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In this paper, we establish several inequalities involving certain generalizations of the hyperbolic functions. The established results serve as generalizations of some known results in the literature. Among other analytical techniques, the procedure makes use of l'Hospital rule for monotonicity.

Introduction

In recent times, inequalities involving trigonometric and hyperbolic functions have become a subject of intense discussion and there exist a vast literature on such inequalities. For more information on this subject and related matters, one may refer to [START_REF] Bagul | Chesneau Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions[END_REF], [START_REF] Bagul | Chesneau New refinements of two well-known inequalities[END_REF], [START_REF] Barbu | Piscoran Jordan type inequalities using monotony of functions[END_REF], [START_REF] Bhayo | New trigonometric and hyperbolic inequalities[END_REF], [START_REF] Bercu | Refinements of certain hyperbolic inequalities via the Pade approximation method[END_REF], [START_REF] Neuman | Refinements and generalizations of certain inequalities involving trigonometric and hyperbolic functions[END_REF], [START_REF] Qi | Generalizations, and Applications of Jordans Inequality and Related Problems[END_REF], [START_REF] Sandor | Bhayo On an Inequality of Redheffer[END_REF], [START_REF] Wang | Inequalities for generalized trigonometric and hyperbolic functions with one parameter[END_REF], [START_REF] Zhang | A double inequality for tanh x[END_REF], [START_REF] Zhang | Ma New Polynomial Bounds for Jordans and Kobers Inequalities Based on the Interpolation and Approximation Method[END_REF], [START_REF] Zhu | Sharp inequalities for hyperbolic functions and circular functions[END_REF] and the references therein.

In 1995, Lindqvist [START_REF] Lindqvist | Some remarkable sine and cosine functions[END_REF] introduced a p-generalization of the sine function which is denoted by sin p (z) and defined as the inverse of the function arcsin p (z) = p dt, z ∈ (0, ∞) -arcsinh p (-z), z ∈ (-∞, 0). By this, the p-generalization of the hyperbolic consine and hyperbolic tangent functions are respectively defined as cosh p (z) = d dz sinh p (z) and tanh p (z) = sinh p (z) cosh p (z) .

In 2012, Takeuchi [START_REF] Takeuchi | Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian[END_REF] introduced a further generalization termed the pqgeneralization of the sine function. It is denoted by sin p,q (z) and is defined as the inverse of the function arcsin p,q (z) = z 0 (1 -t q ) -1 p dt, where p, q ∈ (1, ∞) and 0 ≤ z ≤ 1. The function sin p,q (z) coincides with sin p (z) when p = q and can be extented to (-∞, ∞). The pq-generalized consine and tangent functions are respectively defined as

cos p,q (z) = d dz sin p,q (z), z ∈ [0, π p,q 2 ],
tan p,q (z) = sin p,q (z) cos p,q (z)

, z ∈ R \ kπ p,q + π p,q 2 : k ∈ N ,
where, πp,q 2 = 1 0 (1 -t q ) -1 p dt. The pq-generalization of the hyperbolic sine function, which is denoted by sinh p,q (z) is defined as the inverse of

arcsinh p,q (z) = z 0 (1 + t q ) -1 p dt, z ∈ (0, ∞),
and the pq-generalized hyperbolic consine and hyperbolic tangent functions are respectively given as cosh p,q (z) = d dz sinh p,q (z) and tanh p,q (z) = sinh p,q (z) cosh p,q (z) .

These generalized functions have been investigated in diverse ways. See for instance [START_REF] Baricz | Turan Type Inequalities for Generalized Inverse Trigonometric Functions[END_REF], [START_REF] Bhayo | On generalized trigonometric functions with two parameters[END_REF], [START_REF] Bhayo | Inequalities connecting generalized trigonometric functions with their inverses[END_REF], [START_REF] Bushell | Remarks on generalized trigonometric functions[END_REF], [START_REF] Edmunds | Properties of generalized trigonometric functions[END_REF], [START_REF] Huang | Some Wilker and Cusa type inequalities for generalized trigonometric and hyperbolic functions[END_REF], [START_REF] Jiang | Convexity of the generalized sine function and the generalized hyperbolic sine function[END_REF], [START_REF] Klen | Inequalities for the generalized trigonometric and hyperbolic functions[END_REF], [START_REF] Neuman | On the Inequalities for the Generalized Trigonometric Functions[END_REF], [START_REF] Song | A note on generalized trigonometric and hyperbolic functions[END_REF], [START_REF] Takeuchi | Multiple-angle formulas of generalized trigonometric functions with two parameters[END_REF], [START_REF] Yin | Some inequalities for the generalized sine and the generalized hyperbolic sine[END_REF], [START_REF] Yin | Qi Some Inequalities for the Generalized Trigonometric and Hyperbolic Functions[END_REF], [START_REF] Yin | Qi Inequalities for the generalized trigonometric and hyperbolic functions with two parameters[END_REF], [START_REF] Yin | A survey for generalized trigonometric and hyperbolic functions[END_REF] and the references therein.

In a recent paper [START_REF] Nantomah | On a Generalized Sigmoid Function and its Properties[END_REF] which sought to generalize the earlier results of [START_REF] Nantomah | On Some Properties of the Sigmoid Function[END_REF], new generalizations of the hyperbolic functions were given and it is these generalizations that trigger the present study. Our goal is to establish some inequalities involving the generalized hyperbolic functions. The established results are generalizations of some results known in the literature. Purely analytical techniques shall be adopted.

Preliminary Definitions

Definition 2.1. The generalized hyperbolic cosine, hyperbolic sine and hyperbolic tangent functions are respectively defined as [START_REF] Nantomah | On a Generalized Sigmoid Function and its Properties[END_REF] cosh

a (z) = a z + a -z 2 , (1) 
sinh a (z) = a z -a -z 2 , (2) 
tanh a (z) = sinh a (z) cosh a (z) = a z -a -z a z + a -z = 1 - 2 1 + a 2z , (3) 
where a > 1 and z ∈ (-∞, ∞).

These generalized functions satisfy the following identities.

cosh a (z) + sinh a (z) = a z , (4) 
cosh a (z) -sinh a (z) = a -z , (5) 
(cosh a (z)) = (ln a) sinh a (z),

(sinh a (z)) = (ln a) cosh a (z),

(tanh a (z)) = ln a cosh 2 a (z) , (7) 
(cosh a (z)) + (sinh a (z)) = (ln a) 2 a z , (8) 
(cosh a (z)) -(sinh a (z)) = (ln a) 2 a -z , (9) 
cosh 2 a (z) + sinh 2 a (z) = cosh a (2z), (10) 
cosh 2 a (z) -sinh 2 a (z) = 1, (11) 
2 sinh a (z) cosh a (z) = sinh a (2z), ( 13)

cosh 2 a (z) = cosh a (2z) + 1 2 , ( 14 
)
sinh 2 a (z) = cosh a (2z) -1 2 . ( 15 
)
The generalized hyperbolic secant, hyperbolic cosecant and hyperbolic cotangent functions are respectively defined as

sech a (z) = 1 cosh a (z) , cosech a (z) = 1 sinh a (z) , coth a (z) = 1 tanh a (z) . ( 16 
)
As pointed out in [START_REF] Nantomah | On a Generalized Sigmoid Function and its Properties[END_REF], several other identities can be derived from (1), ( 2) and (3). In particular, if a = e, where e = 2.71828... is the Euler's number, then the above definitions and indentities reduce to their ordinary counterparts.

Lemma 2.2. Let h : I ⊆ (-∞, ∞) → (-∞, ∞) be a convex function. Then h u + v 2 ≤ 1 v -u v u h(t) dt ≤ h(u) + h(v) 2 (17) 
where, u, v ∈ I and u < v.

Lemma 2.2 is well known as the Hermite-Hadamard inequality for convex functions.

Lemma 2.3 ([32]

). Let -∞ ≤ a < b ≤ ∞ and f and g be continuous functions that are differentiable on (a, b), with f (a+) = g(a+) = 0 or f (b-) = g(b-) = 0. Suppose that g(x) and g (x) are nonzero for all x ∈ (a, b). If f (x) g (x) is increasing (or decreasing) on (a, b), then f (x) g(x) is also increasing (or decreasing) on (a, b). Lemma 2.3 is known in the literature as l'Hospital rule for monotonicy. It has become a standard tool in proving wide variety of results in mathematical analysis.

Definition 2.4. Let h : I ⊆ (-∞, ∞) → (0, ∞). Then h is said to be log-convex on I if and only if

h (rx + (1 -r)y) ≤ [h(x)] r [h(y)] 1-r (18) 
for all x, y ∈ I, where r ∈ [0, 1]. If the inequality in ( 18) is reversed, then h is said to be log-concave on I.

Definition 2.5 ([47]). Let h : I ⊆ (0, ∞) → (0, ∞). Then h is said to be geometrically convex on I if and only if

h x r y 1-r ≤ [h(x)] r [h(y)] 1-r (19) 
for all x, y ∈ I, where r ∈ [0, 1]. If the inequality in ( 19) is reversed, then h is said to be geometrically concave on I.

Lemma 2.6 ([31]

). Let h : I ⊆ (0, ∞) → (0, ∞) be a differentiable function.

Then the following statements are equivalent.

(a) The function h is geometrically convex (concave).

(b) The function zh (z) h(z) is increasing (decreasing).

Lemma 2.7 ( [START_REF] Baricz | Inequalities fo Generalized Bessel functions[END_REF][START_REF] Ravi | Laxmi Subadditive and completely monotonic properties of the tricomi confluent hypergeometric functions[END_REF]). Suppose that h :

I ⊆ (-∞, ∞) → (-∞, ∞). If h(z)
z is increasing (decreasing) on I, then h is superadditive (subadditive) on I .

Results and Discussion

Lemma 3.1. For all a > 1 and z ∈ (-∞, ∞), the inequality

-1 < tanh a (z) < 1 (20) holds. 
Proof. Observe that (tanh a (z)) = ln a cosh 2 a (z) > 0, which implies that tanh a (z) is increasing. Then for z ∈ (-∞, ∞), we have

-1 = lim z→-∞ tanh a (z) < tanh a (z) < lim z→∞ tanh a (z) = 1 which gives the desired result. Theorem 3.2. The inequality e -(z-x) ln a < cosh a (z) cosh a (x) < e (z-x) ln a (21) holds for x, z ∈ (-∞, ∞) such that x < z.
Proof. Consider the function f (s) = ln cosh a (s) on the interval (x, z). Then by the mean value theorem, there exist r ∈ (x, z) such that ln cosh a (z) -ln cosh a (x) z -x = (ln a) tanh a (r).

That is 1 (z -x) ln a ln cosh a (z) cosh a (x) = tanh a (r).

Then by Lemma 3.1, we have

-1 < 1 (z -x) ln a ln cosh a (z) cosh a (x) < 1
which gives [START_REF] Klen | On Jordan Type Inequalities for Hyperbolic Functions[END_REF].

Corollary 3.3. The inequality e -z ln a < cosh a (z) < e z ln a (22

)
holds for z ∈ (0, ∞).

Proof. Let x = 0 in Theorem 3.2.

Theorem 3.4. The inequality

e αz 2 < cosh a (z) < e βz 2 (23) 
holds for z ∈ (0, 1), where α = ln a + 1 a -ln 2 and β = (ln a) 2 2 . Proof. For z ∈ (0, ∞), let ψ(z) be defined as

ψ(z) = ln cosh a (z) z 2 = f 1 (z) g 1 (z) ,
where

f 1 (z) = ln cosh a (z), g 1 (z) = z 2 and f 1 (0) = g 1 (0) = 0. Then f 1 (z) g 1 (z) = (ln a) tanh a (z) 2z = f 2 (z) g 2 (z) ,
where f 2 (z) = (ln a) tanh a (z), g 2 (z) = 2z and f 2 (0) = g 2 (0) = 0. Moreover,

f 2 (z) g 2 (z) = (ln a) 2 2 1 cosh 2 a (z)
,

and f 2 (z) g 2 (z) = -(ln a) 3 cosh a (z) sinh a (z) < 0.
By this,

f 2 (z) g 2 (z
) is strictly decreasing and by Lemma 2.3, ψ(z) is also strictly decreasing. Hence for z ∈ (0, 1), we have

ln a + 1 a -ln 2 = ψ(1) < ψ(z) < ψ(0) = lim z→0 ψ(z) = (ln a) 2 2 
which yields [START_REF] Lindqvist | Some remarkable sine and cosine functions[END_REF].

Remark 3.5. In particular, if a = e, then Theorem 3.4 reduces to Theorem 2.1 of [START_REF] Bagul | On Exponential Bounds of Hyperbolic Cosine[END_REF].

Theorem 3.6. The inequality

(ln a) cosh a z 2 ≤ sinh a (z) z ≤ (ln a) cosh 2 a z 2 (24) 
holds for z ∈ (0, ∞).

Proof. Note that f (s) = cosh a (s) is convex on (-∞, ∞). Then by applying the Hermite-Hadamard inequality on the interval (0, z), we obtain

cosh a z 2 ≤ 1 z z 0 cosh a (s) ds ≤ 1 + cosh a (z) 2 , which gives cosh a z 2 ≤ sinh a (z) z ln a ≤ 1 + cosh a (z) 2 .
Then by applying identity [START_REF] Bercu | Refinements of certain hyperbolic inequalities via the Pade approximation method[END_REF], we obtain the inequality [START_REF] Lv | A note on Jordan type inequalities for hyperbolic functions[END_REF].

Theorem 3.7. The inequality

ln a < sinh a (z) z < 1 2 a - 1 a ( 25 
)
holds for z ∈ (0, 1).

Proof. For z ∈ (0, ∞), let f (z) = sinha(z) z .
Then

f (z) = (ln a)z cosh a (z) -sinh a (z) z 2 .
Further let g(z) = (ln a)z cosh a (z) -sinh a (z). Then g (z) = (ln a)z sinh a (z) > 0, which implies that g(z) is increasing. Then for z ∈ (0, ∞), we have g(z) > g(0) = 0. Thus, f (z) is increasing. Hence for z ∈ (0, 1), we obtain

ln a = lim z→0 f (z) = f (0) < f (z) < f (1) = 1 2 a - 1 a ,
which is [START_REF] Nantomah | On Some Properties of the Sigmoid Function[END_REF].

Theorem 3.8. For z ∈ (0, 1), the inequality

(ln a) 3 6 z 2 + ln a < sinh a (z) z < ln a + 1 2 a - 1 a -ln a z 2 (26) holds. 
Proof. For z ∈ (0, ∞), define Q(z) by

Q(z) = sinh a (z) -(ln a)z z 3 = f 1 (z) g 1 (z) ,
where

f 1 (z) = sinh a (z) -(ln a)z, g 1 (z) = z 3 and f 1 (0) = g 1 (0) = 0. Then f 1 (z) g 1 (z) = (ln a) cosh a (z) -(ln a) 3z 2 = f 2 (z) g 2 (z) ,
where f 2 (z) = (ln a) cosh a (z) -(ln a), g 2 (z) = 3z 2 and f 2 (0) = g 2 (0) = 0. Also,

f 2 (z) g 2 (z) = (ln a) 2 sinh a (z) 6z = f 3 (z) g 3 (z) ,
where f 3 (z) = (ln a) 2 sinh a (z), g 3 (z) = 6z and f 3 (0) = g 3 (0) = 0. Moreover,

f 3 (z) g 3 (z) = (ln a) 3 cosh a (z) 6 ,
and

f 3 (z) g 3 (z) = (ln a) 4 sinh a (z) 6 > 0,
which shows that

f 3 (z)
g 3 (z) is strictly increasing. Then by Lemma 2.3, Q(z) is also strictly increasing. Hence for z ∈ (0, 1), we have

(ln a) 3 6 = lim z→0 Q(z) = Q(0) < Q(z) < Q(1) = 1 2 a - 1 a -ln a,
which yields [START_REF] Nantomah | On a Generalized Sigmoid Function and its Properties[END_REF].

Remark 3.9. In particular, if a = e, then Theorem 3.8 reduces to Theorem 2.2 of [START_REF] Bagul | On simple Jordan type inequalities[END_REF].

Remark 3.10. It is observed that the inequalities in [START_REF] Nantomah | On a Generalized Sigmoid Function and its Properties[END_REF] are sharper than those in [START_REF] Nantomah | On Some Properties of the Sigmoid Function[END_REF]. Additionally, the lower bounds of ( 25) and ( 26) also hold for all z = 0 and can be refined further as shown in the following theorem.

Theorem 3.11. For z = 0, the inequality

ln a + (ln a) 3 z 2 6 + (ln a) 5 z 4 120 < sinh a (z) z , (27) holds. 
Proof. This follows directly from the series expansion of sinh a (z) which is given as sinh a (z) = (ln a)z + (ln a)

3 z 3 3! + (ln a) 5 z 5 5! + • • • = ∞ r=0
(ln a) 2r+1 z 2r+1 (2r + 1)! .

Theorem 3.12. Let λ ∈ (0, 1). Then: (i) for z ∈ (0, 1),

a 2 -1 a 2 + 1 < tanh a (z) z < ln a. ( 28 
) (ii) for z ∈ (0, ∞), tanh a (z) z < tanh a (λz) λz . ( 29 
) (iii) for z ∈ (0, ∞), sinh a (λz) λz < sinh a (z) z . ( 30 
) Proof. (i) Let T (z) = tanha(z) z for z ∈ (0, ∞). Then T (z) = (ln a)zsech 2 a (z) -tanh a (z) z 2 .
Let θ(z) = (ln a)zsech 2 a (z)-tanh a (z). Then θ (z) = -2(ln a) 2 z tanh a (z)sech 2 a (z) < 0 which shows that θ(z) is decreasing. Then for z ∈ (0, ∞), we have θ(z) < θ(0) = 0. Thus T (z) is decreasing. Hence for z ∈ (0, 1), we obtain

a 2 -1 a 2 + 1 = T (1) < T (z) < T (0) = lim z→0 T (z) = ln a
which gives [START_REF] Neuman | On the Inequalities for the Generalized Trigonometric Functions[END_REF]. (ii) This follows from the the decreasing property of tanha(z) z and the fact that λz < z for λ ∈ (0, 1) and z ∈ (0, ∞). (iii) Similarly, this follows from the the increasing property of sinha(z) z and the fact that λz < z for λ ∈ (0, 1) and z ∈ (0, ∞). Remark 3.13. Inequalities ( 29) and ( 30) respectively generalize (iii) and (ii) of Theorem 4.3 in the work [START_REF] Klen | On Jordan Type Inequalities for Hyperbolic Functions[END_REF]. Lemma 3.14. For 5 -2 √ 6 < x < 5 + 2 √ 6, the inequality

x 2 + 1 x 2 -10 < 0, (31) holds. 
Proof. The graph of the function f (x) = x 4 -10x 2 + 1 cuts the positive xaxis at the points 5 -2 √ 6 and 5 + 2 √ 6, and lies below the x-axis on this interval.

Lemma 3.15. Let 1 < a < 5 + 2 √ 6. Then the inequality

tanh 2 a (z) < 2 cosh 2 a (z) , (32) 
holds for z ∈ (0, 1).

Proof. This is equivalent to sinh 2 a (z) < 2 and that is also equivalent to a 2z +a -2z -10 < 0. Now let h(z) = a 2z + a -2z -10 where 1 < a < 5 + 2 √ 6 and z ∈ (0, 1). Then h (z) = 2 ln a [a 2z -a -2z ] > 0 which shows that h(z) is increasing. Then for z ∈ (0, 1), we have -8 = h(0) < h(z) < h(1) = a 2 + a -2 -10 < 0, which follows from Lemma 3.14. Hence h(z) < 0 and this completes the proof. Theorem 3.16. Let 1 < a < 5 + 2 √ 6. Then the inequality

ln a - (ln a) 3 3 z 2 < tanh a (z) z < ln a + a 2 -1 a 2 + 1 -ln a z 2 , ( 33 
)
holds for z ∈ (0, 1).

Proof. Let H(z) be defined for 1 < a < 5 + 2 √ 6 and z ∈ (0, 1) by

H(z) = tanh a (z) -(ln a)z z 3 = f 1 (z) g 1 (z) ,
where f 1 (z) = tanh a (z) -(ln a)z, g 1 (z) = z 3 and f 1 (0) = g 1 (0) = 0. Then

f 1 (z) g 1 (z) = (ln a)sech 2 a (z) -(ln a) 3z 2 = -(ln a) tanh 2 a (z) 3z 2 = f 2 (z) g 2 (z) , where f 2 (z) = -(ln a) tanh 2 a (z), g 2 (z) = 3z 2 and f 2 (0) = g 2 (0) = 0. Also, f 2 (z) g 2 (z) = -(ln a) 2 tanh a (z)sech 2 a (z) 6z = f 3 (z) g 3 (z) ,
where f 3 (z) = -(ln a) 2 tanh a (z)sech 2 a (z), g 3 (z) = 6z and f 3 (0) = g 3 (0) = 0. Moreover,

f 3 (z) g 3 (z) = - (ln a) 3 3 sech 4 a (z) -2 tanh 2 a (z)sech 2 a (z) = φ(z),
and by Lemma 3.15, we obtain

φ (z) = - 4(ln a) 4 3 tanh a (z)sech 2 a (z) tanh 2 a (z) -2sech 2 a (z) > 0 which shows that f 3 (z)
g 3 (z) is strictly increasing. In view of Lemma 2.3, H(z) is strictly increasing. Hence for z ∈ (0, 1), we obtain

- (ln a) 3 3 = lim z→0 H(z) = H(0) < H(z) < H(1) = a 2 -1 a 2 + 1 -ln a,
which yields [START_REF] Qi | Generalizations, and Applications of Jordans Inequality and Related Problems[END_REF].

Remark 3.17. In particular, if a = e, then inequality (33) reduces to

1 - z 2 3 < tanh(z) z < 1 - 2 e 2 + 1 z 2 , z ∈ (0, 1). ( 34 
)
Theorem 3.18. For z ∈ (0, 1), the inequality

α α + z 2 ln a < tanh a (z) z < β β + z 2 ln a (35) 
holds, where α = 3 (ln a) 2 and β =

a 2 -1 (a 2 +1) ln a-a 2 -1 a 2 +1
. Proof. Let K(z) be defined for z ∈ (0, 1) by

K(z) = z 2 tanh a (z) (ln a)z -tanh a (z) = f 1 (z) g 1 (z) ,
where

f 1 (z) = z 2 tanh a (z), g 1 (z) = (ln a)z -tanh a (z) and f 1 (0) = g 1 (0) = 0. Then f 1 (z) g 1 (z) = 2z tanh a (z) + (ln a)z 2 sech 2 a (z) (ln a) tanh 2 a (z) = 2 ln a z tanh a (z) + z 2 sinh 2 a (z) = ∆(z)
and

∆ (z) = 2 ln a 1 tanh a (z) 1 - (ln a) 2 z 2 sinh 2 a (z)
> 0 since sinh a (z) > (ln a)x. Thus ∆(z) is increasing and by Lemma 2.3, K(z) is also strictly increasing. Hence for z ∈ (0, 1), we obtain

3 (ln a) 2 = lim z→0 K(z) = K(0) < K(z) < K(1) = a 2 -1 (a 2 + 1) ln a -a 2 -1 a 2 +1
, which yields [START_REF] Sánchez-Reyes | The Hyperbolic Sine Cardinal and the Catenary[END_REF]. Remark 3.19. In particular, if a = e, then Theorem 3.18 reduces to Theorem 2.4 of [START_REF] Bagul | On simple Jordan type inequalities[END_REF]. Theorem 3.20. For z = 0, the inequality

ln a cosh a (z) < sinh a (z) z < (ln a) cosh a (z), (36) holds. 
Proof. Let z ∈ (0, ∞) and h(z) = sinh a (z) -(ln a)z cosh a (z). Then h (z) = -(ln a) 2 z sinh a (z) < 0 which implies that h(z) is decreasing. Hence h(z) < h(0) = 0 which yields the right hand side of [START_REF] Sandor | Bhayo On an Inequality of Redheffer[END_REF]. The case for z ∈ (-∞, 0) yields the same result. The left hand side of (36) follows from the fact that cosh a (z) > 1 and sinh a (z) > z ln a for all z = 0.

Remark 3.21. In particular, if a = e, then (36) reduces to

1 cosh(z) < sinh(z) z < cosh(z), z = 0. ( 37 
)
This is related to the results cosh

4 3 z 2 < sinh(z) z < cosh 3 (z), z ∈ (0, ∞), (38) 
obtained by Neuman and Sandor in [START_REF] Neuman | On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities[END_REF][START_REF] Neuman | Inequalities for hyperbolic functions[END_REF]. It is observed that the upper bound of ( 37) is stronger than upper bound of [START_REF] Takeuchi | Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian[END_REF]. However, the lower bound of ( 37) is weaker than the lower bound of [START_REF] Takeuchi | Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian[END_REF]. Related results can also be found in [START_REF] Klen | On Jordan Type Inequalities for Hyperbolic Functions[END_REF], [START_REF] Lv | A note on Jordan type inequalities for hyperbolic functions[END_REF] and [START_REF] Yang | Type Inequalities for Hyperbolic Functions and Their Applications[END_REF].

The following result is inspired by the paper [START_REF] Lv | A note on Jordan type inequalities for hyperbolic functions[END_REF].

Theorem 3.22. The inequality

cosh 1 3 a (z) < sinh a (z) z < cosh a (z), (39) 
holds for z ∈ (0, ∞).

Proof. Let D(z) be defined for z ∈ (0, ∞) by

D(z) = ln z sinha(z) ln 1 cosha(z) = f 1 (z) g 1 (z) ,
where f 1 (z) = ln z sinha(z) , g 1 (z) = ln 1 cosha(z) and f 1 (0) = g 1 (0) = 0. Then

f 1 (z) g 1 (z) = (ln a)z cosh 2 a (z) -sinh a (z) cosh a (z) (ln a)z sinh 2 a (z) = f 2 (z) g 2 (z) ,
where f 2 (z) = (ln a)z cosh 2 a (z) -sinh a (z) cosh a (z), g 2 (z) = (ln a)z sinh 2 a (z) and f 2 (0) = g 2 (0) = 0. Similarly,

f 2 (z) g 2 (z) = 2(ln a)z -tanh a (z) 2(ln a)z + tanh a (z) = 1 - 2 1 + 2 (ln a)z tanha(z) = 1 - 2 1 + 2 f 3 (z) g 3 (z)
, where f 3 (z) = (ln a)z, g 3 (z) = tanh a (z) and f 3 (0) = g 3 (0) = 0. Furthermore,

f 3 (z) g 3 (z) = 1 sech 2 a (z) = δ(z)
and δ (z) = 2(ln a) sinh a (z) cosh a (z) > 0. Thus δ(z) is increasing and by Lemma 2.3, D(z) is also strictly increasing. Hence for z ∈ (0, ∞), we obtain

1 3 = lim z→0 D(z) < D(z) < lim z→∞ D(z) = 1,
which yields the result [START_REF] Takeuchi | Multiple-angle formulas of generalized trigonometric functions with two parameters[END_REF].

Remark 3.23. Inequalities ( 36) and [START_REF] Takeuchi | Multiple-angle formulas of generalized trigonometric functions with two parameters[END_REF] imply that

1 ln a sinh a (z) z < cosh a (z) < sinh a (z) z 3 , (40) 
holds for z ∈ (0, ∞). By setting a = e in [START_REF] Wang | Inequalities for generalized trigonometric and hyperbolic functions with one parameter[END_REF], we obtain the well known Lazarevic inequality [15, p 131].

Theorem 3.24. The inequalities

cosh a (rx + (1 -r)y) ≤ cosh r a (x) cosh 1-r a (y), x, y ∈ (-∞, ∞), (41) 
sinh a (rx + (1 -r)y) ≥ sinh r a (x) sinh 1-r a (y), x, y ∈ (0, ∞), (42) tanh 
a (rx + (1 -r)y) ≥ tanh r a (x) tanh 1-r a (y), x, y ∈ (0, ∞), (43) 
hold for r ∈ [0, 1], with equality if and only if x = y.

Proof. Let φ(z) = ln cosh a (z) for z ∈ (-∞, ∞), η(z) = ln sinh a (z) for z ∈ (0, ∞) and µ(z) = ln tanh a (z) for z ∈ (0, ∞). Then direct computation reveals that φ (z) = (ln a) 2 sech 2 a (z) > 0, η (z) = -(ln a) 2 cosech 2 a (z) < 0 and µ (z) = -(ln a) 2 sech 2 a (z) + cosech 2 a (z) < 0. These imply that cosh a (z) is log-convex on (-∞, ∞), sinh a (z) is log-concave on (0, ∞) and tanh a (z) is log-concave on (0, ∞). These conclude the proof.

Corollary 3.25. The inequalities cosh a (rx) cosh a (ry) ≤ cosh r a (x) cosh r a (y)

, ( 44 
) sinh a (rx) sinh a (ry) ≥ sinh r a (x) sinh r a (y) , ( 45 
) tanh a (rx) tanh a (ry) ≥ tanh r a (x) tanh r a (y) , (46) 
hold for r > 1 and 0 < x ≤ y. Equality holds when x = y and the inequalities are reversed if r ∈ (0, 1).

Proof. The log-convexity property of cosh a (z) implies that the function cosh a (z) cosha(z) is increasing. For r > 1 and z ∈ (0, ∞), let ψ(z) = cosha(rz) cosh r a (z) and h(z) = ln ψ(z). Then

h (z) = r cosh a (rz) cosh a (rz) - cosh a (z) cosh a (z) > 0.
Thus, ψ(z) is increasing. Hence for 0 < x ≤ y, we have ψ(x) ≤ ψ(y) which gives [START_REF] Yin | Qi Inequalities for the generalized trigonometric and hyperbolic functions with two parameters[END_REF]. By the same procedure, the proofs of ( 45) and ( 46) respectively follow from the log-concavity properties of sinh a (z) and tanh a (z).

Theorem 3.26. The inequalities cosh a x r y 1-r ≤ cosh r a (x) cosh 1-r a (y),

sinh a x r y 1-r ≤ sinh r a (x) sinh 1-r a (y), (48) hold for x, y ∈ (0, ∞) and r ∈ [0, 1], with equality if and only if x = y. Simply put, the functions cosh a (z) and sinh a (z) are geometrically convex on (0, ∞).

Proof. Let z ∈ (0, ∞) . Then z cosh a (z) cosh a (z) = (ln a) tanh a (z) + (ln a) 2 zsech 2 a (z) > 0.
Hence, by Lemma 2.6, we conclude that cosh a (z) is geometrically convex on (0, ∞) and this is equivalent to [START_REF] Zhang | On Integral Inequalities of Hermite-Hadamard Type for s-Geometrically Convex Functions[END_REF]. Next, z sinh a (z) sinh a (z) = (ln a) sinh 2 a (z)

[cosh a (z) sinh a (z) -(ln a)z] > 0, which follows from the fact that sinh a (z) > (ln a)z and cosh a (z) > 1 for all z ∈ (0, ∞). Likewise, by Lemma 2.6, we conclude that sinh a (z) is geometrically convex on (0, ∞) and this implies [START_REF] Zhang | Ma New Polynomial Bounds for Jordans and Kobers Inequalities Based on the Interpolation and Approximation Method[END_REF]. Remark 3.28. By virtue of Young's inequality for scalars, [START_REF] Zhang | On Integral Inequalities of Hermite-Hadamard Type for s-Geometrically Convex Functions[END_REF] and [START_REF] Zhang | Ma New Polynomial Bounds for Jordans and Kobers Inequalities Based on the Interpolation and Approximation Method[END_REF] imply that cosh a x r y 1-r ≤ r cosh a (x) + (1 -r) cosh a (y), [START_REF] Zhu | Sharp inequalities for hyperbolic functions and circular functions[END_REF] sinh a x r y 1-r ≤ r sinh a (x) + (1 -r) sinh a (y), (50) hold for x, y ∈ (0, ∞) and r ∈ [0, 1].

Corollary 3.29. The inequalities cosh a (x r ) cosh a (y r ) ≥ cosh r a (x) cosh r a (y)

, ( 51 
)
sinh a (x r ) sinh a (y r ) ≥ sinh r a (x) sinh r a (y)

, ( 52 
)
hold for r > 1 and 0 < x ≤ y < 1. Equality holds when x = y and the inequalities are reversed if 1 < x ≤ y. 

where Shi a (z) is the generalized hyperbolic sine integral and K is a constant. We anticipate that, for some particular values of a, this generalized function may find applications in some areas of applied mathematics.

z 0 ( 1 - 1 0 ( 1 -

 0111 t p ) -1 p dt, where 1 < p < ∞ and 0 ≤ z ≤ 1. The function sin p (z) coincides with the ordinary sine function when p = 2 and can be extented to (-∞, ∞). The p-generalization of the consine and tangent functions are respectively defined ascos p (z) = d dz sin p (z), z ∈ [0, π p 2 ],andtan p (z) = sin p (z) cos p (z) , z ∈ R \ kπ p + π p 2 : k ∈ N ,where, πp 2 = t p ) -1 p dt. The p-generalization of the hyperbolic sine function, which is denoted by sinh p (z) is defined as the inverse of the function arcsinh p (z) = z 0 (1 + t p ) -1

Remark 3 . 27 .

 327 In particular, if a = e and r = 1 2 in (47) and (48), then we respectively recover cosh ( √ xy) ≤ cosh(x) cosh(y), and sinh ( √ xy) ≤ sinh(x) sinh(y), as obtained in [8, Corollary 1.26] and [1, Corollary 3.10]. Analogous results can also be found in [13, Conjecture 2.11] and [20, Conjecture 1.1].

for a > 1 1 0(

 11 and z ∈ (-∞, ∞). Clearly, sinhc e (z) = sinhc(z), where e is the Euler's number. It satisfies the following basic properties.sinhc a (z) = cosh a (tz) dt = ∞ r=0 (ln a) 2r+1 z 2r (2r + 1)! , z = 0,(58)sinhc a (z) dz = Shi a (z) + K, ln a) 2r+1 z 2r+1 (2r + 1)(2r + 1)! ,
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Proof. Recall that the function z cosh a (z) cosha(z) is increasing on (0, ∞). For r > 1 and z ∈ (0, 1), let β(z) = cosha(z r ) cosh r a (z) and p(z) = ln β(z). Then

Thus, β(z) is decreasing. Hence for 0 < x ≤ y < 1, we have β(x) ≤ β(y) which gives (51). The proof of (52) follows the same procedure and so we omit the details.

Theorem 3.30. The inequalities

tanh a (x + y) < tanh a (x) + tanh a (y), (54) hold for x, y ∈ (0, ∞). Simply put, the functions sinh a (z) and tanh a (z) are respectively superadditive and subadditive on (0, ∞).

Proof. Recall that sinha(z) z is strictly increasing on (0, ∞) . Then by Lemma 2.7, we conclude that sinh a (z) is supperadditive on (0, ∞). Next for z ∈ (0, ∞),

and γ (z) = -2(ln a) 2 z tanh a (z)sech 2 a (z) < 0 which implies that γ(z) is decreasing. Then γ(z) < γ(0) = 0. Thus, tanha(z) z is strictly decreasing on (0, ∞) and the conclusion follows from Lemma 2.7.

Remark 3.31. Results analogous to Theorem 3.30 can be found in [START_REF] Bhayo | On generalized trigonometric functions with two parameters[END_REF]Lemma 2.14].

We conclude this paper by defining a generalization of the hyperbolic sinc function. The function

which is known as the sinc function or cardinal sine function plays a pivotal role in several aspects of applied mathematics [START_REF] Gearhart | The Function sin x x[END_REF]. Its hyperbolic counterpart, which is defined as as (see [START_REF] Bagul | Two double sided inequalities involving sinc and hyperbolic sinc functions[END_REF] and [START_REF] Sánchez-Reyes | The Hyperbolic Sine Cardinal and the Catenary[END_REF])

has also been found useful in the areas of physics and geometry, especially, in describing the catenary [START_REF] Sánchez-Reyes | The Hyperbolic Sine Cardinal and the Catenary[END_REF]. Motivated by these definitions, we define the generalized function as follows.

Definition 3.32. The generalized hyperbolic sinc function is defined as sinhc a (z) = sinha(z) z

, z = 0 ln a, z = 0 (57)