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[1] A methodology to conduct a joint analysis of modeled soil moisture fields from the
Joint UK Land Environment Simulator (JULES) and a data set of multiwavelength
observations is presented. It consists of building a statistical model capturing the
relationships between the land surface model estimates and the satellite observations, and
then using the satellite observations (mapped into soil moisture predictions by the
statistical model) to evaluate the fields estimated by the land surface model. Two
statistical models are tested and predict very similar soil moisture (global correlation and
root-mean-square deviation (RMSD) of � 0.98 and � 0.02 m3/m3). A characterization of
prediction uncertainty shows errors ranging between 0.01 and 0.10 m3/m3, depending on
biome and season. The satellite prediction and JULES soil moisture agree relatively well
(global correlation and RMSD of � 0.92 and � 0.05 m3/m3), but for some regions and
periods, clear differences exist. Conducted tests modifying either the predicted soil
moisture or the JULES estimates show that this methodology can effectively change soil
moisture toward more correct values. It can then be expected that some of the differences
are the result of the satellite information modifying the modeled soil moisture fields
toward more realistic values. However, proving this is difficult given the present
uncertainties in modeled and observed global soil moisture products.
Citation: Jiménez, C., D. B. Clark, J. Kolassa, F. Aires, and C. Prigent (2013), A joint analysis of modeled soil moisture fields
and satellite observations, J. Geophys. Res. Atmos., 118, 6771–6782, doi:10.1002/jgrd.50430.

1. Introduction
[2] Soil moisture accounts for a very small fraction of the

total Earth water budget, but it plays an important role in the
climate system, as it modulates key land-surface-atmosphere
processes such as the partitioning of available net energy at
the surface into latent and sensible heat fluxes, soil evap-
oration and plant transpiration, partitioning of precipitation
into infiltration and runoff, or plant growth. This means that
an accurate representation of global soil moisture fields by
models is crucial. However, intercomparison exercises show
that modeling this variable is still subject to a large uncer-
tainty, with relatively large intermodel variance compared
with other modeled hydrological variables [Dirmeyer et al.,
2006].

[3] This situation is not helped by a lack of mature
observational global soil moisture data records. The first

1Laboratoire d’Etudes du Rayonnement et de la Matière en Astro-
physique, Centre National de la Recherche Scientifique, Observatoire de
Paris, Paris, France.

2Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK.
3Estellus S.A.S, Paris, France.

Corresponding author: C. Jiménez, Laboratoire d’Etudes du
Rayonnement et de la Matière en Astrophysique, Centre National
de la Recherche Scientifique, Observatoire de Paris, Paris, France.
(carlos.jimenez@obspm.fr)

©2013. American Geophysical Union. All Rights Reserved.
2169-897X/13/10.1002/jgrd.50430

mission to specifically measure soil moisture from space
was launched in 2009 (the Soil Moisture and Ocean Salinity
mission, SMOS) [Kerr et al., 2010], meaning that all other
observational records of soil moisture need to be derived
from sensors that were not specifically designed to measure
this variable. Progress is being made, mainly by exploiting
existing observations from active and passive microwave
missions [e.g., Wagner et al., 1999; Owe et al., 2001; Liu
et al., 2012], but product errors can still be relatively large
over some regions due to the challenges related to extract-
ing the soil moisture information from a satellite signal
(nonoptimized for soil moisture) largely modulated by other
processes (e.g., vegetation and roughness) [Dorigo et al.,
2010]. In situ observations of soil moisture also exist [e.g.,
Dorigo et al., 2011]. They can presumably be considered
as more accurate than satellite observations and have the
advantage of providing not just superficial soil moisture as
the satellite observations but also the soil moisture at deeper
layers. The challenges here are to deal with the limited spa-
tial and temporal coverage of the in situ network, and with
the representativity issues associated to comparing modeled
spatially integrated estimates and in situ point measurements
over heterogeneous landscapes.

[4] Facing these difficulties, a simple comparison
between existing observational and modeled soil moisture
products is not sufficient, and different statistical techniques
to address them are emerging. Good examples are the triple
collocation method to characterize the error structure of
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related soil moisture data sets [e.g., Scipal et al., 2008],
and upscaling techniques to reduce the impact of spatial
sampling errors when comparing sparse ground observation
with estimates with a large ground resolution [e.g., Crow
et al., 2012]. For model evaluation, we are interested in
developing complementary methodologies focusing more on
(1) exploiting the synergy between different observations in
order to deal with the limitations from single observations
and (2) imposing a degree of consistency between the model
and observation estimates to assure a meaningful evaluation.
The latter is of special relevance when evaluating mod-
eled soil moisture. The different model physical schemes
can result in very different modeled soil water equilibrium
states and simulated discharge, which can also result in large
differences in the soil water content estimated by different
models [e.g., Boone et al., 2004].

[5] One of these methodologies was already presented
in Aires et al. [2005]. It consists of building a statistical
model capturing the complex relationships between the land
surface model estimates and different satellite observations,
and then using the satellite observations (mapped into soil
moisture estimates by the statistical model) to evaluate the
fields predicted by the land surface model. Here we will
adopt a similar methodology to conduct a joint analysis of
modeled soil moisture fields from the Joint UK Land Envi-
ronment Simulator (JULES) [Best et al., 2011; Clark et al.,
2011] and a data set of multiwavelength observations.
Although only longwave microwave observations are tradi-
tionally exploited for soil moisture products, [Prigent et al.
2005] demonstrated that observations at shorter wavelengths
also contain moisture-related information; they will also be
used in our analysis.

[6] The paper is organized as follows. First, the satellite
observations and JULES model are presented in section 2.
This is followed by a description of the methodology in
section 3. The statistical model applied in Aires et al. [2005]
was based on neural networks; here we will also apply a
second different statistical model to evaluate the impact of
algorithm choice in the predicted soil moisture and to esti-
mate prediction errors. The results are presented in section 4.
The JULES and predicted soil moisture from the satellite
observations are compared, and discrepancies between both
estimates are discussed. This is complemented by some tests
where the JULES soil moisture is perturbed in order to
evaluate the potential of this methodology to detect inconsis-
tencies in modeled fields. Finally, a discussion of the results
and the main conclusions are given in section 5.

2. Data
2.1. Land Surface Model

[7] JULES is a mechanistic model of the land surface
including representations of the surface energy balance,
evaporation from soil and vegetation, and snow and soil
physics, including runoff generation. For the present study,
the global land areas were modeled on a grid of 0.5ı � 0.5ı
resolution. The land cover was represented by nine land
cover types: five plant functional types and four nonveg-
etation types, including bare soil. In each grid box, the
fractional coverage of each type was calculated by aggre-
gating the International Geosphere-Biosphere Programme
(IGBP) version 2 land cover map to the model grid and map-

ping the IGBP land classes to the JULES land types. The
IGBP data were also used to specify the Leaf Area Index of
each vegetation type. Fluxes of heat and moisture in the soil
are calculated by a four-layer finite-difference model which
includes representations of the effects of phase changes of
soil moisture. The soil model considers a total depth of 3 m,
with the surface soil layer being 10 cm thick. Soil hydraulic
characteristics were also calculated from IGBP data. Snow
is represented using a multilayer approach in which the tem-
perature, frozen and liquid water content, grain size, and
density of each layer are simulated. The model was run for
1951 to 2001, preceded by a multidecadal spin-up stage, and
the time step length was 1 h. Near-surface meteorology was
prescribed using the WATCH Forcing Data [Weedon et al.,
2011], which are based on the ERA-40 Re-Analysis product
[Uppala et al., 2005] with monthly bias corrections based
on observations. The simulations considered “near-natural”
conditions, meaning that human impacts such as irrigation
were not included.

2.2. Satellite Observations
[8] The following satellite observations will be used in the

analysis:
2.2.1. Visible and Near-IR

[9] The advanced very high resolution radiometer
(AVHRR) instruments on board the NOAA meteorological
polar orbiters provide daily observations of the Earth with a
resolution as high as 1 km. The first channel is in the visible,
where chlorophyll causes absorption of incoming radiation,
while the second one is in the near-infrared. The normal-
ized difference vegetation index (NDVI) [Gutman, 1999] is
extensively used for vegetation studies. Here the visible and
near-infrared radiances are used directly instead of the NDVI
product, to allow the prediction method to find the best way
of extracting the soil moisture-related information from the
radiances. For this study, the 10 day composite AVHRR
product generated under the joint NASA and NOAA Earth
Observing System Pathfinder Project [James and Kalluri,
1994], with a resolution of 8 km, is used.
2.2.2. Thermal-IR

[10] The International Satellite Cloud Climatology
Project (ISCCP) data set of surface skin temperature is
produced at 3 h intervals since 1983 over the globe, every
30 km, combining all the infrared measurements from polar
and geostationary operational weather satellites [Rossow
and Schiffer, 1999]. For this study, the surface skin temper-
atures were extracted from the ISCCP-DX product. Aires
et al. [2004] developed a method to reconstruct the diurnal
cycle of surface skin temperature for each location over
the globe, based on a statistical analysis of the three-hourly
skin temperatures for clear scenes. The reconstructed skin
temperatures are averaged to provide the monthly diurnal
cycle of temperature and to derive its amplitude.
2.2.3. Active Microwave

[11] The European Remote-sensing Satellite ERS-1 was
launched in 1991 and remained operational until 2001
[Francis et al., 1991]. Its suite of instruments included a
vertically polarized radar operating at C-band (5.3 GHz).
It was originally designed to measure near-surface winds
over oceans, with a nominal resolution of 50 km, but it
has also proved useful for soil moisture characterization
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Figure 1. Geographical distribution of land types used in this study. A model cell is assigned a JULES
land type if at least 50% of the cell surface corresponds to that land type. The land types are the following:
broadleaf tree (BrT), needleleaf tree (NeT), C3 grass (C3G), C4 grass (C4G), shrubs (Shr), urban (Urb),
open water (OpW), bare soil (BaS), ice (Ice), and no assigned land type (NoA).

[e.g., Wagner et al., 1999]. For this study, the backscatter-
ing coefficients were processed following a method similar
to Frison and Mougin [1996], keeping the values at 20ı
and 45ı.
2.2.4. Passive Microwave

[12] The Special Sensor Microwave Imager (SSM/I)
instruments on board the Defense Meteorological Satellite
Program (DMSP) polar orbiters observe the Earth twice
daily at 19.35, 22.24, 37.00, and 85.50 GHz. The fields-
of-view decrease with frequency, from 43 � 69 km2 to
13 � 15 km2 [Hollinger et al., 1987]. Instead of using the
raw microwave brightness temperatures, we use the esti-
mated land surface emissivities from Prigent et al. [2006].
These emissivities are estimated from SSM/I observations
by removing contributions from the atmosphere, clouds,
rain, and the surface temperature and are related to the sur-
face properties themselves, minimizing the contribution to
the signal from the other factors.

[13] None of these observations is optimized for charac-
terizing surface soil moisture. The large dielectric constant at
microwave frequencies of water (compared with other mate-
rials) produces a strong response to soil moisture, but this
response is modulated by factors such as surface roughness,
the presence of vegetation, and atmospheric contributions.
Notice that microwave observations at lower frequencies
better suited to estimation of soil moisture also exist (e.g.,
the 6.6/6.9 GHz and 10.7 GHz Advanced Microwave Scan-
ning Radiometer–EOS observations), but their observing
period falls outside the years of the land surface model runs.
The surface temperature diurnal cycle is related to soil mois-
ture through the soil thermal inertia being modulated by
the soil moisture, but it also depends on other factors such
as solar radiation, air temperature and humidity, and near-
surface wind. The visible and infrared radiances are more
closely related to vegetation than moisture, but the strong
correlation between available soil moisture and vegetation
growth in some regions can provide indirect information
about soil moisture. A more detailed discussion about the
sensitivity of these observations to soil moisture and other

related processes is given in Prigent et al. [2005] and Aires
et al. [2005].

2.3. Pre-processing
[14] The satellite observations are regridded into a com-

mon global equal area grid (0.25ı � 0.25ı at the equator,
with a pixel area of approximately 770 km2) and averaged
into monthly means. Shorter time and space scales would be
desirable, but for a first analysis, we judge monthly means as
a good compromise between satellite acquisition, enhance-
ment of the signal-to-noise ratio of the observations, and
the objective of deriving a global multidecadal climatology.
The period 1993–1999 is selected for this first product, coin-
ciding with the period where both model outputs and our
selected observations exist.

[15] The selected satellite observations are sensitive, at
best, to the first few centimeters of the surface. Therefore,
we select for the study the model monthly mean estimates
from the top surface layer (the top 10 cm). They are given
on a 0.5ı � 0.5ı grid; a weighted-distance technique is used
to match satellite and model resolutions. Only model esti-
mates and observations considered to be snow-free (using
the National Snow and Ice Data Center monthly mean snow
data set [Armstrong and Brodzik, 2005] to filter the satellite
data, and only selecting “unfrozen” soil moisture model esti-
mates) and water-free (using the wetland data set of Prigent
et al. [2006]; Papa et al. [2010] to filter the satellite data and
removing model estimates over water bodies) are used in the
analysis and reported in the final product.

[16] The regression data set is built by selecting 200,000
matched observations and JULES soil moisture estimates
from the odd months of 1993 and 1999. These estimates are
selected randomly but assuring that the regression is equal-
ized in soil moisture space, i.e., the soil moisture estimates in
the regression data set are roughly equally distributed. This
avoids the regression giving greater weight to the regions of
soil moisture space that have a larger number of estimates
and assures that the more extreme soil moisture values are
also well considered.
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Table 1. Statistics of the 1993–1999 Soil Moisture Difference
Between the Model (JULES) and the MLP and NIP Algorithms
Driven by the Satellite Data, for Different JULES Land Surface
Typesa

NIP-JULES MLP-JULES NIP-MLP

Broad-tree 16.6 (0.054) [0.74] 16.4 (0.053) [0.75] 6.0 (0.019) [0.96]
Nleaf-tree 26.1 (0.072) [0.48] 25.8 (0.071) [0.50] 10.1 (0.028) [0.78]
C3-grass 29.0 (0.060) [0.82] 27.5 (0.057) [0.84] 13.4 (0.027) [0.95]
C4-grass 37.8 (0.067) [0.85] 36.7 (0.065) [0.85] 12.0 (0.021) [0.97]
Shrubs 51.1 (0.068) [0.75] 48.7 (0.065) [0.76] 19.3 (0.026) [0.94]
Bare-soil 131.5 (0.046) [0.65] 128.7 (0.045) [0.67] 81.5 (0.028) [0.81]
All-types 30.8 (0.057) [0.92] 30.0 (0.055) [0.91] 13.5 (0.025) [0.98]

aValues shown are the root means square difference (as percentage of the
averaged JULES soil moisture for each land type, and in absolute values
(m3/m3) in brackets) and the Pearson’s correlation coefficient (in squared
brackets).

[17] The derivation of the statistical link between obser-
vations and soil moisture uses a global database, without
any land cover information passed to the regression models.
However, a land cover classification based on the model land
types is used to report soil moisture as function of different
biomes. As a given model cell can be partitioned in different
land types, a cell is assigned a land type only if at least 50%
of the cell surface corresponds to that land type. This means
that some pixels are unclassified in terms of land cover and
are not included in the statistics computed for a specific
biome (although the soil moisture is always estimated for all
pixels). The classification is shown in Figure 1. Notice that
changing the 50% threshold to higher values, or even using
a different land cover type for the analysis, does not change
substantially the analysis of results based on biome types.

3. Methodology
3.1. Regression Algorithms

[18] Satellite measurements are traditionally converted to
geophysical parameters with the aid of a radiative transfer
model capable of simulating the observations. The retrieved
values of the geophysical parameters of interest correspond
to the radiative transfer inputs of the simulation satisfying
some closure criteria with the observations. Here soil mois-
ture cannot be retrieved by this approach. A joint inversion
of our observations would require a multiwavelength radia-
tive transfer model able to reproduce all observations from a
common data set of geophysical inputs; this model does not
exist. Even if this theoretical model could be put together,
the existence of all the model parameters and inputs needed
to allow the model to capture the complex global response
of the surface at all these wavelengths could be questioned.
Therefore, we propose a different approach consisting of (1)
building a global database {Xl, Yl}l=1���L of L pairs of coinci-
dent observations (the vector y) and modeled soil moisture
estimates (the scalar x), (2) using this database to build a
statistical link between the observations and the modeled
soil moisture, and (3) using the statistical link to predict
soil moisture estimates (denoted by xpre) that can be com-
pared with the modeled estimates. Notice that as in [Aires
et al., 2005], we prefer to use the term prediction rather
than retrieval for this methodology, to make clear that this
work cannot be strictly defined as a retrieval scheme per se
(i.e., it is neither using a radiative transfer model to allow a

physical retrieval scheme nor a database of observations and
measured soil moisture states to allow an empirical retrieval
scheme, but only linking observations with soil moisture
states predicted by a land surface model).

[19] Two regression models are tested here to build the
statistical link. The first regression method is based on a
specific neural network topology called Multi-Layer Percep-
trons (MLP). A MLP is composed of a number of neurons
(the processing elements) organized in layers. If the input to
the layer j is expressed as a vector i j, then the weights and

Figure 2. August 1998 soil moisture and differences
between the model and predictions (m3/m3). (from top to
bottom) JULES soil moisture, NIP, MLP, difference between
MLP and JULES soil moisture, and difference between MLP
and NIP. Missing values in the MLP and NIP predictions
and differences are related to missing observational values
precluding the prediction of soil moisture.
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Figure 3. Soil moisture histograms for the different JULES
land types. Plotted for JULES (blue), the NIP (green), and
MLP (red) algorithms driven by the satellite data. The black
lines display the histogram of the NIP prediction errors for
each land type.

bias of the neurons (the adaptative parameters) are expressed
respectively as a matrix W j and a vector b j, the output from
the neurons is grouped as a vector o j, and the activation
function of all neurons in layer j is fj, the output of layer j is
given by

o j = fj(W ji j + b j). (1)

The predicted soil moisture is given by the propagation of
the observation input vector y = i1) through the M layers of
the MLP:

xpre = oM = fM(WMiM + bM)

= fM[WMfM–1(WM–1iM–1 + bM–1) + bM] = � � � . (2)

The number of layers, number of neurons for each layer,
and type of activation functions are variables to be deter-
mined for each specific application of the MLP. Weights and
biases are determined during a training phase in which the
MLP is subject to adaptation to the database of examples
{Xl, Yl}l=1���L . More details about the practical implementa-
tion of the specific MLP used here can be found in Jiménez
et al. [2009].

[20] The second method is based on a Numerical Integra-
tion of the a Posteriori (NIP) probability of the parameters
to be predicted for a given set of observations. The predicted
soil moisture is given by the mean of the a posteriori proba-
bility. In practical terms, the integration is solved by a sum-
mation over the L states of the database {Xl, Yl}l=1���L [Evans
et al., 2002]. If P(y/x) is the conditional probability of the

observations (given a soil moisture state), then the predicted
soil moisture can be estimated as

xpre =
PL

i=1 XiP(y/Xi)PL
i=1 P(y/Xi)

. (3)

If the observation error is assumed to follow a multivariate,
normally distributed probability density function, and Serr is
the observation noise covariance matrix, then the conditional
probability of the observations (given a soil moisture state)
can be expressed as

P(y/Xi) � exp
�

–
(y – Yi)Serr

–1(y – Yi)T

2

�
. (4)

Once xpre is calculated, the prediction error can be estimated
as the standard deviation of the conditional a posteriori
probability, which can be approximated by the summation

xerr =
PL

i=1(Xi – xpre)2P(y/Xi)PL
i=1 P(y/Xi)

. (5)

This method requires specifying the observation uncertainty.
We assume a diagonal Serr (i.e., the observation errors are
uncorrelated) and standard deviations of 0.012 for the emis-
sivities, 5% of the mean value for the backscatter and the
visible and near-infrared reflectances, and 5 K for the tem-
perature diurnal cycle, based on published values. Notice
that a constant observation uncertainty is an obvious simpli-
fication, as our observations are not strictly sensor radiances
but derived products, the derivation of which could be
more or less certain depending on the environmental con-
ditions for each observation (e.g., saturation of NDVI at
high biomass values, emissivity uncertainty propagating in
the derivation of surface temperature). However, a detailed
error characterization is very difficult to infer from the pub-
lished work for all the observations we used, and we prefer
to assume a constant uncertainty for these first tests of the
algorithm. More details of this algorithm can be found in
Evans et al. [2002] and Rydberg et al. [2009].

3.2. Soil Moisture Prediction
[21] In principle, both regression methods should predict

similar soil moisture, as it can be demonstrated that both
estimate the mean state of the a posteriori probability if the
uncertainty of the input (observations) and target (soil mois-
ture) variables follows Gaussian statistics [Bishop, 1995;

Table 2. Statistics of the 1993–1999 Soil Moisture Difference
Between the Model (JULES) and the NIP Algorithm Driven by
Different Satellite Data (No-XXX Meaning That Input Data XXX
Were Removed) for Different JULES Land Surface Typesa

No-ERS No-AVHRR No-ISCCP No-SSM/I

Broad-tree 17.5 [0.70] 17.0 [0.71] 17.5 [0.70] 16.8 [0.72]
Nleaf-tree 27.4 [0.30] 26.2 [0.49] 29.3 [0.42] 26.9 [0.43]
C3-grass 32.0 [0.76] 30.7 [0.80] 31.3 [0.77] 29.5 [0.82]
C4-grass 41.3 [0.80] 37.6 [0.85] 41.6 [0.81] 39.4 [0.83]
Shrubs 52.2 [0.75] 63.7 [0.71] 47.1 [0.73] 51.1 [0.76]
Bare-soil 129.5 [0.65] 139.1 [0.64] 122.3 [0.63] 139.5 [0.63]
All-types 33.0 [0.90] 32.4 [0.90] 34.0 [0.88] 31.7 [0.90]

aValues shown are the root means square difference (as percentage of
the averaged JULES soil moisture for each land type) and the Pearson’s
correlation coefficient (in squared brackets).
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Figure 4. Statistics of prediction errors (calculated over all 1993–1999 soil moisture predictions). (top)
Median prediction error (median value of the distribution of errors at each single pixel) (m3/m3). (bottom)
For all predictions for a given pixel, percentage of cases where soil moisture estimates are at least 3 times
larger than the prediction error.

Evans et al., 2002]. In practice, differences are expected.
For instance, the real statistics can deviate from the assump-
tion of a perfectly normally distributed probability. Table 1
shows the Root Mean Square Difference (RMSD, as per-
centage of the averaged JULES soil moisture for each land
type) between the JULES soil moisture and the satellite-
driven MLP and NIP prediction. The Pearson’s correlation
coefficient for the different soil moisture pairs is also given.
Unless indicated otherwise, the statistics are calculated over
the 1993–1999 period. The RMSDs and correlations for
the different land types are very close for both methods,
with a RMSD of � 30% between JULES and the pre-
dicted soil moisture and global correlations of � 0.90. The
RMSD between both predicted soil moisture is reduced
to � 13%, with a correlation of 0.98, indicating that the
predictions agree well. Examples of the geographical dis-
tributions of soil moisture in August 1998 moisture and
their differences (between JULES and the MLP prediction
and between the MLP and NIP predictions) are given in
Figure 2. The predicted soil moisture captures the expected
soil moisture distributions related to different surface
conditions and hydrological regimes, although some differ-
ences are apparent. As expected from the high correlations
shown in Table 1, the soil moisture distributions from both
methods look very similar. This is confirmed in the dif-
ference maps, showing much smaller differences between
the MLP and NIP predictions, compared with the differ-
ences between MLP and JULES. Histograms of the pre-
dicted and JULES soil moisture values for the different
land types are shown in Figure 3. The histograms for the
MLP and NPI predictions are closer to one another than
to the JULES histograms, again showing a relatively good
agreement between both predictions. The largest differences
between predicted and JULES soil moisture occur for the

shrublands and C4 grass land types. These differences will
be commented on in section 4.1.

[22] Gaps in the predicted soil moisture maps can be seen
in Figure 2; these are related to missing observations. If
missing one type of satellite observation does not greatly
compromise the accuracy of the prediction, then soil mois-
ture could still be predicted by the same methodology but
adapting the regression to consider only the existing obser-
vations. Table 2 gives the same statistics as in Table 1 for
the NIP method when all observations but one are used as
predictors. As expected, the RMSDs are slightly larger and
correlations slightly lower (� 3% and 0.03, respectively,
for the predictions without the temperature observations, the
worst prediction). Similar figures (not given) are found for
the MLP prediction. We consider these results to be accept-
able and from now on predicted soil moisture values when
one type of observation is missing will also be reported.
More than one type of observation can be missing in some
rarer cases, and the same scheme could also be applied
with the remaining observations, but this is not pursued
further here.

3.3. Prediction Errors
[23] The NIP method was chosen as it can be used to

derive not only the mean of the a posteriori probability den-
sity function but also its standard deviation. This can be
regarded as an estimation of the uncertainty in the predicted
value and gives an idea of the prediction error. Uncertainty
estimates can also be derived when using the MLP model
[e.g., Aires, 2004], but their derivation is computationally
more difficult than for the NIP algorithm. Although for
some applications, a general idea about the uncertainty in
the predicted values is sufficient, for other applications, it
is necessary to always associate the predicted value with an
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Figure 5. Seasonal JULES and satellite-driven soil moisture (top-left for December-January-February,
top-right for March-April-May, bottom-left for June-July-August, and bottom-right for September-
October-November) in m3/m3 and difference with the JULES soil moisture (given as the root square mean
difference in m3/m3). Statistics computed over 1993–1999.

estimate of its error. For instance, this would be the case if
the satellite-driven predicted soil moisture values were to be
assimilated into a numerical model [e.g., Aires et al., 2005].

[24] Figure 4 shows some statistics of the prediction
error. At each pixel, an error distribution is produced by

grouping together the prediction error for each monthly pre-
diction at each pixel for the 7 years analyzed. The median of
this distribution is reported in the upper panel of the figure.
The largest absolute errors occur over areas in the boreal
forest of Asia and North America, with median errors of
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Figure 6. Summary of model diagnosing tests. (top-left) Example of original (Orig, red), modified
(Modi, black), and predicted (Pred, green) soil moisture for a region in South America. (middle-left) His-
tograms of the all-regions differences between the predicted and the original soil moisture (green) and
the modified and original (black) (two curves, the first calculated for months when a positive perturbation
is added to the original soil moisture (+�, circles), the second for negative perturbations (–�, squares).
(top-right) Example for the Niger basin showing correction of phasing of signal; lines as in top-left panel.
(middle-right) Histograms of the differences; lines as in middle-left panel, but now with the histograms
calculated over all months. (bottom) Geographical location of disturbed regions (small areas) and basins
(large areas in Africa).

� 0.8 m3/m3. The smallest absolute errors are found over
the arid and semiarid areas. However, in relative terms,
these are the areas where the errors are larger; the very low
soil moisture and correspondingly low signal in the satellite
observations results in relatively uncertain predictions. This
can be seen in Figure 3, where histograms of the prediction
errors for the different land types are plotted together with
the soil moisture histograms from JULES and the predic-
tion methods. The error histograms for all land types peak
at relatively similar values, while the peaks of soil mois-
ture histograms occur over a range of values, with the driest
peak being for bare soil and the wettest for broadleef trees.
To identify the areas where the prediction is more uncertain,
Figure 4 also shows for each pixel the number of predic-
tions where the predicted soil moisture value is at least 3
times larger than the prediction error (expressed as percent-
age of the total number of predictions for that pixel for the
7 years considered). The predictions are very uncertain over
the dry deserts (e.g., the Sahara) and mountainous (e.g., the
Andes) areas. Over Southern Asia, the predicted soil mois-
ture over India seems more uncertain than over neighboring
regions (e.g., southern China), though it should be noted
that for part of the year, a large part of India can be rela-
tively dry, compared with other southern Asian regions. It is
worth remembering that a constant observation uncertainty
was assumed all over the globe; so this first error prediction,
although of value, would require further refinement through
a more realistic description of the geographical variability in
observation uncertainty.

4. Results
4.1. Comparing Modeled and Predicted Soil Moisture

[25] Figure 5 shows the 1993–1999 averaged seasonal
soil moisture fields from JULES and the satellite predic-
tion (NIP approach; the MLP fields are not displayed but
are similar), and the RMSD between the two. The expected
geographical distributions related to biomes and climate
zones are visible in both JULES and the satellite-driven pre-
diction (for instance, the location of the main rainforests,
deserts, mountainous regions, or transition zones such as
the change from forest to grasslands in North America, arid
regions and savanna in Northern Africa, or forests and desert
scrub in Australia). Typical examples of seasonal variability
are also captured in both estimates (e.g., the drying of the
Iberian peninsula over the summer months and the wetten-
ing of India during the summer monsoon rains). However,
the RMSD maps show regions and periods where the esti-
mates differ substantially. For instance, JULES soil moisture
and the satellite estimates agree relatively well over India
for the September-October-November (SON) months, while
JULES is drier in the December-January-February (DJF)
and March-April-May (MAM) months, but wetter in June-
July-August (JJA). In North America, the satellite prediction
tends to be drier for the first half of the year, with better
agreement with JULES for the second half. The latitudinal
location of the strong soil moisture gradients in the savanna
regions of Central Africa agrees relatively well for the DJF
and SON months, but for the other two seasons the shift
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Figure 7. Seasonal cycle of soil moisture for selected basins, averaged over 1993–1999. Shown are
the JULES soil moisture (shifted by 1 month) used to build the regression database (black) and the NIP
satellite-driven prediction (green).

between dry and wetter conditions occurs at higher latitudes
in JULES. Along the east coast of South America, the mois-
ture gradient between the savanna north of the Brazilian
plateau and the rainforest in the south of the plateau is
larger for JULES; for the same season, the JULES soil mois-
ture values for this rainforest and the rainforest in central
Amazonia are closer than for the satellite-prediction, with
lower soil moisture for the southern rainforest.

[26] Differences between JULES and the satellite predic-
tion are to be expected. On the one hand, the JULES model
and associated input fields are imperfect [Blyth et al., 2011,
2012]. To model soil moisture, JULES is given no infor-
mation other than the soil and vegetation types and the
meteorological data. During periods and in regions where
the main driving force of precipitation is no longer there to
top up the estimated soil moisture, the internally calculated
value can drift from the true soil moisture value, particu-
larly if the soil properties are incorrectly characterized. On
the other hand, there is no guarantee that the satellite obser-
vations can always capture the soil moisture signal (due to
limitations of the observations and/or processing artifacts,
or the impossibility of decoupling the soil moisture signal
from other processes affecting the observations). There may
also be issues regarding the ability of the statistical model
to characterize the mapping between observations and mod-
eled fields. Nevertheless, a large part of the differences are
expected to be the consequence of the satellite information
being added to the modeled fields. In that sense, we could
say that the satellite observations are “correcting” potentially
erroneous modeled fields toward values which are more con-
sistent with the global relationships learned by the statistical
model. This point will be illustrated in the next section with
some examples.

4.2. Diagnosing Model Inconsistencies
[27] A first example consists of preparing a soil moisture

data set with a large degree of consistency with the obser-
vations, followed by modifying this soil moisture estimate
over specific regions and periods, and then testing whether
the predicted soil moisture is able to correct the modified soil
moisture field. The procedure was as follows:

[28] 1. A MLP regression model is trained with the 1993–
1999 observations and JULES soil moisture fields. The
resultant satellite-driven soil moisture fields will be called
the “original” soil moisture and will be used as a soil mois-
ture field that is to a large degree consistent with the satellite
observations.

[29] 2. These “original” soil moisture fields are then mod-
ified to simulate a soil moisture field that is not fully
consistent with the satellite observations. This is called the
“modified” soil moisture. The modifications consisted of
(a) adding ˙ 20% moisture in certain months over specific
regions (shown as roughly rectangular areas in Figure 6) and
(b) shifting the soil moisture values by 2 months in four
selected African basins (colored in Figure 6).

[30] 3. A regression model (this time with the NIP tech-
nique) is trained to provide the mapping between the “mod-
ified” soil moisture fields (i.e., it is now used as if it would
have been produced by a land surface model) and the obser-
vations (as was done to link JULES and the observations).
The soil moisture produced by this NIP model is called the
“predicted” soil moisture.

[31] 4. The “predicted” soil moisture is compared with
the “original” soil moisture to see whether the NIP model
can correct the “modified” soil moisture and recover the
“original” soil moisture at the modified regions and basins.
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[32] Figure 6 displays examples of a modified region and
a basin spatially averaged soil moisture time series. The
“predicted” soil moisture is close to the “original” one,
showing that the satellite-driven regression model is able
to correct the modified soil moisture values toward values
much closer to the original ones. The same happens for
the example of a modified basin; the “predicted” soil mois-
ture is in phase with the original soil moisture, meaning
that adding information from the observations into the sim-
ulated land model field (the “modified” soil moisture) is
able to correct the wrong soil moisture phasing. Figure 6
also shows histograms of the soil moisture differences to
summarize the results over all modified regions and basins.
The histograms of the differences between the “original”
and “predicted” soil moisture are much narrower than those
for the differences between the “original” and “modified”
moisture.

[33] A second test has been carried out by shifting the
original JULES soil moisture time series back by 1 month.
This modified soil moisture has been used to train a new
NIP regression model. Figure 7 shows spatially integrated
soil moisture seasonal cycles for six selected basins. Due to
missing observations and/or discarded pixels in the analysis
(flooding or snow), for some basins, the number of pixels
discarded can be large; so the averages reported may differ
from other published results. In all the basins analyzed here,
it can be seen that the soil moisture peaks 1 month after the
JULES 1 month shifted estimates, showing that the satellite
soil moisture prediction method can correct the erroneous
phasing.

5. Discussion and Conclusions
[34] The methodology discussed here to jointly analyze

modeled soil moisture and related observations was previ-
ously presented in Aires et al. [2005]. While in that study,
the methodology was tested with soil moisture fields from
the surface modeling component of two atmospheric reanal-
yses (ERA-40 and NCEP/NCAR ), it has been tested here
with output from the JULES model. This is a land surface
model dedicated to surface characterization, and for the runs
considered in this analysis, it was driven with one of the
latest atmospheric forcing data sets for offline hydrologi-
cal and surface modeling. Greater consistency between the
independent satellite observations and JULES soil moisture
is observed here, with global correlations between the satel-
lite product and model of 0.91 for JULES (compared with
0.73 and 0.83, respectively, for NCEP/NCAR and ERA-40).
This is likely a consequence of having a dedicated land sur-
face model driven by state-of-the-art atmospheric forcings
but might also reflect differences in the ability of the models
to simulate soil moisture.

[35] While a neural network has been used here as in Aires
et al. [2005], a second regression approach based on numer-
ical integration of the soil moisture a posteriori probability
(given a coincident set of observations) has also been tested
in this work. The objective was to get an approximate esti-
mate of the errors introduced by changing the regression
algorithm. Very consistent soil moisture fields were obtained
by both regression methods (global correlation of 0.98),
suggesting that limitations of the observations and uncer-
tainty in the model soil moisture fields contribute more

to prediction uncertainty than does the choice of regres-
sion algorithm. Although the predictions are relatively close,
compared with the original JULES soil moisture, corre-
lations for the neural network regression prediction are
slightly higher (and RMSD slightly lower) for the differ-
ent JULES land types, suggesting that the neural network is
slightly better able to capture the JULES soil moisture fea-
tures. The second regression algorithm provides not only the
mean of the a posteriori probability distribution (used as the
predicted soil moisture) but also the width of the distribu-
tion (reported as a standard deviation). We use this standard
deviation as an estimate of the prediction error. The largest
absolute prediction errors occur over some boreal regions;
these estimated errors can be as large as 0.08 m3/m3. As
expected, relative errors are large for those regions and peri-
ods with low soil moisture. Over these areas, the prediction
is more challenging, as the soil moisture related signal in the
observation is weak, and the regression model has more dif-
ficulties to characterize the mapping between observations
and modeled soil moisture.

[36] Although the satellite prediction and JULES soil
moisture agree relatively well, for some regions and periods,
clear differences exist. The problem is that evaluating soil
moisture at large scales is very difficult. This is a problem
not only for soil moisture, many other hydrological variables
(e.g., precipitation and surface fluxes) are also difficult to
evaluate due to the limitations of the present Earth obser-
vation sensors. As mentioned in section 1, large progress
has been made exploiting the existing satellite microwave
observations, but users must be very aware of the limita-
tions of these products. There are also in situ observations,
but for these, the problems are related to the following: (1)
the large mismatch between a point measurement and the
spatially integrated modeled or satellite-derived soil mois-
ture estimate, (2) sampling depth of the point measurement
versus depth integration of the modeled or satellite esti-
mate, and (3) sparse coverage of the in situ soil moisture
network, especially for earlier years such as the period ana-
lyzed here. Techniques to address these shortcoming are
emerging [Miralles et al., 2010; Crow et al., 2012], but
most evaluations are still done as a point-to-point compar-
ison [e.g., Liu et al., 2012; Kolassa et al., 2013; Albergel
et al., 2012]. For instance, the JULES and satellite-predicted
soil moisture have been compared with the 1993–1994 in
situ measurements reported in Prigent et al. [2005]. Notice
that we are comparing a point measurement with a spa-
tially integrated value for the �770 km2 pixel area, and a
10 cm vertically integrated soil moisture (depth of JULES
top layer) with in situ measurements for soil layers ranging
from 5 to 20 cm depending on station. Only stations with
at least two measurements per month were included. Cor-
relations of around 0.5 were found for both estimates, in
line with other reported model comparisons [e.g., Reichle
et al., 2007]. Correlations were slightly larger for JULES
than for the satellite prediction (0.51 and 0.48, respectively),
while JULES and the satellite prediction correlated higher
(0.78) over the same pixels. Notice that 95% of the matches
were over C3 grass pixels, where prediction and modeled
values already agree better than for other classes (see, e.g.,
Figure 3).

[37] Some of the discrepancies found between the satellite
prediction and JULES are relatively large. This necessar-
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ily means that one or both of the estimates, either the
model or the satellite prediction, is clearly different from
the true soil moisture. Our tests modifying either the pre-
dicted soil moisture or the JULES estimates showed that our
methodology can effectively change soil moisture toward
more correct values. It can then be expected that some of
these large differences are the result of the satellite infor-
mation modifying the modeled soil moisture fields toward
more realistic values. In order to gain a further insight,
we then compared our predictions with other reported soil
moisture estimates. For instance, for the areas where we
signaled model-observation discrepancies in section 4.1, we
inspected the GSWP-2 model estimates [Dirmeyer et al.,
2006] and also found large differences between their indi-
vidual models. Guo and Dirmeyer [2006] already reported
similar findings in a detailed comparison of the GSWP-2
soil moisture predictions with ground observations, conclud-
ing that although the models could reasonably reproduce the
phasing of the seasonal cycle and the interannual variation
over the regions examined, the absolute values of soil mois-
ture were poorly simulated by most models. More recently,
Kolassa et al. [2013] investigated the soil moisture predic-
tions from the models ORganizing Carbon and Hydrology
In Dynamic EcosystEms (ORCHIDEE) and Hydrology-
Tiled ECMWF Scheme for Surface Exchange over Land
(HTESSEL). We also compared our results with those pre-
dictions and again observed relatively large differences for
some of the regions mentioned in section 4.1. Therefore, it is
difficult to reach firmer conclusions at present while global
soil moisture estimates at the time and space integrations
discussed here still differ considerably.

[38] In principle, our methodology could be considered
not only as a mean of evaluating land surface models but
also as a way of building a satellite soil moisture data record.
By construction, our satellite-driven soil moisture has some
dependance on the soil moisture fields used to set up the
regression model. This means in practical terms that most of
the a priori information used in the conversion of the obser-
vations into soil moisture estimates comes from the model.
In that sense, model and predicted estimates are consistent;
this should be regarded as a beneficial characteristic for cer-
tain applications (e.g., the model evaluation presented here,
or assimilation of observations into models). When using
external products, the degree of consistency between the
model and the a priori assumptions used to derive the prod-
ucts could have an impact on the evaluation/assimilation
[see, e.g., Reichle et al., 2007]. At present, the typical ill-
posedness of remote inversion problems (i.e., there is not
enough information in the observations to uniquely solve
the inversion problem), accentuated by the limitations in the
observations (not specifically dedicated to soil moisture),
means that existing soil moisture products require some
degree of a priori information. For instance, the merging
of active and passive microwave observations reported in
Liu et al. [2011] uses the absolute soil moisture values of
a specific land surface model to adjust both products to a
common reference. Therefore, comparison of this soil mois-
ture product with other models can potentially be affected
by this internal rescaling in the satellite product. If our
satellite-driven estimates are considered as a soil moisture
product, then the same considerations apply, and the depen-
dance of the estimates on the choice of land surface model

needs to be assessed. In particular, similarity to satellite
predictions derived from regression models set up using a
different land surface model will be a strong indicator that
our methodology effectively integrates the satellite informa-
tion and the modeled fields to produce a more realistic soil
moisture product. Indications of this were already presented
in Jiménez et al. [2009] for a similar methodology applied to
land surface heat fluxes, and this needs to be also confirmed
for our soil moisture predictions.
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