A novel sulfated xylogalactan-rich fraction (JSP for J. adhaerens Sulfated Polysaccharide)
was extracted from the red Tunisian seaweed Jania adhaerens. JSP was purified using an alcoholic
precipitation process and characterized by Attenuated Total Reflectance-Fourier-transform infrared
spectroscopy (ATR-FTIR), high-pressure size exclusion chromatography (HPSEC) with a multi-angle
laser light scattering (MALLS), gas chromatography coupled to mass spectrometry (GC-MS) and
nuclear magnetic resonance spectroscopy (NMR, 1D and 2D). JSP was then evaluated regarding
its physicochemical and rheological properties. Results showed that JSP was mainly composed of
an agar-like xylogalactan sharing the general characteristics of corallinans. The structure of JSP
was mainly composed of agaran disaccharidic repeating units (→3)-β-d-Galp-(1,4)-α-l-Galp-(1→)n

and (→3)-β-d-Galp-(1,4)-3,6-α-l-AnGalp-(1→)n, mainly substituted on O-6 of (1,3)-β-d-Galp residues
by β-xylosyl side chains, and less with sulfate or methoxy groups. (1,4)-α-l-Galp residues were
also substituted by methoxy and/or sulfate groups in the O-2 and O-3 positions. Mass-average and
number-average molecular masses (Mw) and (Mn), intrinsic viscosity ([η]) and hydrodynamic radius
(Rh) for JSP were, respectively, 8.0 × 105 g/mol, 1.0 × 105 g/mol, 76 mL/g and 16.8 nm, showing
a flexible random coil conformation in solution. The critical overlap concentration C* of JSP was
evaluated at 7.5 g/L using the Williamson model. In the semi-diluted regime, JSP solutions displayed
a shear-thinning behavior with a great viscoelasticity character influenced by temperature and
monovalent salts. The flow characteristics of JSP were described by the Ostwald model.

Keywords: Corallinales; sulfated xylogalactan; Jania adhaerens; polysaccharide; rheology

1. Introduction

Water-soluble sulfated galactans are the main constituents of the non-fibrillar cell walls and
intercellular matrix of most red algae (Rhodophyta) [1–3]. They show a linear backbone consisting of
alternating (1,4)-linked α-Gal (and/or 3,6-α-AnGal) and (1,3)-linked β-Gal units. The latter residue
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always belongs to the d-series, while the former (α-Gal) can occur as d-(carrageenans) or l-(agarans)
series [4–7]. The main backbone can be substituted by pyruvic acid ketals, sulfate, O-glycosyl
and/or methyl groups and also by side chains, giving rise to great structural changes along the
galactan chain. These structural changes affect the physicochemical and rheological behaviors of these
polymers. So far, it has been reported that sulfated galactans exhibit numerous biological properties,
including antioxidant, anticoagulant, antinociceptive, immunomodulatory, anticancer, gastroprotective,
anti-inflammatory, antithrombotic and antiproliferative [1,6–14]. Marine seaweed (Phaeophyceae
and Rhodophyceae) cell wall polysaccharides also hold great promise as a raw material for feed,
food, and biofuel production. Through metabolic engineering, seaweeds (micro- and macroalgae) are
attracting growing attention as an alternative source of biofuel by converting the seaweed biomass
and, in particular, the cell wall, which is rich in carbohydrates, into liquid biofuels [15].

Galactans are currently used as thickening, gelling, and stabilizing agents in food, cosmetic,
and pharmaceutical fields [1,10–16]. However, sulfated galactans produced by Corallinales are less
studied, probably because of their strong calcareous cover, which decreases the production yield [17].
Up until now, only six species that produce sulfated galactan from the Corallinales order (Joculator
maximus, Corallina pilulifera, Corallina officinalis, Bossiella cretacea, Bossiella orbigniana, Jania rubens and
Lithothamnion heterocladum) have been reported [2–4,18–20]. Their common structural feature is an
agaran main chain in which (1,3)-β-d-Galp residues are almost completely substituted in O-6 positions,
mainly by β-d-Xylp side chains, but also by some sulfate groups. α-l-Galp residues are also partially
substituted by sulfate and methoxy groups in the O-2 position [4,19,20]. Some sulfate groups have also
been reported on the O-3 position of the α-l-Galp units. Note that 3,6-AnGalp residues were previously
reported in Jania rubens [3].

Jania adhaerens (J.V. Lamour) belongs to the Corallinales order and Corallinaceae algal family. This
genus is widely present in the Mediterranean and Atlantic coasts and mostly found mixed with the
brown alga Cystoseira crinita. To our knowledge, there is no data in the literature concerning some
structural features and rheological properties of the polysaccharides extracted from J. adhaerens. Besides,
this macroalgae is not used for ethnomedicine or as food by local populations. Today, Tunisia mainly
imports phycocolloids and does not promote the macroalgae industry to produce agaroids at a large
scale. Regarding these drawbacks and the strong ethnobotanic (endemic species) but also economic
(climatic conditions, market potential in North Africa, etc.) potential of this algae, this work aimed to
identify the value of Jania adhaerens as a new feedstock for producing agaroids. This paper deals with
the extraction, purification and structural characterization of a sulfated xylogalactan-rich fraction (JSP)
using Fourier-transform infrared spectroscopy (FTIR), high-pressure size exclusion chromatography
(HPSEC) with a multi-angle laser light scattering (MALLS), gas chromatography coupled to mass
spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). The physicochemical
properties and rheological behavior of JSP were also evaluated to better comprehend its potential use
as a hydrocolloid.

2. Material and Methods

2.1. Marine Seaweed Collection and Processing

The red seaweed Jania adhaerens J.V. Lamour (Rhodophyta, Corallinales) was collected at a 1 m
depth from Tabarka in northern Tunisia (36◦57′04.3” N–8◦44′30.4” E) in August 2018. Thalli of the
seaweeds were cleaned with sea water then distilled water (avoiding contamination with epiphytes)
and dried at 55 ◦C for 11 days. The dried seaweeds were crushed by mechanical blender (Moulinex,
France) into a fine powder and finally sieved with a 0.3 mm mesh size. Prior to polysaccharide
extraction, a depigmentation of the powder was performed with acetone and 96% ethanol overnight
under gentle stirring (400 rpm) at room temperature. The depigmented powder was then dried at
50 ◦C for 24 h. All chemicals were purchased from Sigma-Aldrich and were of analytical grade.
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2.2. Extraction and Purification of JSP

Fifty grams of the depigmented powder were submitted to alkaline extraction with 0.3 M NaOH
solution (50 g/L) for 5 h at 90 ◦C (pH 9–9.5) under reflux and stirring (500 rpm) [16]. After filtrations
through glass filters of porosity 2 (40–100 µm) and then 3 (16–40 µm) and centrifugation (12,000 g,
30 min, 20 ◦C), the supernatant was collected and then precipitated by three volumes of −20 ◦C cold
ethanol (96%, 12 h) under gentle stirring (250 rpm) at 4 ◦C. The polysaccharide pellet was collected
and solubilized in ultra-pure water (300 mL). The ethanolic precipitation and washing steps were
repeated following the same procedure (five times) for removing salts (with control of conductimetry)
and the polysaccharide was collected (pellet) after centrifugation (8000 g, 4 ◦C, 15 min). The final
pellet was resolubilized in ultra-pure water and then freeze-dried at −55 ◦C for 48 h (Heto Power Dry
PL600). The polysaccharide fraction was, finally, finely crushed and named JSP (Jania adhaerens sulfated
xylogalactan-rich fraction).

2.3. Colorimetric Assays

Total carbohydrates were evaluated by the phenol-sulfuric acid method [21], using d-Gal as
standard (Dubois method). Neutral and acid sugars were, respectively, quantified by the sulfuric
resorcinol [22] and m-hydroxydiphenyl (MHDP) methods [23] using d-Gal and d-GlcA as standards
and the correction method of Montreuil et al. [24]. The sulfation degree was evaluated by BaCl2/gelatin
turbidity as described by Dodgson and Price [25]. The content of 3,6-anhydrogalactose was quantified by
the procedure of Yaphe and Arsenault [26] usingd-Fru as standard. Pyruvic acetal content was estimated
after sample hydrolysis by reaction with 2,4-dinitrophenylhydrazone [27]. Protein concentrations
were determined by the Bradford [28] method using bovine serum albumin (BSA) as reference. Total
phenolic compounds content was quantified according to the method of Folin–Ciocalteu [29] using
gallic acid as reference. The conversion of conductivity into NaCl content was done assuming that
2 mS/cm were equivalent to 1 g/L of NaCl. All the measurements were repeated three times.

2.4. Solvolytic Desulfation of Polysaccharide

JSP aqueous solution (20 g/L) was treated with Dowex cations exchange resin (Dowex Marathon C
Sodium, H+ form) during 3 h, neutralized with pyridine (99.8%, pH 6.5–7) and concentrated by rotary
evaporator (Rotavapor RII, BUCHI, Rungis Complexe, France). The solution (15–20 mL) was mixed
three times with acetone (99.8%, 50 mL), concentrated again and then freeze-dried [30]. The resulting
pyridinium salts were desulfated with DMSO/MeOH anhydrous mixture (30 min, 500 rpm) and then
boiled at reflux for 3.5h at 100 ◦C. The solution was neutralized (1 M NaOH, pH 9–9.5), dialyzed
(SnakeSkin Dialysis Tubing, 3.5 kDa MWCO, 35 mm I.D, 35 feet) and freeze-dried. The obtained
fraction was named JDP (desulfated fraction of JSP).

2.5. ATR-FTIR Analysis

FTIR spectra of JSP and JDP were obtained using a VERTEX 70 FTIR instrument with ATR A225
diamante (Bruker, Palaiseau, France). Fifty scans were measured at room temperature (referenced
against air) ranging from 400 to 4000 cm−1 (4 cm−1 resolution) and the infrared data were analyzed
with OPUS 7.2 software.

2.6. Structural Features

2.6.1. Determination of the Monosaccharides Composition

Fifteen milligrams of JSP were hydrolyzed with TriFluoroacetic Acid (TFA) (1.5 mL, 90 min,
120 ◦C) and the hydrolysate was evaporated at 60 ◦C under nitrogen stream. The residual traces
of acid were removed by adding 1 mL methanol (three times). Monosaccharides derivatization
was carried out at room temperature for 2 h according to the protocols adapted from Pierre et al.



Appl. Sci. 2020, 10, 1655 4 of 18

(2012, 2014) using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA)/chlorotrimethylsilane (TMCS)
(99:1) [31,32]. After evaporation (nitrogen flow), the trimethylsilyl-O-glycosides residues were then
solubilized in dichloromethane (10 g/L). The standards (l-Rha, d-Rib, l-Fuc, l-Ara, d-Xyl, d-Man,
d-Gal, d-Glc, d-GlcA, d-GalA, d-GalN, d-GalN) were subsequently prepared following the same
method. The monosaccharides composition was determined by GC/MS coupled to electronic impact
(EI) on an Agilent 6890 Series GC System coupled to a 5973 Network Mass Selective Detector (Agilent
Technologies, Les Ulis, France). One microliter (sample/standard) was injected on an OPTIMA-1MS
(30 m, 0.32 mm, 0.25 µm) column with a helium total flow rate of 2.3 mL/min. The split ratio was set at
50:1 and the helium pressure at 8.8 psi. The temperature was made up at 100 ◦C for 3 min, then raised
to 200 ◦C (8 ◦C/min) maintaining for 1 min continuing, with a final increment to 215 ◦C at 5 ◦C/min
(runtime 19 min 50 s). The ionization was performed by electronic impact (EI, 70 eV) with the trap
temperature programmed at 150 ◦C and the target ion was programmed at 40–800 m/z. The injector
temperature was fixed at 250 ◦C.

2.6.2. Molecular Weight Analysis by HPSEC-MALLS

High-pressure size exclusion chromatography (HPSEC) equipped with three detectors on line:
a multi-angle laser light scattering (MALLS) filled with a He-Ne laser at 690 nm and a K5 cell (50 µL)
(HELEOSII Wyatt Technology Corp., Goleta, CA, USA), a differential refractive index (DRI) (RID10 A
Shimadzu, Kyoto, Japan) as well as a viscosimeter (Viscostar II, Wyatt Technology Corp., USA) were
used to estimate macromolecular magnitudes (Mw, Mn, PolyDispersity Index (PDI) = Mw/Mn, Rh and
[η]) of polysaccharides using a dn/dc of 0.15 mL/g. Columns (OHPAK SB-G guard column, OHPAK
SB806 and 804 HQ columns (Shodex)) were eluted with 0.1 M LiNO3 at 0.7 mL/min. The solvent was
filtered through 0.1 µm filter unit (Millipore), degassed and filtered using a 0.45 µm filter upstream
column. JSP (2 g/L) was solubilized in 0.1 M LiNO3 solution for 24 h at room temperature under gentle
stirring, filtered (0.45 µm) and then injected through a 500 µL full loop. All the data were analyzed
using Astra 6.1 software package.

2.6.3. NMR Spectroscopy

JSP (sulfated) and JDP (desulfated) (60 g/L), previously exchanged with deuterium (3 times) by
repeated solubilization (3 times) in D2O (D, 99.9%) and freeze-dried, were finally dissolved in D2O
(40 g/L) prior to NMR analysis. Spectra were performed at 60 ◦C on a Bruker Avance 600 spectrometer
(Bruker BioSpin MRI GmbH, Ettlingen, Germany) of 600 MHz equipped with a Broad Band Fluorine
Observation (BBFO) probe. NMR experiments were operated with a spectral width of 3000 Hz with
the following acquisition parameters: (i) for 1H experiments, recovery = 5 s (for a complete return
after a 90◦ pulse), acquisition mode = 2 s, pulse 90◦ = 8 µsec; number of scans = 64; and (ii) for 13C
experiments, number of scans = 16,384, acquisition mode = 0.34 s, recovery = 2 s, pulse = 7 µsec,
accumulation for 11 h. 2D NMR spectra were applied using double-quantum filtered COrrelated
SpectroscopY (1H-1H COSY) and nuclear Overhauser effect spectroscopy (NOESY).

2.7. Rheological Investigations

2.7.1. Samples Preparation

Solutions of JSP at different concentrations (from 0.25 to 2.0%, w/v) were prepared by solubilizing
the samples in ultra-pure water or in 0.5 M NaCl and KCl solutions after gentle stirring (400 rpm) until
full dissolution for 4–5 h at room temperature. Later, the solutions were then stored at 4 ◦C for 48 h to
obtain a full water-swelling polymer (biopolymer hydration) and for removal of bubbles.

2.7.2. Rheological Measurements

Rheological measurements were done using a rheometer AR-2000 (TA Instrument, Great Britain,
Ltd., New Castle, DE, USA) fitted with a 40 mm cone-plate geometry (54 microns gap) and equipped
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with a Peltier heating system for accurate control. After loading, samples were held for 15 min before
measurements to permit structure recovery and temperature equilibration. The solutions were then
covered with a thin layer of hexadecane to prevent solvent evaporation during measurements [29,33,34].
The TA Instrument Rheology Advantage software (V5.7.0) was used to collect and analyze the
rheological data. Rheological measurements were carried out in duplicate and the values of effectively
overlapping traces were reported. Steady-shear flow properties for JSP solutions (from 0.25% to 2.0%)
(w/v) were investigated at 25 ◦C over the range of shear rate (

.
γ) from 0.001 to 1000 s−1. Solutions of

1.0% and 2.0% (w/v) were used to evaluate the effect of salts and temperature. Viscosity data were
expressed using the Williamson model (Equation (1)) and the flow curves modeling were achieved
using the Ostwald–de Waele (power-law) equation (Equation (2)):

η =
η0

(1 + (λ.
.
γ)

(1−n)
)

, (1)

τ = k
.
γ

n, (2)

where η is the apparent viscosity (Pa.s), η0 is the zero shear viscosity (Pa.s), τ (η ×
.
γ) is the shear stress

(Pa), λ is the transition time (s),
.
γ is the shear rate (s−1) and n is the flow index (dimensionless).

Oscillatory frequency sweep measurements of elastic modulus G′ (storage modulus), viscous
modulus G” (loss modulus) and loss tangent (tan δ = G”/G′) (damping factor) were carried out at
25 ◦C in a constant strain of 20% (or in linear viscoelastic range) over the set of angular frequency (ω)
ranging from 0.01 to 10 Hz (0.063–62.83 rad/s).

3. Results and Discussion

3.1. Extraction Yield and Biochemical Composition

The extraction yield and the overall biochemical composition of JSP are detailed in Table 1.

Table 1. Global composition of JSP.

Extraction
Yield

(% w/w)

Total
Sugar

(% w/w)

Neutral
Sugar

(% w/w)

Uronic
Acid

(% w/w)

Sulfate
(% w/w)

Pyruvate
(% w/w)

3,6-AnGal
(% w/w)

Proteins
(% w/w)

[NaCl]
eq. (%)

Conductimetry
(µs/cm)

4.55 70.34 ±
0.68

63.26 ±
0.45

5.63 ±
0.37

10.82 ±
0.33

0.44 ±
0.03

18.15 ±
0.42

0.81 ±
0.04 1.64 31.65

The extraction yield of JSP was around 4.55% (w/w) and close to those obtained by Zeid et al. [35],
Navarro et al. [2], Maciel et al. [36] and Chiovitti et al. [37] for the extraction of galactans from the red
seaweeds Pterocladia capillacea (6.46%), L. heterocladum (6.20%), Gracilaria birdiae (6.50%) and Sarconema
filiforme (6.0%). This extraction yield was higher than those obtained from J. rubens (<1.4%), C. officinalis
(0.3%) and B. orbigniana (0.25%) [3,18], but remained much lower than those obtained by Lajili et al. [38],
Fenoradosoa et al. [16] and Chattopadhyay et al. [39] for the red algae Laurencia obtusa (12.80%),
Halymenia durvillei (~15–18%) and Grateloupia indica (13.0%). Overall, the extraction yield of sulfated
galactans from Corallinales are probably lower due to their strong calcareous covers.

JSP was mainly composed of carbohydrates (70.34%), principally neutral (63.26%), with minor
amounts of uronic acids (5.63%), polyphenols (0.74%), proteins (0.81%) and pyruvates (0.44%). These
results were in accordance with the literature concerning sulfated galactans extracted from red seaweeds
species, such as C. officinalis, J. rubens and H. durvillei [16,18,40]. The presence of sulfate groups (10.82%)
was in agreement with values reported for galactans isolated from J. rubens, C. officinalis and B. orbigniana
(7–15%) [18]. As seen in Table 1, the proportion of 3,6-anhydrogalactose (3,6-AnGal) was close to
18.15%, confirming the great content of 3,6-AnGal residues obtained after an alkaline extraction [16].
Regarding the literature, this strong heterogeneity in extraction yields and global chemical compositions
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of sulfated galactans is largely dependent on the algal species, environmental factors and extraction
procedures [16,38].

3.2. Structural Characterization of JSP

3.2.1. ATR-FTIR Spectroscopy

The FTIR footprints of JSP and JDP fractions were performed and are shown in Figure 1.
The absorption bands at 3331 and 2927 cm−1 were attributed, respectively, to OH- stretching and CH-
asymmetric vibrations of polysaccharides [41,42]. The absorption signal around 1609 cm−1 was ascribed
to (-COO-) carboxylate groups, whereas those at 1417 cm−1 suggested the presence of (C=O) ester
carbonyl groups of acid residues, confirming the weak electrolytic character of JSP (5.63%) [41]. FTIR
spectra showed characteristic bands (1236, 1073, 1023, 934 and 875 cm−1) of agar-like polysaccharide
(agarans structure) [1,37,38].
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Figure 1. FTIR spectra of JSP (original sulfated fraction, in blue) and JDP (desulfated fraction, in red).

The absorption band observed at 1236 cm−1 could be attributed to asymmetric O=S=O stretching
vibration of sulfate ester [30,38,41]. The peaks near to 1073 and 1148 cm−1 were assigned to C-O-C and
C-O glycosidic band vibrations, which suggested the presence of carbohydrates. The strong absorption
peak near 1023 cm−1 corresponded to the stretching vibration of carbohydrates (pyranose ring of
galactose units). The weak signal at around 935 cm−1 could be assigned to the vibration C−O−C bridge
in 3,6-α-l-AnGalp residues [43–45].

The absorption region between 950 and 750 cm−1 was expanded to better determine the sulfate
group position in agaran-type polysaccharides [11]. The characteristic region (agar-specific bands)
between 855 and 830 cm−1 could be attributed, respectively, to 3-O-sulfate and/or 2-O-sulfate groups
present in α-l-Galp units [11], while the peaks at around 875 and 812 cm−1 were ascribed to
(6-O-SO3

−) stretching of sulfate groups on β-d-Galp units and to the 3,6-AnGalp (2-O-SO3
−) residues,

respectively [1,46]. Regarding the literature, alkaline treatment increased the intensity of the signal at
935 cm−1 (950–930 cm−1) by conversion of (1,4)-linked α-l-Galp (6-O-SO3

−) to 3,6-AnGalp [11,16].
JDP, which was obtained from JSP after desulfation (see Section 2.4.), showed a drop in intensities

for the characteristic signals (region 800–1240 cm−1) corresponding to sulfate groups. This desulfation
step, with a yield of 46.35% (w/w), was also confirmed by colorimetric assays (2.08%).
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3.2.2. Monosaccharide Composition

Monosaccharide composition of JSP was determined by GC/MS analysis after acidic hydrolysis.
As shown in Table 2, JSP was mainly composed of galactose (62.35%), glucose (20.0%) and xylose
(15.41%), but also small amounts of glucuronic acid (2.24%).

Table 2. Monosaccharides composition of JSP.

Monosaccharides Composition (Molar %)

Gal Xyl Glc GlcA

62.35 15.41 20.00 2.24

Analyses were run in triplicate and the relative standard deviations are less than 5%.

Regarding the literature, galactose and xylose were the principal constitutive residues of
polysaccharides extracted from red algae of the Corallinales order. Consequently, JSP could be a
xylogalactan-rich fraction as already reported by Navarro and Stortz [3,18] for sulfated polysaccharides
extracted from other corallinans, such as J. rubens and C. officinalis. JSP presented a ratio of Galp/Xylp
equal to 4.05 (Table 2). These results were in agreement with previous studies done on xylogalactans
isolated from C. officinalis (2.9–4.4), J. rubens (2.6–3.5) and B. orbigniana (2.9–4.4) [3]. The Galp/Xylp
ratio found in this paper was considerably higher than those described for xylogalactans derived from
L. heterocladum (1.5–3) [2] but lower than those recorded for sulfated galactans isolated from Spyridia
hypnoides and H. durvillei, which contained high Galp/Xylp ratios (>10) [16,43].

Finally, the presence of polluting floridean starch (as indicated by Glc residues) is common,
considering the used extraction and purification procedures, and was largely described for other
corallinans in the literature [3,18].

3.2.3. NMR Investigations

Several assignments were deduced by comparing the NMR results of JSP and JDP with
the 1H/13C NMR spectra of (i) a sulfated xylogalactan from C. officinalis showing an alternating
→4)-α-l-Galp-(1,3)-β-d-Galp-(1→ backbone devoid of 3,6-AnGalp, in which the C-6 of the β-d-Galp
units is substituted almost completely, mainly by β-d-Xylp and also by sulfate groups, while the C-2
of α-l-Galp moieties was partially substituted by sulfate and methoxy groups and the C-3 of the
same unit also carries some sulfate groups [20]; (ii) a sulfated galactan extracted from J. maximus
having a repeating backbone of→3)-β-d-Galp-(1,4)-α-l-Galp-(1→, highly branched on the O-2 and
O-3 of α-(1,4)-l-Galp by short side chains and on the O-6 of β-(1,3)-d-Galp by terminal residues of
β-d-Xylp [4]; (iii) a sulfated xylogalactan produced from J. rubens with a main backbone consisting of
an agaran disaccharidic repeating unit [→4)-α-l-Galp-(1,3)-β-d-Galp-(1→] substituted mainly on the
O-6 of the β-d-Galp unit by β-d-Xylp side stubs, and less with sulfate or methoxy groups, and also
on O-2 and/or the O-3 of the α-l-Galp (or 3,6-α-l-AnGalp) residues with methoxy and/or sulfate
groups [3]; (iv) a sulfated xylogalactan isolated from C. pilulifera composed of alternating 3-linked
β-d-Galp and 4-linked α-l-Galp bearing single β-d-Xylp substituents in the O-6 position of β-d-Galp
residues, whereas sulfate and methoxy groups occupy the O-2 and O-3 positions of α-l-Galp and O-6
of β-d-Galp units [19]; (v) a xylogalactan extracted from B. cretacea with a similar main chain consisting
of→4)-α-l-Galp-(1,3)-β-d-Galp-(1→ partially sulfated on the O-6 of β-(1,3)-d-Galp, a feature unique to
this species [47]; (vi) a complex xylogalactan produced from L. heterocladum composed of alternating
3-linked β-d-Galp and 4-linked α-l-Galp highly substituted principally on the O-6 of the β-d-Galp
residues by β-d-xylosyl side stubs, and less with methoxy or sulfate groups, and also on the O-2 by
sulfate or methoxy group of the α-l-Galp or 3,6-α-l-AnGalp residues [2]; and finally (vii) a sulfated
xylogalactan obtained from Gracilaria caudata composed of alternating residues of 3-linked-β-d-Galp
and 4-linked-3,6-α-l-AnGalp highly substituted by methoxy groups and pyruvic acid acetal.
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The 1H- and 13C-NMR assignments of JSP and JDP spectra are given in Figures 2 and 3.
The spectra showed a high degree of multiplicity, suggesting a great diversity in the α-l-Galp and
β-d-Galp backbone, which seems similar to those already published for other corallinans [2–4,20,47].
Signals related to the anomeric regions are located in the range δ 4.2–5.6 ppm for 1H-NMR and δ

100–110 ppm for 13C-NMR [2,3,19]. The signals at δ 103.8/4.41 and correlation of δ 4.70/3.60 in the
COSY were assigned to the→3)-β-d-Galp-(1,4)-α-l-Galp-(1→ substituted units (Figure 4), while the
signals at δ 102.8/4,70 in 13C- and 1H-NMR, respectively, were attributed to the anomeric carbon and
proton of→3)-β-d-Galp-(1,4)-3,6-α-l-AnGalp-(1→ residues, confirming the main backbone structure of
JSP [3,48].
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The signals at δ 101.09/5.07 ppm and correlation of δ 5.07/3.34 (H-1/H-2) in the COSY spectrum
(Figure 4) were assigned to the anomeric proton of α-(1,4)-l-Galp residues substituted at the O-3,
mainly by sulfate groups and rarely with methoxy groups [48]. This assignment (at δ 101.09/5.07 ppm)
was already made to the 3-O-methyl-α-l-Galp unit [3], but, in this case, a sulfate group appeared to
be present at this position compared to the JDP spectrum. Two signals at δ 5.42 ppm (Figure 2A)
and 99.10 ppm (Figure 3A) could be assigned to the α-Glc residues in the floridean starch. These
assignments were supported by other reports [2,3] and were in accordance with the monosaccharides
composition (see Section 3.2.2.). The resonances at δ 97.7/5.34 and 98.7/5.18 ppm were mainly
affected by 3,6-An-α-l-Galp (2-O-SO3

−) and 3,6-An-α-l-Galp (2-O-methyl ether), while the signals at
δ 98.9/5.49 ppm were assigned to the H-1 of 2-O-methyl-α-l-Galp residues [3,19]. The α-l-Galp and
3-Me-α-l-Galp residues were identified at δ 5.24 ppm and δ 101.5 ppm and the signals at around δ

100.22/5.56 ppm were ascribed to the α-(1,4)-linked l-Galp (2-O-SO3
−) residues [19]. It was possible to

assign the 13C- and 1H-NMR chemical shifts, corresponding to the β-d-xylosyl units, as δ 104.3/4.49
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(C-1/H-1), 76.07/3.24 (C-2/H-2), 73.47/3.53 (C-3/H-3), 70.86/3.64 (C-4/H-4), 65.56/3.34 (C-5/H-5) and
δ 3.89 (H-5’) ppm [3,19]. The 1H/1H correlations of δ 5.07/3.38 could be attributed to the H-1/H-6
of β-(1,3)-6-Me-d-Galp units linked to α-(1,4)-l-Galp-(1→ in the NOESY spectrum (Figure 5) [19,48].
Overall, all other attributes were consistent with the 1H-1H COSY and NOESY spectra obtained for
the JSP fraction (Figure 5). To conclude, these analyses showed that JSP presents a new and complex
polysaccharide structure compared to other xylogalactans of corallinans reported in the literature.
Further analyses are needed (enzymatic hydrolysis, etc.) to better apprehend the full structure of JSP.
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3.3. Physicochemical Properties of JSP

3.3.1. Macromolecular Characteristics of JSP

As illustrated in Table 3, JSP had a mass-average molecular mass (Mw) of 8.0 × 105 g/mol and a
number-average molecular mass (Mn) of 1 × 105 g/mol.

Table 3. Macromolecular characteristics of JSP.

Mw
a (g/mol) Mn

b (g/mol) PDI c Rh
d (nm) [η] e (mL/g)

8.0 × 105 1 × 105 8.0 16.8 76
a Mw: Weight average molecular weight was measured by SEC-MALLS-DRI, b Mn: Number average molecular
weight estimated by SEC-MALLS-DRI, c PDI: Polydispersity index Mw/Mn, d Rh: Hydrodynamic radius was
calculated by SEC-MALLS-DRI, e [η] Intrinsic viscosity was measured by SEC Visco-DRI. Analyses were run in
triplicate and the relative standard deviations are less than 5%.

The SEC chromatograms of JSP showed various peaks (DRI and LS), suggesting the presence of
various molecular masses and a significant degree of dispersion (data not shown). The PDI value
showed JSP heterogeneity and could be due to the presence of floridean starch (α-Glc) contamination
and other larger molecular weight xylogalactans [49,50]. This last statement is consistent with the
literature concerning sulfated galactans from Botryocladia occidentalis [51] and Gracilaria cornea [52] red
seaweeds. High Mw have been described for other sulfated polysaccharides isolated from red seaweeds
having values larger than 1× 105 g/mol [1,53,54]. The Mw value of JSP remained lower than those
reported for sulfated xylogalactans extracted from calcareous red algae of the family Corallinaceae,
such as C. officinalis, B. orbigniana and J. rubens [3,14]. The presence of short chains in the JSP structure
could also decrease the Mn value and consequently increase the polydispersity [55,56]. Note that
further purification steps could be done in the future to eliminate the Glc-storage contamination and
enhance the structural characterization of this xylogalactan.

Polymer intrinsic viscosity ([η] mL/g) indicates the capacity of polymers to enhance the viscosity
of fluids, dependent on their physicochemical properties, such as structural conformation, type and
degree of branching units, Mw, and solvent property [33,49]. The [η] of 76 mL/g and the hydrodynamic
radius Rh of 16.8 nm obtained for JSP suggest a flexible random coil conformation with a value of
Mark–Houwink–Sakurada exponent α ranging between 0.5 and 0.8. [33,49,56]. Finally, the theoretical
critical concentration C* of JSP, which can be obtained by ks/[η] (with ks = 0,5 to 1 for coil polysaccharides
in water) could range from 6.5 to 13.1 g/L.

3.3.2. Rheological Behavior of JSP

The steady-shear flow curves for the JSP aqueous solutions at different concentrations from 0.25%
to 2.0% (w/v) at 25 ◦C are presented in Figure 6. JSP solutions in water exhibited shear-thinning
behavior since the apparent viscosity (η, Pa. s−1) decreased with the increasing shear rate (

.
γ, s−1).

As illustrated in Figure 6, increasing JSP concentrations from 0.25% to 2.0% (w/v) led to an increase
in the apparent viscosity of the aqueous solutions, suggesting that polymer chains adopted a more
intertwined network. This flow property was in agreement with previous results obtained for other
sulfated galactans extracted from G. birdiae and H. durvillei since the authors described a pseudoplastic
behavior for two sulfated galactans, considering the same range of concentrations [12,16].

The Ostwald–de Waele model was used to fit the rheological data of the JSP solutions at different
concentrations ranging from 0.25% to 2.0% (w/v) at 25 ◦C over the shear rate from 0.001 to 1000 s−1

(Table 4). Note that the flow behavior index (n) takes the value n < 1 for fluid exhibiting pseudoplastic
or shear-thinning behavior, n = 1 for Newtonian liquid and n > 1 for swelling plastic or shear-thickening
fluid [57]. As seen in Table 4, the values of the flow behavior index for solutions of JSP in water were
lower than 1, confirming the property of a shear-thinning (pseudoplastic) fluid.
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Figure 6. Flow behavior of JSP aqueous solutions at different concentrations ranging from 0.25% to
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Table 4. Consistency and flow behavior index of JSP solutions in water and monovalent salts.

JSP (%, w/v) NaCl (mol/L) KCl (mol/L) n k (Pa.sn) R2

0.0 0.0 0.54 ± 0.014 0.030 ± 0.002 0.99
0.25 0.5 0.0 0.58 ± 0.020 0.028 ± 0.006 0.98

0.0 0.5 0.60 ± 0.018 0.022 ± 0.005 0.98
0.0 0.0 0.50 ± 0.007 0.060 ± 0.007 0.99

0.50 0.5 0.0 0.57 ± 0.024 0.055 ± 0.003 0.97
0.0 0.5 0.55 ± 0.030 0.058 ± 0.001 0.97
0.0 0.0 0.48 ± 0.004 0.174 ± 0.001 0.99

0.75 0.5 0.0 0.54 ± 0.020 0.168 ± 0.016 0.99
0.0 0.5 0.54 ± 0.024 0.167 ± 0.014 0.98
0.0 0.0 0.44 ± 0.011 0.26 ± 0.012 1.00

1.0 0.5 0.0 0.49 ± 0.008 0.24 ± 0.018 0.99
0.0 0.5 0.51 ± 0.005 0.20 ± 0.022 0.97
0.0 0.0 0.43 ± 0.015 0.60 ± 0.005 1.00

1.50 0.5 0.0 0.47 ± 0.026 0.55 ± 0.024 0.97
0.0 0.5 0.45 ± 0.030 0.57 ± 0.035 0.99
0.0 0.0 0.40 ± 0.018 1.30 ± 0.012 1.00

2.0 0.5 0.0 0.42 ± 0.025 1.25 ± 0.042 0.98
0.0 0.5 0.43 ± 0.021 1.22 ± 0.034 0.98

The effects of temperature and salts (NaCl and KCl) on the flow properties of JSP solutions
(1.0–2.0%, w/v) are illustrated in Figure 7. The ηwas found to decrease with the increase in temperatures
(Figure 7B) and when adding salts (Figure 7A).

The increase in heat was able to increase the energy dissipation of polysaccharide molecules,
which resulted in a breakdown of the weak energy bonds (hydrogen and electrostatic bonds), a decrease
in the intermolecular interactions and, consequently, the drop of the flow polymer activation energy
(Ea) [34,57]. In monovalent salts NaCl or KCl solutions (0.5 mol/L), intermolecular electrostatic
repulsions as well as the number and/or complexity of junction zones between JSP molecules decreased,
showing that JSP adopted a more compact conformation because of its weak polyelectrolyte character
(low uronic acids content) [16,33,34]. As shown in Table 4, the values of n increased in NaCl and KCl
solutions (0.5 mol/L), by increasing the temperature (from 20 ◦C to 60 ◦C) or decreasing the polymer
concentration (from 0.25% to 2.0% (w/v)). The consistency index k (Pa.sn) increased with concentration
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independently of the nature of the solution. The k values decreased with adding salts and increasing
temperatures [34,57].
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The frequency dependence of G′ (storage modulus) and G” (loss modulus) of JSP (1.0% and 2.0%,
w/v) at 25 ◦C is described in Figure 8. Typical gel-like behavior was observed since G′ was higher than
G”, ranging from 0.063 to 62.83 rad/s.

The gap increased between G′ and G” for JSP concentrations (1.0% and 2.0%, w/v) and increasing
frequencies (0.063–62.83 rad/s) showed a significant viscoelasticity of JSP [33,34,58]. The dynamic
mechanical loss tangent, also named damping factor (tan δ = G”/G′), is a characteristic parameter for
the assessment of viscoelastic behavior [51,52]. The values of tan δ were less than 1 and confirmed the
elastic behavior of JSP solutions in water. These values slightly dropped with increasing frequencies
(from 0.063 to 62.83 rad/s) and the polymer energy was dissipated by an elastic flow [34,58].

The critical overlap concentration C* (g/L or %) was evaluated by plotting the specific viscosity
(ηsp, (Pa.s)) vs. JSP concentrations from 0.25% to 2.0% (w/v) in water (Figure 9). Figure 9 shows that the
specific viscosity increased with increasing polysaccharide concentrations (from 1% to 2.0%, w/v) and
the change in slope between the two linear segments helped estimate C* [33,34,59,60].

The C* of JSP at 25 ◦C in water was calculated at around 7.5 g/L and the slopes of the linear segments
below and above the C* were, respectively, 2.5 and 4.5. This practical value of C* was consistent with
the theoretical one estimated in Section 3.2.1 (6.5 to 13.1) and the ks value was around 0.57.
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4. Conclusions

The main goals of this paper were to determine the structural features and evaluate the rheological
properties of a sulfated xylogalactan-enriched fraction extracted from the Tunisian red seaweed
J. adhaerens. The structural analyses revealed that JSP (Mw = 8.0 × 105 Da) was mainly composed
of an agar-like xylogalactan with a repeating backbone of (→3)-β-d-Galp-(1,4)-α-l-Galp-(1→)n and
(→3)-β-d-Galp-(1,4)-3,6-α-l-AnGalp-(1→)n substituted mainly on the O-6 of the β-(1,3)-d-Galp by
β-xylosyl side chains, less with sulfate or methoxy groups, but also on the O-2 and O-3 of the
α-(1,4)-l-Galp with methoxy and/or sulfate groups. The rheological investigations showed that
JSP solutions exhibited a shear-thinning behavior and a great viscoelastic character with a critical
overlap concentration (C*) close to 7.5 g/L. JSP physicochemical properties are at least as good as
other polysaccharides from red marine seaweeds currently used for their functional properties as
hydrocolloids. J. adhaerens could be a new feedstock for agaroids in Tunisia even if it seems hard to
penetrate the international market of phycocolloids given other main macroalgae producers. Finally,
these findings would help the development of novel bioactive polysaccharides for niche markets.
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