
HAL Id: hal-02524244
https://hal.science/hal-02524244

Submitted on 30 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-Tuning Torsional Drilling Model for Real-Time
Applications

Jean Auriol, Ulf Jakob F Aarsnes, Roman Shor

To cite this version:
Jean Auriol, Ulf Jakob F Aarsnes, Roman Shor. Self-Tuning Torsional Drilling Model for Real-
Time Applications. ACC 2020 - American Control Conference, Jul 2020, Denver, United States.
�10.23919/acc45564.2020.9147242�. �hal-02524244�

https://hal.science/hal-02524244
https://hal.archives-ouvertes.fr


Self-Tuning Torsional Drilling Model for Real-Time Applications*

Jean Auriol1, Ulf Jakob F. Aarsnes2 and Roman Shor1

Abstract— A self tuning model construct is presented which
includes a field validated torsional drillstring model and a bit-
rock interaction law. The drillstring model includes side-forces
from borehole contact, where the kinematic and static friction
coefficients are tuned when the drillstring begins rotating but
prior to the bit contacting the bottom. Subsequently, when
tagging bottom and drilling ahead, the estimation of side-
forces is suspended and changes in measured torque is used to
update the parameters in the bit-rock interaction model. This
approach allows to isolate the effects of side forces and bit
torque, respectively, and consequently tune both these elements
in torsional drilling model for real-time applications.

I. INTRODUCTION

In deep drilling applications, communication between
subsurface tools and surface equipment typically has low
bandwidth and high latency, so there exists a need for real-
time, high fidelity estimation of distributed drillstring state
based on surface measurements. With such estimation, the
efficiency of directional drilling operations would increase,
wellbore quality would improve and overal cost of well
construction would be reduced [1]. In a previous work [2]
we presented a torsional model of the drill string, with side
forces, that gave a good compromise between model fidelity
and complexity for certain applications [3], [4], [5]. However,
this model had one significant limitation, which was the lack
of model for torque on bit. The present paper is an extensions
of this work to address this limitation by adding such a model
and proposing an approach for tuning the magnitude of both
the side forces and the torque on bit.

The goal is to create a simple, or minimal, real-time model
by ignoring all but the dominating effects of interest, which
in this case are the torsional dynamics of the drill string.
As such, again we do not include the axial dynamics of the
drill string, see e.g. [6], [7] for a distributed coupled axial-
torsional model. Further improvements on models with side
forces have been presented by [8]. Other effects that can be
relevant to include, but at the cost of increased complexity,
are discussed in [9]. For more perspective on drilling models
we refer to [10].
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Our goal of a simple model amenable for self-tuning
requires us to modify the torque on bit model. This is
done by assuming a steady axial velocity of the bit. For a
drillstring in constant rotation, this may be a valid first order
approximation since axial stick-slip is reduced or eliminated
due to the fact that there is no portion of the drillstring
in zero axial velocity and thus no switching between static
and kinematic friction. Given this assumption, we rigorously
derive a relation for torque on bit from the classical model
of [11], [12]. The derivation and evaluation of this simplified
torque on bit model is one of the key contributions of the
paper. Previous torque on bit models from the literature have
either been based on the Stribeck effect, which is incorrect
as the cutting action has no inherent velocity weakening
effect [13], [14], or have been completely synthetic and not
related to physical properties. Our proposed model finds
the velocity weakening effect from a the experimentally
validated principles of cutting and can be computed from
the physical properties of the model.

The paper first recaps the distributed torsional model with
side forces in Section II. Then, we propose our approach to
a torque on bit model without axial dynamics. In Section
III, the observer is presented for the bit-rock interaction
law. Finally, in Section IV, we show simulation results with
the full model and illustrate the estimation of the bit-rock
interaction parameters.

II. MODEL

In this section we recap the main points of the torsional
simulation model given in full in [2], and then extend
the model to also account for torque at the bit from the
cutting action. The model is relatively simple to facilitate its
use regarding control and estimation applications. The main
assumptions we use are the following:
• The torsional motion of the drill string is the dominating

dynamic behaviour.
• Uniform axial motion. No distributed axial dynamics.
• The transition from static to dynamic Coulomb friction

is modelled as a jump, i.e., the Stribeck curve is
assumed negligible.

• The effects of along-string cuttings distribution on the
friction is assumed to be homogeneous.

• The effect of the pressure differential, inside and outside
the drill string, on the bending moment is not repre-
sented and is assumed to be negligible.

A. Torsional dynamics of the drill string

The torsional motion of the drill string is assumed to be the
dominating dynamic behavior. We represent the torsional dy-
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Fig. 1: Schematic indicating the distributed drill string of
length L lying in deviate borehole.

namics with a distributed wave model where discontinuities
in impedance can be included to model different sections of
the drill string, such as a pipe and a collar section. This kind
of representaion is popular in the literature [6], [7], however
we here only use the torsional dynamics. The parts of the
model presented before is only covered cursory here, but we
refer to [2] for the full model derivation.

We denote the angular velocity and torque as
ω(t,x),τ(t,x), respectively, with (t,x) ∈ [0,∞) × [0,L]
(L being the length of the drill string). A schematic
representation of the drill string is given in Fig. 1. We have

∂τ(t,x)
∂ t

+ JG
∂ω(t,x)

∂x
= 0 (1)

Jρ
∂ω(t,x)

∂ t
+

∂τ(t,x)
∂x

= S(ω,x), (2)

where we model the source term S as

S(ω,x) =−ktρJω(t,x)−F (ω,x), (3)

where the damping constant kt represent the viscous shear
stresses and where F (ω) is a differential inclusion that
represent the Coulomb friction between the drill string and
the borehole, also known as the side force.

The side force is implemented using the following inclu-
sion 

F (ω,x) = ro(x)µkFN(x), ω > ωc,

F (ω,x) ∈ ±ro(x)µsFN(x), |ω|< ωc,

F (ω,x) =−ro(x)µkFN(x), ω <−ωc,

(4)

where ωc is the threshold on the angular velocity where the
Coulomb friction transits from static to dynamic, ro(x) is the
outer drill string radius, and µs,µk are the static and kinetic
friction coefficients. The function F (ω) ∈ ±ro(x)µsFN(x)
denotes the inclusion where

F (ω,x) =−∂τ(t,x)
∂x

− ktρJω(t,x)

∈ [−ro(x)µsFN(x),ro(x)µsFN(x)], (5)
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Fig. 2: Schematic illustrating the four parameters determin-
ing the friction: the coulomb friction parameters ωc, Fc, Fd
and the viscous friction coefficient kt . The shaded region
represents the angular velocities for which a constant value
of static torque is assumed and the red curve indicates the
dynamic torque as a function of angular velocity.

and take the boundary values ±µsFN(x) if this relation does
not hold. The shape of the friction source term is illustrated
in Fig. 2. Using the torque model of [15] it is possible to
derive the normal force profile FN(x). Assuming a planar well
and torsional rotation of the drill string the normal force in
terms of the tension profile σe writes:

σe(x) =
x∫

L

Wb cosθ(ξ )dξ (6)

where Wb(x) = gA(x)(ρ−ρmud) is the buoyed weight per
meter. The normal force profile, FN , is obtained as

FN(x) =
(

σe(x)
∂θ

∂x
+Wb sin(θ)

)
. (7)

B. Top-drive boundary condition

The top drive at the topside boundary is actuated by a
motor torque, τm, that is controlled using a PI control law
[16] to a desired velocity set-point ωSP:

e = ωSP−ωT D (8)

Ie =
∫ t

0
e(ξ )dξ (9)

τm = kpe+ kiIe, (10)

where kp is a proportional gain and ki an integral gain.
We denote JT D the topdrive inertia. We have the following
equation

∂ωT D

∂ t
=

1
JT D

(
τm− τ0

)
. (11)

Finally, the angular velocity at the top of the drill string
verifies ω0 = ωT D.

C. Torsional bit-rock interaction (BRI) law

We now consider the downhole boundary condition. More
precisely, we derive the torsional bit-rock interaction (BRI)
law which is a consequence of the axial motion of the drill-
string while drilling. The model we propose in this paper is



a simplified version of the classical bit-rock interaction law
described in [12] as we assume that the Rate Of Penetration
(ROP) is constant. This approximation allows us to represent
the torque on bit without the complexity of including a full
axial model of the drill string. To ease the notations, the
torque on bit will be denoted τb = τ(t,L) and the bit RPM
will be denoted ωb = ω(t,L). Moreover, we denote vb(t)
the axial motion of the drill-bit (known as the Rate of
Penetration, ROP) and fb(t) the force exerted at the bit
(known as the Weight on Bit, WOB). In this work, we
assume uniform axial motion such that the ROP is equal
to block-velocity at the surface. In reality, a one to two
second transfer delay, due to the speed of sound, exists
between the surface and the bit, but this is constant for a
specified drilling depth. Inspired by [12], we can now give
the boundary condition satisfied by τb. The torque on bit τb
can be decomposed as

τb(t) = τc(t)+ τ f (t), (12)

where τc is the component of torque associated with the
cutting process, and τ f is the component for the frictional
process. Regarding the cutting action, we have

τc(t) =
1
2

a2
εNd(t), (13)

where N is the number of cutter blades, a is the bit radius
and ε the rock intrinsic specific energy. The function d(t) is
known as the depth of cut. It is defined by

d(t) =
2πvb

Nωb(t)
. (14)

Using (13), we obtain

τc(t) =
πvb

ωb(t)
a2

ε. (15)

Regarding the frictional component of the torque τ f , we can
write

τ f (t) = τ
0
f g(ωb), (16)

where the non-linear function g (colloquially referred to as
the g(·) non-linearity) enforces torsional stick if the torque
applied to the bit by the drill-string cannot overcome the
torque induced by the bit-rock interaction. If it is higher
than that torque-on-bit, the the bit starts to slip torsionally.
Following Filippov’s solution concept, and as described
in [17] it can be represented by the convex set-valued map:

g(ωb) =
1−Sign(ωb)

2
=

 0, ωb > 0,
[0,1], ωb = 0,
1, ωb < 0,

(17)

where Sign(·) is the set-valued sign function. Due to potential
stick-slip oscillations, the bit RPM can potentially be equal
to zero. To avoid any problem, we will consider that the
expression (15) holds only if |ωb| > ωc, where ωc is a
threshold on the angular velocity. If this is not satisfied we
will set

τc(t) =±
πvb

ωc
a2

ε (18)

All in all, we get the following boundary condition for the
torque on bit

τb(t) =

{
a2g(ωb(t))+a1

vb
ωb(t)

, if |ωb|> ωc,

a2g(ωb(t))±a1
vb
ωc
, if |ωb|< ωc,

(19)

where a1 and a2 are real positive coefficients that depend on
the different physical parameters.

D. Derivation of Riemann invariants

On each section of the drill string, we define the Riemann
invariants as

αi = ωi +
(ct)i

JiGi
τ, βi = ωi−

(ct)i

JiGi
τ, (20)

where (ct)i =
√

ρi
Ji

is the velocity of the torsional wave and
where the index i = c if we consider the collar section and
i= p if we consider the pipe section. These new states satisfy
the diagonalized PDE [18] system

∂αi

∂ t
+(ct)i

∂αi

∂x
=−(kt(αi +βi)+

1
Jiρi

F ) (21)

∂βi

∂ t
− (ct)i

∂αi

∂x
=−(kt(αi +βi)+

1
Jiρi

F ). (22)

with the boundary conditions

∂ω0

∂ t
=

1
IT D

(
τm +

GJ
ct

(βp(t,0)−ω0(t))
)
. (23)

βc(t,L) = αc(t,L)−
2ct

JcGc
(24)

βp(t,Lp) =
1

1+ Z̄

(
αp(t,Lp)(1− Z̄)+2Z̄βc(t,Lp)

)
(25)

αc(t,Lp) =
1

1+ Z̄

(
2αp(t,Lp)− (1− Z̄)βc(t,Lp)

)
, (26)

where the two last conditions are due to the discontinuity
in the drill string impedance, between the pipe and collar
sections, where we have denoted the relative magnitude of
the impedance as

Z̄ =

[
ct

JG

]collar/[ ct

JG

]pipe

. (27)

III. ESTIMATION

A. Observer design

In this section we design an observer that combines mea-
surements from physical sensors with the proposed model of
the system dynamics. This observer relies on the measured
output of the system that corresponds to the top-drive angular
velocity ω0. It should provide reliable estimates of the states
(torque and RPM), of the friction coefficients related to the
side forces (µsta and µkin) and an estimate of the BRI law
parameters (a1,a2). The observer we design in this paper is
an extension of the one that was presented in [19], which
was shown to obtain good estimates of the torque and RPM
states and of the side forces friction parameters when the bit
is off bottom.



Let us denote with the ·̂ supercript the estimated states
and e = ω̂0−ω0 the measured estimation error of the top-
drive angular velocity. The observer equations given in [19]
in terms of Riemann invariants read as follows

˙̂ω0 = a0

(
β̂p(t,0)− ω̂0

)
+

1
IT D

τm− p0e, (28)

∂ α̂i

∂ t
(t,x)+ ct

∂ α̂i

∂x
(t,x) = Ŝi(t,x)− pi

α(x)e, (29)

∂ β̂i

∂ t
(t,x)− ct

∂ β̂i

∂x
(t,x) = Ŝi(t,x)− pi

β
(x)e, (30)

the source term in each section being computed from the
estimated states and friction factor (F (t,x) being defined
in (5))

Ŝi(t,x) = kt(α̂i(t,x)+ β̂i(t,x))+
1

Jiρ
F (t,x), (31)

Finally, the boundary conditions at the top and bottom, and
between the drill string sections, are

α̂p(t,0) = 2ω̂0(t)− β̂p(t,0)−P0e, (32)

β̂p(t,Lp) =
α̂p(t,Lp)(1−Z̄)+2Z̄β̂c(t,Lp)

1+ Z̄
−P1e, (33)

α̂c(t,Lp) =
2Z̄α̂p(t,Lp)− β̂c(t,Lp)(1−Z̄)

1+ Z̄
, (34)

β̂c(t,L) = α̂c(t,L), (35)

and the estimates of the friction factor is updated according
to

˙̂µs(t) =

{
−lse, |ω̂Lc | ≤ ωc,

0, |ω̂Lc |> ωc,
(36)

˙̂µk(t) =

{
0, |ω̂Lc | ≤ ωc,

lke, |ω̂Lc |> ωc,
(37)

Finally, the following saturation is used to improve ro-
bustness of the method: µ̂s = max(µ̂s, µ̂k). The different
observer gains pi

α , pi
β
, p0, p1,P0,P1, ls, lk are given in [19].

As explained above, this observer provides a good estimation
of the states and of the side forces friction parameters in the
situation of an off-bottom bit. To take the effect of the BRI
into account when we are drilling; equation (35) is changed
to

β̂c(t,L) = α̂c(t,L)+ τ̂b(t), (38)

where

τ̂b(t) =

{
â2g(ωb(t))+ â1

vb
ω̂b(t)

, if |ω̂b|> ωc,

â2g(ωb(t))± â1
vb
ωc
, if |ω̂b|< ωc,

(39)

where the estimates of the BRI estimation parameters are
updated according to

˙̂a1(t) =

{
0, |ω̂Lc |> ωc, or vb = 0,
−la1e, |ω̂Lc |< ωc, and vb 6= 0,

(40)

˙̂a2(t) =

{
0, vb = 0,
−la2e, vb 6= 0,

(41)

with la1 and la2 being two tunable gains.
Remark 1: We have implicitly assumed in (39) that the

variable vb is known. Sometimes, measurements of vb are
available, however, if not the top-drive velocity can be used
in stead when drilling ahead. Hence, we assume an uniform
axial motion of the drill string.

B. Overview of the estimation strategy

In [19] it has been shown how the observer (28)-(41)
can estimate the friction coefficients of the side forces with
the bit off-bottom. However, when the bit goes on bottom
the total torque acting on the drill string equals the sum of
the side forces and the torque from the cutting action of
the bit. The friction coefficients of the side forces and the
coefficients in the BRI law have a similar effects on the
topside measured output of the drilling system. Hence, the
BRI law parameters and the static and kinematic friction
coefficients may not be distinguishable by our observer.
Consequently, we propose an approach wherein these two
sets of parameters are estimated separately.

Consider the following strategy:
1) After a connection, rotation is restarted with the bit

off-bottom. Any discrepancy between the model and
the measured data is used to estimate the side force
friction factors µkin and µsta using the observer (28)-
(37).

2) When the axial motion of the block is initiated, we
stop the estimation of the side force friction factors.

3) Finally, when the bit tags the bottom of the well and
when the quasi-steady drilling is resumed, we can start
estimating the BRI parameters.

This strategy will be applied on simulated data in the next
section.

IV. NUMERICAL RESULTS

The observer we have presented in the previous section
may be used to provide online estimation for the BRI law
parameters a1 and a2 but can also be used to estimate BHA
rotation and torque. More precisely, the contact between the
bit and the rock implies a change of period and amplitude
for the RPM and the torque that can be captured by our
observer. Estimating BHA angular orientation is of particular
usefulness for directional drilling scenarios and feedforward
stick-slip mitigation systems. Our observer is tested against
the simulation model given in [6] using the wellbore survey
given in Figure 4. The side forces static friction term is
chosen to be equal to 0.42, while the kinematic friction
term is equal to 0.29. We set a reference for the top-drive
RPM of 65. As described in Figure 3, the scenario is the
following: we rotate with the bit off-bottom for t ∈ [0,30].
Then, at t = 30, ROP slowly increases before reaching its
final value. The BRI law parameters are chosen as a1 = 100
and a2 = 600. As the purpose of this paper is to estimate the
coefficients a1 and a2, we will assume that the side-forces
kinematic and static friction are known a priori and will not
be updated. As explained above, they can be estimated when,
after a connection, rotation is restarted off-bottom (see [19]
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Fig. 3: Simulated and Estimated BHA torque, τ(t,L) (top), BHA RPM, ωb (second), estimation of the BRI coefficients a1
and a2 (third) and rate of penetration (bottom) for the case of known side force friction coefficients.

for details). We have pictured in Fig 3, the estimation given
by the observer of the BHA torque and RPM as well as the
estimation of the friction parameters (as well as the ROP
profile). One can notice the previously mentioned change of
amplitude and period after t > 30. As the side-forces friction

parameters are perfectly known, our estimations match per-
fectly before the initiation of the axial motion. Then, after
some time, the estimated states converge towards the real
ones. Finally, our observer provides a reliable estimation of
the BRI law coefficients.



Fig. 4: Wellbore survey of the well. The length of the drill-
string is 1750m.

V. CONCLUSION
Real-time estimation of bit-rock interaction parameters

is a well known challenge in the drilling industry and,
if understood, presents the opportunity to improve drilling
operations through feedforward or model predictive control
and to improve the knowledge of formation properties. We
present an extension to a field validated torsional drillstring
model with distributed friction which includes a bit-rock
interaction law. We have presented method to estimate bit-
rock interaction parameters, first through the derivation of
an observer and secondly as a procedure to differentiate
between drillstring effects and bit-rock interaction effects.
The formulation is tested on simulated data modelling a field
scenario, where it is assumed that friction coefficients along
the drillstring are known, and convergence to modelled bit-
rock interaction coefficients is shown. The computational ef-
ficiency and simplicity of this approach presents an appealing
candidate for an online, real-time formation sensing system
for field applications.
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