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y tt -∆y -b(x)u t = 0 in Ω × R * + , (1.2) u = y = 0 on Γ × R * + , (1.3)
where a > 0 constant, b ∈ C 0 (Ω, R) and ρ(x, u t ) is a non linear damping. Using an approach based on multiplier techniques, weighted nonlinear inequalities and the optimal-weight convexity method (developed in [START_REF] Alabau-Boussouira | Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems[END_REF]), the authors established an explicit energy decay formula in terms of the behavior of the nonlinear feedback close to the origin. Their results are obtained in the case when the following three conditions are satisfied: the waves propagate at the same speed (a = 1), the coupling coefficient b(x) is small and positive (0 ≤ b(x) ≤ b 0 , b 0 ∈ (0, b ⋆ ] where b ⋆ is a constant depending on Ω and on the control region) and both the coupling and the damping regions satisfying an appropriated geometric conditions named Piecewise Multipliers Geometric Conditions (introduced in [START_REF] Liu | Locally distributed control and damping for the conservative systems[END_REF], recalled below in Definition 2 and denoted by PMGC in short). In their work, the case where the waves are not assumed to be propagated with equal speeds (a is not necessarily equal to 1) and/or the coupling coefficient b(x) is not assumed to be positive and small has been left as an open problem even when the damping term ρ is linear with respect to the second variable. Recently, C. Kassem et al. in [START_REF] Kassem | Local indirect stabilization of N-d system of two coupled wave equations under geometric conditions[END_REF], answered this important open question by studying the stabilization of the following linear system:

u tt -a∆u + c(x)u t + b(x)y t = 0 in Ω × R * + , (1.4) y tt -∆y -b(x)u t = 0 in Ω × R * + , (1.5) u = y = 0 on Γ × R * + , (1.6)
in the case where the waves propagate with equal or different speeds and the coupling coefficient is not assumed to be positive and small. Indeed, they distinguished two cases. The first one is when the waves propagate at the same speed (i.e. a = 1), but unlike the works of [START_REF] Alabau-Boussouira | A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities[END_REF], the coupling coefficient function b is not necessarily assumed to be positive and small. In this case, under the condition that the coupling region and the damping region have non empty intersection satisfying the PMGC conditions, they established an exponential energy decay rate for weak initial data. On the contrary (i.e. a = 1 ) they first proved the lack of the exponential stability of the system. However, under the same geometric condition, an optimal energy decay rate of type 1 t was established for smooth initial data. Notice that, the PMGC conditions is much more restrictive than the Geometric Control Condition (introduced in [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF], recalled below in Definition 1 and, denoted by GCC in short). The natural question is then whether or not stabilization and the exact controllability still hold in the case where the coupling region and the damping region have non empty intersection satisfying the GCC condition? The aim of this paper is to investigate the exact controllability of the following system:

u tt -a∆u + b(x)y t = c(x)v t
in Ω × R * + , (1.7)

y tt -∆y -b(x)u t = 0 in Ω × R * + , (1.8) u = y = 0 on Γ × R * + , (1.9) 
with the following initial data (1.10) u(x, 0) = u 0 , y(x, 0) = y 0 , u t (x, 0) = u 1 and y t (x, 0) = y 1 , x ∈ Ω, under appropriate geometric conditions. Here, a > 0 constant, b ∈ C 0 (Ω, R), c ∈ C 0 (Ω, R + ) and v is an appropriate control. The idea is to use a result of A. Haraux in [START_REF] Haraux | Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps[END_REF] for which the observability of the homogeneous system associated to (1.7)-(1.9) is equivalent to the exponential stability of system (1.4)- (1.6) in an appropriate Hilbert space. So, we provide a complete analysis for the exponential stability of system (1.4)- (1.6) in different Hilbert spaces. First, when the waves propagate at the same speed (i.e., a = 1), under the condition that the coupling region is included in the damping region and satisfies the so-called Geometric Control Condition (GCC in Short), we establish the exponential stability of system (1.4)- (1.6). Consequently, an observability inequality of the solution of the homogeneous system associated to (1.7)-(1.9) in the space

H 1 0 (Ω) × L 2 (Ω) 2
is established. This leads, by the HUM method introduced by Lions in [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués: Perturbations[END_REF], to the exact controllability of system (1.7)-(1.9) in the space

H -1 (Ω) × L 2 (Ω) 2 .
Noting that, the geometric situations covered here are richer than those considered in [START_REF] Alabau-Boussouira | A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities[END_REF] and [START_REF] Kassem | Local indirect stabilization of N-d system of two coupled wave equations under geometric conditions[END_REF]. Furthermore, on the contrary when the waves propagate at different speeds, (i.e., a = 1), we establish the exponential stability of system (1.4)- (1.6) in the space

H 1 0 (Ω) × L 2 (Ω) × L 2 (Ω) × H -1
(Ω) provided that the damping region satisfies the PMGC condition while the coupling region includes in the damping region and satisfying the GCC conditions. Consequently, an observability inequality of the solution of the homogeneous system associated to (1.7)-(1.9) is established. This leads, by the HUM method, to the exact controllability of system (1.7)-(1.9) in the space

L 2 (Ω) × H -1 (Ω) × H 1 0 (Ω) × L 2 (Ω).
1.2. Literature. Since the work of J. L. Lions in [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués: Perturbations[END_REF], the observability and controllability of coupled wave equations have been studied by an intensive number of publications. In [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués: Perturbations[END_REF], J. L. Lions studied the complete and partial observability and controllability of coupled systems of either hyperbolic-hyperbolic type or hyperbolic-parabolic type. These results assume that the coupling parameter is sufficiently small. In [START_REF] Alabau | Observabilité frontière indirecte de systèmes faiblement couplés[END_REF] and [START_REF] Alabau-Boussouira | A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems[END_REF], F. Alabau studied the indirect boundary observability of an abstract system of two weakly coupled second order evolution equations where the coupling coefficient is strictly positive in the whole domain. In particular, using a piecewise multiplier method, she proved that, for a sufficiently large time T , the observation of the trace of the normal derivative of the first component of the solution on a part of the boundary allows us to get back a weakened energy of the initial data. Consequently, using Hilbert Uniqueness Method, she proved that the system is exactly controllable for small coupling parameter by means of one boundary control. Noting that, the situation where the waves propagate with different speeds is not covered. Later, the indirect boundary controllability of a system of two weakly coupled one-dimensional wave equations has been studied by Z. Liu and B. Rao in [START_REF] Liu | A spectral approach to the indirect boundary control of a system of weakly coupled wave equations[END_REF]. Using the non harmonic analysis, they established several weak observability inequalities which depend on the ratio of the wave propagation speeds and proved the indirect exact controllability. The null controllability of the reaction diffusion System has been studied by F. Ammar-Khodja et al. in [START_REF] Ammar-Khodja | Null-controllability of some reaction-diffusion systems with one control force[END_REF], by deriving an observability estimate for the linearized problem. The exact controllability of a system of weakly coupled wave equations with an internal locally control acted on only one equation has been studied by A. Wehbe and W. Youssef in [START_REF] Wehbe | Observabilité et contrôlabilité exacte indirecte interne par un contrôle localement distribué de systèmes d'équations couplées[END_REF] and [START_REF] Wehbe | Indirect locally internal observability of weakly coupled wave equations[END_REF]. They showed that, for sufficiently large time, the observation of the velocity of the first component of the solution on a neighborhood of a part of the boundary allows us to get back a weakened energy of initial data of the second component, this if the coupling parameter is sufficiently small, but non-vanishing and by the HUM method, they proved that the total system is exactly controllable. F. Alabau and M. Léautaud in [START_REF] Alabau-Boussouira | Indirect controllability of locally coupled wave-type systems and applications[END_REF], considered a symmetric systems of two wave-type equation, where only one of them being controlled. The two equations are coupled by zero order terms, localized in part of the domain. They obtained an internal and a boundary controllability result in any space dimension, provided that both the coupling and the control regions satisfy the Geometric Control Condition.

1.3. Description of the paper. This paper is organized as follows: In section (2), first, we show that the system (1.4)-(1.6) can be reformulated into a first order evolution equation and we deduce the well posedness property of the problem by the semigroup approach. Second, by using Theorem 2.2 of [START_REF] Kassem | Local indirect stabilization of N-d system of two coupled wave equations under geometric conditions[END_REF], we show that our problem is strongly stable without geometric conditions. In section 3, we show the exponential decay rate of system (1.4)-(1.6) when the coupling region b is a subset of the damping region c and satisfies the geometric control condition GCC. After that, we show that our system is exactly controllable by using Proposition 2 of A. Haraux in [START_REF] Haraux | Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps[END_REF]. In section 4, we show the exponential decay rate of system (1.4)-(1.6) in the weak energy space provided that the damping region satisfies the PMGC condition while the coupling region is a subset of the damping region and satisfies the GCC condition.

Well posedeness and strong stability

Let us define the energy space H = H 1 0 (Ω) × L 2 (Ω)
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equipped with the following inner product and norm, respectively : for all U = (u, v, y, z), U = ( u, v, y, z) ∈ H,

(U, U ) H = a Ω (∇u • ∇ u)dx + Ω v v dx + Ω (∇y • ∇ y)dx + Ω z zdx, U H = (U, U ) H ,
Let (u, u t , y, y t ) be a regular solution of the system (1.4)- (1.6). Its associated energy is defined by

E(t) = 1 2 Ω |u t | 2 + a|∇u| 2 + |y t | 2 + |∇y| 2 dx. A straightforward computations gives E ′ (t) = - Ω c(x)|u t | 2 dx ≤ 0. Consequently, system (1.4)- (1.6
) is dissipative in the sense that its energy is non-increasing with respect to t. Setting U = (u, u t , y, y t ), system (1.4)-(1.6) may be recast as:

U t = AU, in (0, +∞), U (0) = (u 0 , u 1 , y 0 , y 1 ),
where the unbounded operator A : D(A) ⊂ H → H is given by: 

D(A) = (H 2 (Ω) ∩ H 1 0 (Ω)) × H 1 0 (Ω)
AU = ( v, a∆u -bz -cv, z, ∆y + bv ), ∀ U = (u, v, y, z) ∈ D(A). (2.2)
Note that due to the fact that c(x) ≥ 0, the operator A is dissipative in H. And, by applying the Lax-Milgam Theroem, it is easy to prove that the operator A is maximal in H i.e. R(I -A) = H. Consequently, it generates a C 0 -semigroup of contractions (e tA ) t≥0 . So, system (1.4)-(1.6) is wellposed in H.

We need now to study the asymptotic behavior of E(t). For this aim, we suppose that there exists a non empty open ω c+ ⊂ Ω satisfying the following condition

{x ∈ Ω : c(x) > 0} ⊃ ω c+ . (LH1)
On the other hand, as b(x) is not identically null and continuous, then there exists a non empty open

ω b ⊂ Ω such that {x ∈ Ω : b(x) = 0} ⊃ ω b . (LH2) 
If ω = ω c+ ∩ ω b = ∅ and condition (LH1) holds, then system (1.4)-(1.6) is strongly stable using Theorem 2.2 in [START_REF] Kassem | Local indirect stabilization of N-d system of two coupled wave equations under geometric conditions[END_REF], i.e. lim t→+∞ e tA (u 0 , u 1 , y 0 , y 1 ) H = 0 ∀(u 0 , u 1 , y 0 , y 1 ) ∈ H.

3.

Exponential stability and exact controllability in the case a = 1 3.1. Exponential stability. This subsection is devoted to study the exponential stability of system (1.4)-(1.6) in the case when the waves propagate at the same speed, i.e., a = 1 under an appropriate geometric conditions. Before we state our results, we recall the Geometric Control Conditions GCC introduced by Rauch and Taylor in [START_REF] Rauch | Exponential decay of solutions to hyperbolic equations in bounded domains[END_REF] for manifolds without boundaries and by Bardos, Lebeau and Rauch in [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] for domains with boundaries and the Piecewise Multipliers Geometric Condition introduced by K. Liu in [START_REF] Liu | Locally distributed control and damping for the conservative systems[END_REF].

Definition 1. We say that a subset ω of Ω satisfies the GCC if every ray of the geometrical optics starting at any point x ∈ Ω at t = 0 enters the region ω in finite time T.

Definition 2. We say that ω satisfies the Piecewise Multipliers Geometric Condition (PMGC in short) if there exist Ω j ⊂ Ω having Lipschitz boundary Γ j = ∂Ω j and x j ∈ R N , j = 1, ..., J such that Ω j ∩Ω i = ∅ for j = i and ω contains a neighborhood in Ω of the set ∪ J j=1 γ j (x j )∪ Ω \ ∪ J j=1 Ω j where γ j (x j ) = {x ∈ Γ j : (xx j ) • ν j (x) > 0} and ν j is the outward unit normal vector to Γ j . Remark 1. The PMGC is the generalization of the Multipliers Geometric Condition (MGC in short) introduced by Lions in [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués: Perturbations[END_REF], saying that ω contains a neighborhood in Ω of the set {x ∈ Γ : (xx 0 ) • ν(x) > 0}, for some x 0 ∈ R N , where ν is the outward unit normal vector to Γ = ∂Ω. Now, we are in position to state our first main result by the following theorem : Theorem 3.1. (Exponential decay rate) Let a = 1. Assume that conditions (LH1) and (LH2) hold. Assume also that ω b ⊂ ω c+ satisfies the geometric control conditions GCC and that b, c ∈ W 1,∞ (Ω). Then there exist positive constants M ≥ 1, θ > 0 such that for all initial data (u 0 , u 1 , y 0 , y 1 ) ∈ H the energy of the system (1.4)- (1.6) satisfies the following decay rate:

(3.1) E(t) ≤ M e -θt E(0), ∀t > 0.
Remark 2. The geometric situations covered by Theorem 3.1 are richer than those considered in [START_REF] Kassem | Local indirect stabilization of N-d system of two coupled wave equations under geometric conditions[END_REF] and [START_REF] Alabau-Boussouira | A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities[END_REF]. Indeed, in the previous references, the authors consider the PMGC geometric conditions that are more restrictive than GCC. On the other hand, unlike the results in [START_REF] Alabau-Boussouira | A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities[END_REF], we have no restriction in Theorem 3.1 on the upper bound and the sign of the coupling function coefficient b. This theorem is then a generalization in the linear case of the result of [START_REF] Alabau-Boussouira | A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities[END_REF] where the coupling coefficient considered have to satisfy 0

≤ b(x) ≤ b 0 , b 0 ∈ (0, b ⋆ ]
where b ⋆ is a constant depending on Ω and on the control region.

In order to prove Theorem 3.1, we apply a result of Huang [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF] and Prüss [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF]. A C 0 -semigroup of contraction (e tA ) t 0 in a Hilbert space H is exponentially stable if and only if the two following hypotheses are fulfilled:

iR ⊆ ρ(A) (H1) lim sup β ∈R,|β|→+∞ (iβI -A) -1 L(H) < ∞ (H2)
Since the resolvent of A is compact and 0 ∈ ρ(A), then from the fact that our system is strongly stable, we deduce that condition (H1) is satisfied. We now prove that condition (H2) holds, using an argument of contradiction. For this aim, we suppose that there exist a real sequence β n with β n → +∞ and a sequence

U n = (u n , v n , y n , z n ) ∈ D(A) such that U n H = 1 and (3.2) lim n→∞ (iβ n I -A)U n H = 0. (3.3)
Next, detailing equation (3.3), we get

iβ n u n -v n = f 1 n → 0 in H 1 0 (Ω), (3.4) iβ n v n -∆u n + bz n + cv n = g 1 n → 0 in L 2 (Ω), (3.5) iβ n y n -z n = f 2 n → 0 in H 1 0 (Ω), (3.6) iβ n z n -∆y n -bv n = g 2 n → 0 in L 2 (Ω). (3.7)
Eliminating v n and z n from the previous system, we obtain the following system (3.8)

β 2 n u n + ∆u n -iβ n by n -iβ n cu n = -g 1 n -bf 2 n -iβ n f 1 n -cf 1 n , (3.9) 
β 2 n y n + ∆y n + iβ n bu n = -iβ n f 2 n + bf 1 n -g 2 n .
On the other side, we notice that v n and z n are uniformly bounded in L 2 (Ω). It follows, from equations (3.4) and (3.6), that (3.10)

Ω |y n | 2 dx = O(1) β 2 n and Ω |u n | 2 dx = O(1) β 2 n .
For clarity, we divide the proof into several Lemmas.

Lemma 3.2. The solution (u n , v n , y n , z n ) ∈ D(A) of system (3.4)-(3.7
) satisfies the following estimates

(3.11) Ω c|β n u n | 2 dx = o(1) and ωc + |β n u n | 2 dx = o(1).
Proof. First, since U n is uniformly bounded in H, then from (3.3), we get

(3.12) Re iβ n U n 2 H -(AU n , U n ) H = Ω c(x)|v n | 2 dx = o(1).
Under condition (LH1), it follows that (3.13)

ωc + |v n | 2 dx = o(1).
Then, using equations (3.12) and (3.4), we get

(3.14) Ω c|β n u n | 2 dx = o(1)
.

Consequently, we have

ωc + |β n u n | 2 dx = o(1).
The proof is thus complete. Proof. Multiplying equation (3.8) by cu n , integrating by parts and using the fact that u n = 0 on Γ, we get

Ω c|β n u n | 2 dx - Ω c|∇u n | 2 dx - Ω (∇c • ∇u n )u n dx -i Ω β n by n cu n dx -i Ω β n cu n u n dx = Ω (-g 1 n -bf 2 n -iβ n f 1 n -cf 1 n )cu n dx. (3.16) Using the fact that f 1 n , f 2 n converge to zero in H 1 0 (Ω), g 1 n converges to zero in L 2 (Ω) and β n u n is uniformly bounded in L 2 (Ω), we obtain (3.17) Ω (-g 1 n -bf 2 n -iβ n f 1 n -cf 1 n )cu n dx = o(1).
Using the fact that ∇u n , β n y n , β n u n are uniformly bounded in L 2 (Ω) and u n = o(1), we get

(3.18) - Ω (∇c • ∇u n )u n dx -i Ω β n by n cu n dx -i Ω β n cu n u n dx = o(1).
Inserting (3.17) and (3.18) into (3.16), we get

(3.19) Ω c|β n u n | 2 dx - Ω c|∇u n | 2 dx = o(1).
Finally, using estimation (3.11) in (3.19), we deduce

ωc + |∇u n | 2 dx = o(1).
The proof is thus complete.

Lemma 3.4. The solution (u n , v n , y n , z n ) ∈ D(A) of system (3.4)-(3.7) satisfies the following estimate (3.20) ω b |∇y n | 2 dx = o(1).
Proof. The proof contains three points. i) First, multiplying equation (3.8) by 1 βn ∆y n , then using Green's formula and the fact that

u n = f 1 n = 0 on Γ, we obtain - Ω β n (∇u n • ∇y n )dx + 1 β n Ω ∆u n ∆y n dx + i Ω (∇b • ∇y n )y n dx + i Ω b|∇y n | 2 dx + i Ω (∇c • ∇y n )u n dx + i Ω c(∇u n • ∇y n )dx (3.21) = Ω (-g 1 n -bf 2 n -cf 1 n ) 1 β n ∆y n dx + i Ω (∇f 1 n • ∇y n )dx.
As f 1 n , f 2 n converge to zero in H 1 0 (Ω), g 1 n converges to zero in L 2 (Ω) and the fact that 1 βn ∆y n , ∇y n are uniformly bounded in L 2 (Ω), we have

(3.22) Ω (-g 1 n -bf 2 n -cf 1 n ) 1 β n ∆y n dx + i Ω (∇f 1 n • ∇y n )dx = o(1).
Using the fact that ∇y n is uniformly bounded in

L 2 (Ω), u n L 2 (Ω) = o(1), y n L 2 (Ω) = o(1)
and using the estimation (3.15), we get

(3.23) i Ω (∇b • ∇y n )y n dx + i Ω (∇c • ∇y n )u n dx + i Ω c(∇u n • ∇y n )dx = o(1)
.

Inserting now (3.22) and (3.23) into (3.21), we get

(3.24) - Ω β n (∇u n • ∇y n )dx + 1 β n Ω ∆u n ∆y n dx + i Ω b|∇y n | 2 dx = o(1).
ii) Similarly, multiplying equation (3.9) by 1 βn ∆u n , then using Green's formula and the fact that

y n = f 2 n = 0 on Γ, we obtain - Ω β n (∇y n • ∇u n )dx + 1 β n Ω ∆y n ∆u n dx -i Ω (∇b • ∇u n )u n dx -i Ω b|∇u n | 2 dx = Ω (bf 1 n -g 2 n ) 1 β n ∆u n dx + i Ω (∇f 2 n • ∇u n )dx. (3.25) Using the fact that f 1 n , f 2 n converge to zero in H 1 0 (Ω), g 2 n converges to zero in L 2
(Ω) and the fact that 1 βn ∆u n , ∇u n are uniformly bounded in L 2 (Ω), we get

(3.26) Ω (bf 1 n -g 2 n ) 1 β n ∆u n dx + i Ω (∇f 2 n • ∇u n )dx = o(1).
Also, using the fact that ∇u n is uniformly bounded in L 2 (Ω), u n L 2 (Ω) = o(1), we have

(3.27) -i Ω (∇b • ∇u n )u n dx = o(1).
Inserting (3.26) and (3.27) into (3.25), we get

(3.28) - Ω β n (∇y n • ∇u n )dx + 1 β n Ω ∆y n ∆u n dx -i Ω b|∇u n | 2 dx = o(1).
iii) Finally, by combining (3.24) and(3.28) and taking the imaginary part, we obtain

(3.29) Ω b|∇y n | 2 dx = Ω b|∇u n | 2 dx + o(1).
Since ω b ⊂ ω c + , it follows from (3.15) and (3.29) that

ω b |∇y n | 2 dx = o(1).
The proof is thus complete. Proof. Multiplying equation (3.9) by by n . Then using Green's formula and the fact that y n = 0 on Γ, we obtain

Ω b|β n y n | 2 dx - Ω b|∇y n | 2 dx - Ω (∇b • ∇y n )y n dx + i Ω b 2 β n u n y n dx = Ω (-iβ n f 2 n + bf 1 n -g 2 n )by n dx. (3.31) As f 1 n , f 2 n converge to zero in H 1 0 (Ω), g 2 n converges to zero in L 2 (Ω) and β n y n is uniformly bounded in L 2 (Ω), we get (3.32) Ω (-iβ n f 2 n + bf 1 n -g 2 n )by n dx = o(1).
Using the fact that β n u n and ∇y n are uniformly bounded in L 2 (Ω) and y n L 2 (Ω) = o(1), we get

(3.33) Ω (∇b • ∇y n )y n + i Ω b 2 β n u n y n dx = o(1).
Inserting (3.32), (3.33) into (3.31), we obtain

Ω b|β n y n | 2 dx - Ω b|∇y n | 2 dx = o(1).
Using the estimation (3.20) in the previous equation, we get

Ω b|β n y n | 2 dx = o(1).
This yields

ω b |β n y n | 2 dx = o(1).
The proof is thus complete.

Lemma 3.6. Let f n be a bounded sequence in L 2 (Ω). Then the solution

φ n ∈ H 1 0 (Ω) ∩ H 2 (Ω) of the following system (3.34) β 2 n φ n + ∆φ n -ibβ n φ n = f n in Ω, φ n = 0 on Γ,
verifies the following estimate

(3.35) Ω (|β n φ n | 2 + |∇φ n | 2 )dx ≤ C Ω |f n | 2 dx,
where C is a constant independent of n.

Proof. Consider the following wave equation

(3.36) φ tt -∆φ + bφ t = 0 in Ω, φ = 0 on Γ.
System (3.36) is wellposed in the space H = H 1 0 (Ω) × L 2 (Ω) and since ω b verifies GCC condition then it is exponentially stable (see [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]). Therefore, following Huang [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF] and Prüss [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF], we deduce that the resolvent of its corresponding operator

A aux : D(A aux ) -→ H 1 0 (Ω) × L 2 (Ω) defined by D(A aux ) = (H 2 (Ω) ∩ H 1 0 (Ω)) × H 1 0 (Ω) and A aux (φ, φ) = ( φ, ∆φ -b φ)
is uniformly bounded on the imaginary axis. On the other hand, system (3.34) can be rewritten in the form:

(3.37) iβ n φ n -φn = 0, iβ n φn -∆φ n + b φn = -f n . So, (3.38) iβ n -A aux φ n φn = 0 -f n .
Equivalently,

(3.39) φ n φn = iβ n -A aux -1 0 -f n .
This yields

(φ n , φn ) 2 H ≤ (iβ n -A aux ) -1 2 L(H) (0, -f n ) 2 H ≤ C Ω |f n | 2 dx, (3.40)
where C is a constant independent of n. Consequently, we deduce

Ω (|β n φ n | 2 + |∇φ n | 2 )dx ≤ C Ω |f n | 2 dx.
The proof is thus complete. n φ n where φ n is a solution of (3.34). Then using Green's formula and the fact that u n = φ n = 0 on Γ, we obtain

(3.42) Ω β 2 n u n (β 2 n φ n + ∆φ n )dx -i Ω bβ n y n β 2 n φ n dx -i Ω cβ n u n β 2 n φ n dx = Ω (-g 1 n -bf 2 n -cf 1 n )β 2 n φ n dx -i Ω β n f 1 n β 2 n φ n dx.
Substituting the first equation of system (3.34) into the first term of (3.42), we get

(3.43) Ω |β n u n | 2 dx -i Ω β 2 n φ n bβ n u n dx -i Ω bβ n y n β 2 n φ n dx -i Ω cβ n u n β 2 n φ n dx = Ω (-g 1 n -bf 2 n -cf 1 n )β 2 n φ n dx -i Ω β n f 1 n β 2 n φ n dx.
As f 1 n , f 2 n converge to zero in H 1 0 (Ω) and β 2 n φ n is uniformly bounded in L 2 (Ω) due to (3.35), we get

(3.44) Ω (-g 1 n -bf 2 n -cf 1 n )β 2 n φ n dx = o(1).
From the first equation of (3.34), we have β 2 n φ n = u n -∆φ nibβ n φ n . Consequently, we have 

-i Ω β n f 1 n β 2 n ϕ n dx = -i Ω β n f 1 n (u n -∆φ n -ibβ n φ n )dx = -i Ω β n f 1 n u n dx -i Ω β n (∇φ n • ∇f 1 n )dx - Ω bf 1 n β 2 n φ n , (3.45) which yields (3.46) -i Ω β n f 1 n β 2 n ϕ n dx = o(
Ω |β n u n | 2 dx --i Ω β 2 n φ n bβ n u n dx -i Ω bβ n y n β 2 n φ n dx -i Ω cβ n u n β 2 n φ n dx = o(1).
Finally, using estimations (3.11), (3.30) and the fact that β 2 n φ n is uniformly bounded in L 2 (Ω) into the previous equation, we obtain (3.48)

Ω |β n u n | 2 dx = o(1).
The proof is thus complete. Proof. Taking f n = y n in Lemma 3.6. Multiplying equation (3.9) by β 2 n φ n where φ n is a solution of (3.34). Then using Green's formula and the fact that y n = φ n = 0 on Γ, we obtain

(3.50) Ω β 2 n y n (β 2 n φ n + ∆φ n )dx + i Ω bβ n u n β 2 n φ n dx = -i Ω β n f 2 n β 2 n φ n + Ω (bf 1 n -g 2 n )β 2 n φ n dx.
Then, substituting the first equation of problem (3.34) into the first term of (3.50), we get

(3.51) Ω |β n y n | 2 dx -i Ω bβ 2 n φ n β n y n dx + i Ω bβ n u n β 2 n φ n dx = -i Ω β n f 2 n β 2 n φ n + Ω (bf 1 n -g 2 n )β 2 n φ n dx. Since β 2 n φ n is uniformly bounded in L 2 (Ω), f 1 n converges to zero in H 1 0 (Ω) and g 2 n converges to zero in L 2 (Ω), we have (3.52) Ω (-bf 1 n -g 2 n )β 2 n φ n dx = o(1).
Moreover, using the first equation of problem (3.34) and integrating by parts yields 

-i Ω β n f 2 n β 2 n φ n dx = -i Ω (y n -∆φ n -ibβ n φ n )β n f 2 n dx = -i Ω f 2 n β n y n dx -i Ω β n (∇φ n .∇f 2 n )dx - Ω bf 2 n β 2 n φ n dx. ( 3 
Ω |β n y n | 2 dx -i Ω bβ 2 n φ n β n y n dx + i Ω bβ n u n β 2 n φ n dx = o(1).
Finally, using (3.30), (3.41) and the fact that β 2 n φ n is uniformly bounded in L 2 (Ω), we deduce

Ω |β n y n | 2 dx = o(1).
The proof is thus complete. Proof. Multiplying equation (3.8) by u n , applying Green's formula and using the fact that u n = 0 on Γ, we get

(3.57) Ω |β n u n | 2 dx - Ω |∇u n | 2 dx -i Ω β n by n u n dx -i Ω β n cu n u n dx = o(1).
Using the fact that β n u n , β n y n are uniformly bounded in L 2 (Ω), u n = o(1) and the estimation (3.41) in (3.57), we obtain (3.58)

Ω |∇u n | 2 dx = o(1).
Similarly, multiplying equation (3.9) by y n and applying Green's formula and using the fact that y n = 0 on Γ, we get

(3.59) Ω |β n y n | 2 dx - Ω |∇y n | 2 dx + i Ω β n bu n y n dx = o(1).
Using the fact that β n u n is uniformly bounded in L 2 (Ω), 

y n = o(1)

3.2.

Observability and exact controllability. First, we consider the following homogeneous system associated to (1.7)-(1.9) for a = 1 by:

ψ tt -∆ψ + b(x)ϕ t = 0 in Ω × R + , (3.61) ϕ tt -∆ϕ -b(x)ψ t = 0 in Ω × R + , (3.62) ψ = ϕ = 0 on Γ × R + , (3.63) ψ(•, 0) = ψ 0 , ψ t (•, 0) = ψ 1 , ϕ(•, 0) = ϕ 0 , ϕ t (•, 0) = ϕ 1 in Ω. (3.64)
Let Φ = (ψ, ψ t , ϕ, ϕ t ) be a regular solution of system (3.61)-(3.63), its associated total energy is given by:

(3.65) E(t) = 1 2 Ω |ψ t | 2 + |∇ψ| 2 + |ϕ t | 2 + |∇ϕ| 2 dx.
A direct computation gives (3.66) d dt E(t) = 0.

Thus, system (3.61)-(3.63) is conservative in the sense that its energy E(t) is constant. It is also wellposed and admits a unique solution in the energy space H. Now, we establish the direct and indirect inequality given by the following theorem:

Theorem 3.10. Let a = 1. Assume that conditions (LH1) and (LH2) hold. Assume also that ω b ⊂ ω c+ satisfies the geometric control condition GCC and that b, c ∈ W 1,∞ (Ω). Then there exists a time T 0 such that for all T > T 0 , there exist two constants M 1 > 0, M 2 > 0 such that the solution of system (3.61)-(3.63) satisfies the following observability inequalities:

(3.67) M 1 Φ 0 2 H ≤ T 0 Ω c(x) |ψ t | 2 dxdt ≤ M 2 Φ 0 2 H ,
for all Φ 0 = (ψ 0 , ψ 1 , ϕ 0 , ϕ 1 ) ∈ H.

Proof. The direct inequality follows from the definition of the total energy for all T > 0. While the proof of the inverse inequality is a direct consequence of Proposition 2 of Haraux in [START_REF] Haraux | Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps[END_REF] for which the exponentially stability (3.1) implies the existence of a time T 0 > 0 such that for all T > T 0 there exist two constants M 1 > 0 and M 2 > 0 such that (3.67) holds. The proof is thus complete. Now, we are ready to study the exact controllability of a system (1.7)-(1.9) by using the HUM method. First, thanks to the direct inequality, the solution of the system of equations (1.7), (1.8), (1.9) can be obtained as usual by the method of transposition (see [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués: Perturbations[END_REF] and [START_REF] Lions | Exact controllability, stabilization and perturbations for distributed systems[END_REF]). Let v 0 ∈ L 2 (0, T ; L 2 (w c+ )), we choose the control

(3.68) v(t) = - d dt v 0 (t) ∈ [H 1 (0, T ; L 2 (ω c+ ))] ′ ,
where the derivative d dt is not taken in the sense of distributions but in the sense of the duality H 1 (0, T ; L 2 (ω c+ )) and its dual [H 1 (0, T ; L 2 (ω c+ ))] ′ , i.e.,

- T 0 d dt v 1 (t)µ(t)dt = T 0 v 1 (t) d dt µ(t)dt, ∀µ ∈ H 1 (0, T ; L 2 (ω c+ ).
Then we have the followig result:

Theorem 3.11. Let T > 0 and a = 1. Assume that conditions (LH1) and (LH1) hold. Assume also that ω b ⊂ ωc + satisfies the geometric control condition GCC and that b, c ∈ W 1,∞ (Ω). Given

U 0 = (u 0 , u 1 , y 0 , y 1 ) ∈ (L 2 (Ω) × H -1 (Ω)) 2 , v = - d dt v 0 ∈ [H 1 (0, T ; L 2 (ω c+ ))] ′ ,
the controlled system (1.7)-(1.9) has a unique weak solution

U = (u, u t , y, y t ) ∈ C 0 ([0, T ], (L 2 (Ω) × H -1 (Ω)) 2 ).
Proof. Let (ψ, ψ t , ϕ, ϕ t ) be the solution of (3.61)-(3.63) associated to Φ 0 = (ψ 0 , ψ 1 , ϕ 0 , ϕ 1 ). Multiplying the first equation of (1.7)-(1.9) by ψ and the second by ϕ and integrating by parts, we obtain

(3.69)                      Ω y t (T )ϕ(T )dx + Ω u t (T )ψ(T )dx - Ω y(T )ϕ t (T )dx - Ω u(T )ψ t (T )dx - Ω bu(T )ϕ(T )dx + Ω by(T )ψ(T )dx = Ω y t (0)ϕ(0)dx + Ω u t (0)ψ(0)dx - Ω ϕ t (0)y(0)dx - Ω ψ t (0)u(0)dx - Ω bu(0)ϕ(0)dx + Ω by(0)ψ(0)dx + T 0 Ω c(x)v(t)ψdxdt.
Note that

H ′ = (H -1 (Ω) × L 2 (Ω)) 2 . Then we have (3.70)    (u t (T, x), -u(T, x), y t (T, x), -y(T, x)), Φ(T ) H ′ ×H = (u 1 , -u 0 , y 1 , -y 0 ), Φ 0 H ′ ×H + T 0 Ω cv(t)ψdxdt = L(Φ 0 ).
Using the direct observability inequality (3.67), we deduce that

(3.71) L L(H,R) ≤ v 0 L 2 (0,T ;L 2 (ωc + )) + U 0 H ′ .
Using the Riesz representation theorem, there exists an element Z(x, t) ∈ H ′ solution of

(3.72) L(Φ 0 ) = Z, Φ 0 H ′ ×H , ∀Φ 0 ∈ H.
Then, define the weak solution U (x, t) of system (1.7)-(1.9) by U (x, t) = Z(x, t). The proof is thus complete.

Next, we consider the indirect locally internal exact controllability problem: For given T > 0 (sufficiently large) and initial data U 0 , does there exists a suitable control v that brings back the solution to equilibrium at time T , that is such the solution of (1.7)-(1.9) satisfies u(T ) = u t (T ) = y(T ) = y t (T ) = 0. Indeed, applying the HUM method, we obtain the following result.

Theorem 3.12. Let a = 1. Assume that conditions (LH1) and (LH2) hold. Assume also that ω b ⊂ ω c+ satisfies the geometric control condition GCC and that b, c ∈ W 1,∞ (Ω). For every T > M 1 , where M 1 is given in Theorem 3.10 and for every

U 0 ∈ (L 2 (Ω) × H -1 (Ω)) 2 ,
there exists a control

v(t) ∈ [H 1 (0, T ; L 2 (ω c+ ))] ′ ,
such that the solution of the controlled system (1.7)-(1.9) satisfies

u(T ) = u t (T ) = y(T ) = y t (T ) = 0.
Proof. We will apply the HUM method. Thanks to the indirect observability inequalities (3.67), we consider the seminorm defined by

Φ 0 2 H = T 0 ω b |ψ t | 2 dxdt,
where Φ = (ψ, ψ t , ϕ, ϕ t ) designate the solution of the homogeneous problem (3.61)-(3.63). Take the control v = d dt ψ t . Now, we solve the following time reverse problem:

(3.73)    ζ tt -∆ζ + bχ t = c d dt ψ t in (0, T ) × Ω, χ tt -∆χ -bζ t = 0 in (0, T ) × Ω, χ(T ) = χ t (T ) = ζ(T ) = ζ t (T ) = 0.
By Theorem 3.11, the system (3.73) admits a solution

Ψ(x, t) = (ζ, ζ t , χ, χ t , ) ∈ C 0 ([0, T ], H ′ ).
We define the linear operator Λ by:

Λ : H = (H 1 0 (Ω) × L 2 (Ω)) 2 → (H -1 (Ω) × L 2 (Ω)) 2 ,
where

ΛΦ 0 = (ζ t (0), -ζ(0), χ t (0), -χ(0)) ∀ Φ 0 ∈ (H 1 0 (Ω) × L 2 (Ω)
). In addition, we define the following linear form

(3.74) ΛΦ 0 , Φ0 = T 0 ωc ψ t ψt dxdt = (Φ 0 , Φ0 ) H , ∀ Φ0 ∈ H,
where (., .) H is the scalar product associated to the norm . H . Using Cauchy-Schwarz in (3.74) , we deduce that

(3.75) | ΛΦ 0 , Φ0 H×H ′ | Φ 0 H Φ0 H , ∀ Φ 0 , Φ0 ∈ H.
In particular, we have

| ΛΦ 0 , Φ 0 H×H ′ | = Φ 0 2 H ∀ Φ 0 ∈ H.
Then the inverse inequality in Theorem 3.10 implies that the operator Λ is coercive and continuous over H. Thanks to the Lax-Milgram theorem, we have Λ is an isomorphism from H into H ′ . In particular, for every

U 0 ∈ (L 2 (Ω) × H -1 (Ω)) 2 , there exists a solution Φ 0 ∈ H, such that Λ(Φ 0 ) = -U 0 = (ζ t (0), -ζ(0), χ t (0), -χ(0)).
It follows from the uniqueness of the solution of problem (3.73) that

U = Ψ.
Consequently, we have

u(T ) = u t (T ) = y(T ) = y t (T ) = 0.
The proof is thus complete.

4. Exponential stability and exact controllability in the case a = 1 4.1. Exponential stability in the weak energy space. The aim of this subsection is to show the exponential stability of system (1.4)-(1.6) in a weak energy space in the case when the waves do not propagate with same speed, i.e., a = 1. For this sake, we define the weak energy space

D = H 1 0 (Ω) × L 2 (Ω) × L 2 (Ω) × H -1
(Ω) equipped with the scalar product : for all U = (u, v, y, z) ∈ D and Ũ = (ũ, ṽ, ỹ, z) ∈ D,

(U, Ũ ) = Ω (a∇u.∇ũ + vṽ + y ỹ + (-∆) -1/2 z(-∆) -1/2 z)dx.
Next, we define the unbounded linear operator

A d : D(A d ) ⊂ D → D by A d U = ( v, a∆u -bz -cv, z, ∆y + bv ), D(A d ) = (H 1 0 (Ω) ∩ H 2 (Ω)) × H 1 0 (Ω) × H 1 0 (Ω) × L 2 (Ω) , ∀ U = (u, v, y, z) ∈ D(A d ).
We define the partial energy associated to a solution U = (u, u t , y, y t ) of (1.4)-(1.6) by

e 1 (t) = 1 2 a ∇u 2 L 2 (Ω) + u t 2 L 2 (Ω) .
We define also the weakened partial energy by

ẽ2 (t) = 1 2 y t 2 H -1 (Ω) + y 2 L 2 (Ω)
and the total mixed energy by E m (t) = e 1 (t) + ẽ2 (t).

In order to study the exponential decay rate, we need to assume that ω c+ satisfies the geometric conditions PMGC. Then there exist ε > 0, subsets Ω j ⊂ Ω, j = 1, ..., J, with Lipschitz boundary Γ j = ∂Ω j and points

x j ∈ R N such that Ω i ∩ Ω j = ∅ if i = j and ω + c ⊃ N ǫ ∪ J j=1 γ j (x j ) ∪ Ω \ ∪ J j=1 Ω j ∩ Ω with N ǫ (O) = {x ∈ R N : d(x, O) < ε} where O ⊂ R N , γ j (x j ) = {x ∈ Γ j : (x -x j ) • ν j (x) > 0}
where ν j is the outward unit normal vector to Γ j and that ω b satisfies the GCC condition and

ω b ⊂ Ω \ ∪ J j=1 Ω j . (LH3) 
Now, we are ready to establish the following main theorem of this section:

Theorem 4.1. (Exponential decay rate) Let a = 1. Assume that conditions (LH1) and (LH2) hold. Assume also that ω c+ satisfies the geometric conditions PMGC, ω b satisfies GCC condition and (LH3) and b, c ∈ L ∞ (Ω). Then there exist positive constants M ≥ 1, θ > 0 such that for all initial data (u 0 , u 1 , y 0 , y 1 ) ∈ D the energy of system (1.4)- (1.6) satisfies the following decay rate:

(4.1) E m (t) ≤ M e -θt E m (0), ∀t > 0.
In order to prove the above theorem, we apply the same strategy using Huang [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF] and Prüss [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF]. A C 0 -semigroup of contraction (e tA ) t 0 in a Hilbert space H is exponentially stable if and only if

iR ⊆ ρ(A d ) and (H1) lim sup β ∈R,|β|→+∞ (iβI -A d ) -1 L(D) < ∞ (H2)
Condition (H1) was already proved. We now prove that condition (H2) holds, using an argument of contradiction. For this aim, we suppose that there exist a real sequence β n with β n → +∞ and a sequence

U n = (u n , v n , y n , z n ) ∈ D(A d ) such that U n D = 1 and (4.2) lim n→∞ (iβ n I -A d )U n D = 0 . (4.3)
Next, detailing equation (4.3), we get

iβ n u n -v n = f 1 n → 0 in H 1 0 (Ω), (4.4) iβ n v n -a∆u n + bz n + cv n = g 1 n → 0 in L 2 (Ω), (4.5) iβ n y n -z n = f 2 n → 0 in L 2 (Ω), (4.6) iβ n z n -∆y n -bv n = g 2 n → 0 in H -1 (Ω). (4.7)
Eliminating v n and z n from the previous system, we obtain the following system (4.8)

β 2 n u n + a∆u n -iβ n by n -iβ n cu n = -g 1 n -bf 2 n -iβ n f 1 n -cf 1 n in L 2 (Ω), (4.9) 
β 2 n y n + ∆y n + iβ n bu n = -iβ n f 2 n + bf 1 n -g 2 n in H -1 (Ω).
From (4.2), we have ∇u n , v n and y n are uniformly bounded in L 2 (Ω) and z n is uniformly bounded in H -1 (Ω). Using now (4.2) and (4.4), we deduce that β n u n is uniformly bounded in L 2 (Ω). In addition, using (4.2) and (4.6), we deduce that β n y n is uniformly bounded in H -1 (Ω). More precisely,

u n L 2 (Ω) = O(1) β n = o(1) and y n H -1 = O(1) β n = o(1). Lemma 4.2. The solution (u n , v n , y n , z n ) ∈ D(A d ) of system (4.4)-(4.7
) satisfies the following estimates

(4.10) Ω c|β n u n | 2 dx = o (1) and ωc 
+ |β n u n | 2 dx = o(1).
Proof. First, since U n is uniformly bounded in D and using (

Re

iβ n U n 2 -(A d U n , U n ) = Ω c(x)|v n | 2 dx = o(1).
Next, using equations (4.11) and (4.4), we get (4.12)

Ω c|β n u n | 2 dx = o(1).
Under condition (LH1), it follows

ωc + |β n u n | 2 dx = o(1).
The proof is thus complete. Now as ω c + satisfies the PMGC condition, let the reals 0 < ε 1 < ε 2 < ε and define Proof. First, multiplying equation (4.8) by ηū n . Then, using Green's formula and the fact that u n = 0 on Γ, we obtain (4.14)

Q i = N εi ∪ J j=1 γ j (x j ) ∪ Ω \ ∪ J j=1 Ω j , i = 1, 2. Since R N \ ω c + ∩ Q 2 = ∅, we can construct a function η ∈ C ∞ 0 (Ω) such that η(x) = 0 if x ∈ Ω \ ω c+ , 0 ≤ η(x) ≤ 1, η(x) = 1 if x ∈ Q 2 . Lemma 4.3. The solution (u n , v n , y n , z n ) ∈ D(A d ) of system (4.
         Ω η|β n u n | 2 dx -a Ω η | ∇u n | 2 dx -a Ω u n (∇η • ∇u n )dx -i β n Ω bηy n u n dx -iβ n Ω cη|u n | 2 dx = Ω (-g 1 n -bf 2 n -iβ n f 1 n -cf 1 n )ηu n dx.
As f 1 n converges to zero in H 1 0 (Ω), f 2 n , g 1 n converge to zero in L 2 (Ω) and β n u n is uniformly bounded in L 2 (Ω), we get (4.15)

Ω (-g 1 n -bf 2 n -iβ n f 1 n -cf 1 n )ηu n dx = o(1).
Using the fact that ∇u n , y n are uniformly bounded in L 2 (Ω), u n L 2 (Ω) = o(1) and estimation (4.10), we will have (4.16)

Ω η|β n u n | 2 dx -a Ω u n (∇η • ∇u n )dx -i β n Ω bηy n u n dx -iβ n Ω cη|u n | 2 dx = o(1).
Finally, inserting (4.15) and (4.16) into (4.14), we deduce

Ω η | ∇u n | 2 dx = o(1) and Q2∩Ω | ∇u n | 2 dx = o(1).
The proof is thus complete. Proof. The proof contains two steps.

Step 1. (Boundedness of 1 βn ∇y n ). Multiplying equation (4.9) by 1 

β 2 n y n , we obtain Ω |y n | 2 dx+ < ∆y n , 1 β 2 n y n > H -1 (Ω)×H 1 0 (Ω) = -i Ω 1 β n f 2 n y n dx + Ω bf 1 n 1 β 2 n y n dx (4.18) -< g 2 n , 1 β 2 n y n > H -1 (Ω)×H
∇y n β n 2 L 2 (Ω) ≤ y n 2 L 2 (Ω) + 1 2 g 2 n 2 H -1 (Ω) + o(1).
It follows, from the uniform boundedness of y n in L 2 (Ω) and g 2 n in H -1 (Ω), that (4.20)

∇y n β n 2 = O(1).
Step 2. (Main asymptotic estimation). Multiplying equation (4.8) by η 1 βn y n . Later, using Green's formula and the fact that y n = 0 on Γ, we get (4.21)

         Ω ηβ n u n y n dx -a Ω 1 β n η(∇u n • ∇y n )dx -a Ω 1 β n (∇η • ∇u n )y n dx -i Ω bη|y n | 2 dx -i Ω cu n ηy n dx = Ω (-g 1 n -bf 2 n -iβ n f 1 n -cf 1 n ) η β n y n dx.
Next, using the definition of η and equations (4. Using the fact that f 1 n converges to zero in H 1 0 (Ω), f 2 n , g 1 n converge to zero in L 2 (Ω) and y n is uniformly bounded in L 2 (Ω), we will have (4.24)

Ω (-g 1 n -bf 2 n -iβ n f 1 n -cf 1 n ) η β n y n dx = o(1).
Finally, inserting (4.22)-(4.24) into (4.21), we get

Ω bη|y n | 2 dx = o(1).
It follows, from condition (LH3), that

ω b |y n | 2 dx = o(1).
The proof is thus complete. Proof. Noting that ω b satisfies the GCC condition, so we can taking f n = y n in Lemma 3.6.

Multiplying equation (4.9) by φ n . Then, we have

Ω β 2 n φ n y n dx-< ∆y n , φ n > H -1 (Ω)×H 1 0 (Ω) +i Ω β n bu n φ n dx = -i Ω β n f 2 n φ n dx + Ω bf 1 n φ n dx (4.26) -< g 2 n , φ n > H -1 (Ω)×H 1 0 (Ω) .
Using the fact that φ n ∈ H 2 (Ω) ∩ H 1 0 (Ω) and y n ∈ H 1 0 (Ω), then we have

(4.27) -< ∆y n , φ n > H -1 (Ω)×H 1 0 (Ω) = Ω y n ∆φ n dx.
It follows, from the first equation of (3.34) and (4.26), that

Ω |y n | 2 dx = i Ω bβ n φ n y n dx -i Ω β n bu n φ n dx (4.28) -i Ω β n f 2 n φ n dx + Ω bf 1 n φ n dx-< g 2 n , φ n > H -1 (Ω)×H 1 0 (Ω) .
Using the fact that β n φ n is uniformly bounded in L 2 (Ω), f 1 n converges to zero in H 1 0 (Ω), f 2 n converges to zero in L 2 (Ω) , g 2 n converges to zero in H -1 , (4.17 Proof. Multiplying equation (4.9) by (-∆) -1 y n , then integrating by parts and using the fact that y n = 0 on Γ, we get

Ω |β n (-∆) -1/2 y n | 2 dx = Ω |y n | 2 dx -i Ω β n bu n (-∆) -1 y n dx -i Ω β n (-∆) -1/2 f 2 n (-∆) -1/2 y n dx + Ω bf 1 n (-∆) -1 y n dx (4.31) -< g 2 n , (-∆) -1 y n > H -1 (Ω)×H 1 0 (Ω)
. Using Cauchy-Schwarz and Poincaré inequalities, we get

| Ω β n (-∆) -1/2 f 2 n (-∆) -1/2 y n dx| ≤ (-∆) -1/2 f 2 n L 2 (Ω) β n (-∆) -1/2 y n L 2 (Ω) (4.32) ≤ c 0 f 2 n L 2 (Ω) β n y n H -1 (Ω) . It follows, from the convergence to zero of f 2 n in L 2 (Ω) and the boundedness of β n y n in H -1 (Ω), that (4.33) Ω β n (-∆) -1/2 f 2 n (-∆) -1/2 y n dx = o(1)
.

Similarly, we have

|< g 2 n , (-∆) -1 y n > H -1 (Ω)×H 1 0 (Ω) | = Ω (-∆) -1/2 g 2 n (-∆) -1/2 y n dx (4.34) ≤ (-∆) -1/2 g 2 n L 2 (Ω) (-∆) -1/2 y n L 2 (Ω) ≤ g 2 n H -1 (Ω) y n H -1 (Ω) . It follows, from the convergence of g 2 n and y n to zero in H -1 (Ω), that (4.35) < g 2 n , (-∆) -1 y n > H -1 (Ω)×H 1 0 (Ω) = o(1)
. Note that (-∆) -1 is compact operator from L 2 to L 2 . Then (-∆) -1 y n is uniformly bounded in L 2 . Finally, using (4.10), (4.25), (4.33), (4.35) and the fact that f 1 n converges to zero in H 1 0 (Ω) into equation (4.31), we deduce

Ω |β n (-∆) -1/2 y n | 2 dx = o(1).
The proof is thus complete. 

|∇u n | 2 + |β n u n | 2 )dx = o(1). Proof. Since (Ω j \ Q 2 ) ∩ Q 1 = ∅, we define the function ψ j ∈ C ∞ 0 (R N ) by: ψ j (x) = 0 if x ∈ Q 1 , 0 ψ j 1, ψ j (x) = 1 if x ∈ Ω j \ Q 2 .
For m j (x) = (xx j ), we define h j (x) = ψ j (x)m j (x). Multiplying equation (4.8) by 2(h j • ∇u n ) and integrating over Ω j , using the dissipation (4.10) and the fact that ∇u n is uniformly bounded in L 2 (Ω), we obtain

2β 2 n Ωj u n (h j • ∇u n )dx + 2a Ωj ∆u n (h j • ∇u n )dx -2i Ωj β n by n (h j • ∇u n )dx = 2 Ωj (-g 1 n -bf 2 n -cf 1 n )(h j • ∇u n )dx -2i Ωj β n f 1 n (h j • ∇u n )dx. ( 4 
.37) i) Estimation of the second member of (4.37). First, using Green's formula and the fact that u n = 0 on (Γ j \ γ j ) ∩ Γ and h j = 0 on γ j , we get 

-2i Ωj β n f 1 n (h j • ∇u n )dx = 2i Ωj β n u n (h j • ∇f 1 n )dx + 2i Ωj β n u n f 1 n (divh j )dx. ( 4 
(-g 1 n -bf 2 n -cf 1 n )(h j .∇u n )dx = o(1).
Finally, we deduce that the second member of (4.37) is o(1).

ii) Estimation of the first integral of equation (4.37). Using Green's formula, we get

(4.41) Re 2 Ωj β 2 n u n (h j • ∇u n )dx = - Ωj (divh j )|β n u n | 2 dx + Γj (h j • ν j )|β n u n | 2 dΓ j .
Since Ψ j = 0 on γ j and u n = 0 on (Γ j \ γ j ) ∩ Γ, then we have

(4.42) Re{2 Ωj β 2 n u n (h j • ∇u n )dx} = - Ωj (divh j )|β n u n | 2 dx.
iii) Estimation of the second integral of equation (4.37). Using Green's formula, we get

Re 2a

Ωj

∆u n (h j • ∇u n ) = -2aRe N i,k=1 Ωj ∂ i h k j ∂ i u n ∂ k u n dx + (4.43) a Ωj (divh j )|∇u n | 2 dx -a Γj (h j • ν j )|∇u n | 2 dΓ j + 2aRe Γj ∂ νj u n (h j • ∇u n )dΓ j .
According to the choice of ψ j , only the boundary terms over (Γ j \ γ j ) ∩ Γ are non vanishing in (4.43). But on this part of the boundary u n = 0, and consequently Thus, summing over j and using the fact that ψ j = 1 on Ω j \ Q 2 , we get Thus, system (4.52)-(4.54) is conservative in the sense that its energy E m (t) is constant. It is also wellposed and admits a unique solution in the energy space D. Now, we establish the direct and indirect inequality given by the following theorem:

∇u n = (∂ ν u n ) • ν = (∂ νj u n )ν j . Then, we have (4.44) -a Γj (h j • ν j )|∇u n | 2 dΓ j + 2aRe Γj (∂ νj u n )(h j • ∇u n )dΓ j = a (Γj \γj )∩Γ (ψ j m j • ν j )|∂ νj u n | 2 dΓ j 0.
Theorem 4.8. Let 0 < a = 1. Assume that conditions (LH1) and (LH2) hold. Assume also that ω c+ satisfies the PMGC, ω b satisfies GCC condition and (LH3) and b, c ∈ L ∞ (Ω). Then there exists a time T 0 such that for all T > T 0 , there exist two constants C 1 > 0, C 2 > 0 such that the solution of system (4.52)-(4.54) satisfies the following observability inequalities:

(4.58) C 1 Φ 0 2 D ≤ T 0 Ω c(x)|ψ t | 2 dxdt ≤ C 2 Φ 0 2 D dx,
for all Φ 0 = (ψ 0 , ψ 1 , φ 0 , φ 1 ) ∈ D.

Proof. The direct inequality follows from the definition of the total energy for all T > 0. While the proof of the inverse inequality is a direct consequence of Proposition 2 of Haraux in [START_REF] Haraux | Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps[END_REF] for which the exponentially stability (4.1) implies the existence of a time T 0 > 0 such that for all T > T 0 there exist two constants C 1 > 0 and C 2 > 0 such that (4.58) holds.

It is well known that observality of the homogeneous system (4.52)-(4.54) implies the exact controllability of the system .

1 . Introduction 1 . 1 .

 111 Motivation and aims. Let Ω be a nonempty connected open subset of R N having a boundary Γ of class C 2 . In [6], F. Alabau et al. considered the energy decay of a system of two wave equations coupled by velocities u tt -a∆u + ρ(x, u t ) + b(x)y t = 0 in Ω × R * + , (1.1)

Lemma 3 . 3 .

 33 The solution (u n , v n , y n , z n ) ∈ D(A) of system (3.4)-(3.7) satisfies the following estimates (3.15) Ω c|∇u n | 2 dx = o(1) and ωc + |∇u n | 2 dx = o(1).

Lemma 3 . 5 .

 35 The solution (u n , v n , y n , z n ) ∈ D(A) of system (3.4)-(3.7) satisfies the following estimate (3.30) ω b |β n y n | 2 dx = o(1).

Lemma 3 . 7 .

 37 The solution (u n , v n , y n , z n ) ∈ D(A) of system (3.4)-(3.7) satisfies the following estimate (3.41) Ω |β n u n | 2 dx = o(1). Proof. Taking f n = u n in Lemma 3.6 and multiplying equation (3.8) by β 2

Lemma 3 . 8 .

 38 The solution (u n , v n , y n , z n ) ∈ D(A) of system (3.4)-(3.7) satisfies the following estimate (3.49) Ω |β n y n | 2 dx = o(1).

Lemma 3 . 9 .

 39 The solution (u n , v n , y n , z n ) ∈ D(A) of system (3.4)-(3.7) satisfies the following estimates (3.56) Ω |∇u n | 2 dx = o(1) and Ω |∇y n | 2 dx = o(1).

  4)-(4.7) satisfies the following estimates (4.13) Ω η | ∇u n | 2 dx = o(1) and Q2∩Ω | ∇u n | 2 dx = o(1).

Lemma 4 . 4 .

 44 The solution (u n , v n , y n , z n ) ∈ D(A d ) of system (4.4)-(4.7) satisfies the following estimate (4.17) ω b |y n | 2 dx = o(1).

Lemma 4 . 5 .

 45 The solution (u n , v n , y n , z n ) ∈ D(A d ) of system (4.4)-(4.7) satisfies the following estimate (4.25) Ω |y n | 2 dx = o(1).

  ) and u n = o(1) in equation (4.28), we obtainΩ |y n | 2 dx = o(1). (4.29)The proof is thus complete.

Lemma 4 . 6 .

 46 The solution (u n , v n , y n , z n ) ∈ D(A d ) of system (4.4)-(4.7) satisfies the following estimate (4.30) Ω |β n (-∆) -1/2 y n | 2 dx = o(1).

Lemma 4 . 7 .

 47 The solution (u n , v n , y n , z n ) ∈ D(A d ) of system (4.4)-(4.7) satisfies the following estimate (4.36) Ω\(Q2∩Ω)

Inserting ( 4 .

 4 44) into (4.43), we get Re 2aΩj ∆u n (h j • ∇u n ) ≤ -2aRe N i,k=1 Ωj ∂ i h k j ∂ i u n ∂ k u n dx + a Ωj (divh j )|∇u n | 2 dx. (4.45)iv) The main estimation. Inserting equations (4.39), (4.40), (4.42) and (4.45) into (4.37) and using the fact that ψ j = 0 on Q 1 , we getΩj \(Q1∩Ωj ) div(ψ j m j )(|β n u n | 2 -a|∇u n | 2 )dx + 2a N i,k=1 ∂ i (ψ j m k j )∂ i u n ∂ k u n dx +2i Ωj \(Q1∩Ωj )β n by n (ψ j m j • ∇u n )dx o(1).

( 4 .j=1j=1 4 . 2 .∇ψ 2 L 2 (Ω) + ψ t 2 L 2 (

 4422222 46) NΩ\(Q2∩Ω) |β n u n | 2 dx + (2 -N )a Ω\(Q2∩Ω) |∇u n | 2 dx +2Re i J j=1 Ωj \(Q1∩Ωj ) β n by n (ψ j m j • ∇u n )dx j m j )(|β n u n | 2 -a|∇u n | 2 )dx + 2a N i,k=1 ∂ i (ψ j m k j )∂ i u n ∂ k u n dx + o(1).Using (4.10) and (4.13), we deducej m j )(|β n u n | 2 -a|∇u n | 2 )dx + 2a N i,k=1 ∂ i (ψ j m k j )∂ i u n ∂ k u n dx = o(1). (4.47) Inserting (4.47) in (4.46), we obtain (4.48) N Ω\(Q2∩Ω)|β n u n | 2 dx + (2 -N )a Ω\(Q2∩Ω) |∇u n | 2 dx+ 2Re Ωj \(Q1∩Ωj ) β n by n (ψ j m j .∇u n )dxUnder condition (LH3) and the definition of ψ j , we will have2Re Ωj \(Q1∩Ωj )β n by n (ψ j m j .∇u n )dx estimation into (4.48), we getN Ω\(Q2∩Ω) |β n u n | 2 dx + (2 -N )a Ω\(Q2∩Ω) |∇u n | 2 dx ≤ o(1). (4.49)Multiplying (4.8) by (1 -N )u n . Then integrating on Ω, using Green's formula, the fact that y n and β n u n are bounded in L 2 (Ω) and the estimation (4.10), we obtain(4.50) (1 -N ) Ω |β n u n | 2 dx -(1 -N )a Ω |∇u n | 2 dx = o(1).Using (4.10) and (4.13) in (4.50), we deduce(4.51) (1 -N ) Ω\(Q2∩Ω) |β n u n | 2 dx -(1 -N )a Ω\(Q2∩Ω) |∇u n | 2 dx = o(1).Finally, combining (4.49) and (4.51), we get the following estimateΩ\(Q2∩Ω) a|∇u n | 2 + |β n u n | 2 )dx = o(1).The proof is thus complete.Proof of Theorem 3.10 It follows from (4.10) (4.13), (4.25), (4.30) and (4.36) that U n = o(1) which is a contradiction with (4.2). Consequently, condition (H2) holds and the energy of system (1.4)-(1.6) decays exponentially to zero in the weak energy space D. The proof is thus complete. Observability and exact controllability. First, we consider the following homogeneous system associated to (1.4)-(1.6) for a = 1 by:ψ tt -a∆ψ + b(x)ϕ t = 0 in Ω × R + , (4.52) ϕ tt -∆ϕb(x)ψ t = 0 in Ω × R + , (4.53) ψ = ϕ = 0 on Γ × R + , (4.54) ψ(•, 0) = ψ 0 , ψ t (•, 0) = ψ 1 , ϕ(•, 0) = ϕ 0 , ϕ t (•, 0) = ϕ 1 in Ω. (4.55)Let Φ = (ψ, ψ t , ϕ, ϕ t ) be a regular solution of system (3.61)-(3.63), its associated total energy is given byΩ) + ϕ t H -1 (Ω) + y L 2 (Ω) . A direct computation gives (4.57) d dt E m (t) = 0.

  1), because f 1 n converges to zero in H 1 0 (Ω) and β n u n , β 2 n φ n , β n ∇φ n are uniformly bounded in L 2 (Ω).

	Substituting now (3.44) and (3.46) into (3.43)
	(3.47)

  .53) Using the fact that β n y n , β 2 n φ n and β n ∇φ n are uniformly bounded in L 2 (Ω) and f 2

	zero in H 1 0 (Ω) in (3.53), we get	n converges to
	(3.54)	-i
	Inserting (3.52), (3.54) into (3.51), we obtain
	(3.55)	

Ω β n f 2 n β 2 n φ n dx = o(1).

  .38) So, from the fact that f 1 n converges to zero in H 1 0 (Ω) and β n u n is uniformly bounded in L 2 (Ω),

	we obtain			
	(4.39)	-2i	Ωj	β n f 1 n (h j • ∇u n )dx = o(1).
	Next, as f 1 n converges to zero in H 1 0 (Ω), f 2 n , g 1 n converge to zero in L 2 (Ω) and the sequence (∇u n ) is uniformly bounded in L 2 (Ω), we deduce
	(4.40)	2		
		Ωj		
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