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EXACT CONTROLLABILITY AND STABILIZATION OF LOCALLY

COUPLED WAVE EQUATIONS

STÉPHANE GERBI, CHIRAZ KASSEM, AMINA MORTADA, AND ALI WEHBE

Abstract. In this paper, we study the exact controllability and stabilization of a system of two

wave equations coupled by velocities with an internal, local control acting on only one equation.

We distinguish two cases. In the first one, when the waves propagate at the same speed: using
a frequency domain approach combined with multiplier technique, we prove that the system is

exponentially stable when the coupling region satisfies the geometric control condition GCC.

Following a result of Haraux ([11]), we establish the main indirect observability inequality. This
results leads, by the HUM method, to prove that the total system is exactly controllable by

means of locally distributed control. In the second case, when the waves propagate at different

speed, we establish an exponential decay rate in the weak energy space. Consequently, the
system is exactly controllable using a result of [11]. Finally, numerically, we provide results that

insure the theoretical results of [13].
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1. Introduction

1.1. Motivation and aims. Let Ω be an empty connected open subset of RN having a boundary
Γ of class C2. In [6], F. Alabau et al. considered the energy decay of a system of two wave equations
coupled by velocities

utt − a∆u+ ρ(x, ut) + b(x)yt = 0 in Ω× R∗+,(1.1)

ytt −∆y − b(x)ut = 0 in Ω× R∗+,(1.2)

u = y = 0 on Γ× R∗+,(1.3)

where a > 0 constant, b ∈ C0(Ω,R) and ρ(x, ut) is a non linear damping. Using an approach
based on multiplier techniques, weighted nonlinear inequalities and the optimal-weight convexity
method (developed in [3]), the authors established an explicit energy decay formula in terms
of the behavior of the nonlinear feedback close to the origin. Their results are obtained in the
case when the following three conditions are satisfied: the waves propagate at the same speed
(a = 1), the coupling coefficient b(x) is small and positive (0 ≤ b(x) ≤ b0, b0 ∈ (0, b?] where b?

is a constant depending on Ω and on the control region) and both the coupling and the damping
regions satisfying an appropriated geometric conditions named Piecewise Multipliers Geometric
Conditions (introduced in [17] and denoted by PMGC in short). In their work, the case where the
waves are not assumed to be propagated with equal speeds (a is not necessarily equal to 1) and/or
the coupling coefficient b(x) is not assumed to be positive and small has been left as an open
problem even when the damping term ρ is linear with respect to the second variable. Recently,
C. Kassem et al. in [13], answered this important open question by studying the stabilization of
the following linear system:

utt − a∆u+ c(x)ut + b(x)yt = 0 in Ω× R∗+,(1.4)

ytt −∆y − b(x)ut = 0 in Ω× R∗+,(1.5)

u = y = 0 on Γ× R∗+,(1.6)

in the case where the waves propagate with equal or different speeds and the coupling coefficient
is not assumed to be positive and small. Indeed, they distinguished two cases. The first one
is when the waves propagate at the same speed (i.e. a = 1), but unlike the works of [6], the
coupling coefficient function b is not necessarily assumed to be positive and small. In this case,
under the condition that the coupling region and the damping region have non empty intersection
satisfying the PMGC conditions, they established an exponential energy decay rate for weak initial
data. On the contrary (i.e. a 6= 1 ) they first proved the lack of the exponential stability of the
system. However, under the same geometric condition, an optimal energy decay rate of type 1

t was
established for smooth initial data. The aim of this paper is to investigate the exact controllability
of the following system:

utt − a∆u+ b(x)yt = c(x)vt in Ω× R∗+,(1.7)

ytt −∆y − b(x)ut = 0 in Ω× R∗+,(1.8)

u = y = 0 on Γ× R∗+,(1.9)

with the following initial data

(1.10) u(x, 0) = u0, y(x, 0) = y0, ut(x, 0) = u1 and yt(x, 0) = y1, x ∈ Ω,

under appropriate geometric conditions. Here, a > 0 constant, b ∈ C0(Ω,R), c ∈ C0(Ω,R+)
and v is an appropriate control. The idea is to use a result of A. Haraux in [11] for which the
observability of the homogeneous system associated to (1.7)-(1.9) is equivalent to the exponential
stability of system (1.4)-(1.6) in an appropriate Hilbert space. So, we provide a complete analysis
for the exponential stability of system (1.4)-(1.6) in different Hilbert spaces. First, when the waves
propagate at the same speed (i.e., a = 1), under the condition that the coupling region is included
in the damping region and satisfies the so-called Geometric Control Condition (GCC in Short), we
establish the exponential stability of system (1.4)-(1.6). Consequently, an observability inequality

of the solution of the homogeneous system associated to (1.7)-(1.9) in the space
(
H1

0 (Ω)× L2(Ω)
)2
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is established. This leads, by the HUM method introduced by Lions in [15], to the exact controlla-

bility of system (1.7)-(1.9) in the space
(
H−1(Ω)× L2(Ω)

)2
. Noting that, the geometric situations

covered here are richer than those considered in [6] and [13]. Furthermore, on the contrary when
the waves propagate at different speeds, (i.e., a 6= 1), we establish the exponential stability of
system (1.4)-(1.6) in the space H1

0 (Ω) × L2(Ω) × L2(Ω) × H−1(Ω) provided that the damping
region satisfies the PMGC condition while the coupling region includes in the damping region and
satisfying the GCC conditions. Consequently, an observability inequality of the solution of the
homogeneous system associated to (1.7)-(1.9) is established. This leads, by the HUM method,
to the exact controllability of system (1.7)-(1.9) in the space L2(Ω)×H−1(Ω)×H1

0 (Ω)× L2(Ω).
Finally, we perform numerical tests in the 1-D case to insure the theoretical results obtained here
and in [13]. In fact, the numerical results show a better behavior that the one expected by the
theoretical results.

1.2. Literature. Since the work of J. L. Lions in [15], the observability and controllability of
coupled wave equations have been studied by an intensive number of publications. In [15], J.
L. Lions studied the complete and partial observability and controllability of coupled systems of
either hyperbolic-hyperbolic type or hyperbolic-parabolic type. These results assume that the
coupling parameter is sufficiently small. In [1] and [2], F. Alabau studied the indirect boundary
observability of an abstract system of two weakly coupled second order evolution equations where
the coupling coefficient is strictly positive in the whole domain. In particular, using a piecewise
multiplier method, she proved that, for a sufficiently large time T , the observation of the trace
of the normal derivative of the first component of the solution on a part of the boundary allows
us to get back a weakened energy of the initial data. Consequently, using Hilbert Uniqueness
Method, she proved that the system is exactly controllable for small coupling parameter by means
of one boundary control. Noting that, the situation where the waves propagate with different
speeds is not covered. Later, the indirect boundary controllability of a system of two weakly
coupled one-dimensional wave equations has been studied by Z. Liu and B. Rao in [19]. Using
the non harmonic analysis, they established several weak observability inequalities which depend
on the ratio of the wave propagation speeds and proved the indirect exact controllability. The
null controllability of the reaction diffusion System has been studied by F. Ammar-Khodja et al.
in [8], by deriving an observability estimate for the linearized problem. The exact controllability
of a system of weakly coupled wave equations with an internal locally control acted on only one
equation has been studied by A. Wehbe and W. Youssef in [22] and [23]. They showed that, for
sufficiently large time, the observation of the velocity of the first component of the solution on a
neighborhood of a part of the boundary allows us to get back a weakened energy of initial data of
the second component, this if the coupling parameter is sufficiently small, but non- vanishing and
by the HUM method, they proved that the total system is exactly controllable. F. Alabau and
M. Léautaud in [5], considered a symmetric systems of two wave-type equation, where only one of
them being controlled. The two equations are coupled by zero order terms, localized in part of the
domain. They obtained an internal and a boundary controllability result in any space dimension,
provided that both the coupling and the control regions satisfy the Geometric Control Condition.

1.3. Description of the paper. This paper is organized as follows: In section (2), first, we show
that the system (1.4)-(1.6) can be reformulated into a first order evolution equation and we deduce
the well posedness property of the problem by the semigroup approach. Second, by using Theorem
2.2 of [13], we show that our problem is strongly stable without geometric conditions. In section 3,
we show the exponential decay rate of system (1.4)-(1.6) when the coupling region b is a subset of
the damping region c and satisfies the geometric control condition GCC. After that, we show that
our system is exactly controllable by using Proposition 2 of A. Haraux in [11]. In section 4, we
show the exponential decay rate of system (1.4)-(1.6) in the weak energy space provided that the
damping region satisfies the PMGC condition while the coupling region is a subset of the damping
region and satisfies the GCC condition. Section 5 is devoted to the numerical approximation of
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the problem by a finite difference discretization and to the validation of the theoretical results
stated in the previous sections.

2. Well posedeness and strong stability

Let us define the energy space H =

(
H1

0 (Ω)×L2(Ω)

)2

equipped with the following inner product

and norm, respectively

(U, Ũ)H = a

∫
Ω

(∇u · ∇ũ)dx +

∫
Ω

vṽ dx+

∫
Ω

(∇y · ∇ỹ)dx +

∫
Ω

zz̃dx, ‖U‖H =
√

(U,U)H,

for all U = (u, v, y, z), Ũ = (ũ, ṽ, ỹ, z̃) ∈ H.

Let (u, ut, y, yt) be a regular solution of the system (1.4)-(1.6). Its associated energy is defined by

E(t) =
1

2

∫
Ω

(
|ut|2 + a|∇u|2 + |yt|2 + |∇y|2

)
dx.

A straightforward computations gives

E′(t) = −
∫

Ω

c(x)|ut|2dx ≤ 0.

Consequently, system (1.4)-(1.6) is dissipative in the sense that its energy is non-increasing with
respect to t. Setting U = (u, ut, y, yt), system (1.4)-(1.6) may be recast as:

Ut = AU, in (0,+∞), U(0) = (u0, u1, y0, y1),

where the unbounded operator A : D(A) ⊂ H → H is given by:

(2.1) D(A) =

(
(H2(Ω) ∩H1

0 (Ω))×H1
0 (Ω)

)2

and

(2.2) AU = ( v, a∆u− bz − cv, z,∆y + bv ), ∀ U = (u, v, y, z) ∈ D(A).

Note that due to the fact that c(x) ≥ 0, the operator A is dissipative in H. And, by applying the
Lax-Milgam Theroem, it is easy to prove that the operator A is maximal in H i.e. R(I −A) = H.
Consequently, it generates a C0-semigroup of contractions (etA)t≥0. So, system (1.4)-(1.6) is well-
posed in H.

We need now to study the asymptotic behavior of E(t). For this aim, we suppose that there
exists a non empty open ωc+ ⊂ Ω satisfying the following condition

{x ∈ Ω : c(x) > 0} ⊃ ωc+ . (LH1)

On the other hand, as b(x) is not identically null and continuous, then there exists a non empty
open ωb ⊂ Ω such that

{x ∈ Ω : b(x) 6= 0} ⊃ ωb. (LH2)

If ω = ωc+ ∩ ωb 6= ∅ and condition (LH1) holds, then system (1.4)-(1.6) is strongly stable using
Theorem 2.2 in [13], i.e.

lim
t→+∞

‖etA(u0, u1, y0, y1)‖H = 0 ∀(u0, u1, y0, y1) ∈ H.



CONTROLLABILITY AND STABILIZATION OF COUPLED WAVE EQUATIONS 5

3. Exponential stability and exact controllability in the case a = 1

3.1. Exponential stability. This subsection is devoted to study the exponential stability of
system (1.4)-(1.6) in the case when the waves propagate at the same speed, i.e., a = 1 under an
appropriate geometric conditions.

Before we state our results, we recall the Geometric Control Conditions GCC introduced by Rauch
and Taylor in [21] for manifolds without boundaries and by Bardos, Lebeau and Rauch in [9] for
domains with boundaries.

Definition 1. We say that a subset ω of Ω satisfies the GCC if every ray of the geometrical
optics starting at any point x ∈ Ω at t = 0 enters the region ω in finite time T.

We recall also the Piecewise Multipliers Geometric Condition introduced by K. Liu in [17].

Definition 2. We say that ω satisfies the Piecewise Multipliers Geometric Condition (PMGC in
short) if there exist Ωj ⊂ Ω having Lipschitz boundary Γj = ∂Ωj and xj ∈ RN , j = 1, ..., J such

that Ωj∩Ωi = ∅ for j 6= i and ω contains a neighborhood in Ω of the set ∪Jj=1γj (xj)∪
(
Ω \ ∪Jj=1Ωj

)
where γj(xj) = {x ∈ Γj : (x− xj) · νj(x) > 0} and νj is the outward unit normal vector to Γj .

Remark 1. The PMGC is the generalization of the Multipliers Geometric Condition (MGC in
short) introduced by Lions in [15], saying that ω contains a neighborhood in Ω of the set {x ∈ Γ :
(x− x0) · ν(x) > 0}, for some x0 ∈ RN , where ν is the outward unit normal vector to Γ = ∂Ω.

Now, we are in position to state our first main result by the following theorem :

Theorem 3.1. (Exponential decay rate) Let a = 1. Assume that conditions (LH1) and (LH2) hold.
Assume also that ωb ⊂ ωc+ satisfies the geometric control conditions GCC and that b, c ∈W 1,∞(Ω).
Then there exist positive constants M ≥ 1, θ > 0 such that for all initial data (u0, u1, y0, y1) ∈ H
the energy of the system (1.4)-(1.6) satisfies the following decay rate:

(3.1) E(t) ≤Me−θtE(0), ∀t > 0.

Remark 2. The geometric situations covered by Theorem 3.1 are richer than those considered
in [13] and [6]. Indeed, in the previous references, the authors consider the PMGC geometric
conditions that are more restrictive than GCC. On the other hand, unlike the results in [6], we
have no restriction in Theorem 3.1 on the upper bound and the sign of the coupling function
coefficient b. This theorem is then a generalization in the linear case of the result of [6] where the
coupling coefficient considered have to satisfy 0 ≤ b(x) ≤ b0, b0 ∈ (0, b?] where b? is a constant
depending on Ω and on the control region.

In order to prove Theorem 3.1, we apply a result of Huang [12] and Prüss [20]. A C0- semigroup
of contraction (etA)t>0 in a Hilbert space H is exponentially stable if and only if

iR ⊆ ρ(A) (H1)

and
lim sup

β ∈R,|β|→+∞
‖ (iβI −A)−1 ‖L(H)<∞ (H2).

Since the resolvent of A is compact and 0 ∈ ρ(A), then from the fact that our system is strongly
stable, we deduce that condition (H1) is satisfied. We now prove that condition (H2) holds, using
an argument of contradiction. For this aim, we suppose that there exist a real sequence βn with
βn → +∞ and a sequence Un = (un, vn, yn, zn) ∈ D(A) such that

(3.2) ‖ Un ‖H= 1,

and

(3.3) lim
n→∞

‖ (iβnI −A)Un ‖H= 0.
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Next, detailing equation (3.3), we get

iβnun − vn = f1
n → 0 in H1

0 (Ω),(3.4)

iβnvn −∆un + bzn + cvn = g1
n → 0 in L2(Ω),(3.5)

iβnyn − zn = f2
n → 0 in H1

0 (Ω),(3.6)

iβnzn −∆yn − bvn = g2
n → 0 in L2(Ω).(3.7)

Eliminating vn and zn from the previous system, we obtain the following system

(3.8) β2
nun + ∆un − iβnbyn − iβncun = −g1

n − bf2
n − iβnf1

n − cf1
n,

(3.9) β2
nyn + ∆yn + iβnbun = −iβnf2

n + bf1
n − g2

n.

On the other side, we notice that vn and zn are uniformly bounded in L2(Ω). It follows, from
equations (3.4) and (3.6), that

(3.10)

∫
Ω

|yn|2dx =
O(1)

β2
n

and

∫
Ω

|un|2dx =
O(1)

β2
n

.

For clarity, we divide the proof into several Lemmas.

Lemma 3.2. The solution (un, vn, yn, zn) ∈ D(A) of system (3.4)-(3.7) satisfies the following
estimates

(3.11)

∫
Ω

c|βnun|2dx = o(1) and

∫
ωc+

|βnun|2dx = o(1).

Proof. First, since Un is uniformly bounded in H, then from (3.3), we get

(3.12) Re
{
iβn ‖ Un ‖2H −(AUn, Un)H

}
=

∫
Ω

c(x)|vn|2dx = o(1).

Under condition (LH1), it follows that

(3.13)

∫
ωc+

|vn|2dx = o(1).

Then, using equations (3.12) and (3.4), we get

(3.14)

∫
Ω

c|βnun|2dx = o(1).

Consequently, we have ∫
ωc+

|βnun|2dx = o(1).

The proof is thus complete. �

Lemma 3.3. The solution (un, vn, yn, zn) ∈ D(A) of system (3.4)-(3.7) satisfies the following
estimates

(3.15)

∫
Ω

c|∇un|2dx = o(1) and

∫
ωc+

|∇un|2dx = o(1).

Proof. Multiplying equation (3.8) by cun, integrating by parts and using the fact that un = 0 on
Γ, we get ∫

Ω

c|βnun|2dx−
∫

Ω

c|∇un|2dx−
∫

Ω

(∇c · ∇un)undx− i
∫

Ω

βnbyncundx

− i
∫

Ω

βncunundx =

∫
Ω

(−g1
n − bf2

n − iβnf1
n − cf1

n)cundx.(3.16)

Using the fact that f1
n, f2

n converge to zero in H1
0 (Ω), g1

n converges to zero in L2(Ω) and βnun is
uniformly bounded in L2(Ω), we obtain

(3.17)

∫
Ω

(−g1
n − bf2

n − iβnf1
n − cf1

n)cundx = o(1).
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Using the fact that ∇un, βnyn, βnun are uniformly bounded in L2(Ω) and ‖un‖ = o(1), we get

(3.18) −
∫

Ω

(∇c · ∇un)undx− i
∫

Ω

βnbyncundx− i
∫

Ω

βncunundx = o(1).

Inserting (3.17) and (3.18) into (3.16), we get

(3.19)

∫
Ω

c|βnun|2dx−
∫

Ω

c|∇un|2dx = o(1).

Finally, using estimation (3.11) in (3.19), we deduce∫
ωc+

|∇un|2dx = o(1).

The proof is thus complete. �

Lemma 3.4. The solution (un, vn, yn, zn) ∈ D(A) of system (3.4)-(3.7) satisfies the following
estimate

(3.20)

∫
ωb

|∇yn|2dx = o(1).

Proof. The proof contains three points.
i) First, multiplying equation (3.8) by 1

βn
∆yn, then using Green’s formula and the fact that

un = f1
n = 0 on Γ, we obtain

−
∫

Ω

βn(∇un · ∇yn)dx+
1

βn

∫
Ω

∆un∆yndx+ i

∫
Ω

(∇b · ∇yn)yndx

+ i

∫
Ω

b|∇yn|2dx+ i

∫
Ω

(∇c · ∇yn)undx+ i

∫
Ω

c(∇un · ∇yn)dx(3.21)

=

∫
Ω

(−g1
n − bf2

n − cf1
n)

1

βn
∆yndx+ i

∫
Ω

(∇f1
n · ∇yn)dx.

As f1
n, f2

n converge to zero in H1
0 (Ω), g1

n converges to zero in L2(Ω) and the fact that 1
βn

∆yn, ∇yn
are uniformly bounded in L2(Ω), we have

(3.22)

∫
Ω

(−g1
n − bf2

n − cf1
n)

1

βn
∆yndx+ i

∫
Ω

(∇f1
n · ∇yn)dx = o(1).

Using the fact that ∇yn is uniformly bounded in L2(Ω), ‖un‖L2(Ω) = o(1), ‖yn‖L2(Ω) = o(1) and
using the estimation (3.15), we get

(3.23) i

∫
Ω

(∇b · ∇yn)yndx+ i

∫
Ω

(∇c · ∇yn)undx+ i

∫
Ω

c(∇un · ∇yn)dx = o(1).

Inserting now (3.22) and (3.23) into (3.21), we get

(3.24) −
∫

Ω

βn(∇un · ∇yn)dx+
1

βn

∫
Ω

∆un∆yndx+ i

∫
Ω

b|∇yn|2dx = o(1).

ii) Similarly, multiplying equation (3.9) by 1
βn

∆un, then using Green’s formula and the fact that

yn = f2
n = 0 on Γ, we obtain

−
∫

Ω

βn(∇yn · ∇un)dx+
1

βn

∫
Ω

∆yn∆undx− i
∫

Ω

(∇b · ∇un)undx

− i
∫

Ω

b|∇un|2dx =

∫
Ω

(bf1
n − g2

n)
1

βn
∆undx+ i

∫
Ω

(∇f2
n · ∇un)dx.(3.25)
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Using the fact that f1
n, f2

n converge to zero in H1
0 (Ω), g2

n converges to zero in L2(Ω) and the fact
that 1

βn
∆un, ∇un are uniformly bounded in L2(Ω), we get

(3.26)

∫
Ω

(bf1
n − g2

n)
1

βn
∆undx+ i

∫
Ω

(∇f2
n · ∇un)dx = o(1).

Also, using the fact that ∇un is uniformly bounded in L2(Ω), ‖un‖L2(Ω) = o(1), we have

(3.27) −i
∫

Ω

(∇b · ∇un)undx = o(1).

Inserting (3.26) and (3.27) into (3.25), we get

(3.28) −
∫

Ω

βn(∇yn · ∇un)dx+
1

βn

∫
Ω

∆yn∆undx− i
∫

Ω

b|∇un|2dx = o(1).

iii) Finally, by combining (3.24) and(3.28) and taking the imaginary part, we obtain

(3.29)

∫
Ω

b|∇yn|2dx =

∫
Ω

b|∇un|2dx+ o(1).

Since ωb ⊂ ωc+ , it follows from (3.15) and (3.29) that∫
ωb

|∇yn|2dx = o(1).

The proof is thus complete. �

Lemma 3.5. The solution (un, vn, yn, zn) ∈ D(A) of system (3.4)-(3.7) satisfies the following
estimate

(3.30)

∫
ωb

|βnyn|2dx = o(1).

Proof. Multiplying equation (3.9) by byn. Then using Green’s formula and the fact that yn = 0
on Γ, we obtain ∫

Ω

b|βnyn|2dx−
∫

Ω

b|∇yn|2dx−
∫

Ω

(∇b · ∇yn)yndx

+ i

∫
Ω

b2 βnunyndx =

∫
Ω

(−iβnf2
n + bf1

n − g2
n)byndx.(3.31)

As f1
n, f2

n converge to zero in H1
0 (Ω), g2

n converges to zero in L2(Ω) and βnyn is uniformly bounded
in L2(Ω), we get

(3.32)

∫
Ω

(−iβnf2
n + bf1

n − g2
n)byndx = o(1).

Using the fact that βnun and ∇yn are uniformly bounded in L2(Ω) and ‖yn‖L2(Ω) = o(1), we get

(3.33)

∫
Ω

(∇b · ∇yn)yn + i

∫
Ω

b2 βnunyndx = o(1).

Inserting (3.32), (3.33) into (3.31), we obtain∫
Ω

b|βnyn|2dx−
∫

Ω

b|∇yn|2dx = o(1).

Using the estimation (3.20) in the previous equation, we get∫
Ω

b|βnyn|2dx = o(1).

This yields ∫
ωb

|βnyn|2dx = o(1).

The proof is thus complete. �
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Lemma 3.6. Let fn be a bounded sequence in L2(Ω). Then the solution φn ∈ H1
0 (Ω) ∩H2(Ω) of

the following system

(3.34)

{
β2
nφn + ∆φn − ibβnφn = fn in Ω,

φn = 0 on Γ,

verifies the following estimate

(3.35)

∫
Ω

(|βnφn|2 + |∇φn|2)dx ≤ C
∫

Ω

|fn|2dx,

where C is a constant independent of n.

Proof. Consider the following wave equation

(3.36)

{
φtt −∆φ+ bφt = 0 in Ω,

φ = 0 on Γ.

System (3.36) is wellposed in the space H = H1
0 (Ω)× L2(Ω) and since ωb verifies GCC condition

then it is exponentially stable (see [9]). Therefore, following Huang [12] and Prüss [20], we deduce
that the resolvent of its corresponding operator

Aaux : D(Aaux) −→ H1
0 (Ω)× L2(Ω)

defined by D(Aaux) = (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω) and Aaux(φ, φ̃) = (φ̃,∆φ− bφ̃) is uniformly
bounded on the imaginary axis.

On the other hand, system (3.34) can be rewritten in the form:

(3.37)

{
iβnφn − φ̃n = 0,

iβnφ̃n −∆φn + bφ̃n = −fn.
So,

(3.38)
(
iβn −Aaux

)(φn
φ̃n

)
=

(
0
−fn

)
.

Equivalently,

(3.39)

(
φn
φ̃n

)
=
(
iβn −Aaux

)−1
(

0
−fn

)
.

This yields

‖(φn, φ̃n)‖2H ≤ ‖(iβn −Aaux)−1‖2L(H)‖(0,−fn)‖2H

≤ C
∫

Ω

|fn|2dx,(3.40)

where C is a constant independent of n. Consequently, we deduce∫
Ω

(|βnφn|2 + |∇φn|2)dx ≤ C
∫

Ω

|fn|2dx.

The proof is thus complete. �

Lemma 3.7. The solution (un, vn, yn, zn) ∈ D(A) of system (3.4)-(3.7) satisfies the following
estimate

(3.41)

∫
Ω

|βnun|2dx = o(1).

Proof. Taking fn = un in Lemma 3.6 and multiplying equation (3.8) by β2
nφn where φn is a

solution of (3.34). Then using Green’s formula and the fact that un = φn = 0 on Γ, we obtain

(3.42)

∫
Ω

β2
nun(β2

nφn + ∆φn)dx− i
∫

Ω

bβnynβ
2
nφndx− i

∫
Ω

cβnunβ
2
nφndx

=

∫
Ω

(−g1
n − bf2

n − cf1
n)β2

nφndx− i
∫

Ω

βnf
1
nβ

2
nφndx.
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Substituting the first equation of system (3.34) into the first term of (3.42), we get

(3.43)

∫
Ω

|βnun|2dx− i
∫

Ω

β2
nφnbβnundx− i

∫
Ω

bβnynβ
2
nφndx− i

∫
Ω

cβnunβ
2
nφndx

=

∫
Ω

(−g1
n − bf2

n − cf1
n)β2

nφndx− i
∫

Ω

βnf
1
nβ

2
nφndx.

As f1
n, f2

n converge to zero in H1
0 (Ω) and β2

nφn is uniformly bounded in L2(Ω) due to (3.35), we
get

(3.44)

∫
Ω

(−g1
n − bf2

n − cf1
n)β2

nφndx = o(1).

From the first equation of (3.34), we have β2
nφn = un −∆φn − ibβnφn. Consequently, we have

−i
∫

Ω

βnf
1
nβ

2
nϕndx = −i

∫
Ω

βnf
1
n(un −∆φn − ibβnφn)dx

= −i
∫

Ω

βnf
1
nundx− i

∫
Ω

βn(∇φn · ∇f1
n)dx−

∫
Ω

bf1
nβ

2
nφn,(3.45)

which yields

(3.46) −i
∫

Ω

βnf
1
nβ

2
nϕndx = o(1),

because f1
n converges to zero in H1

0 (Ω) and βnun, β2
nφn, βn∇φn are uniformly bounded in L2(Ω).

Substituting now (3.44) and (3.46) into (3.43)

(3.47)

∫
Ω

|βnun|2dx−−i
∫

Ω

β2
nφnbβnundx− i

∫
Ω

bβnynβ
2
nφndx− i

∫
Ω

cβnunβ
2
nφndx = o(1).

Finally, using estimations (3.11), (3.30) and the fact that β2
nφn is uniformly bounded in L2(Ω)

into the previous equation, we obtain

(3.48)

∫
Ω

|βnun|2dx = o(1).

The proof is thus complete. �

Lemma 3.8. The solution (un, vn, yn, zn) ∈ D(A) of system (3.4)-(3.7) satisfies the following
estimate

(3.49)

∫
Ω

|βnyn|2dx = o(1).

Proof. Taking fn = yn in Lemma 3.6. Multiplying equation (3.9) by β2
nφn where φn is a solution

of (3.34). Then using Green’s formula and the fact that yn = φn = 0 on Γ, we obtain

(3.50)

∫
Ω

β2
nyn(β2

nφn + ∆φn)dx+ i

∫
Ω

bβnunβ
2
nφndx

= −i
∫

Ω

βnf
2
nβ

2
nφn +

∫
Ω

(bf1
n − g2

n)β2
nφndx.

Then, substituting the first equation of problem (3.34) into the first term of (3.50), we get

(3.51)

∫
Ω

|βnyn|2dx− i
∫

Ω

bβ2
nφnβnyndx+ i

∫
Ω

bβnunβ
2
nφndx

= −i
∫

Ω

βnf
2
nβ

2
nφn +

∫
Ω

(bf1
n − g2

n)β2
nφndx.
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Since β2
nφn is uniformly bounded in L2(Ω), f1

n converges to zero in H1
0 (Ω) and g2

n converges to
zero in L2(Ω), we have

(3.52)

∫
Ω

(−bf1
n − g2

n)β2
nφndx = o(1).

Moreover, using the first equation of problem (3.34) and integrating by parts yields

−i
∫

Ω

βnf
2
nβ

2
nφndx = −i

∫
Ω

(yn −∆φn − ibβnφn)βnf
2
ndx

= −i
∫

Ω

f2
nβnyndx− i

∫
Ω

βn(∇φn.∇f2
n)dx−

∫
Ω

bf2
nβ

2
nφndx.(3.53)

Using the fact that βnyn, β2
nφn and βn∇φn are uniformly bounded in L2(Ω) and f2

n converges to
zero in H1

0 (Ω) in (3.53), we get

(3.54) −i
∫

Ω

βnf
2
nβ

2
nφndx = o(1).

Inserting (3.52), (3.54) into (3.51), we obtain

(3.55)

∫
Ω

|βnyn|2dx− i
∫

Ω

bβ2
nφnβnyndx+ i

∫
Ω

bβnunβ
2
nφndx = o(1).

Finally, using (3.30), (3.41) and the fact that β2
nφn is uniformly bounded in L2(Ω), we deduce∫

Ω

|βnyn|2dx = o(1).

The proof is thus complete. �

Lemma 3.9. The solution (un, vn, yn, zn) ∈ D(A) of system (3.4)-(3.7) satisfies the following
estimates

(3.56)

∫
Ω

|∇un|2dx = o(1) and

∫
Ω

|∇yn|2dx = o(1).

Proof. Multiplying equation (3.8) by un, applying Green’s formula and using the fact that un = 0
on Γ, we get

(3.57)

∫
Ω

|βnun|2dx−
∫

Ω

|∇un|2dx− i
∫

Ω

βnbynundx− i
∫

Ω

βncunundx = o(1).

Using the fact that βnun, βnyn are uniformly bounded in L2(Ω), ‖un‖ = o(1) and the estimation
(3.41) in (3.57), we obtain

(3.58)

∫
Ω

|∇un|2dx = o(1).

Similarly, multiplying equation (3.9) by yn and applying Green’s formula and using the fact that
yn = 0 on Γ, we get

(3.59)

∫
Ω

|βnyn|2dx−
∫

Ω

|∇yn|2dx+ i

∫
Ω

βnbunyndx = o(1).

Using the fact that βnun is uniformly bounded in L2(Ω), ‖yn‖ = o(1) and (3.49) in (3.59), we
obtain

(3.60)

∫
Ω

|∇yn|2dx = o(1).

The proof is thus complete. �

Proof of Theorem 3.1 It follows from (3.41), (3.49) and (3.56) that ‖Un‖H = o(1) which is a
contradiction with (3.2). Consequently, condition (H2) holds and the energy of system (1.4)-(1.6)
decays exponentially to zero. The proof is thus complete. �
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3.2. Observability and exact controllability. First, we consider the following homogeneous
system associated to (1.7)-(1.9) for a = 1 by:

ψtt −∆ψ + b(x)ϕt = 0 in Ω× R+,(3.61)

ϕtt −∆ϕ− b(x)ψt = 0 in Ω× R+,(3.62)

ψ = ϕ = 0 on Γ× R+,(3.63)

ψ(·, 0) = ψ0, ψt(·, 0) = ψ1, ϕ(·, 0) = ϕ0, ϕt(·, 0) = ϕ1 in Ω.(3.64)

Let Φ = (ψ,ψt, ϕ, ϕt) be a regular solution of system (3.61)-(3.63), its associated total energy is
given by:

(3.65) E(t) =
1

2

∫
Ω

(
|ψt|2 + |∇ψ|2 + |ϕt|2 + |∇ϕ|2

)
dx.

A direct computation gives

(3.66)
d

dt
E(t) = 0.

Thus, system (3.61)-(3.63) is conservative in the sense that its energy E(t) is constant. It is also
wellposed and admits a unique solution in the energy space H.

Now, we establish the direct and indirect inequality given by the following theorem:

Theorem 3.10. Let a = 1. Assume that conditions (LH1) and (LH2) hold. Assume also that
ωb ⊂ ωc+ satisfies the geometric control condition GCC and that b, c ∈ W 1,∞(Ω). Then there
exists a time T0 such that for all T > T0, there exist two constants M1 > 0, M2 > 0 such that the
solution of system (3.61)-(3.63) satisfies the following observability inequalities:

(3.67) M1‖Φ0‖2H ≤
∫ T

0

∫
Ω

c(x) |ψt|2dxdt ≤M2‖Φ0‖2H,

for all Φ0 = (ψ0, ψ1, ϕ0, ϕ1) ∈ H.

Proof. The direct inequality follows from the definition of the total energy for all T > 0. While
the proof of the inverse inequality is a direct consequence of Proposition 2 of Haraux in [11] for
which the exponentially stability (3.1) implies the existence of a time T0 > 0 such that for all
T > T0 there exist two constants M1 > 0 and M2 > 0 such that (3.67) holds. The proof is thus
complete. �

Now, we are ready to study the exact controllability of a system (1.7)-(1.9) by using the HUM
method. First, thanks to the direct inequality, the solution of the system (??) can be obtained as
usual by the method of transposition (see [15] and [16]). Let v0 ∈ L2(0, T ;L2(wc+)), we choose
the control

(3.68) v(t) = − d

dt
v0(t) ∈ [H1(0, T ;L2(ωc+))]′,

where the derivative d
dt is not taken in the sense of distributions but in the sense of the duality

H1(0, T ;L2(ωc+)) and its dual [H1(0, T ;L2(ωc+))]′, i.e.,

−
∫ T

0

d

dt
v1(t)µ(t)dt =

∫ T

0

v1(t)
d

dt
µ(t)dt, ∀µ ∈ H1(0, T ;L2(ωc+).

Then we have the followig result:

Theorem 3.11. Let T > 0 and a = 1. Assume that conditions (LH1) and (LH1) hold. Assume
also that ωb ⊂ ωc+ satisfies the geometric control condition GCC and that b, c ∈W 1,∞(Ω). Given

U0 = (u0, u1, y0, y1) ∈ (L2(Ω)×H−1(Ω))2, v = − d

dt
v0 ∈ [H1(0, T ;L2(ωc+))]′,

the controlled system (1.7)-(1.9) has a unique weak solution

U = (u, ut, y, yt) ∈ C0([0, T ], (L2(Ω)×H−1(Ω))2).
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Proof. Let (ψ,ψt, ϕ, ϕt) be the solution of (3.61)-(3.63) associated to Φ0 = (ψ0, ψ1, ϕ0, ϕ1). Mul-
tiplying the first equation of (1.7)-(1.9) by ψ and the second by ϕ and integrating by parts, we
obtain

(3.69)



∫
Ω

yt(T )ϕ(T )dx+

∫
Ω

ut(T )ψ(T )dx−
∫

Ω

y(T )ϕt(T )dx

−
∫

Ω

u(T )ψt(T )dx−
∫

Ω

bu(T )ϕ(T )dx+

∫
Ω

by(T )ψ(T )dx =∫
Ω

yt(0)ϕ(0)dx+

∫
Ω

ut(0)ψ(0)dx−
∫

Ω

ϕt(0)y(0)dx

−
∫

Ω

ψt(0)u(0)dx−
∫

Ω

bu(0)ϕ(0)dx+

∫
Ω

by(0)ψ(0)dx+

∫ T

0

∫
Ω

c(x)v(t)ψdxdt.

Note that H′ = (H−1(Ω)× L2(Ω))2. Then we have

(3.70)


〈 (ut(T, x),−u(T, x), yt(T, x),−y(T, x)),Φ(T ) 〉H′×H =

〈(u1,−u0, y1,−y0),Φ0〉H′×H +

∫ T

0

∫
Ω

cv(t)ψdxdt = L(Φ0).

Using the direct observability inequality (3.67), we deduce that

(3.71) ‖ L ‖L(H,R) ≤ ‖ v0 ‖L2(0,T ;L2(ωc+
)) + ‖ U0 ‖H′ .

Using the Riesz representation theorem, there exists an element Z(x, t) ∈ H′ solution of

(3.72) L(Φ0) = 〈Z,Φ0 〉H′×H, ∀Φ0 ∈ H.

Then, define the weak solution U(x, t) of system (1.7)-(1.9) by U(x, t) = Z(x, t). The proof is
thus complete. �

Next, we consider the indirect locally internal exact controllability problem: For given T > 0
(sufficiently large) and initial data U0, does there exists a suitable control v that brings back the
solution to equilibrium at time T , that is such the solution of (1.7)-(1.9) satisfies u(T ) = ut(T ) =
y(T ) = yt(T ) = 0. Indeed, applying the HUM method, we obtain the following result.

Theorem 3.12. Let a = 1. Assume that conditions (LH1) and (LH2) hold. Assume also that
ωb ⊂ ωc+ satisfies the geometric control condition GCC and that b, c ∈ W 1,∞(Ω). For every
T > M1, where M1 is given in Theorem 3.10 and for every

U0 ∈ (L2(Ω)×H−1(Ω))2,

there exists a control

v(t) ∈ [H1(0, T ;L2(ωc+))]′,

such that the solution of the controlled system (1.7)-(1.9) satisfies

u(T ) = ut(T ) = y(T ) = yt(T ) = 0.

Proof. We will apply the HUM method. Thanks to the indirect observability inequalities (3.67),
we consider the seminorm defined by

‖Φ0‖2H =

∫ T

0

∫
ωb

|ψt|2dxdt,

where Φ = (ψ,ψt, ϕ, ϕt) designate the solution of the homogeneous problem (3.61)-(3.63).
Take the control v = d

dtψt. Now, we solve the following time reverse problem:

(3.73)

 ζtt −∆ζ + bχt = c ddtψt in (0, T )× Ω,
χtt −∆χ− bζt = 0 in (0, T )× Ω,

χ(T ) = χt(T ) = ζ(T ) = ζt(T ) = 0.

By Theorem 3.11, the system (3.73) admits a solution

Ψ(x, t) = (ζ, ζt, χ, χt, ) ∈ C0([0, T ], H ′).
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We define the linear operator Λ by:

Λ : H = (H1
0 (Ω)× L2(Ω))2 → (H−1(Ω)× L2(Ω))2,

where
ΛΦ0 = (ζt(0),−ζ(0), χt(0),−χ(0)) ∀ Φ0 ∈ (H1

0 (Ω)× L2(Ω)).

In addition, we define the following linear form

(3.74) 〈ΛΦ0, Φ̃0〉 =

∫ T

0

∫
ωc

ψtψ̃tdxdt = (Φ0, Φ̃0)H, ∀ Φ̃0 ∈ H,

where (., .)H is the scalar product associated to the norm ‖.‖H.

Using Cauchy-Schwarz in (3.74) , we deduce that

(3.75) |〈ΛΦ0, Φ̃0〉H×H′ | 6 ‖Φ0‖H‖Φ̃0‖H, ∀Φ0, Φ̃0 ∈ H.
In particular, we have

|〈ΛΦ0,Φ0〉H×H′ | = ‖Φ0‖2H ∀Φ0 ∈ H.
Then the inverse inequality in Theorem 3.10 implies that the operator Λ is coercive and continuous
over H. Thanks to the Lax-Milgram theorem, we have Λ is an isomorphism from H into H′ . In
particular, for every U0 ∈ (L2(Ω)×H−1(Ω))2, there exists a solution Φ0 ∈ H, such that

Λ(Φ0) = −U0 = (ζt(0),−ζ(0), χt(0),−χ(0)).

It follows from the uniqueness of the solution of problem (3.73) that

U = Ψ.

Consequently, we have
u(T ) = ut(T ) = y(T ) = yt(T ) = 0.

The proof is thus complete. �

4. Exponential stability and exact controllability in the case a 6= 1

4.1. Exponential stability in the weak energy space. The aim of this subsection is to show
the exponential stability of system (1.4)-(1.6) in a weak energy space in the case when the waves
do not propagate with same speed, i.e., a 6= 1. For this, we define the weak energy space

D = H1
0 (Ω)× L2(Ω)× L2(Ω)×H−1(Ω)

equipped with the scalar product

(U, Ũ) =

∫
Ω

(a∇u.∇ũ+ vṽ + yỹ + (−∆)−1/2z(−∆)−1/2z̃)dx,

for all U = (u, v, y, z) ∈ D and Ũ = (ũ, ṽ, ỹ, z̃) ∈ D.

Next, we define the unbounded linear operator Ad : D(Ad) ⊂ D → D by

AdU = ( v, a∆u− bz − cv, z,∆y + bv ),

D(Ad) =
(
(H1

0 (Ω) ∩H2(Ω))×H1
0 (Ω)×H1

0 (Ω)× L2(Ω)
)
, ∀ U = (u, v, y, z) ∈ D(Ad).

We define the partial energy associated to a solution U = (u, ut, y, yt) of (1.4)-(1.6) by

e1(t) =
1

2

(
a‖∇u‖2L2(Ω) + ‖ut‖2L2(Ω)

)
.

We define also the weakened partial energy by

ẽ2(t) =
1

2

(
‖yt‖2H−1(Ω) + ‖y‖2L2(Ω)

)
and the total mixed energy by

Em(t) = e1(t) + ẽ2(t).

In order to study the exponential decay rate, we need to assume that ωc+ satisfies the geo-
metric conditions PMGC. Then there exist ε > 0, subsets Ωj ⊂ Ω, j = 1, ..., J , with Lips-
chitz boundary Γj = ∂Ωj and points xj ∈ RN such that Ωi ∩ Ωj = ∅ if i 6= j and ω+

c ⊃
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Nε
(
∪Jj=1γj (xj) ∪

(
Ω \ ∪Jj=1Ωj

))
∩ Ω with Nε(O) = {x ∈ RN : d(x,O) < ε} where O ⊂ RN ,

γj(xj) = {x ∈ Γj : (x−xj) · νj(x) > 0} where νj is the outward unit normal vector to Γj and that
ωb satisfies the GCC condition and

ωb ⊂
(
Ω \ ∪Jj=1Ωj

)
. (LH3)

Now, we are ready to establish the following main theorem of this section:

Theorem 4.1. (Exponential decay rate) Let a 6= 1. Assume that conditions (LH1) and (LH2)
hold. Assume also that ωc+ satisfies the geometric conditions PMGC, ωb satisfies GCC condition
and (LH3) and b, c ∈ L∞(Ω). Then there exist positive constants M ≥ 1, θ > 0 such that for all
initial data (u0, u1, y0, y1) ∈ D the energy of system (1.4)-(1.6) satisfies the following decay rate:

(4.1) Em(t) ≤Me−θtEm(0), ∀t > 0.

In order to prove the above theorem, we apply the same strategy using Huang [12] and Prüss [20].
A C0- semigroup of contraction (etA)t>0 in a Hilbert space H is exponentially stable if and only if

iR ⊆ ρ(Ad) (H1)

and

lim sup
β ∈R,|β|→+∞

‖ (iβI −Ad)−1 ‖L(D)<∞ (H2).

Condition (H1) was already proved. We now prove that condition (H2) holds, using an argument
of contradiction. For this aim, we suppose that there exist a real sequence βn with βn → +∞ and
a sequence Un = (un, vn, yn, zn) ∈ D(Ad) such that

(4.2) ‖ Un ‖D= 1,

and

(4.3) lim
n→∞

‖ (iβnI −Ad)Un ‖D= 0.

Next, detailing equation (4.3), we get

iβnun − vn = f1
n → 0 in H1

0 (Ω),(4.4)

iβnvn − a∆un + bzn + cvn = g1
n → 0 in L2(Ω),(4.5)

iβnyn − zn = f2
n → 0 in L2(Ω),(4.6)

iβnzn −∆yn − bvn = g2
n → 0 in H−1(Ω).(4.7)

Eliminating vn and zn from the previous system, we obtain the following system

(4.8) β2
nun + a∆un − iβnbyn − iβncun = −g1

n − bf2
n − iβnf1

n − cf1
n in L2(Ω),

(4.9) β2
nyn + ∆yn + iβnbun = −iβnf2

n + bf1
n − g2

n in H−1(Ω).

From (4.2), we have ∇un, vn and yn are uniformly bounded in L2(Ω) and zn is uniformly bounded
in H−1(Ω).
Using now (4.2) and (4.4), we deduce that βnun is uniformly bounded in L2(Ω). In addition, using
(4.2) and (4.6), we deduce that βnyn is uniformly bounded in H−1(Ω). More precisely,

‖un‖L2(Ω) =
O(1)

βn
= o(1) and ‖yn‖H−1(Ω) =

O(1)

βn
= o(1).

Lemma 4.2. The solution (un, vn, yn, zn) ∈ D(Ad) of system (4.4)-(4.7) satisfies the following
estimates

(4.10)

∫
Ω

c|βnun|2dx = o(1) and

∫
ωc+

|βnun|2dx = o(1).
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Proof. First, since Un is uniformly bounded in D and using (4.3), we get

(4.11) Re
{
iβn ‖ Un ‖2 −(AdUn, Un)

}
=

∫
Ω

c(x)|vn|2dx = o(1).

Next, using equations (4.11) and (4.4), we get

(4.12)

∫
Ω

c|βnun|2dx = o(1).

Under condition (LH1), it follows ∫
ωc+

|βnun|2dx = o(1).

The proof is thus complete. �

Now as ωc+ satisfies the PMGC condition, let the reals 0 < ε1 < ε2 < ε and define

Qi = Nεi
(
∪Jj=1γj (xj) ∪

(
Ω \ ∪Jj=1Ωj

))
, i = 1, 2.

Since RN \ ωc+ ∩Q2 = ∅, we can construct a function η̂ ∈ C∞0 (Ω) such that

η̂(x) = 0 if x ∈ Ω \ ωc+ , 0 ≤ η̂(x) ≤ 1, η̂(x) = 1 if x ∈ Q2.

Lemma 4.3. The solution (un, vn, yn, zn) ∈ D(Ad) of system (4.4)-(4.7) satisfies the following
estimates

(4.13)

∫
Ω

η̂ | ∇un |2 dx = o(1) and

∫
Q2∩Ω

| ∇un |2 dx = o(1).

Proof. First, multiplying equation (4.8) by η̂ūn. Then, using Green’s formula and the fact that
un = 0 on Γ, we obtain

(4.14)



∫
Ω

η̂|βnun|2dx− a
∫

Ω

η̂ | ∇un |2 dx− a
∫

Ω

un(∇η̂ · ∇un)dx− i βn

∫
Ω

bη̂ynundx

−iβn
∫

Ω

cη̂|un|2dx =

∫
Ω

(−g1
n − bf2

n − iβnf1
n − cf1

n)η̂undx.

As f1
n converges to zero in H1

0 (Ω), f2
n, g1

n converge to zero in L2(Ω) and βnun is uniformly bounded
in L2(Ω), we get

(4.15)

∫
Ω

(−g1
n − bf2

n − iβnf1
n − cf1

n)η̂undx = o(1).

Using the fact that ∇un, yn are uniformly bounded in L2(Ω), ‖un‖L2(Ω) = o(1) and estimation
(4.10), we will have

(4.16)

∫
Ω

η̂|βnun|2dx− a
∫

Ω

un(∇η̂ · ∇un)dx− i βn

∫
Ω

bη̂ynundx− iβn
∫

Ω

cη̂|un|2dx = o(1).

Finally, inserting (4.15) and (4.16) into (4.14), we deduce∫
Ω

η̂ | ∇un |2 dx = o(1) and

∫
Q2∩Ω

| ∇un |2 dx = o(1).

The proof is thus complete. �

Lemma 4.4. The solution (un, vn, yn, zn) ∈ D(Ad) of system (4.4)-(4.7) satisfies the following
estimate

(4.17)

∫
ωb

|yn|2dx = o(1).
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Proof. The proof contains two steps.
Step 1. (Boundedness of 1

βn
∇yn). Multiplying equation (4.9) by 1

β2
n
yn, we obtain∫

Ω

|yn|2dx+ < ∆yn,
1

β2
n

yn >H−1(Ω)×H1
0 (Ω)=− i

∫
Ω

1

βn
f2
nyndx+

∫
Ω

bf1
n

1

β2
n

yndx(4.18)

− < g2
n,

1

β2
n

yn >H−1(Ω)×H1
0 (Ω) .

Since f1
n converges to zero in H1

0 (Ω), f2
n converges to zero in L2(Ω) and yn is uniformly bounded

in L2(Ω), we get

(4.19) −i
∫

Ω

1

βn
f2
nyndx+

∫
Ω

bf1
n

1

β2
n

yndx = o(1).

Inserting (4.19) into (4.18), we will have after integrating by parts∫
Ω

∣∣∣∣∇ynβn
∣∣∣∣2 dx =

∫
Ω

|yn|2dx+ < g2
n,

1

β2
n

yn >H−1(Ω)×H1
0 (Ω) +o(1).

Using Cauchy-Schwarz and Young inequalities in the previous equation, we obtain that

1

2

∥∥∥∥∇ynβn
∥∥∥∥2

L2(Ω)

≤ ‖yn‖2L2(Ω) +
1

2
‖g2
n‖2H−1(Ω) + o(1).

It follows, from the uniform boundedness of yn in L2(Ω) and g2
n in H−1(Ω), that

(4.20)

∥∥∥∥∇ynβn
∥∥∥∥2

= O(1).

Step 2. (Main asymptotic estimation). Multiplying equation (4.8) by η̂ 1
βn
yn. Later, using

Green’s formula and the fact that yn = 0 on Γ, we get

(4.21)



∫
Ω

η̂βnunyndx− a
∫

Ω

1

βn
η̂(∇un · ∇yn)dx− a

∫
Ω

1

βn
(∇η̂ · ∇un)yndx

−i
∫

Ω

bη̂|yn|2dx− i
∫

Ω

cunη̂yndx =

∫
Ω

(−g1
n − bf2

n − iβnf1
n − cf1

n)
η̂

βn
yndx.

Next, using the definition of η̂ and equations (4.13) and (4.20), we get

(4.22) −a
∫

Ω

1

βn
η̂(∇un.∇yn)dx = o(1).

Using (4.10), (4.13) and the fact that yn is uniformly bounded in L2(Ω), we obtain

(4.23) −a
∫

Ω

1

βn
(∇η̂.∇un)yndx−

∫
Ω

η̂βnunyndx− i
∫

Ω

cunη̂yndx = o(1).

Using the fact that f1
n converges to zero in H1

0 (Ω), f2
n, g1

n converge to zero in L2(Ω) and yn is
uniformly bounded in L2(Ω), we will have

(4.24)

∫
Ω

(−g1
n − bf2

n − iβnf1
n − cf1

n)
η̂

βn
yndx = o(1).

Finally, inserting (4.22)-(4.24) into (4.21), we get∫
Ω

bη̂|yn|2dx = o(1).

It follows, from condition (LH3), that ∫
ωb

|yn|2dx = o(1).

The proof is thus complete. �
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Lemma 4.5. The solution (un, vn, yn, zn) ∈ D(Ad) of system (4.4)-(4.7) satisfies the following
estimate

(4.25)

∫
Ω

|yn|2dx = o(1).

Proof. Noting that ωb satisfies the GCC condition, so we can taking fn = yn in Lemma 3.6.
Multiplying equation (4.9) by φn. Then, we have∫

Ω

β2
nφnyndx− < ∆yn, φn >H−1(Ω)×H1

0 (Ω) +i

∫
Ω

βnbunφndx =− i
∫

Ω

βnf
2
nφndx

+

∫
Ω

bf1
nφndx− < g2

n, φn >H−1(Ω)×H1
0 (Ω) .(4.26)

Using the fact that φn ∈ H2(Ω) ∩H1
0 (Ω) and yn ∈ H1

0 (Ω), then we have

(4.27) − < ∆yn, φn >H−1(Ω)×H1
0 (Ω)=

∫
Ω

yn∆φndx.

It follows, from the first equation of (3.34) and (4.26), that∫
Ω

|yn|2dx = i

∫
Ω

bβnφnyndx− i
∫

Ω

βnbunφndx(4.28)

− i
∫

Ω

βnf
2
nφndx+

∫
Ω

bf1
nφndx− < g2

n, φn >H−1(Ω)×H1
0 (Ω) .

Using the fact that βnφn is uniformly bounded in L2(Ω), f1
n converges to zero in H1

0 (Ω), f2
n

converges to zero in L2(Ω) , g2
n converges to zero in H−1, (4.17) and ‖un‖ = o(1) in equation

(4.28), we obtain ∫
Ω

|yn|2dx = o(1).(4.29)

The proof is thus complete. �

Lemma 4.6. The solution (un, vn, yn, zn) ∈ D(Ad) of system (4.4)-(4.7) satisfies the following
estimate

(4.30)

∫
Ω

|βn(−∆)−1/2yn|2dx = o(1).

Proof. Multiplying equation (4.9) by (−∆)−1yn, then integrating by parts and using the fact that
yn = 0 on Γ, we get∫

Ω

|βn(−∆)−1/2yn|2dx =

∫
Ω

|yn|2dx− i
∫

Ω

βnbun(−∆)−1yndx

− i
∫

Ω

βn(−∆)−1/2f2
n(−∆)−1/2yndx+

∫
Ω

bf1
n(−∆)−1yndx(4.31)

− < g2
n, (−∆)−1yn >H−1(Ω)×H1

0 (Ω) .

Using Cauchy-Schwarz and Poincaré inequalities, we get

|
∫

Ω

βn(−∆)−1/2f2
n(−∆)−1/2yndx| ≤ ‖(−∆)−1/2f2

n‖L2(Ω)‖βn(−∆)−1/2yn‖L2(Ω)(4.32)

≤ c0‖f2
n‖L2(Ω)‖βnyn‖H−1(Ω).

It follows, from the convergence to zero of f2
n in L2(Ω) and the boundedness of βnyn in H−1(Ω),

that

(4.33)

∫
Ω

βn(−∆)−1/2f2
n(−∆)−1/2yndx = o(1).
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Similarly, we have

|< g2
n, (−∆)−1yn >H−1(Ω)×H1

0 (Ω)| =
∫

Ω

(−∆)−1/2g2
n(−∆)−1/2yndx(4.34)

≤ ‖(−∆)−1/2g2
n‖L2(Ω)‖(−∆)−1/2yn‖L2(Ω)

≤ ‖g2
n‖H−1(Ω)‖yn‖H−1(Ω).

It follows, from the convergence of g2
n and yn to zero in H−1(Ω), that

(4.35) < g2
n, (−∆)−1yn >H−1(Ω)×H1

0 (Ω)= o(1).

Note that (−∆)−1 is compact operator from L2 to L2. Then (−∆)−1yn is uniformly bounded in

L2. Finally, using (4.10), (4.25), (4.33), (4.35) and the fact that f1
n converges to zero in H1

0 (Ω)
into equation (4.31), we deduce ∫

Ω

|βn(−∆)−1/2yn|2dx = o(1).

The proof is thus complete. �

Lemma 4.7. The solution (un, vn, yn, zn) ∈ D(Ad) of system (4.4)-(4.7) satisfies the following
estimate

(4.36)

∫
Ω\(Q2∩Ω)

(
|∇un|2 + |βnun|2)dx = o(1).

Proof. Since (Ωj \Q2) ∩Q1 = ∅, we define the function ψj ∈ C∞0 (RN ) by:

ψj(x) = 0 if x ∈ Q1, 0 6 ψj 6 1, ψj(x) = 1 if x ∈ Ωj \Q2.

For mj(x) = (x− xj), we define hj(x) = ψj(x)mj(x).

Multiplying equation (4.8) by 2(hj · ∇un) and integrating over Ωj , using the dissipation (4.10)
and the fact that ∇un is uniformly bounded in L2(Ω), we obtain

2β2
n

∫
Ωj

un(hj · ∇un)dx+ 2a

∫
Ωj

∆un(hj · ∇un)dx− 2i

∫
Ωj

βnbyn(hj · ∇un)dx =

2

∫
Ωj

(−g1
n − bf2

n − cf1
n)(hj · ∇un)dx− 2i

∫
Ωj

βnf
1
n(hj · ∇un)dx.

(4.37)

i) Estimation of the second member of (4.37). First, using Green’s formula and the fact that
un = 0 on (Γj \ γj) ∩ Γ and hj = 0 on γj , we get

−2i

∫
Ωj

βnf
1
n(hj · ∇un)dx = 2i

∫
Ωj

βnun(hj · ∇f1
n)dx+ 2i

∫
Ωj

βnunf
1
n(divhj)dx.(4.38)

So, from the fact that f1
n converges to zero in H1

0 (Ω) and βnun is uniformly bounded in L2(Ω),
we obtain

(4.39) −2i

∫
Ωj

βnf
1
n(hj · ∇un)dx = o(1).

Next, as f1
n converges to zero in H1

0 (Ω), f2
n, g1

n converge to zero in L2(Ω) and the sequence (∇un)
is uniformly bounded in L2(Ω), we deduce

(4.40) 2

∫
Ωj

(−g1
n − bf2

n − cf1
n)(hj .∇un)dx = o(1).

Finally, we deduce that the second member of (4.37) is o(1).

ii) Estimation of the first integral of equation (4.37). Using Green’s formula, we get

(4.41) Re

{
2

∫
Ωj

β2
nun(hj · ∇un)dx

}
= −

∫
Ωj

(divhj)|βnun|2dx+

∫
Γj

(hj · νj)|βnun|2dΓj .
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Since Ψj = 0 on γj and un = 0 on (Γj \ γj) ∩ Γ, then we have

(4.42) Re{2
∫

Ωj

β2
nun(hj · ∇un)dx} = −

∫
Ωj

(divhj)|βnun|2dx.

iii) Estimation of the second integral of equation (4.37). Using Green’s formula, we get

Re

{
2a

∫
Ωj

∆un(hj · ∇un)

}
= −2aRe

{ N∑
i,k=1

∫
Ωj

∂ih
k
j ∂iun∂kundx

}
+(4.43)

a

∫
Ωj

(divhj)|∇un|2dx− a
∫

Γj

(hj · νj)|∇un|2dΓj + 2aRe

{∫
Γj

∂νjun(hj · ∇un)dΓj

}
.

According to the choice of ψj , only the boundary terms over (Γj \ γj) ∩ Γ are non vanishing in
(4.43). But on this part of the boundary un = 0, and consequently ∇un = (∂νun) · ν = (∂νjun)νj .
Then, we have

(4.44) −a
∫

Γj

(hj · νj)|∇un|2dΓj + 2aRe

{∫
Γj

(∂νjun)(hj · ∇un)dΓj

}
=

a

∫
(Γj\γj)∩Γ

(ψjmj · νj)|∂νjun|2dΓj 6 0.

Inserting (4.44) into (4.43), we get

(4.45) Re

{
2a

∫
Ωj

∆un(hj ·∇un)

}
≤ −2aRe

{ N∑
i,k=1

∫
Ωj

∂ih
k
j ∂iun∂kundx

}
+a

∫
Ωj

(divhj)|∇un|2dx.

iv) The main estimation. Inserting equations (4.39), (4.40), (4.42) and (4.45) into (4.37) and
using the fact that ψj = 0 on Q1, we get∫

Ωj\(Q1∩Ωj)

[
div(ψjmj)(|βnun|2 − a|∇un|2)dx+ 2a

N∑
i,k=1

∂i(ψjm
k
j )∂iun∂kun

]
dx

+2i

∫
Ωj\(Q1∩Ωj)

βnbyn(ψjmj · ∇un)dx 6 o(1).

Thus, summing over j and using the fact that ψj = 1 on Ωj \Q2, we get

(4.46) N

∫
Ω\(Q2∩Ω)

|βnun|2dx+ (2−N)a

∫
Ω\(Q2∩Ω)

|∇un|2dx

+2Re

{
i

J∑
j=1

∫
Ωj\(Q1∩Ωj)

βnbyn(ψjmj · ∇un)dx

}

6 −
J∑
j=1

∫
Q2∩Ωj

[
div(ψjmj)(|βnun|2 − a|∇un|2)dx+ 2a

N∑
i,k=1

∂i(ψjm
k
j )∂iun∂kun

]
dx+ o(1).

Using (4.10) and (4.13), we deduce

(4.47) −
J∑
j=1

∫
Q2∩Ωj

[
div(ψjmj)(|βnun|2 − a|∇un|2)dx+ 2a

N∑
i,k=1

∂i(ψjm
k
j )∂iun∂kun

]
dx = o(1).

Inserting (4.47) in (4.46), we obtain

(4.48) N

∫
Ω\(Q2∩Ω)

|βnun|2dx+ (2−N)a

∫
Ω\(Q2∩Ω)

|∇un|2dx+

2Re

i
J∑
j=1

∫
Ωj\(Q1∩Ωj)

βnbyn(ψjmj .∇un)dx

 6 o(1).
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Under condition (LH3) and the definition of ψj , we will have

2Re

i
J∑
j=1

∫
Ωj\(Q1∩Ωj)

βnbyn(ψjmj .∇un)dx

 = 0.

Inserting the previous estimation into (4.48), we get

N

∫
Ω\(Q2∩Ω)

|βnun|2dx+ (2−N)a

∫
Ω\(Q2∩Ω)

|∇un|2dx ≤ o(1).(4.49)

Multiplying (4.8) by (1 −N)un. Then integrating on Ω, using Green’s formula, the fact that yn
and βnun are bounded in L2(Ω) and the estimation (4.10), we obtain

(4.50) (1−N)

∫
Ω

|βnun|2dx− (1−N)a

∫
Ω

|∇un|2dx = o(1).

Using (4.10) and (4.13) in (4.50), we deduce

(4.51) (1−N)

∫
Ω\(Q2∩Ω)

|βnun|2dx− (1−N)a

∫
Ω\(Q2∩Ω)

|∇un|2dx = o(1).

Finally, combining (4.49) and (4.51), we get the following estimate∫
Ω\(Q2∩Ω)

(
a|∇un|2 + |βnun|2)dx = o(1).

The proof is thus complete. �

Proof of Theorem 3.10 It follows from (4.10) (4.13), (4.25), (4.30) and (4.36) that ‖Un‖ = o(1)
which is a contradiction with (4.2). Consequently, condition (H2) holds and the energy of system
(1.4)-(1.6) decays exponentially to zero in the weak energy space D. The proof is thus complete.

4.2. Observability and exact controllability. First, we consider the following homogeneous
system associated to (1.4)-(1.6) for a 6= 1 by:

ψtt − a∆ψ + b(x)ϕt = 0 in Ω× R+,(4.52)

ϕtt −∆ϕ− b(x)ψt = 0 in Ω× R+,(4.53)

ψ = ϕ = 0 on Γ× R+,(4.54)

ψ(·, 0) = ψ0, ψt(·, 0) = ψ1, ϕ(·, 0) = ϕ0, ϕt(·, 0) = ϕ1 in Ω.(4.55)

Let Φ = (ψ,ψt, ϕ, ϕt) be a regular solution of system (3.61)-(3.63), its associated total energy is
given by:

(4.56) Em(t) =
1

2

(
a‖∇ψ‖2L2(Ω) + ‖ψt‖2L2(Ω) + ‖ϕt‖H−1(Ω) + ‖y‖L2(Ω)

)
.

A direct computation gives

(4.57)
d

dt
Em(t) = 0.

Thus, system (4.52)-(4.54) is conservative in the sense that its energy Em(t) is constant. It is also
wellposed and admits a unique solution in the energy space D.

Now, we establish the direct and indirect inequality given by the following theorem:

Theorem 4.8. Let 0 < a 6= 1. Assume that conditions (LH1) and (LH2) hold. Assume also that
ωc+ satisfies the PMGC, ωb satisfies GCC condition and (LH3) and b, c ∈ L∞(Ω). Then there
exists a time T0 such that for all T > T0, there exist two constants C1 > 0, C2 > 0 such that the
solution of system (4.52)-(4.54) satisfies the following observability inequalities:

(4.58) C1‖Φ0‖2D ≤
∫ T

0

∫
Ω

c(x)|ψt|2dxdt ≤ C2‖Φ0‖2Ddx,

for all Φ0 = (ψ0, ψ1, φ0, φ1) ∈ D.
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Proof. The direct inequality follows from the definition of the total energy for all T > 0. While
the proof of the inverse inequality is a direct consequence of Proposition 2 of Haraux in [11] for
which the exponentially stability (4.1) implies the existence of a time T0 > 0 such that for all
T > T0 there exist two constants C1 > 0 and C2 > 0 such that (4.58) holds. �

It is well known that observality of the homogeneous system (4.52)-(4.54) implies the exact con-
trollability of the system .

5. Numerical approximation: Validation of the theoretical results

This section is devoted to the numerical approximation of the problem that we considered by a
finite difference discretization and to the validation of the theoretical results stated in the previous
sections. We will firstly construct in detail a discretization in the 1D case and we will define its
corresponding discrete energy. Numerical experiments are performed to validate the theoretical
results. In fact, the numerical results in 1D show an exponential stabilization in any case when
a = 1 and a polynomial stabilization in any case in the case a 6= 1. They are better than expected.

5.1. Finite difference scheme in one dimensional space. We firstly introduce the finite
difference scheme we will work on. Then we will construct the corresponding energy and finally
we will perform numerical experiments. Let us firstly recall the problem we are considered.

Consider Ω = [0, 1]. We are interested to study the controllability of the following coupled wave
equations by velocities:

(5.1)

 utt − auxx + b(x)yt + c(x)ut = 0 x ∈ (0, 1), t > 0
ytt − yxx − b(x)ut = 0 x ∈ (0, 1), t > 0
u(0, t) = u(1, t) = y(0, t) = y(1, t) = 0 t > 0,

with the following initial data

(5.2) u(x, 0) = u0(x), and y(x, 0) = y0(x) x ∈ (0, 1)

and

(5.3) ut(x, 0) = u1(x) and yt(x, 0) = y1(x), x ∈ (0, 1)

where a > 0 constant, b ∈ C0([0, 1],R) and c ∈ C0([0, 1],R+). We will study the two cases a = 1
and a 6= 1.

5.1.1. Construction of the numerical scheme. Let N be a non negative integer. Consider the
subdivision of [0, 1] given by

0 = x0 < x1 < ... < xN < xN+1 = 1, i.e. xj = j∆x , j = 0, . . . , N + 1 .

Set tn+1 − tn = ∆t for all n ∈ N. For j = 0, . . . , N + 1, we denote bj = b(xj), cj = c(xj). The
explicit finite-difference discretization of system (5.1) is thus, for n ∈ N and j = 1, . . . , N :

(5.4)



un+1
j − 2unj + un−1

j

∆t2
− a

unj+1 − 2unj + unj−1

∆x2
+ bj

yn+1
j − yn−1

j

2∆t
+ cj

un+1
j − un−1

j

2∆t
= 0

yn+1
j − 2ynj + yn−1

j

∆t2
−
ynj+1 − 2ynj + ynj−1

∆x2
− bj

un+1
j − un−1

j

2∆t
= 0.

un0 = unN+1 = 0

yn0 = ynN+1 = 0

According to the initial conditions given by equations (5.2), we have firstly: for j = 1, . . . , N ,

(5.5) u0
j = u0(xj)

(5.6) y0
j = y0(xj) .
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We can use the second initial conditions (5.3) to find the values of u and y at time t1 = ∆t,
by employing a “ghost” time-boundary (i.e. t−1 = −∆t) and the second-order central difference
formula for j = 1, . . . , N :

(5.7) u1(xj) =
∂u

∂t

∣∣∣∣
xj ,0

=
u1
j − u

−1
j

2∆t
+O(∆t2).

Thus we have for j = 1, . . . , N :

(5.8) u−1
j = u1

j − 2∆t u1(xj) .

We use the same discrete form of the initial conditions for y, for j = 1, . . . , N :

(5.9) y−1
j = y1

j − 2∆t y1(xj) .

Setting n = 0, in the numerical scheme (5.4), the two preceding equalities permit us to compute(
u1
j , y

1
j

)
j=0,N

. Finally, the solution (u, y) can be computed at any time tn.

5.1.2. Practical implementation and CFL condition. Let us denote λ =
∆t2

∆x2
. We easily remark

that the discrete scheme (5.4) is composed of N linear systems of two equations which can be
written under the form:

(5.10) for j = 1, . . . , N , Mj ·

un+1
j

yn+1
j

 =

Aj
Bj


where

Mj =


1 +

cj∆t

2

bj∆t

2

−bj∆t
2

1



Aj = 2(1− aλ)unj + (
cj
2

∆t− 1)un−1
j + aλ(unj+1 + unj−1) +

bj
2

∆tyn−1
j

and

Bj = 2(1− λ)ynj + λ(ynj+1 + ynj−1)− yn−1
j − bj

2
∆tun−1

j .

Thanks to the hypothesis ∀x ∈ (0, 1) , c(x) ≥ 0, for j = 1, . . . , N the determinant of Mj given by

|Mj | = 1 +
cj∆t

2
+

(
bj∆t

2

)2

,

is a strictly positive quantity.
Consequently, system (5.10) admits a unique solution given by: for j = 1, . . . , N ,

(5.11) un+1
j = (1−aλ)αju

n
j +λβj(u

n
j+1 +unj−1)+γju

n−1
j −(1−λ)%jy

n
j −λξj(ynj+1 +ynj−1)+κjy

n−1
j

(5.12) yn+1
j = (1−λ)α̃jy

n
j +λβ̃j(y

n
j+1 +ynj−1)+ γ̃jy

n−1
j +(1−aλ)%̃ju

n
j +λξ̃j(u

n
j+1 +unj−1)+κ̃ju

n−1
j
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where we have set:

αj =
2

1 +
cj
2

∆t+

(
bj∆t

2

)2 , βj =
a

1 +
cj
2

∆t+

(
bj∆t

2

)2 ,

γj =

cj
2

∆t+

(
bj
2

∆t

)2

− 1

1 +
cj
2

∆t+

(
bj∆t

2

)2 , %j =
bj∆t

1 +
cj
2

∆t+

(
bj∆t

2

)2 ,

ξj =
bj∆t

2

(
1 +

cj
2

∆t+

(
bj∆t

2

)2
) , κj =

bj∆t

1 +
cj
2

∆t+

(
bj∆t

2

)2 ,

α̃j = 2− (bj∆t)
2

2

(
1 +

cj
2

∆t+

(
bj∆t

2

)2
) , β̃j = 1− (bj∆t)

2

4

(
1 +

cj
2

∆t+

(
bj∆t

2

)2
) ,

γ̃j =
(bj∆t)

2

2

(
1 +

cj
2

∆t+

(
bj∆t

2

)2
) − 1 , %̃j =

bj∆t

1 +
cj
2

∆t+

(
bj∆t

2

)2 ,

ξ̃j =
abj∆t

2

(
1 +

cj
2

∆t+

(
bj∆t

2

)2
) , κ̃j =


cj
2

∆t+

(
bj∆t

2

)2

− 1

1 +
cj
2

∆t+

(
bj∆t

2

)2 − 1

 bj∆t2
.

The implementation of the numerical discretization of the problem (5.1) consists finally of equa-
tions (5.5), (5.6), (5.11), (5.12) where (u−1, y−1) used for n = 0, are defined by (5.8), (5.9).
By a standard von Neumann stability analysis (that is a discrete Fourier analysis, see for instance
[7]), the numerical scheme is stable if and only if, the following Courant-Friedrichs-Lewy, CFL,
condition holds:

∆t2 ≤ ∆x2 and a ∆t2 ≤ ∆x2

which is equivalent to

(5.13) ∆t ≤ min

(
1,

1√
a

)
∆x .

The number min

(
1,

1√
a

)
is called the CFL number and is denoted in the following by CFL.

5.1.3. Discrete energy: definition and dissipation. The aim of this section is to design a discrete
energy that might be preserved in the case c = 0 and to obtain the dissipation of the discrete
energy in the case c > 0. To this end, let us define:

• the discrete kinetic energy for u as: Enk,u =
1

2

N∑
j=1

(
un+1
j − unj

∆t

)2

• the discrete potential energy for u as: Enp,u =
a

2

N∑
j=0

(
unj+1 − unj

∆x

)(
un+1
j+1 − u

n+1
j

∆x

)

• the discrete kinetic energy for y as: Enk,y =
1

2

N∑
j=1

(
yn+1
j − ynj

∆t

)2

• the discrete potential energy for u as: Eny,u =
1

2

N∑
j=0

(
ynj+1 − ynj

∆x

)(
yn+1
j+1 − y

n+1
j

∆x

)
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The total discrete energy is then defined as

(5.14) En = Enk,u + Enp,u + Enk,y + Enp,u.

Let us prove now that this definition of the energy fulfills the two properties stated above. For
this sake, we multiply the first equation of (5.4) by (un+1

j − un−1
j ) and we sum over j = 1, . . . , N .

We obtain:

N∑
j=1

un+1
j − 2unj + un−1

j

∆t2
(un+1
j − un−1

j )− a
N∑
j=1

unj+1 − 2unj + unj−1

∆x2
(un+1
j − un−1

j )

+

N∑
j=1

bj
yn+1
j − yn−1

j

2∆t
(un+1
j − un−1

j ) +

N∑
j=1

cj
(un+1
j − un−1

j )2

2∆t
= 0.(5.15)

Estimation of the first term of (5.15) We firstly have:

N∑
j=1

un+1
j − 2unj + un−1

j

∆t2
(un+1
j − un−1

j ) =
N∑
j=1

un+1
j − unj − (unj − u

n−1
j )

∆t2
(un+1
j − unj + unj − un−1

j )

=

N∑
j=1

(
un+1
j − unj

∆t

)2

−
N∑
j=1

(
un+1
j − un−1

j

∆t

)2

= 2(Enk,u − En−1
k,u ).(5.16)

Estimation of the second term of (5.15). Using the same trick we have:

−a
N∑
j=1

unj+1 − 2unj + unj−1

∆x2
(un+1
j − un−1

j ) = −a
N∑
j=1

unj+1 − unj − (unj − unj−1)

∆x2
(un+1
j − un−1

j )

= −a
N∑
j=1

(unj+1 − unj )(un+1
j − un−1

j )

∆x2

+ a

N+1∑
j=1

(unj − unj−1)(un+1
j − un−1

j )

∆x2
.

So, by translation of index in the second term in the previous sum, we will have:

−a
N∑
j=1

unj+1 − 2unj + unj−1

∆x2
(un+1
j − un−1

j ) = −a
N∑
j=0

(unj+1 − unj )(un+1
j − un−1

j )

∆x2

+ a

N∑
j=0

(unj+1 − unj )(un+1
j+1 − u

n−1
j+1 )

∆x2

= a

N∑
j=0

(un+1
j+1 − u

n+1
j )(unj+1 − unj )

∆x2

− a
N∑
j=0

(un−1
j+1 − u

n−1
j )(unj+1 − unj )

∆x2

= 2(Enp,u − En−1
p,u ).(5.17)

Substituting (5.16) and (5.17) into (5.15), we get

(5.18)

2
(
Enk,u + Enp,u − En−1

k,u − E
n−1
p,u

)
+2∆t

N∑
j=1

cj

(
un+1
j − un−1

j

2∆t

)2

+

N∑
j=1

bj
yn+1
j − yn−1

j

2∆t
(un+1
j −un−1

j ) = 0.
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Similarly, by multiplying the second equation of (5.4) by (yn+1
j − yn−1

j ), and using the same
algebraic tricks, we will get:

(5.19) 2
(
Enk,y + Enp,y − En−1

k,y − E
n−1
p,y

)
−

N∑
j=1

bj
un+1
j − un−1

j

2∆t
(yn+1
j − yn−1

j ) = 0.

Using the definition of the total discrete energy, (5.14), and the two equations (5.18), (5.19) leads
to:

(5.20)
(
En − En−1

)
+ ∆t

N∑
j=1

cj

(
un+1
j − un−1

j

2∆t

)2

= 0.

Consequently, the total discrete energy of system (5.4) is decreasing along time.

5.2. Numerical experiments: validation of the theoretical results. In every experiment,
we have chosen:

u0(x) = x(x− 1) , u1(x) = x(x− 1) , y0(x) = −x(x− 1) , y1(x) = −x(x− 1).

The mesh size is chosen as N = 100 so that ∆x = 0.01 and the time step is chosen as
∆t

∆x
= CFL.

In order to validate the different theoretical results, we have chosen different functions b and c
synthesized in the list below:

• No coupling: b1(x) = 0 or no dissipation c1(x) = 0,
• Full coupling b2(x) = 1 1(0,1)(x) or full dissipation c2(x) = 1 1(0,1)(x),
• Partial coupling b3(x) = 1[0.1,0.2]∪[0.8,0.9](x) or partial dissipation c3(x) = 1 1[0.1,0.2]∪[0.8,0.9](x),
• Partial coupling b4(x) = 1 1[0.1,0.2](x) or partial dissipation c4(x) = 1 1[0.1,0.2](x),
• Partial coupling b5(x) = 1 1[0.4,0.6](x) or partial dissipation c5(x) = 1 1[0.4,0.6](x).

Combining the different choices of the coupling and damping functions in order to have or not
ωb ∩ ωc+ 6= ∅ will permit us to validate the theoretical results.

Let us notice that in the special case of the dimension 1, the geometric control condition GCC
holds as soon as ωc+ 6= ∅.

5.2.1. Same propagation speed: a = 1. For every numerical simulation, the final time T is chosen
as T = 500.

5.2.1.1. No damping: conservation of the total energy . Firstly, let us verify that when no damping
are present, the discrete energy is conserved. We present in figure 2 the numerical experiment
when c = c1 = 0 and b = b3 = 1 1[0.1,0.2]∪[0.8,0.9](x). Indeed, the total energy is conserved along
time.

Remark 3. This numerical test where no damping is applied shows that without a damping term,
the total energy is completely conserved. This fact suggests that the numerical scheme does not
produce numerical dissipation. So the numerical behavior observed thereafter is only due to the
considered model.

5.2.1.2. ωb ∩ ωc+ 6= ∅. Exponential stability . Let us now verify the theoretical results when we
suppose that ωb ∩ωc+ 6= ∅. For this sake, we present in figure 3, the total energy and the quantity

− ln
(
E(t)

)
/t versus time t for large time, where we have chosen b = b4(x) = 1 1[0.1,0.2](x) and

c = c3(x) = 1 1[0.1,0.2]∪[0.8,0.9](x). This choice verifies the assumption that ωb ∩ ωc+ 6= ∅ and in
figure 3, it is shown that the energy is decreasing and an exponential decay is observed since it
seems that − ln

(
E(t)

)
/t tends to a constant as t → +∞. The final time profile confirms that u

and y are small and the final profiles of u and y are smooth as expected (high frequency oscillations
are exponentially dissipated).
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5.2.1.3. ωb ∩ ωc+ = ∅. Unpredicted behavior . At the numerical level, we are interested in the long
time behavior of the solution (u, y) when we suppose that ωb ∩ ωc+ = ∅. For this sake, we present

in figure 4, the total energy and the quantity − ln
(
E(t)

)
/t versus time t for large time, where

we have chosen b = b4(x) = 1 1[0.1,0.2](x) and c = c5(x) = 1 1[0.4,0.6](x). This choice verifies
the assumption that ωb ∩ ωc+ = ∅. In figure 4, it is shown that the energy is decreasing and an

exponential decay is observed since it seems that − ln
(
E(t)

)
/t tends to a constant as t → +∞.

The final time profile confirms that u and y are small and again the couple of solution (u, y) is
smooth . We have not considered this case in the theoretical study and this numerical result shows
a similar behavior as in the case presented before.
So we decided to confirm this behavior by choosing b = b5(x) = 1 1[0.4,0.6](x) and c = c4(x) =
1 1[0.1,0.2](x). This choice verifies also the assumption that ωb ∩ ωc+ = ∅. In figure 5, it is shown

that the energy is decreasing and an exponential decay is observed since it seems that − ln
(
E(t)

)
/t

tends to a constant as t→ +∞. The final time profile confirms that u and y are small and again
the couple of solution (u, y) is smooth.

Remark 4. Let us notice that when the propagation speeds are the same for u and y, the final
profiles of the solution u , y presented in figure 3(c), figure 4(c) and in figure 5(c) have the same
form as the initial one, that is no spurious oscillations due to high frequency are present.

5.2.2. Different propagation speed: a > 1. We investigate now the long time behavior of (u, y)
when the propagation speeds are different and specifically when a > 1. So we have chosen to take
a = 2. We firstly investigate the case when the propagation speed for u is greater than the one of
y namely a > 1. We have chosen a = 2.

5.2.2.1. ωb ∩ ωc+ 6= ∅. Polynomial stability . Let us now verify the theoretical results when we
suppose that ωb ∩ ωc+ 6= ∅. For this sake, we present in figure 6, the total energy where we have
chosen b = b4(x) = 1 1[0.1,0.2](x) and c = c3(x) = 1 1[0.1,0.2]∪[0.8,0.9](x).
When taking as final time T = 500, it seems that the energy does not tend to zero as shown
in figure 6(a). This is the reason why we have chosen for the case when a 6= 1 as final time
T = 500 000 and figure 6(b) shows that the energy finally goes to zero.
To explore the speed of convergence to zero, we have plotted in figure 7 − ln

(
E(t)

)
/t , t ·E(t) and

finally − ln
(
E(t)

)
/ ln(t) versus t. Figure 7(a) shows clearly that − ln

(
E(t)

)
/t tends to zero and

it permits to conclude that E(t) tends to zero slower than an exponential. Figure 7(b) permits to
conclude that E(t) tends to zero faster than 1/t. Finally figure 7(c) shows that E(t) tends to zero
as 1/tα with α ' 1.4.
The final time profile presented in figure 7(d) confirms that u and y are small but it shows also
that high frequencies for the unknown y are not completely controlled.

5.2.2.2. ωb ∩ ωc+ = ∅. Unpredicted behavior . At the numerical level, we are interested in the
long time behavior of the solution (u, y) when we suppose that ωb ∩ ωc+ = ∅. For this sake,
we present in figure 8, the total energy where we have chosen b = b4(x) = 1 1[0.1,0.2](x) and
c = c5(x) = 1 1[0.4,0.6](x).
Again, when taking as final time T = 500, it seems that the energy does not tend to zero as shown
in figure 8(a). Taking as final time T = 500 000 , figure 8(b) shows that the energy goes finally to
zero.
To explore the speed of convergence to zero, we have plotted in figure 9 − ln

(
E(t)

)
/t , t ·E(t) and

finally − ln
(
E(t)

)
/ ln(t) versus t. Figure 9(a) shows clearly that − ln

(
E(t)

)
/t tends to zero and

it permits to conclude that E(t) tends to zero slower than an exponential but figure 9(b) shows
that E(t) tends to zero slower than 1/t. This fact is confirmed by figure 9(c) which shows that
E(t) tends to zero as 1/tα with α ' 0.9. Eventually, taking a larger time could conclude that the
convergence is like 1/t.

Again, the final time profile presented in figure 9(d) confirms that u and y are small but it shows
also that high frequencies for the unknown y are not completely controlled.
As for the case when the two propagation speeds were identical this results was not predicted by
the theoretical results.
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So we decided to confirm this behavior by choosing b = b5(x) = 1 1[0.4,0.6](x) and c = c4(x) =
1 1[0.1,0.2](x). Again, when taking as final time T = 500, it seems that the energy does not tends
to zero as shown in figure 10(a). Taking as final time T = 500 000, figure 8(b) shows that the
energy goes finally to zero.
To explore the speed of convergence to zero, we have plotted in figure 11 − ln

(
E(t)

)
/t , t · E(t)

and finally − ln
(
E(t)

)
/ ln(t) versus t. Figure 11(a) shows clearly that − ln

(
E(t)

)
/t tends to zero

and it permits to conclude that E(t) tends to zero slower than an exponential and figure 11(b)
permits to conclude that the convergence is faster than 1/t. Finally figure 11(c) shows that E(t)
tends to zero as 1/tα with α ' 1.19.

Remark 5. The final time profile presented in figure 7(d) , figure 9(d) and figure 11(d) confirms
that u and y are small but it shows also that high frequencies for the unknown y are not completely
controlled.

5.2.3. Different propagation speed: a < 1. When a 6= 1, in order to see if the same behavior occurs
no matter if a is greater or less than 1, we investigate now the long time behavior of (u, y) when
the propagation speeds is less than the one of y namely a < 1. We have chosen a = 0.5.
5.2.3.1. ωb ∩ ωc+ 6= ∅. Polynomial stability . Let us now verify the theoretical results when we
suppose that ωb ∩ ωc+ 6= ∅. For this sake, we present in figure 12(a), the total energy where we
have chosen b = b4(x) = 1 1[0.1,0.2](x) and c = c3(x) = 1 1[0.1,0.2]∪[0.8,0.9](x).
When taking as final time T = 500, it seems that the energy does not tend to zero as shown in
figure 12(a). Taking as final time T = 500 000, figure 12(b) shows that the energy goes finally to
zero.
To explore the speed of convergence to zero, we have plotted in figure 13 − ln

(
E(t)

)
/t , t · E(t)

and finally − ln
(
E(t)

)
/ ln(t) versus t. Figure 13(a) shows clearly that − ln

(
E(t)

)
/t tends to zero

slower than an exponential. Figure 13(b) permits to conclude that E(t) tends to zero faster than
1/t. Finally figure 13(c) shows that E(t) tends to zero as 1/tα with α ' 1.5.
The final time profile confirms that u and y are small but it shows also that high frequencies for
the unknown y are not completely controlled.

5.2.3.2. ωb ∩ ωc+ = ∅: Unpredicted behavior . Again, the numerical level, we are interested in the
long time behavior of the solution (u, y) when we suppose that ωb ∩ ωc+ = ∅. For this sake, we
present in figure 14(a), the total energy where we have chosen b = b4(x) = 1 1[0.1,0.2](x) and
c = c5(x) = 1 1[0.4,0.6](x).
Again, when taking as final time T = 500, it seems that the energy does not tend to zero as shown
in figure 14(a). Taking as final time T = 500 000, figure 14(b) shows that the energy finally goes
to zero.
To explore the speed of convergence to zero, we have plotted in figure 15 − ln

(
E(t)

)
/t , t · E(t)

and finally − ln
(
E(t)

)
/ ln(t) versus t. Figure 15(a) shows clearly that − ln

(
E(t)

)
/t tends to zero

slower than an exponential. But figure 15(b) shows that E(t) tends to zero faster than 1/t.
Finally figure 15(c) shows that E(t) tends to zero as 1/tα with α ' 1.25.
Again, the final time profile presented in figure 15(d) confirms that u and y are small but it shows
also that high frequencies for the unknown y are not completely controlled. This result was not
predicted by the theoretical results.
So we decided to confirm this behavior by choosing b = b5(x) = 1 1[0.4,0.6](x) and c = c4(x) =
1 1[0.1,0.2](x). Again, when taking as final time T = 500, it seems that the energy does not tend
to zero as shown in figure 16(a). Taking as final time T = 500 000, figure 16(b) shows that the
energy goes finally to zero.
To explore the speed of convergence to zero, we have plotted in figure 17 − ln

(
E(t)

)
/t , t · E(t)

and finally − ln
(
E(t)

)
/ ln(t) versus t. Figure 17(a) shows clearly that − ln

(
E(t)

)
/t tends to zero

and it permits to conclude that E(t) tends to zero slower than an exponential but figure 17(b)
shows that E(t) tends to zero faster than 1/t. Finally figure 17(c) shows that E(t) tends to zero
as 1/tα with α ' 1.15.
Again, the final time profile presented in figure 17(d) confirms that u and y are small but it shows
also that high frequencies for the unknown y are not completely controlled.
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Remark 6. The final time profile presented in figure 13(d) , figure 15(d) and figure 17(d) confirms
that u and y are small but it shows also that high frequencies for the unknown y are not completely
controlled.

Remark 7. When the propagation speeds are not equal, the solution (u, y) has the same behavior
no matter if a > 1 or a < 1. The polynomial convergence is numerically better than 1/t but it
will be probably be 1/t for greater time. For reason of computation time, we did not perform very
long simulation to confirm.
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Figure 1. Initial profiles

Figure 2. No damping : c = c1 = 0, partial coupling b = b3 = 1 1[0.1,0.2]∪[0.8,0.9](x)
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(a) Energy. (b) Exponential decay.

(c) Final time profile.

Figure 3. Long time behavior when ωb ∩ ωc+ 6= ∅. b = b4(x) = 1 1[0.1,0.2](x)
and c = c3(x) = 1 1[0.1,0.2]∪[0.8,0.9](x).
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(a) Energy. (b) Exponential decay.

(c) Final time profile.

Figure 4. Long time behavior when ωb ∩ ωc+ = ∅. b = b4(x) = 1 1[0.1,0.2](x)
and c = c5(x) = 1 1[0.4,0.6](x).
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(a) Energy. (b) Exponential decay.

(c) Final time profile.

Figure 5. Long time behavior when ωb ∩ ωc+ = ∅. b = b5(x) = 1 1[0.4,0.6](x)
and c = c4(x) = 1 1[0.1,0.2](x).

(a) Final time T = 500. (b) Final time T = 500 000.

Figure 6. Energy when ωb∩ωc+ 6= ∅. b = b4(x) = 1 1[0.1,0.2](x) and c = c3(x) =
1 1[0.1,0.2]∪[0.8,0.9](x).
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(a) Exponential decay? (b) Polynomial decay in 1/t?

(c) Which exponent if polynomial decay? (d) Final time profile.

Figure 7. Long time behavior when ωb ∩ ωc+ 6= ∅. b = b4(x) = 1 1[0.1,0.2](x)
and c = c3(x) = 1 1[0.1,0.2]∪[0.8,0.9](x).

(a) Final time T = 500. (b) Final time T = 500 000.

Figure 8. Energy when ωb ∩ ωc+ = ∅. b = b4(x) = 1 1[0.1,0.2](x) and c = c5(x) = 1 1[0.4,0.6](x).



CONTROLLABILITY AND STABILIZATION OF COUPLED WAVE EQUATIONS 35

(a) Exponential decay? (b) Polynomial decay in 1/t?

(c) Which exponent if polynomial decay? (d) Final time profile.

Figure 9. Long time behavior when ωb ∩ ωc+ = ∅. b = b4(x) = 1 1[0.1,0.2](x)
and c = c5(x) = 1 1[0.4,0.6](x).

(a) Final time T = 500. (b) Final time T = 500 000.

Figure 10. Energy when ωb ∩ ωc+ 6= ∅. b = b5(x) = 1 1[0.4,0.6](x) and c = c5(x) = 1 1[0.1,0.2](x).
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(a) Exponential decay? (b) Polynomial decay in 1/t?

(c) Which exponent if polynomial decay? (d) Final time profile.

Figure 11. Long time behavior when ωb ∩ ωc+ = ∅. b = b5(x) = 1 1[0.4,0.6](x)
and c = c4(x) = 1 1[0.1,0.2](x).

(a) Final time T = 500. (b) Final time T = 500 000.

Figure 12. Energy when ωb ∩ ωc+ 6= ∅. b = b4(x) = 1 1[0.1,0.2](x) and c =
c3(x) = 1 1[0.1,0.2]∪[0.8,0.9](x).
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(a) Exponential decay? (b) Polynomial decay in 1/t?

(c) Which exponent if polynomial decay? (d) Final time profile.

Figure 13. Long time behavior when ωb ∩ ωc+ 6= ∅. b = b4(x) = 1 1[0.1,0.2](x)
and c = c3(x) = 1 1[0.1,0.2]∪[0.8,0.9](x).

(a) Final time T = 500. (b) Final time T = 500 000.

Figure 14. Energy when ωb ∩ ωc+ = ∅. b = b4(x) = 1 1[0.1,0.2](x) and c = c5(x) = 1 1[0.4,0.6](x).
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(a) Exponential decay? (b) Polynomial decay in 1/t?

(c) Which exponent if polynomial decay? (d) Final time profile.

Figure 15. Long time behavior when ωb ∩ ωc+ = ∅. b = b4(x) = 1 1[0.1,0.2](x)
and c = c5(x) = 1 1[0.4,0.6](x).

(a) Final time T = 500 (b) Final time T = 500 000.

Figure 16. Energy when ωb ∩ ωc+ = ∅. b = b5(x) = 1 1[0.4,0.6](x) and c = c5(x) = 1 1[0.1,0.2](x).
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(a) Exponential decay? (b) Polynomial decay in 1/t?

(c) Which exponent if polynomial decay? (d) Final time profile?

Figure 17. Long time behavior when ωb ∩ ωc+ = ∅. b = b5(x) = 1 1[0.4,0.6](x)
and c = c4(x) = 1 1[0.1,0.2](x).
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