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ABSTRACT 

 

For fire safety studies in nuclear installations, IRSN uses the SYLVIA software. The 

SYLVIA two-zone model was developed by IRSN to simulate a full ventilation network, fire 

scenarios in a highly confined and mechanically ventilated facility, and airborne contamina-

tion transfers inside nuclear installations. In order to take into account the different sources of 

uncertainty coming from initial and boundary conditions as well as from model parameters, 

the SYLVIA software is associated with the SUNSET statistical software. However, such a 

use of SYLVIA software has a major drawback: it requires a large number of runs and a sig-

nificant statistical analysis what is not always compatible with the requirements of safety as-

sessments in terms of deadlines. To overcome this difficulty, IRSN is currently developing an 

expert system based on a SYLVIA database. This approach allows deriving the most likely 

diagnosis or prognosis in a very short time, but also deriving a more complex form of reason-

ing intertwining prognostic and diagnostic inferences. The proposed expert system is based 

on the Bayesian Belief Network (BBN) methodology and consists in two steps: First, a large 

database obtained from SYLVIA runs allows the estimation of Conditional Probability Ta-

bles. Then, a message passing algorithm is used to exploit dynamically this data base. The il-

lustrating example is based on the study of pressure effects due to fire scenarios in nuclear fa-

cilities and the database is made up of 1,600,000 runs of the SYLVIA software. The goal of 

this paper is to detail the methodology and process to carry out an expert system for fire safe-

ty studies, and is supported by one example showing how it can be used as a decision support 

tool for fire safety analysis in nuclear area. To our opinion, the development of expert sys-

tems represents a new generation of computational tools in the field of probabilistic fire simu-

lation. 

 

Keyword: Bayesian network, Expert system, Pressure effects 

 

Nomenclature 

 

Symbols 

 

A Exchange surface [m2] 

C1 Compartment 1 [-] 

C2 Compartment 2 [-] 

CPT Conditional probability table [-] 

HRR Heat release rate [kW] 
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O2 law Oxygen-limiting law and fire extinction criterion [- ; v/v % of oxygen] 

P Pressure [hPa] 

Pi Parameter of the study [-] 

Q Volume flow rate [m3 s-1] 

Ql Volume flow rate through leak [m3 s-1] 

R Quadratic aeraulic resistance [m-4] 

Rl Aeraulic resistance of the leak [kg0.5 m-4 s-0.5] 

Ri Response of interest [-] 

Rr Air renewal rate [vol. h-1] 

S Transfer function [-] 

t Time, closing time [s] 

t1 Fire growth characteristic time [s] 

T Gas temperature [°C] 

U Random variable [-] 

Ve Volume of equipment [m3] 

V Volume [m3] 

X Volume fraction [v/v %] 

y Yield [kg/kg %] 

Y Mass concentration [g m-3] 

 

Greek letters 

 

α Fire growth factor [kW s-2] 

φ Free volume [-] 

χ Correction factor [-] 

ρ Gas density [kg m-3] 

τl Leak rate [vol. h-1] 

∞ Infinite [-] 

∆P Pressure difference [hPa] 

 

Subscripts 

 

FBD Fire break door 

FD Fire damper 

max Maximum 

n Number of size classes 

N Number of parameters 

s Soot 

VN Ventilation network 
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1. Introduction 

 

The SYLVIA software system [1] has been developed by the Institut de Radioprotection et de 

Sûreté Nucléaire (IRSN) to simulate a full ventilation network, fire scenarios in a highly con-

fined and ventilated facility, and airborne contamination transfers inside nuclear installations. 

This software is based on a two-zone approach and is used by IRSN for fire safety studies. To 

evaluate the impact of uncertainties, the SYLVIA software is coupled to the SUNSET statis-

tical tool [2] also developed by IRSN. This coupling makes it possible to directly carry out a 

set of parametric studies and then measure the impact on some selected responses. A typical 

use of the SYLVIA/SUNSET coupling is to perform a Monte Carlo simulation in which a set 

of variables, known as study parameters, is modeled by random variables. The results ob-

tained from a Monte Carlo simulation constitute a database linking parametric configurations 

determined by the set of values assigned to the study parameters and uncertainties to the cor-

responding results. However, the direct use of this database in the context of a safety assess-

ment encounters two main difficulties: 

− The database is necessarily very limited considering the possible configurations. The 

SYLVIA simulations constituting the database represent a small percentage of the 

possible parametric configurations. This is due to the combinatorial explosion of the 

configurations as a function of the possible values taken for each parameter and the 

number of parameters considered. For instance, if we consider 16 parameters and each 

of them can take only 3 values, the number of combinations of values is 316, i.e. ap-

proximately 43 million configurations. 

− The database is not specific to the characteristics of a safety assessment. It is neces-

sary to extract from the database the information compatible with the specificities of 

the case of interest. For example, a safety assessment can focus more specifically on 

large volumes, high heat release rates, etc. and seek to discriminate configurations 

compatible with safety issues, such as maximum gas temperature, maximum pressure, 

etc. in a compartment. 

 

To meet this dual challenge, it is necessary to be able to correctly update the information con-

tained in the database by integrating the characteristics of each safety assessment. One solu-

tion is to develop an expert system. This approach allows deriving in a negligible time prog-

nostic and diagnostic like inferences, but also more complex forms of reasoning intertwining 

prognostic and diagnostic inferences. To achieve this aim, a large SYLVIA results database 

has to be built. 

 

In a first section, we will describe the methodology used to create an expert system from a 

consequent SYLVIA database. Then, we will detail how we have established an expert sys-

tem corresponding to a case of application dealing with the study of pressure effects due to a 

fire in an enclosure. In the last section, a practical use of the expert system will be analyzed, 

illustrating the interest of this expert system-like approach as a support tool for both training 

and safety assessment. 

 

2. The expert system 

 

An expert system is a tool that aims to simulate the cognitive mechanisms of an expert, in a 

particular field. This is one of paths leading to artificial intelligence. More precisely, an ex-

pert system in artificial intelligence is defined as a computer program that has the ability to 
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represent and reason on knowledge. In fire safety, it is useful to be able to quickly discern the 

configurations at risk of an installation. The idea behind the expert system approach is to 

make the most benefit of the SYLVIA software to build a database covering a wide range of 

configurations, and then to use the expert system reasoning abilities to discern configurations 

of this database useful to one specific case of interest. 

 

An expert system can be divided into three separated components [3], as shown in Fig. 1: 

− The knowledge base that contains all the generic information in which the expert 

system will operate. This information will be encoded by means of conditional proba-

bility tables (cf. the green rectangle in Fig. 1). 

− The observation base that gathers all the contingent or specific information from 

which inferences can be performed. This information has to be provided by the users 

in terms of likelihood or probability.  

− The inference engine, a set of algorithms (the yellow arrows in Fig. 1) that propels 

the information coming from the observation base through the knowledge base. Con-

trary to “physical” computer codes that intertwine the numerical data coming from in-

itial and boundary conditions with the solving algorithms, the expert systems algo-

rithms are designed to be independent and separated from the data. 

 

 

 

Fig. 1. Flow chart of the expert system. 

 

The general principle is to update in a real-time process the knowledge related to the varia-

bles defined in the expert system. More precisely, the SYLVIA expert system objective is to 

have a numerical tool able to perform three types of inferences:  

1. in a forward chaining, to determine for a configuration of input data, the possible re-

sponses;  
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2. in a backward chaining, to identify for a given configuration of the responses, the 

compatible input data;  

3. in a mixed chaining, an inference that combines the two previous inferences. 

 

2.1 The knowledge base 

 

In our case, the generic information is implicitly contained in the computer code. Thus, the 

first step to develop an expert system is to transcribe numerically the knowledge related to 

the different physical phenomena modelled by the code.  

 

Since the computation time is short enough to perform many calculations, our approach con-

sists in building a database, which relates to the case studied - such as the pressure effects in a 

compartment - by performing a stratified Monte-Carlo study by a Latin Hypercube Sampling 

(LHS) method [4]. This Monte Carlo study is carried out by varying the input parameters of 

the calculation code in the study area under consideration. Thus, if we want the expert system 

to be able to answer to queries for volume ranges between 100 and 500m3, we will model this 

parameter by a random variable between 100 and 500m3 in the Monte-Carlo simulation. This 

way, we can build a large database made of SYLVIA calculations. This database is made up 

of all the data corresponding both to the parameters and outputs. Then, this database can be 

interpreted as a numerical transcription of the generic knowledge carried by the SYLVIA 

code. 

 

In a formal way, the SYLVIA software can be seen as a mapping of the parameters domain to 

the responses domain (see Fig. 2). This can be written: 

 

Ri = S(P1, … , PN)                                              (1) 

 

where Ri is any response of interest, Pj, the parameters and S, the SYLVIA software acting as 

a transfer function.  

 

 

 

 

 

 

 

Fig. 2. The formal model of SYLVIA. 

 

With this formalism, a SYLVIA computation is defined by fixing values pj to each parameter 

Pj and by calculating the values ri of any code output Ri. 

It should be noted that the variables Pj and the response Ri of the equation (1) can be either 

continuous or discrete. 

 

SYLVIA 

P
1
= p

1
 

P
i
= p

ni
 

Influential 

parameters 

less influential 

parameters 

Response R
i
 

Equation (1) 
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The principle followed to establish the SYLVIA knowledge base consists in transcribing the 

transfer function S into numerical tables (one for each response). In order to carry out this 

transcription of SYLVIA into numerical tables (see Fig. 3), two simplifications are necessary. 

The first one consists in discretizing all the continuous variables of the equations (1) as: 

 ��∗ = ����∗, … , ��∗                    (2) 

where ��∗ and ��∗can only take discrete values. 

 

The second simplification [5] concerns the identification of influential parameters for each 

response to limit the combinatorial aspect induced by the numerical transcription of the equa-

tion (2). 

 

Therefore, a preliminary step before making the knowledge base is the identification for each 

response Ri, of its most ni influential parameters. In the case of the application described in 

this paper, it has been done with a covariance analysis. 

Once the most ni influential parameters have been determined and the equations (2) become: 

 

Ri = S(P1, … , Pni ,Ui)                              (3) 

 

where Ui is a random variable modeling the loss of information induced by the discretization 

step and by neglecting the less influential variables of the response Ri. It is worth noting that 

this model is stochastic, since for a given parametric configuration of P1, …, Pni , Ri may have 

different values. 

 

From these simplifications, each SYLVIA calculation is replaced by a set of discrete values: 

the levels of the parameters and of the responses. Then, the whole set of SYLVIA simulations 

is used to calculate the conditional probability of each response knowing the combination of 

its influential parameters.    

 

 

 

 

 

 

 

Fig. 3. The structural model of SYLVIA. 

 

A practical way to check the effect of information loss due to these simplifications is to ana-

lyze the range of the conditional probability distributions. If for a combination of influential 

parameters, the corresponding conditional distribution is limited to one discrete value that 

means that the knowledge of the discrete values taken by the influential parameters is enough 

to determine the response value, so that the information loss has no effect. On the contrary, if 

the conditional distribution is flat, this means that the combination of influential parameters 

does not help to determine the response value. 

SYLVIA 
P

1
= p

1
 

P 
i
= p

ni
 

Influential 

parameters 

Numerical tables or distribution of re-

sponse values for a given configuration 

of influential parameters  

Equation (3) 

Response R
i
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Let’s take an example to fully understand the meaning of the system of equations (3). Con-

sidering the simple case defined by only one response and one parameter, the system of equa-

tions (3) is falling down to a unique equation: R = S(P,U). 

Now, suppose that R is the maximum pressure difference at fire break door and discretized 

into three levels (“<20hPa”, “20-60hPa”, “>60hPa”) and P the fire power (“<800kW”, 

“>800kW”). The equation (3) corresponds to the set of the two triplets (a1, a2, a3) and (b1, b2, 

b3) meaning if P is lower than 800kW (resp. >800kW) then R is lower than 20hPa with the 

probability a1 (resp. b1), between 20 hPa and 60hPa with the probability a2 (resp. b2) and up-

per than 60hPa with the probability a3 (resp. b3).  

 

The equation (3) can now be written in an equivalent matrix form: 

��� �� �� = ��� �� ��� �� ���� �� ���             (3’) 

 

and graphically represented by:  P → R 

 

Let us continue with our example and suppose that the database contains 1000 calculations 

with  P<800kW and 1000 with P>800kW and is distributed as follows: 

 

 <20hPa 20-60hPa >60hPa 

<800kW 980  20 0 

>800kW 880 80 40 

 

The coefficients ai and bi are then deduced by normalizing: 

 

 <20hPa 20-60hPa >60hPa 

<800kW a1= 0.98 a2 = 0.02 a3 = 0 

>800kW b1= 0.88 b2 = 0.08 b3 = 0.04 

 

In the BBN formalism, p1 denotes the belief that P is “<800kW ” and p2 the belief that P is 

“>800kW” so that (1, 0) means P is “<800kW”, (0, 1) P is “>800kW”, (0.5, 0.5) the belief 

that P is unknown. The coefficients ai (resp. bi) of the matrix are the conditional probabilities 

of R = ri knowing P is “<800kW” (resp. P “>800kW”), and a1 + a2 + a3 = b1 + b2 + b3  = 1. 

 

The equation (3’) allows the forward propagation mechanism of knowledge (see section 2.3), 

i.e. the propagation of knowledge on causal factors (here given by p1 and p2 into knowledge 

on their direct consequence (here given by r1, r2, r3). 

 

By using the theorem of conditional probabilities, the equation (3’) can also be used in re-

verse: 

������ = � ��� �� ���� �� ��� �������
�                            (3’’) 
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where α is a proportionality coefficient used to normalize the vector (p1, p2) 

 

The equation (3’’) allows the backward propagation mechanism of knowledge (see section 

2.3), i.e. the propagation of knowledge on consequences into knowledge on their direct caus-

es.  

 

In the general case, to each equation of the system (3) corresponds a matrix M of size n x p 

where n is the number of parametric configurations and p is the number of levels considered 

for the response so that mij is the probability of the response R being equal to its jth level 

when the parametric configuration of the influent parameters is fixed. A convenient way to 

associate a specific parametric configuration defined by a u-plet (i1, i2, ..., ij) to a line i of the 

matrix M is to take i = ((…(i1 - 1) × n1+ i2 - 1) × n2 .... ) × nj + ij. 

 

Following this method, any SYLVIA computation can be schematically represented as in 

Fig. 2. It becomes then possible to transcribe the generic knowledge defined by the physical 

models implemented in the SYLVIA computer code in the form of multidimensional numeri-

cal charts associating input and output values (e.g. from Monte-Carlo simulations). 

Moreover, from the set of equations (3), a graph can be defined by joining with an arrow the 

variables of the right-hand of the equation to the variable of the left-hand. This graph consti-

tutes the directed acyclic graph (DAG)1 of a Bayesian network.  

 

In summary, the SYLVIA knowledge base is made up of two components: 

− A graph modeling the structural relationships. The SYLVIA Bayesian network graph 

is composed of two floors, as shown schematically in Fig. 4. On the first floor are the 

parameters P1,..., PN, and on the ground floor are the Rk responses.  

− A set of numerical tables encoding the numerical link between a response and its in-

fluential parameters (cf. the determination of the coefficients ai and bi in the example). 

These tables are called Conditional Probability Tables (CPT). The numerical values of 

the CPTs are derived from the analysis of the database gathering all the SYLVIA 

simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 

1 Directed means that nodes are connected by arrows, and acyclic means that it is impossible starting from a node to come 

back to it by following the arrows.  
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Fig. 4. Scheme of the knowledge base associated with the expert system. 

 

2.2 The observation base 

 

In the SYLVIA expert system, the variables of the observation base are identical to the varia-

bles of the knowledge base. Unlike the knowledge base that encodes the generic information 

(i.e. the information carried out through the SYLVIA code), the observation base encodes the 

contingent knowledge for which we wish to solicit the expert system.  

 

In a Bayesian network, each variable receives two kinds of information: an upstream infor-

mation and a downstream information. This distinction is essential to correctly perform the 

information propagation in a network. We will come back to this notion in the next section, 

as for now, it is sufficient to know that upstream information is required for the parameters 

and downstream information for the responses. This information is given by means of proba-

bility or likelihood. For example, if a variable V (associated to either a parameter or a re-

sponse) is discretized into four levels (very low, low, high, very high) a (2, 1, 1, 0) u-plet is 

equivalent to the (0.5, 0.25, 0.25, 0) u-plet and means that the very low level is twice likely as 

the low or high level and the very high level is either impossible or not considered. More 

generally, the observational data base consists in providing for each parameter Pi and for each 

response Rj some information that specifies (by means of vectors ��� and ��� the domain in 

which the expert system will operate.  

As the purpose of the expert system is to identify the configurations at risk and/or the safety 

criteria most likely to be exceeded, in most of the practical cases, it is sufficient to use 0 and 

1 as values for the observation data: 1 meaning the level is possible and 0 otherwise. 

 

In summary, the SYLVIA observation base is made up of two information vectors: 

− A vector ��� modeling the upstream information associated to the parameters.  

− A vector ��� modeling the downstream information associated to the responses.  

 

 

 

 

1st floor: the parameters of the study 

P1
 

Ground floor: the responses of the study 

Pi
 

Pk
 

Pn
 

Rk
 R1

 
Ri

 

P2
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2.3 The inference engine 

 

As shown in the section 2.1, the knowledge base is made up of two parts: 

− A structural part corresponding to the set of equations (3). 

− A numerical part which is actually given by the conditional probability tables (CPT), 

thus there are as many CPTs as equations in the system (3). 

 

A Bayesian network is not merely a passive code storing factual knowledge but also a com-

putational architecture reasoning on that knowledge. This means that the links in the network 

have to be seen as mechanisms that propel information in order to update it. The CPTs at-

tached to the nodes (cf. the left-hand variables of the equations in the system 3) act as indi-

vidual processors so that the inference engine is the set of processors (as many individual 

processors as equations in the system 3).  

 

To propagate and update information, the inference engine distinguishes upstream and down-

stream information. For a parameter Pi, the upstream information is the information provided 

by the vector ��� defined in the observation base and the downstream information is the vec-

tor ���which will be calculated by the inference engine. In a similar way, for a response Rj, 

the downstream information is the information provided by the vector ��� defined in the ob-

servation base and the upstream information is the vector ���, which will be calculated by the 

inference engine. 

 

From this distinction between upstream and downstream information, each individual proces-

sor is able to perform three kinds of local computation independently of other things happen-

ing in the network: 

− A forward propagation mechanism. It consists into gathering all the upstream in-

formation coming from the right-hand variables and transforming it into upstream in-

formation of the left-hand variable.  

− A backward propagation mechanism. It consists into gathering all the downstream 

information coming from the left-hand variables and transforming it into downstream 

information of the right-hand variables. 

− An updating mechanism. It consists for a variable X into combining all the down-

stream information coming from the equations in which X is on the left-hand side 

with all the upstream information where X is on the right-hand side. 

 

As each processor is connected to another in a Bayesian network, the local information can 

circulate through the whole network. These propagation mechanisms proposed by J. Pearl [6] 

are called the “message passing” algorithms:  they act as information propellers from one var-

iable to its neighbors.  

 

In order to understand how the message passing algorithm works, it is useful to consider how 

it works for a simple case and then to generalize. 
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2.3.1 The simplest network 

 

Let us consider a network composed of two nodes X and Y connected by an arrow from X to 

Y. If the node X is discretized in m levels and Y in n levels, the CPT is a matrix M of size    

m × n. Let’s now look at how a Bayesian processor performs its local computations: 

− The forward propagation mechanism. In this case, let us call  �  the upstream in-

formation of X and �! the upstream information of Y. The upstream information of X 

is passed through the CPT and becomes upstream information of Y by a vector-matrix 

multiplication: �" ! = �"   # (where the upper script T is used for transpose). 

− The backward propagation mechanism. In a similar way, denote  �! the down-

stream information of Y and �  the downstream information of X. The downstream 

information of Y is passed through the CPT and becomes the downstream information 

of X by a matrix-vector multiplication: �  =  #�!. 

− The updating mechanism. The updated information for X (resp. Y) is then given by 

the normalized product term by term of πx × λx (resp. πY × λY). 

 

The theoretical proofs of all these mechanisms come straight away from the probability cal-

culation. 

To illustrate, let us take again our previous example, and look at it in three different ways: 

1. No information is available on the fire power (πp1 = 0.5, πp2= 0.5) 

The forward mechanism allows the computation of (πr1, πr2, πr3) by using the equation 3’ 

�0.93 0.05 0.02 = �0.5 0.5 �0.98 0.02 00.88 0.08 0.04� 

 

2. The pressure difference (∆P) at fire break door is >60hPa. 

The backward mechanism allows the computation of (λp1, λp2) by using the equation 3’’ 

�01� = � �0.98 0.02 00.88 0.08 0.04� �001� 

3. The updating mechanism applied to: 

 

- The fire power: 

      �01� = � �0.5 ∗ 00.5 ∗ 1� ∗ �01� 

 

The fire power is > 800kW, the uncertainty on the fire power has been removed due 

to the observation of ∆P>60hPa. 

 

- The pressure difference at fire break door: 

 

      �001� = � �0.93 ∗ 00.05 ∗ 00.02 ∗ 1�  

 

Here, we observe that the updating mechanism cannot modify the value of a “hard” 

evidence (value without uncertainty).  
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2.3.2 The SYLVIA Bayesian network 

 

To understand how an individual processor performs its local computations for an equation of 

the type: R = S(P1, … , Pk ,U), let us call  �� the upstream information coming from Pi  and �� the upstream information coming to R. In the same way, λ stands for the downstream in-

formation of R and �� for the downstream information of Pi . 

 

The forward propagation mechanism. If P1, ..., Pk are discretized respectively in m1, ..., mk, 

the number of parametric configurations is m = m1 × .... × mk and if R is discretized in n lev-

els, the CPT associated to the former equation is a matrix M of size m x n. The forward prop-

agation mechanism is made up of two steps: 

− First, all the upstream information provided by the �� is pooled into a single vector π 

of size m and each of its components are the product of the components associated to 

each ��. By denoting ���- the value of the jth component of the vector  �� and ��., 

the value of the kth component of the vector π, we have the relation: 

 ��. = ��(/� ×  ���/� × … × �0�/0                             (4) 

 

where k is an index corresponding to the u-plet (i1, i2, …, ik). 

− Second, the upstream information π is passed through the CPT and becomes the up-

stream information of R by the vector-matrix multiplication:  �" ! = �"  #. 

 

The backward propagation mechanism. The backward propagation mechanism is made up 

of two steps:  

− First, the downstream information ��  provided by the response is transformed into 

downstream information for the influential parameters by: 

 ��  =  #��                               (5) 

 

where �� is a vector of size m.  

− Then, �� is reduced for each parameter Pi to a vector λpi of size mi by weighting 

and summing out �� with all the other parameters: 

 ����/� =∑ ���/� ×  ���/�  × … ×  �0�/0 ×  ���.�345             (6) 

 

The updating mechanism. The updated information for any Pi or R is then given by the 

normalized product term by term of ��� × ��� or �� × ��. 

 

These propagation mechanisms are sufficient if there are no multiple paths joining two varia-

bles. However, if there are several paths, some virtual nodes must be added. The virtual 

nodes consist in adding new processors which task is to separate and distribute properly up-

stream and downstream information so that the same information cannot be counted twice. 

The implementation of these nodes is a bit tricky and won’t be described here, however full 

details and proofs can be found in [6]. 

 

To sum up, the inference engine is a set of processors able to perform information propaga-

tion at a local level. 
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The inference engine makes it possible to dynamically use the knowledge base derived from 

a very large number of SYLVIA simulations. The (upstream and downstream) information 

relevant to the current safety assessment is automatically propelled through the knowledge, 

so that the likelihood of each variable of the Bayesian network is updated. 

 

3. Building of the knowledge base 

 

The knowledge base collects all the generic information from which the expert system will 

perform inferences. It determines the application domain of the expert system. Thus, a first 

step consists in delimiting the general framework of the study and in defining the parameters 

and responses of the study and their variation ranges. In a second step, the SYLVIA database 

is built and the conditional probability tables are computed. 

 

3.1 Delimitation of the general framework 

 

The perimeter of the knowledge base is delimited by the general framework of the study. In 

this work, our expert system is applied to the study of the pressure effects on fire barriers re-

sulting from a fire in a confined and mechanically ventilated environment. 

 

To prevent a fire spread, nuclear facilities are divided into fire sectors so as to confine a po-

tential fire departure in its initial zone. Fire barrier elements, such as fire break-door, fire 

dumpers, are then located at the edge of the fire sectors. Nevertheless, the possible conse-

quences of the pressure effects on fire barriers resulting from a fire are: 

− A mechanical effect that can lead to the severe damage or even the breakdown of the 

fire barrier elements. The underlying problematic is the fire spread to other fire sec-

tors. 

− An aeraulic effect with the smoke and other pollutants transfer. Here, there are two 

underlying problematics, the malfunction of electrical equipment due to the combined 

effect of gas temperature and soot concentration, as well as the intervention of the fire 

brigade due to the vitiation of the atmosphere. 

 

To lead a safety assessment, we must be able to identify the fire volumes for which overpres-

sures generated by a fire would likely undermine the safety sectorization, either by mechani-

cal breakdown of the fire barrier elements or by smoke transfer. 

 

The general framework of the study is shown in Fig. 5. It consists in two fire sectors, repre-

sented by two compartments, connected by a fire break-door. Compartments height is set to 

4 m, whatever the volume. Each compartment is equipped with fire dampers at the inlet and 

exhaust air vents. An independent management of the mechanical ventilation is assumed for 

each fire sector. In order to cover all kinetics of the fire in the study, the fire source is mod-

eled by a design fire, characterized by its maximum heat release rate in open atmosphere and 

by its fire growth factor. The fire source is centered in compartment 1, at the level of the 

floor. In nominal conditions, the fire break-door is closed and no pressure difference between 

the two fire sectors is considered (-20 Pa relative to the atmospheric pressure is set in each 

compartment). 
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Fig. 5. Scheme of the general framework of the study. 

 

3.2 Parameters and responses of the study 

 

According to the issue addressed in this study, the responses are of two types: responses re-

lated to mechanical effect (maximum pressure in each compartment and maximum pressure 

difference at fire break door) and responses related to aeraulic effect (maximum gas tempera-

ture and maximum soot concentration in each compartment). A total of seven responses have 

been retained. The discretization of the responses is reported in Table 1. The pressure dis-

cretization integrates threshold values of fire break-door rupture from IRSN experiments [7] 

and the ones for gas temperature and soot concentration integrate threshold values of mal-

function of electrical equipment tested at IRSN [8]. Classes of response constitute the col-

umns of the conditional probability tables. 

 

Table 1 

Discretization of the responses of the study. 

 

 

Response 

 

Discretization 

 

Maximum pressure difference at fire break 

door,  ∆PFBD (hPa) 

 

< 20 [20 - 40] [40 - 60] > 60 

 

Maximum pressure in each compartment, 

Pmax,C1 and Pmax,C2 (hPa) 

 

 

< 20 [20 - 40] [40 - 60] > 60 

 

Maximum gas temperature in each      

compartment, Tmax,C1 and Tmax,C2 (°C) 

 

< 65 [65 - 100] [100 - 140] [140 - 180] 

[180 - 210] [210 - 300] [300 - 350] 

[350 - 400] [400 - 500] > 500 

 

Maximum soot concentration in each com-

partment, Ymax,C1 and Ymax,C2 (g m-3) 

 

< 1 [1 - 2] [2 - 3] [3 - 5] [5 - 10] > 10 

 

Sixteen parameters have been identified as influencing the responses of the study. They are 

split into four categories, as reported in Table 2. Also specified in this table is the discretiza-

tion of theses variables. 

 

  

Compartment 1 

-20 Pa 
Fire break 

door 

Compartment 2 

-20 Pa  

  Fire 

dampers 
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Table 2 

Discretization of the parameters of the study, {discrete values}, [continuous values]. 

 

 

Parameter 

 

Discretization 

 

Volume of compartments, V C1 and V C2 

(m3) 

 

 

Closing time of fire dampers, tFD C1 and 

tFD C2 (s) 

 

Free volume of compartments, φ C1 and  

φ C2 (%) 

 

Leak rate of compartments, τl C1 and τl 

C2 (vol. h-1) 

 

Air renewal rate of compartments, Rr C1 

and Rr C2 (vol. h-1) 

 

 

[100 - 300] [300 - 500] [500 - 700]   

[700 - 1000] [1000 - 3000] [3000 - 7000]  

{∞} 

 

{0 ; 150 ; 1200 ; ∞} 

 

 

[80 - 90] [90 - 100] 

 

 

{0} [0.1 - 0.4] [0.4 - 0.7] [0.7 - 1] 

 

 

[1 - 5] [5 - 10] [10 - 20] [20 - 40] 

 

Aeraulic resistivity of the ventilation 

network through a pressure difference, 

∆Pvn (hPa) 

 

[1 - 4] [4 - 7] [7 - 10] 

 

 

Fire growth factor, α (kW s-2) 

 

Maximum heat release rate in open at-

mosphere, HRRmax (kW) 

 

Oxygen-limiting law and fire extinction 

criterion, O2 law  (- ; v/v % of oxygen) 

 

Yield of soot, yS (kg/kg %) 

 

 

{2 10-4 ; 3 10-3 ; 0.012 ; 0.047 ; 0.19} 

 

[200 - 800] [800 - 1500] [1500 - 3000] 

[3000 - 5000] 

 

{no limit ; 0}  {no limit ; 8}                

{no limit ; 12}  {Peatross ; 12} 

 

[0 - 2] [2 - 5] [5 - 10] [10 - 15] [15 - 20] 

 

 

Aeraulic resistance of the fire break-door, 

RFBD (m-4) 

 

 

[1000 - 3000] [3000 - 6000]                   

[6000 - 9000] 

 

 

 

3.2.1 Parameters related to oxygen available for combustion 

 

Volumes of fire sectors. The amount of oxygen initially available for the fire source is an 

important parameter of the study. This parameter is directly related to the compartment size. 

Thus, volumes of the fire sectors range from 100 to 7000 m3. Moreover, these volumes are 

representative of the fire sector volumes of the French nuclear power plants. In addition, the 
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"stable external environment" configuration is also studied, which consists in including the 

modality "infinite volume" in the random draw of the compartment-2 volume. 

 

Closing time of the fire dampers. A conventional closing of the fire dampers at 2 minutes 

and 30 seconds is considered in the study, corresponding to a servo control of the fire damp-

ers to the automatic fire detection. Nevertheless, in operational French nuclear power plants, 

the majority of the fire dampers in electrical buildings are not enslaved to the automatic fire 

detection, but are closed by thermal fuse melting at 70 °C or by action of the shift personal  

on the local synoptic. In order to consider the case of an aleatory failure of the closing of fire 

dampers, longer or even infinite closing times are also considered. In addition, the configura-

tion with the closing of fire dampers at the beginning of the fire is also considered. Thus, four 

closing times of fire dampers are retained: 0 min, 2 min 30 s, 20 min and infinite time. It is 

assumed a simultaneously closing of fire dampers at inlet and exhaust lines of the compart-

ment. 

 

Air renewal rate of fire sectors. IRSN's onsite measurements revealed significant air renew-

al rates, up to 40 h-1. Based on these measurements, the variation range of air renewal rate of 

compartments ranges from 1 to 40 h-1 in the study. For the “stable external environment” con-

figuration, the air renewal rate of compartment 2 is zero. 

 

Leak rate of fire sectors. A fire sector may have one or more fire break-doors, opening on 

the outside of this sector. Leaks associated with these potential doors are considered in the 

study. All the leaks of the compartment, except the one of the fire break-door of the study, are 

modeled by an equivalent leak connected to a boundary condition node at atmospheric pres-

sure (see Fig. 6). Thus, a pressure variation of the compartment induces a gas flow through 

the equivalent leak, according to the following law based on NF EN 12207 standard [9]: 

 

∆� =  �6ρ�/�86�/�
                             (7) 

 

where Rl is the aeraulic resistance of the leak, ρ, the gas density, and Ql, the volume flow rate 

of the gas through the leak. 

The aeraulic resistance, Rl, is calculated from the nominal conditions in the compartment and 

from a leak rate that constitutes a parameter of the study. It is assumed that the leak rate rang-

es from 0 to 1 vol h-1. 

 

Free volume of fire sectors. The presence of equipments in a room results mainly in a de-

crease of the gas volume of the room (free volume). If they are not in contact with the walls, 

they don’t reduce the heat exchange surfaces between gas and walls. In addition, mass of ma-

terials also acts as a heat sink. The formal consideration of heat sinks requires knowledge of 

the physical properties of materials, their exchange surface with the surrounding gas as well 

as their elevation in the compartment. Since these data are too difficult to parameterize, heat 

sinks are simply modeled by an exchange surface, consisting of a 2 mm thick steel plate 

whose height is fixed to the compartment height so as to take into account heat sink over the 

entire height of the compartment. The total volume of materials is assumed to be cubic. In 

this case, the relation between the exchange surface with the surrounding gas and the volume 

of equipment is given by: 

 9 = 6[�1 − φ=]�/�                            (8) 
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where φ is the free volume of the compartment and V the physical volume of the compart-

ment. 

 

The compartment free volume is a parameter of the study. Free volumes of fire sectors of the 

French nuclear power plants usually range from 0 to 20%. 

 

3.2.2 Parameter related to the ventilation network 

 

Resistivity of the ventilation network. The aeraulic resistivity of the ventilation network 

and the air renewal rate of compartments are coupled due to the permissible power of fans. In 

order to avoid the exclusion of scenarios related to the decoupling of these two parameters, 

such as scenarios involving a high air renewal rate with a high resistivity of the ventilation 

network, the differential pressure between the upstream node of the inlet dilution line of the 

ventilation network (cf. node D4 in Fig. 7) and the node of the compartment fire is taken as a 

parameter of the study. The resistivity of the ventilation network is then calculated from the 

differential pressure between these two nodes and the air renewal rate of compartment 1, by 

using the following relation: 

 

∆� =  �ρ8�                            (9) 

 

where R is the quadratic resistance of the ventilation network and Q the air volume flow rate 

at the inlet of the compartment. 

 

The same approach is used for the calculation of the resistivity of the ventilation network re-

lated to compartment 2.  

The maximum value of the differential pressure between the upstream nodes of the dilution 

lines and the two compartments is set to 10 hPa, based on values from IRSN experiments per-

formed in the DIVA facility. Thus, the differential pressure for the calculation of the resistivi-

ty of the ventilation network ranges from 1 to 10 hPa. 

 

3.2.3 Parameters related to the fire source 

 

Fire growth factor. This is one of the two parameters characterizing a “design fire”. In order 

to classify fire sources according to their fire growth kinetics, fire sources are characterized 

by their fire growth factor or by their fire growth characteristic time, i.e. the time required to 

reach a fire power of 1055 kW [10]. It is assumed that fire growth follows a t2 law as: 

 ?�� =  �@AA
BCD  E� = � E�                (10) 

 

where α is the fire growth factor, t1, the fire growth characteristic time, HRR, the heat release 

rate in open atmosphere and t, the time. 

 

As the type of the fire source is a priori not known, the fire growth factor is a parameter of 

the study. This one encompasses values of α for different growth rates according to NFPA 

92B [11]. Thus, the discrete values of the fire growth factor which are considered in the study 

are: 2 10-4 kW.s-2 (ultra-slow kinetics), 3 10-3 kW.s-2 (slow), 0.012 kW.s-2 (medium),        

0.047 kW.s-2 (fast) and 0.19 kW.s-2 (ultra-fast). 
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Maximum heat release rate in open atmosphere. This is the second parameter characteriz-

ing a “design fire”. The study considers 200 kW as the lowest value of this parameter, in or-

der to have comparison points with certain scenarios retained by operators. The highest value 

is set to 5000 kW, given the range of variation of compartment volumes of the study (7000 

m3 for the largest one). Thus, the maximum heat release rate in open atmosphere ranges from 

200 to 5000 kW. 

 

Oxygen-limiting law and fire extinction criterion. An oxygen-limiting law is applied to the 

fire heat release rate in open atmosphere (cf. Eq. (10)), which takes into account the oxygen 

depletion in the fire compartment due to the confinement of the fire source. In addition, a fire 

extinction criterion by lack of oxygen is also considered in the study. The oxygen threshold 

below which the fire extinguishes (fire source type dependent) is a parameter of the study. In 

order to make comparisons between "realistic" and "envelope" scenarios adopted by IRSN in 

its fire probabilistic safety analyzes, four sets of parameters for the oxygen limiting law and 

fire extinction criterion are considered in the study: 

− Parameter set 1: no oxygen limitation (“envelope scenario”) and fire extinction at 0 

v/v % of oxygen. 

− Parameter set 2: no oxygen limitation and fire extinction at 8 v/v % of oxygen. 

− Parameter set 3: no oxygen limitation and fire extinction at 12 v/v % of oxygen. 

− Parameter set 4: Peatross & Beyler law (“realistic scenario”) and fire extinction at 12 

v/v % of oxygen. 

 

The Peatross & Beyler law [12] is a linear regression as a function of oxygen volume fraction 

available for combustion close to the fuel: 

 

χ= 0.1X -1.1           (11) 
 

where χ is the correction factor to be applied to HRR in open atmosphere and X the oxygen 

volume fraction close to the fuel. 

 

In SYLVIA software, the flame is supplied by oxygen available in the zone where the flame 

is located. In the case where the interface height is in the flame area, this oxygen volume 

fraction is calculated from the oxygen volume fractions of the two zones, by a weighting ratio 

of the flame lengths crossing the lower and upper zones. 

 

Yield of soot. Soot being involved in the malfunction of electrical equipment, the yield of 

soot (ratio of the produced mass of soot to the pyrolysed mass of fuel) is a parameter of the 

study. On the basis of the yield from the combustion of polyvinyl chloride, close to              

18 kg/kg %, the yield of soot ranges from 0 to 20 kg/kg % in the study. In addition, the pro-

duction of soot influencing the radiative fraction of the fire power, a linear variation of this 

fraction as a function of yield of soot is assumed here, from 0.2 in absence of soot up to 0.4 

for a yield of soot of 20 kg/kg %. 

 

3.2.4 Parameter related to fire barrier elements 

 

Fire break-door resistance. The aeraulic resistance of the fire break-door is assumed to be 

independent of the differential pressure exerted on the door (case of the BAUMERT fire-

break door tested in the STARMANIA facility in a hot gas flow [7]). Characteristic values of 

fire break-door resistance encountered in nuclear power plants and in tests carried out by 
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IRSN in the STARMANIA facility are used in the study. Thus, the quadratic resistance of the 

fire break-door ranges from 1000 to 9000 m-4. 

The aeraulic resistance of fire dampers is not a parameter of the study since the most sensitive 

fire barrier elements to pressure effects are fire break-doors. A value of 3.2 106 m-4 is set for 

the resistance of this element in the study, based on fire dampers tested in the STARMANIA 

program [7]. 

 

3.3 The SYLVIA database 

 

3.3.1 The two-zone model SYLVIA 

 

The SYLVIA software [1] was developed at IRSN. This software is designed to predict the 

behaviors of mechanical/natural ventilation, fire growth, hot gas and smoke propagation, and 

airborne contamination transfer in confined and mechanically ventilated enclosures. Indeed, it 

is a simulation tool for calculating the consequences of multi-compartment fires in nuclear 

facilities, which are equipped with a full ventilation network (including ducts, room leaks, 

fire dampers, fans, horizontal/vertical openings, filters, etc.). 

The fire design of the SYLVIA software belongs to the well-known two-zone fire modeling 

[14]. In such software, each compartment is described with two Lagrangian control volumes 

separated by a thermal interface (see Fig. 6). Mass and energy balances are performed in each 

zone: the lower zone simulating the fresh gas and the upper zone simulating the combustion 

products and the gas entrained by the plume. In a two-zone approach, a plume feeds the upper 

zone of the fire room, whose volume increases, which has the effect of lowering the interface 

and leading to the under-oxygenation of the fire source if the gas flow in the exhaust duct or 

at the level of openings of the fire room is not sufficient to remove all gases supplied by the 

plume. The features of ambient atmosphere (pressure, temperature, mass fraction of species) 

in each control volume are assumed to be uniform at a given time. These control volumes can 

be connected by various ventilation components representing either natural or mechanical 

ventilation. The convective/conductive/radiative heat transfers inside the compartments and 

in the ventilation network (walls, gas phase) are fully modelled and play a major role for pre-

dicting temperature and pressure, especially in rooms and ventilation ducts near the fire. The 

fire itself is described by correlations (plume, flame height, etc.) available in the literature 

[14]. 

 

 
 

Fig. 6. Two-zone approach of fire compartments. 
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The design of ventilation network is based on the node-and-branch method [15]. A node is a 

point (no volume) or a simple zone (with a fixed volume) in the ventilation network, where 

the different physical quantities (pressure, temperature, particle and gaseous species mass 

fractions, etc.) are considered uniform. A point can be considered as a simple junction be-

tween two or more ducts, or linked with an exterior environment (boundary condition node). 

A zone, which leads to inertial effects under transient conditions due the fixed volume, may 

involve a node between two branches. A branch represents a passive element of the network 

(for instance, pipe, filter, fire damper, leak, etc.) or an active element (for instance, fan, mo-

tor-driven valve, etc.). A mass flow rate is assumed to be uniform in 0D branches and is a 

function of the pressure difference at its boundaries (nodes).  

The SYLVIA modeling of the ventilation network of the study is reported in Fig. 7. 

 

 
Fig. 7. SYLVIA modeling of the ventilation network of the study. Arrows indicate the nomi-

nal direction of the gas flow. 

 

 

3.3.2 The size of the database 

 

To study a set of configurations, the SYLVIA software is coupled to the SUNSET software, 

an IRSN statistical tool used in support of risk analysis studies. This coupling directly allows 

Monte Carlo simulations. For this, a set of variables, known as study parameters, is modeled 

by random variables. Thus, each study parameter is associated with a variation domain and a 

distribution function (a uniform distribution function is assumed in the study). For each study 

parameter, a value is randomly drawn in its range of variation (or imposed as for the closing 

time of fire dampers), creating a set of values for the parameters characterizing the SYLVIA 

calculation to be performed. By performing this simulation, one obtains the values of the re-

sponses associated with this parametric configuration. The Monte Carlo method consists in 

reiterating this procedure a large number of times. The storage of the values taken by the 

study parameters and by the responses for all the runs constitutes the SYLVIA database. The 

Monte Carlo simulation provides a means of exploring the whole variation range of the study 

parameters and to know the impact of these variations on responses of interest. 
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The size of the database depends on the number of influential parameters and on the level of 

discretization of these parameters. The minimum number of SYLVIA calculations to be per-

formed is given by the product of the highest value of the number of classes of individuals 

among the responses by a number of runs to have a sufficient statistics for each combination 

of classes. For a given response, the number of classes of individuals is the sum of all the 

class combinations of its influential parameters and corresponds to the number of rows of the 

conditional probability table associated with this response. 

The identification of the influential parameters of a response is based on its correlations with 

the parameters determined from the Monte-Carlo simulation. It was obtained from the results 

of a Monte-Carlo simulation performed on a sampling of 10,000 runs, by a covariance calcu-

lation. The results are reported in Table 3. In this table, it can be seen that the free volume of 

the two compartments, the air renewal rate of compartment 2 and the resistivity of the venti-

lation network are the least influential parameters with respect to the responses of the study 

and with respect to their range of variation. As a consequence, they will not explicitly appear 

in the knowledge base. Nevertheless, the variability induced by the less influential parameters 

is taken into account in the conditional probability tables. 

The number of classes of individuals for each response of the study is reported in Table 4. 

The maximum value (92,160) is obtained for the response “pressure difference at fire break-

door”. According to this value, and in order to have a sufficient statistics for each combina-

tion of classes, 1,600,000 runs with SYLVIA software were performed. For information, this 

number of runs required 9 full days of CPU-time distributed on 60 cores. 100% of successful 

runs were obtained. 
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Table 3  

Correlations (in percent) of the responses with respect to the parameters (influential parame-

ters are highlighted in grey). 

 

  
P

max
 C1 P

max
 C2 ∆P

maxFBD T
max

 C1 T
max

 C2 Y
max

 C1 Y
max

 C2 

V C1  -3 0 -4 -52 -14 -13 4 

V C2  -3 -8 2 0 -20 0 -12 

Rr C1  4 2 4 3 1 -6 -2 

Rr C2  0 -1 1 0 -3 0 -3 

RFBD  7 0 10 0 -3 0 -1 

tFD C1  -18 -9 -17 11 -10 -29 -7 

tFD C2  -5 -10 3 0 -1 0 -5 

α  17 4 21 12 5 -1 -1 

HRRmax  20 9 21 55 28 5 11 

∆Pvn  2 1 1 0 2 0 1 

φ C1  2 1 2 3 3 -1 1 

φ C2  0 0 0 0 -1 0 -1 

τl C1  -34 -19 -32 0 -25 1 -18 

τl C2  -7 -18 4 0 9 0 7 

O
2
 law  -4 -3 -3 -25 -13 -22 -15 

yS  -2 -1 -2 -4 -1 78 22 

 

 

Table 4  

Number of classes of individuals according to responses. 

 

  
P

max
 C1 P

max
 C2 ∆P

maxFBD T
max

 C1 T
max

 C2 Y
max

 C1 Y
max

 C2 

Number of classes 

of individuals 
 15,360 35,840 92,160 9,600 43,010 7,680 35,840 

 

 

 

3.4 Computation of the conditional probability tables 

 

As seen previously, the computation of the conditional probability tables of each response Ri 

requires the discretization of both the influential parameters and the response. From this dis-
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cretization, the formal model of SYLVIA is transcribed into a structural model. More precise-

ly, for each response, the Monte-Carlo simulations are reordered according to the configura-

tions defined by its influential parameters, and then for each configuration the values of the 

conditional probability tables are given by the empirical distribution. 

 

For example, let us consider the response “maximum pressure in the fire compartment”. For 

this response, seven influential parameters are determined (see Table 3) and according to 

their discretization, the total number of its parametric configurations is: 3 × 4 × 4 × 5 × 4 × 4 × 

4 = 15,360 and therefore the conditional probability table for this response has 15360 rows 

and 4 columns. The first row of this table is obtained by extracting among the database all the 

calculations that have, for the seven influential variables, their respective values in their min-

imal class. In the database, there were 105 SYLVIA runs for this parametric configuration, 

with the following distribution: 72 (< 20 hPa), 23 (20 - 40 hPa), 10 (40 - 60 hPa) and 0 

(> 60 hPa). Thus, the first row of the conditional probability table is: 0.69 (< 20 hPa), 0.22 

(20 - 40 hPa), 0.09 (40 - 60 hPa) and 0 (> 60 hPa). By repeating this procedure for each one 

of the 15,360 parametric configurations, one obtains the conditional probability table associ-

ated to the response “maximum pressure in the fire compartment”. By proceeding in the same 

way for each response, it is obtained seven conditional probability tables that are the numeri-

cal transcription of the SYLVIA model into a structural model. 

 

4. Application of the expert system 

 

4.1 The graph of the knowledge base 

 

The expert system is used from EXCEL. The graphical user interface is composed of 9 

sheets: a main sheet, the graph of the knowledge base, as shown in Fig. 8, that gathers data 

entered for the analysis and the associated results; one sheet to visualize a priori and a poste-

riori likelihoods in the form of histograms; and seven sheets that group, for each of the seven 

responses of interest, the conditional probability tables resulting from the Monte-Carlo simu-

lation. The graph of the knowledge base is divided into three zones: at the top, the twelve in-

fluential parameters of the study on which the expert system can make inferences; at the bot-

tom, the seven responses of interest on which the expert system can also make inferences; 

and in the center, an image that, when clicked, launches a dialog box providing three modes 

of operation (queries on mechanical effects of the pressure, on aeraulic effects or queries 

combining both effects). To each influential parameter and each response of interest reported 

on the graph of the knowledge base are associated three columns. The first column corre-

sponds to the discretization of the variable, the second column to the a priori likelihoods tak-

en by the variable (data entered in binary mode: 1 to consider in the query the corresponding 

class, 0 in the other case) and the third column to the a posteriori likelihoods of the variable 

(results of the query). Depending on the choice of the operation mode, the time required for a 

query ranges from 5 s for a query on the mechanical effect of the pressure up to 30 s for a 

query on the mechanical and aeraulic effects. 

 

4.2 Application 

 

To illustrate the potential interest of an expert system as an aid tool for safety assessment, we 

consider the following issue: how to identify the configurations that could lead to a pressure 
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difference at fire break door beyond 60 hPa (∆PFBD > 60 hPa) in the specific case of a medi-

um kinetics fire growth in a compartment with leaks? 

This pressure difference threshold corresponds to the breaking point of a BAUMERT fire 

break door (63.5 hPa) tested in the STARMANIA facility [7] and used in the French nuclear 

power plants. 

First, if the expert system is used as a prognostic tool or in a forward chaining (see Fig. 8), 

only the knowledge relative to the parameters can be used. In this case, the result of the ex-

pert system is rather like a direct exploitation of the database. There are 239,967 runs out of 

the 1,600,000 computations in the database that meet this parametric configuration and their 

distribution is 238,170 < 20 hPa, 1602 [20 - 40 hPa], 163 [40 - 60 hPa] and 32 > 60 hPa, or 

respectively 99.25%, 0.66%, 0.07% and 0.01%. 

 

 

Fig. 8. Example of inference in a forward chaining (zoom of the Graphical User Interface of 

the expert system to the area of interest). 

 

If the expert system is used as a diagnostic tool or in backward chaining (see Fig. 9), only the 

knowledge relative to the responses is used, in our case ∆PFBD > 60 hPa. If our interest is on 

parameters, for example how are distributed the leak rates out of ∆PFBD > 60 hPa cases 

(45,700 runs out of the 1,600,000 runs), the expert system informs us that 96.42% [0 vol. h-1], 

3.57% [0.1 - 0.4 vol. h-1], 0.01% [0.4 - 0.7 vol. h-1] and 0% [0.7 - 1 vol. h-1]. The expert sys-

tem also indicates that the distribution for the maximum heat release rate in open atmosphere 

is 0.03% [200 - 800 kW], 8.46% [500 - 1500 kW], 35.81% [1500 - 3000 kW] and 55.70% 

[3000 - 5000 kW]. Thus, the expert system informs us that no case leads to a ∆PFBD > 60 hPa 

for leak rates greater than 0.7 vol. h-1. 

 



25 
 

 

Fig. 9.  Example of inference in a backward chaining (zoom of the Graphical User Interface 

of the expert system to the area of interest). 

 

To fully answer the question - what are the configurations that could lead to ∆PFBD > 60 hPa 

in the specific case of a medium kinetics fire growth in a compartment with leaks? - it seems 

necessary to combine the forward and the backward chaining (see Fig. 10). The crossing of 

the upstream information (a medium kinetics fire growth in a compartment with leaks) and 

downstream information (∆PFBD > 60 hPa) indicates that fire compartment volumes must be 

in the range [500 - 3000 m3], that the maximum heat release rate of the fire source in open 

atmosphere must be greater than 1500 kW, with 92.49% of cases in the range                  

[3000 - 5000 kW], that the air renewal rate of the fire compartment must be high, in the range 

[20 - 40 vol. h-1] and that 100% of cases are obtained for a late closing time of the fire damp-

ers of the fire compartment, at 20 minutes, corresponding to a manual closing by the shift 

personal. 

Thus, the expert system informs us that, in the event of a malfunction of the automatic detec-

tion of the fire, a manual closing of the fire dampers by the shift personal at 20 minutes is not 

desirable in this configuration and could lead to a loss of the sectorization of this fire sector. 
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Fig. 10. Example of inference in a mixed chaining (zoom of the Graphical User Interface of 

the expert system to the area of interest). 

 

To model equipment damage, such as the break of a fire break-door at the achievement of the 

rupture criterion, it would require to model the state of the equipment by another node (e.g. 

damaged or not damaged) and add a conditional probability table modelling the damage 

mechanism between the physical quantities and the equipment state.  No damage mechanisms 

are integrated into this expert system. However, their integration would be immediate in case 

the damage mechanism does not depend on physical quantities, not modelled in the expert 

system. 

 

5. Conclusion 

 

In fire safety assessment, it is essential to be able to quickly discern configurations at risk in a 

nuclear facility. For that purpose, an expert system approach was undertaken to take ad-

vantage of the SYLVIA software. The proposed methodology is made up of two steps: the 

building of a knowledge database covering a wide range of configurations, then, the imple-

mentation of an inference mechanism corresponding to the reasoning abilities of the expert 

system. 

The developed expert system is based on Bayesian networks and can be used to discern con-

figurations of this database useful to one specific case of interest. The expert system was con-

ceived to study the pressure effects on fire barriers in the case of fire in nuclear facilities. The 

large knowledge database includes the results of 1,600,000 runs of the SYLVIA software. 

The values used for the parameters of the study in every SYLVIA calculation were obtained 

by coupling SYLVIA with SUNSET (IRSN statistical software) and performing Monte-Carlo 

calculations.  

The first results confirm the interest of the expert system approach in order to dynamically 

use large databases as part of a fire safety analysis. As illustrated in the previous section, the 
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expert system can help the identification of configurations increasing the risk for a particular 

scenario from the exploitation of a large data base of SYLVIA runs. Moreover, the compu-

ting time being negligible, this kind of tools can be highly profitable for training. This new 

software can be considered as a complementary tool of SYLVIA software allowing an ana-

lyst to quickly target the configurations of interest in a specific safety assessment. 

The perimeter of the knowledge database, which determines the scope of the expert system, is 

determined by the general framework of the study. If the framework were to change, it would 

then be necessary to integrate the new generic knowledge (enrichment of the knowledge 

base). For any other safety assessment needs, the database, the identification of the responses 

of interest and their influential parameters, as well as the characterization of the conditional 

probability tables are likely to be different. However, the general framework is generic. Thus, 

for new issues coming from some fire safety analysis, another study done with SYLVIA / 

SUNSET software may be necessary, enriching the knowledge base. The algorithmic part 

(the inference engine), is, in principle, unchanged, but may however need to be adapted in 

order to take into account the characteristics specific to the new question of interest in terms 

of parameters and responses. 

To our opinion, the development of expert systems represents a new generation of computa-

tional tools in the field of probabilistic fire simulation. 
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