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ALMOST PERIODIC TYPE FUNCTIONS AND DENSITIES

MARKO KOSTIĆ

Abstract. In this paper, we introduce and analyze the notions of �g-almost
periodicity and Stepanov �g-almost periodicity for functions with values in

complex Banach spaces. In order to do that, we use the recently introduced

notions of lower and upper (Banach) g-densities. We also analyze uniformly re-
current functions, generalized almost automorphic functions and apply our re-

sults in the qualitative analysis of solutions of inhomogeneous abstract integro-

differential inclusions. We present plenty of illustrative examples, results of
independent interest, questions and unsolved problems.

1. Introduction and Preliminaries

The concept of almost periodicity was first studied by H. Bohr around 1925 and
later generalized by many other mathematicians (cf. the research monographs by
A. S. Besicovitch [5], H. Bohr [7], A. M. Fink [16], B. M. Levitan [33] and B. M.
Levitan, V. V. Zhikov [34] for the basic introduction to the theory of almost periodic
functions). Almost periodic functions and almost automorphic functions have re-
ceived a great attention recently, primarily from their invaluable importance in the
qualitative analysis of solutions of abstract integro-differential equations in Banach
spaces (cf. also the research monographs by T. Diagana [10], G. M. N’Guérékata
[21]-[22], M. Kostić [29] and S. Zaidman [40]).

In order to better explain the main ideas of this paper, we will first recall the
basic facts about almost periodic functions, uniformly recurrent functions and their
generalizations. Throughout this paper we assume that (E, ‖ · ‖) is a complex Ba-
nach space. By C(I : E), Cb(I : E), C0(I : E) and BUC(I : E) we denote the
vector spaces consisting of all continuous functions f : I → E, all bounded continu-
ous functions f : I → E, all bounded continuous functions f : I → E satisfying that
lim|t|→+∞ ‖f(t)‖ = 0 and all bounded uniformly continuous functions f : I → E,
respectively. As is well known, Cb(I : E), C0(I : E) and BUC(I : E) are Banach
spaces equipped with the sup-norm, denoted by ‖ · ‖∞. Let I = R or I = [0,∞);
unless stated otherwise, we will always assume henceforth that f : I → E is a
continuous function. Given ε > 0, we call τ > 0 an ε-period for f(·) iff

‖f(t+ τ)− f(t)‖ ≤ ε, t ∈ I.
The set constituted of all ε-periods for f(·) is denoted by ϑ(f, ε). It is said that f(·)
is almost periodic iff for each ε > 0 the set ϑ(f, ε) is relatively dense in [0,∞), which
means that there exists l > 0 such that any subinterval of [0,∞) of length l meets
ϑ(f, ε). By AP (I : E) we denote the vector space consisting of all almost periodic
functions from the interval I into E. Equipped with the sup-norm, AP (I : E)
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becomes a Banach space. The function f : I → E is said to be asymptotically
almost periodic iff there exist an almost periodic function h : I → E and a function
φ ∈ C0(I : E) such that f(t) = h(t) + φ(t) for all t ∈ I (the existing literature is
somewhat controversial about the definition of an asymptotically almost periodic
f : R → E; in the case that I = R, we will use here the approach of C. Zhang
from [41]). This is equivalent to saying that, for every ε > 0, we can find numbers
l > 0 and M > 0 such that every subinterval of I of length l contains, at least, one
number τ such that ‖f(t+ τ)− f(t)‖ ≤ ε provided |t|, |t+ τ | ≥M.

Within the theory of topological dynamical systems, the notion of recurrence
plays an important role; for more details, the reader may consult the research
monographs [9] by J. de Vries and [14] by T. Eisner et al. Following A. Haraux and
P. Souplet [25], we say that the function f(·) is uniformly recurrent iff there exists a
strictly increasing sequence (αn) of positive real numbers such that limn→+∞ αn =
+∞ and

lim
n→∞

sup
t∈R

∥∥f(t+ αn)− f(t)
∥∥ = 0.(1.1)

It is well known that any almost periodic function is uniformly recurrent, while the
converse statement is not true in general. Any �g-almost periodic function under
our consideration is uniformly recurrent, so that the class of uniformly recurrent
functions plays a leadership role in our investigation. It is worth noting that the
convergence of the above limit is uniform in the variable t ∈ R, so that the notion of
a uniformly recurrent function should not be mistakenly identified with the notion
of a reccurent function in the continuous Bebutov system [4], where the author
analyzed the usual Fréchet space C(R) and the topology of uniform convergence on
compact sets (cf. also the paper [8] by L. I. Danilov and references cited therein
for further information in this direction).

A function f ∈ Lploc(I : E) is said to be Stepanov p-bounded iff

‖f‖Sp := sup
t∈I

(∫ t+1

t

‖f(s)‖p ds

)1/p

<∞.

Equipped with the above norm, the space LpS(I : E) consisted of all Stepanov p-
bounded functions is a Banach space. A function f ∈ LpS(I : E) is said to be

Stepanov p-almost periodic iff the function f̂ : I → Lp([0, 1] : E), defined by

f̂(t)(s) := f(t+ s), t ∈ I, s ∈ [0, 1](1.2)

is almost periodic. Furthermore, we say that a function f ∈ LpS(I : E) is asymp-
totically Stepanov p-almost periodic iff there exist a Stepanov p-almost periodic
function g ∈ LpS(I : E) and a function q ∈ LpS(I : E) such that f(t) = g(t) + q(t),
t ∈ I and q̂ ∈ C0(I : Lp([0, 1] : E)). It is well known that, if 1 ≤ p ≤ q < ∞ and
f(·) is (asymptotically) Stepanov q-almost periodic, then f(·) is (asymptotically)
Stepanov p-almost periodic. It is said that f(·) is (asymptotically) Stepanov almost
periodic iff f(·) is (asymptotically) Stepanov 1-almost periodic.

After recalling these definitions, we can proceed further with the description of
the main ideas and aims of this paper. Albeit the definitions of an almost periodic
function and a uniformly recurrent function are quite easy and understandable,
the class consisting of all almost periodic functions and the class consisting of all
uniformly recurrent functions are sometimes very unpleasant and difficult to deal
with. For example, already H. Bohr has marked in his pioneering papers that it
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is not so satisfactory to introduce the concept of almost periodicity by requiring
that for each number ε > 0 the set ϑ(f, ε) is unbounded (see e.g., [7]). A bounded
uniformly continuous function f : I → R satisfying this property need not be almost
periodic, its Bohr-Fourier coefficients cannot be defined in general, and moreover,
if two bounded uniformly continuous functions f : I → R and g : I → R satisfy
this property, then its sum f + g : I → R need not satisfy this property (see [6,
part I, pp. 117-118]). Furthermore, saying that for each number ε > 0 the set
ϑ(f, ε) is unbounded is equivalent to saying that f(·) is uniformly recurrent; hence,
the sum of two bounded uniformly continuous uniformly recurrent functions is not
uniformly recurrent, in general. Taking into account Proposition 2.19 below, we get
that the sum of two bounded uniformly continuous �g-almost periodic functions is
not �g-almost periodic, in general. This example can be also used for proving the
fact that the pointwise product of two bounded uniformly continuous, uniformly
recurrent (�g-almost periodic) functions is not uniformly recurrent (�g-periodic),
in general.

The above observation of H. Bohr has motivated us to further analyze some very
specific examples of generalized almost periodic functions in more detail here (see
[2] for a non-updated list of unsolved problems in the theory). First of all, we recall
that B. Basit and H. Güenzler have constructed, in [3, Example 3.2], a bounded

continuous function f : R → R such that its first antiderivative t 7→
∫ t

0
f(s) ds,

t ∈ R is almost periodic, while the function f(·) itself is not uniformly continuous,
not Stepanov almost periodic, not almost automorphic as well as

sup
t∈[−2,0]

|f(t+ τ)− f(t)| ≥ 1 for all τ ≥ 2.(1.3)

The construction concretely goes as follows. Define a continuous 2n+1-periodic
function fn : R → R by fn(t) := sin(2nπt) for t ∈ [2n − 1, 2n], fn(t) := 0 for
t ∈ [−2n, 2n − 1), and extend it 2n+1-periodically to the whole real axis. Then
supp(fn) = [2n− 1, 2n] + 2n+1Z, which simply implies that supp(fn) and supp(fm)
are disjunct sets for each integers n, m ∈ N with n 6= m. Therefore, the function
f(x) :=

∑∞
n=1 fn(x), x ∈ R is well-defined. This function satisfies all above prop-

erties, and we will provide a small contribution here by proving that the set ϑ(f, ε)
is empty for each number ε ∈ (0, 1) :

4. Suppose that τ ∈ ϑ(f, ε). Due to (1.3), we have τ ∈ (0, 2) so that there
exist two possibilities: τ ∈ (0, 1) or τ ∈ [1, 2). In the first case, there exists
a sufficiently large number n ∈ N such that (2n+1)− (2n−1+2−n−1) > τ.
Let t = 2n − 1 + 2−n−1; then t + τ ∈ (2n, 2n + 1) and therefore f(t) = 1
while f(t + τ) = 0 so that |f(t + τ) − f(t)| = 1 > ε. In the second case,
there exists a sufficiently large number n ∈ N such that τ > 2−n−1. In this
case, take t = 2n−2−n−1; then t+ τ ∈ (2n, 2n+1) and therefore f(t) = −1
while f(t+ τ) = 0 so that |f(t+ τ)− f(t)| = 1 > ε.

Basically, the functions f(·) satisfying that there exists a number ε ∈ (0, 1)
such that the set ϑ(f, ε) is bounded will not occupy our attention henceforth. In
connection with the above example, we would like to propose the following question:

Question 1.1. Suppose that f : I → E is a bounded, continuous and Stepanov
almost periodic. Is it true that ϑ(f, ε) 6= ∅ (ϑ(f, ε) is unbounded) for all ε > 0?
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More concretely, assume that α, β ∈ R and αβ−1 is a well defined irrational
number. Then we know that the functions

m(t) := sin

(
1

2 + cosαt+ cosβt

)
, t ∈ R

and

n(t) := cos

(
1

2 + cosαt+ cosβt

)
, t ∈ R

are bounded, continuous and Stepanov p-almost periodic for any finite exponent
p ≥ 1 as well as that any of them is not almost periodic since it is not uniformly
continuous (see e.g., [29]). Is it true that ϑ(m, ε) 6= ∅ (ϑ(m, ε) is unbounded)
[ϑ(n, ε) 6= ∅ (ϑ(n, ε) is unbounded)] for all ε > 0?

We continue by observing that A. Haraux and P. Souplet have proved, in [25,
Theorem 1.1], that there exists a function f : R→ R which is uniformly continuous,
uniformly recurrent and unbounded. The function f : R→ R is given by

f(t) :=

∞∑
n=1

1

n
sin2

( t

2n

)
dt, t ∈ R(1.4)

and it is closely connected with the small divisors problem. From the argumentation
given in the proof of the above-mentioned theorem, it immediately follows that
the function f(·) given by (1.4) is neither Besicovitch almost periodic [29] nor
asymptotically Stepanov almost automorphic (see Subsection 1.1 for the notion
used here as well as in the formulations of Theorem 1.2-Theorem 1.5 and Theorem
1.7). The reason for that is quite simple, this function is even and enjoys the
property that

lim sup
t→+∞

1

2t

∫ t

−t
f(s) ds = +∞.

Since the concepts of H. Weyl and A. S. Besicovitch suggest very general ways of
approaching almost automorphicity ([29]), it is logical to ask whether the function
f(·) is Weyl almost automorphic. In this paper, we will prove the following result:

Theorem 1.2. The function f(·), given by (1.4), is Weyl p-almost automorphic
for any finite exponent p ≥ 1 and satisfies that for each number τ ∈ R the function
f(·+ τ)− f(·) belongs to the space ANP (R : C).

Concerning this contribution, it is worth noting that the unbounded functions
f : R→ R such that for each number τ ∈ R the function f(·+ τ)− f(·) belongs to
the space AP (R : C) have been analyzed by A. M. Samoilenko and S. I. Trofimchuk
in [36] (let us recall that the bounded functions satisfying this condition are always
almost periodic due to the famous Loomis theorem). Let us also note that the
function f(·), given by (1.4), has been employed by H. Y. Zhao and M. Fečkan
in [42], for proving the fact that for each finite real numbers M, L > 0 the set
consisting of all almost periodic functions h : R → R such that |h(t)| ≤ M, t ∈ R
and |h(t1)− h(t2)| ≤ L|t1 − t2|, t1, t2 ∈ R is not precompact in C(R).

Further on, in [25, Theorem 1.2], A. Haraux and P. Souplet have proved that
for each real number c > 0 the function h(·) = min(c, f(·)), where f(·) is given by
(1.4), is bounded uniformly continuous, uniformly recurrent and not asymptotically
almost periodic. Since the function h(·) is uniformly continuous, Lemma 1.11(ii)
below implies that h(·) is asymptotically Stepanov p-almost automorphic (p ≥ 1)
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iff h(·) is asymptotically almost automorphic. But, this is actually not the case
because [25, Lemma 2.1] can be improved in the following manner:

Lemma 1.3. Let ω : R → [0,∞) be Lipschitz continuous and such that the set
ω([0,+∞)) is unbounded. Define, for each finite number c > lim inft→+∞ ω(t), the
function ω1 : R → [0,∞) by ω1(t) := min(c, ω(t)), t ∈ R. Then the restriction of
function ω1(·) to the non-negative real axis is not asymptotically almost automor-
phic.

The proof of Lemma 1.3 is almost the same as that of [25, Lemma 2.1]. The
only thing worth noticing is that the existence of an almost automorphic function
ω∗1(·) such that limt→+∞ |ω1(t) − ω∗1(t)| = 0 implies, as in the proof of the above-
mentioned lemma, that ω∗1 ≡ c; this follows by using the same arguments, almost
directly from definition of almost automorphicity (we do not need the fact that the
limits in the second part of proof are uniform on R).

We will extend [25, Theorem 1.2] in the following way:

Theorem 1.4. Let the function f(·) be given by (1.4), and let c > 0. Then the
function h(t) := min(c, f(t)), t ∈ R is bounded uniformly continuous, uniformly
recurrent, not asymptotically (Stepanov) almost automorphic, and not (Stepanov)
quasi-asymptotically almost periodic.

Concerning this contribution, we have made a decision to further analyze the
function constructed by H. Bohr on pp. 113–115 of the first part of his landmark
trilogy [6]. In actual fact, the results obtained by A. M. Fink in his doctoral
dissertation [18] tell us that this function is uniformly continuous (nonexpansive,
in fact), uniformly recurrent and not almost periodic. The construction of this
function goes as follows. Let τ1 := 1, τ2 > 2 and let the sequence (τn)n∈N of

positive real numbers satisfy τn > 2
∑n−1
i=1 iτi for all n ∈ N. Let the sequence

(fn : R → R)n∈N be defined as follows. Set f1(x) := 1 − |x| for |x| ≤ 1 and
f1(x) := 0, otherwise. If the functions f1(·), · · ·, fn−1(·) are already defined, set

fn(x) := fn−1(x) +

n−1∑
m=1

n−m
n

[
fn−1

(
x−mτn

)
+ fn−1

(
x+mτn

)]
, x ∈ R.

Then ∣∣fn(x+ τn)− fn(x)
∣∣ ≤ 1

n
, n ∈ N, x ∈ R,

and the function

f(x) := lim
n→+∞

fn(x), x ∈ R(1.5)

is well defined, even and satisfies that 0 ≤ f(x) ≤ 1 for all x ∈ R. It is worth
observing that this function also satisfies all clarified properties of function h(·)
from Theorem 1.4:

Theorem 1.5. The function f : R→ R, given by (1.5), is bounded uniformly con-
tinuous, uniformly recurrent, not asymptotically (Stepanov) almost automorphic,
and not (Stepanov) quasi-asymptotically almost periodic.

In Example 2.25, we will show that, for some concrete choices of sequences
(τn)n∈N, the function f : R → R, given by (1.5), is Weyl p-almost automorphic
for each finite exponent p ≥ 1. Since any Stepanov p-quasi-asymptotically almost
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periodic function is Weyl-p-almost periodic (p ≥ 1) in the sense of A. S. Kovanko’s
approach (see [32, Proposition 2.11]), it is quite reasonable to ask the following:

Question 1.6. Is it true that the function f(·), given by (1.5), is (equi-)Weyl-p-
almost periodic for some (each) finite exponent p ≥ 1?

We would like to note that the function used by J. de Vries in [9, point 6.,
p. 208] can serve as a much simpler example of a bounded uniformly continuous
function f : R → R satisfying all clarified properties of functions examined in
Theorem 1.4 and Theorem 1.5: Let (pi)i∈N be a strictly increasing sequence of
natural numbers such that pi|pi+1, i ∈ N and limi→∞ pi/pi+1 = 0. Define the
function fi : [−pi, pi] → [0, 1] by fi(t) := |t|/pi, t ∈ [−pi, pi] and extend the
function fi(·) periodically to the whole real axis; the obtained function, denoted by
the same symbol fi(·), is of period 2pi (i ∈ N). Set

f(t) := sup
{
fi(t) : i ∈ N

}
, t ∈ R.(1.6)

We will prove the following:

Theorem 1.7. The function f : R→ R, given by (1.6), is bounded uniformly con-
tinuous, uniformly recurrent, not asymptotically (Stepanov) almost automorphic,
and not (Stepanov) quasi-asymptotically almost periodic.

We proceed with much elementary things, by considering a general continuous
function f : I → E. Suppose first that there exists a number ε > 0 such that
ϑ(f, ε) 6= ∅, say τ ∈ ϑ(f, ε). SettingM := supt∈I,|t|≤τ ‖f(t)‖, it can be simply proved

by induction that we have ‖f(t)‖ ≤ M + nε for all t ∈ I with |t| ∈ [nτ, (n + 1)τ ]
(n ∈ N). Hence, ‖f(t)‖ ≤M + |t|ε/τ for all t ∈ I with |t| ∈ [nτ, (n+ 1)τ ] (n ∈ N),
so that

‖f(t)‖ ≤M + |t|ε/τ, t ∈ R(1.7)

and the function f(·) is linearly bounded as |t| → +∞. Further on, it is clear that
the assumption ϑ(f, ε) 6= ∅ for each ε > 0 implies that ϑ(f, ε) is infinite for each
ε > 0 as well as that there does not exist a finite constant M such that the interval
[0,M ] contains the union of sets ϑ(f, ε) when ε > 0; this is a simple consequence of
the fact that for each ε > 0 we have jϑ(f, ε/n) ⊆ ϑ(f, ε) for all j = 1, · · ·, n. Let us
observe that a linear function f : I → C can serve as an example of a function for
which the growth order in (1.7) cannot be improved and for which the assumption
ϑ(f, ε) 6= ∅ for each ε > 0 does not imply the existence of a number ε0 > 0 such
that the set ϑ(f, ε0) is unbounded.

To the best of our knowledge, this is the first systematic study of vector-valued
uniformly recurrent functions. In this paper, we attempt to further profile the sets
of ε-periods of uniformly recurrent functions by introducing the class of �g-almost
periodic functions, which is simply defined by using the notions of lower and upper
(Banach) densities for the subsets of the non-negative real axis (we feel it is our duty
to say that we have only partially succeeded in our mission because it is very difficult
to practically control and give intrinsic characterizations of ε-periods). The lower
and upper (Banach) mn-densities for the subsets of N, considered recently in [31],
are discrete analogues of the lower and upper (Banach) g-densities considered in
this paper. In the discrete setting, these densities play an important role in the field
of linear chaos, for example, in definitions of frequent hypercyclicity and reiterative
mn-distributional chaos of linear continuous operators on Fréchet spaces. In the
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continuous setting, these densities play an important role in the qualitative analysis
of solutions to the abstract (fractional) integro-differential equations in Fréchet
spaces; see e.g., the recent research monograph [30] by the author and references
cited therein for a brief introduction to the theory of linear chaos. We generalize the
notion of almost periodicity by analyzing several different types of (Stepanov) �g-
almost periodicity for functions with values in complex Banach spaces. Speaking-
matter-of-factly, we analyze the lower and upper (Banach) g-densities of sets ϑ(f, ε),
where ε > 0 and g : [0,∞) → [1,∞) is an increasing mapping satisfying the
condition (1.11) below.

The organization of paper can be briefly described as follows. In Subsection 1.1,
we recall the basic facts and results about generalized almost periodic functions and
generalized almost automorphic functions that we will need later on. Subsection
1.2 investigates the lower and upper (Banach) g-densities for the subsets of the non-
negative real line; in this subsection, we present our first significant contributions,
Theorem 1.14 and Theorem 1.15, in which we transfer the main result of paper [20]
by G. Grekos, V. Toma and J. Tomanová to the continuous setting and reconsider
the notion and several recent results from [31].

In Section 2, we analyze �g-almost periodic functions, uniformly recurrent func-
tions and their Stepanov generalizations. With the notation explained below, we
say that a continuous function f : I → E is �g-almost periodic iff for each ε > 0 we
have �g(ϑ(f, ε)) > 0; see Definition 2.1, in which the symbol �g denotes exactly one

of the densities dgc, dgc, Bdl;gc, Bdu;gc, Bdl;gc or Bdu;gc. In the paragraph following
Definition 2.1, we collect the basic properties of �g-almost periodic functions and
uniformly recurrent functions. The main purpose of Proposition 2.2 is to clarify the
supremum formula for uniformly recurrent functions; in Proposition 2.3, we prove
that any almost periodic function f : I → E is �g-almost periodic. All introduced
concepts are equivalent in case g(x) ≡ x, and reduced then to the concept of almost
periodicity (Proposition 2.4). After that, in Proposition 2.5, we prove that the al-
most periodicity is equivalent with the Bdl;gc-almost periodicity and Bdu;gc-almost
periodicity for every increasing mapping g(·) satisfying the condition (1.11).

Definition 2.9 introduces the notions of asymptotical uniform recurrence and
asymptotical �g-almost periodicity, while Proposition 2.10 restates all results from
Section 2 proved by then in this context. We introduce the notion of (asymptotical)
Stepanov p-uniform recurrence and (asymptotical) Stepanov (p,�g)-almost period-
icity in Definition 2.11. The main purpose of Theorem 2.13 is to show that any
asymptotically uniform recurrent, quasi-asymptotically almost periodic function is
asymptotically almost periodic; the Stepanov analogue of this statement is also
considered here. Proposition 2.15 shows that the uniform recurrence and asymp-
totical almost automorphicity (asymptotical almost periodicity) implies almost au-
tomorphicity (almost periodicity), for the usually considered classes and Stepanov
classes. Further on, in Theorem 2.16 and Proposition 2.17, we prove that any
uniformly continuous (asymptotically) Stepanov p-uniformly recurrent [(asymptot-
ically) Stepanov (p,�g)-almost periodic/Stepanov p-quasi-asymptotically almost
periodic] function f : I → E is asymptotically uniformly recurrent [asymptotically
�g-almost periodic, quasi-asymptotically almost periodic].

Proposition 2.19 clarifies an interesting result which shows that for any (asymp-
totically) uniformly continuous, uniformly recurrent function we can find an increas-
ing mapping g : [0,∞)→ [1,∞) such that (1.11) holds and f(·) is (asymptotically)
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·g-almost periodic for ·g ∈ {dgc, dgc} (see also Remark 2.20, where we use the

densities Bdl:gc(·) and Bdu:gc(·)). In Example 2.23, we prove that the compactly
almost automorphic function constructed by A. M. Fink in [17] is not asymptoti-
cally uniformly recurrent; the proofs of Theorem 1.2, Theorem 1.4, Therorem 1.5
and Theorem 1.7 are provided after that.

The main aim of Section 3, which is written in a concise, semi-heuristical man-
ner, is to investigate the existence and uniqueness of uniformly recurrent and �g-
almost periodic type solutions of abstract integro-differential equations in Banach
spaces; in this section, we pay special attention to the invariance of (asymptotical)
uniform recurrence and (asymptotical) �g-almost periodicity under the actions of
convolution products. For simplicity, we will not consider two-parameter uniformly
recurrent (�g-almost periodic) functions, composition principles and applications
to abstract semilinear integro-differential equations.

We use the standard notation throughout the paper. If X is also a complex
Banach space, then L(E,X) stands for the space of all continuous linear mappings
from E into X; L(E) ≡ L(E,E). Given s ∈ R in advance, set bsc := sup{l ∈ Z :
s ≥ l} and dse := inf{l ∈ Z : s ≤ l}. The function sign : R → {−1, 0, 1} is defined
by sign(t) := −1 (0, 1) iff t < 0 (t = 0, t > 0); if c ∈ R and A ⊆ R, then we define
cA := {ca : a ∈ A}. If ψ : R → C and f : R → E are measurable functions, the
convolution product ψ∗f is defined by ψ∗f(t) :=

∫∞
−∞ ψ(t−s)f(s) ds, t ∈ R, if this

integral exists in the Bochner sense. Let us recall that a function f : (0,∞) → R
is called subadditive iff f(x + y) ≤ f(x) + f(y), x, y > 0. A continuous version of
Fekete’s lemma states that, for every measurable subadditive function f : (0,∞)→
R, the limit limt→+∞

f(t)
t exists in [−∞,∞) and limt→+∞

f(t)
t = inft>0

f(t)
t (see

e.g., [27, Theorem 6.6.1]). We will use the following simple lemma:

Lemma 1.8. There do not exist k ∈ N and n0 ∈ N such that

sign
(

cos
(
(n+ k)π

√
2
))

= sign
(

cos
(
nπ
√

2
))
, n ∈ Z, |n| ≥ n0.(1.8)

Proof. Since cos(nπ
√

2) 6= 0 for all n ∈ Z, it is clear that (1.8) is equivalent to

saying that cos((n+k)π
√

2) · cos(nπ
√

2) > 0, n ∈ Z, |n| ≥ n0. If k ∈ N satisfies the

above condition and kπ
√

2 = 2k0π + a for some numbers k0 ∈ Z and a ∈ (0, 2π),

then we get from the above: cos(nπ
√

2 + a) · cos(nπ
√

2) > 0, n ∈ Z, |n| ≥ n0. This

cannot be satisfied because the set {einπ
√

2 : n ∈ Z, |n| ≥ n0} is dense in the unit
sphere and cosx = <(eix), x ∈ R. �

1.1. Almost periodic functions, almost automorphic functions and their
generalizations. Let f ∈ AP (I : E). Then the Bohr-Fourier coeffcient Pr(f) :=

limt→∞
1
t

∫ t
0
e−irsf(s) ds exists for all r ∈ R; furthermore, if Pr(f) = 0 for all r ∈ R,

then f(t) = 0 for all t ∈ R, and σ(f) := {r ∈ R : Pr(f) 6= 0} is at most countable.
By AP (Λ : E), where Λ is a non-empty subset of R, we denote the vector subspace
of AP (I : E) consisting of all functions f ∈ AP (I : E) for which the inclusion
σ(f) ⊆ Λ holds good. It can be easily seen that AP (Λ : E) is a closed subspace of
AP (I : E) and therefore Banach space itself.

Let us recall that f(·) is anti-periodic iff there exists p > 0 such that f(x+ p) =
−f(x), x ∈ I. Any such function needs to be periodic, as it can be easily proved.
Given ε > 0, we call τ > 0 an ε-antiperiod for f(·) iff ‖f(t+ τ) + f(t)‖ ≤ ε, t ∈ I.
By ϑap(f, ε) we denote the set of all ε-antiperiods for f(·). It is said that f(·) is
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almost anti-periodic iff for each ε > 0 the set ϑap(f, ε) is relatively dense in [0,∞)
(see [29] for more details). We know that any anti-periodic function needs to be
almost anti-periodic as well as that any almost anti-periodic function needs to be
almost periodic. Denote by ANP0(I : E) the linear span of almost anti-periodic
functions from I into E. Then ANP0(I : E) is a linear subspace of AP (I : E) and
the linear closure of ANP0(I : E) in AP (I : E), denoted by ANP (I : E), satisfies

ANP (I : E) = APR\{0}(I : E).(1.9)

The (Stepanov) quasi-asymptotically almost periodic functions have been re-
cently analyzed in [32]. For our further work, it will be necessary to recall the
following definition:

Definition 1.9. Suppose that I = [0,∞) or I = R.
(i) A bounded continuous function f : I → E is said to be quasi-asymptotically

almost periodic iff for each ε > 0 there exists a finite number L(ε) > 0 such
that any interval I ′ ⊆ I of length L(ε) contains at least one number τ ∈ I ′
satisfying that there exists a finite number M(ε, τ) > 0 such that

‖f(t+ τ)− f(t)‖ ≤ ε, provided t ∈ I and |t| ≥M(ε, τ).

Denote by Q − AAP (I : E) the set consisting of all quasi-asymptotically
almost periodic functions from I into E.

(ii) Let f ∈ LpS(I : E). Then it is said f(·) is Stepanov p-quasi-asymptotically
almost periodic iff for each ε > 0 there exists a finite number L(ε) > 0 such
that any interval I ′ ⊆ I of length L(ε) contains at least one number τ ∈ I ′
satisfying that there exists a finite number M(ε, τ) > 0 such that∫ t+1

t

‖f(s+ τ)− f(s)‖p ds ≤ εp, provided t ∈ I and |t| ≥M(ε, τ).

Denote by SpQ − AAP (I : E) the set consisting of all Stepanov p-quasi-
asymptotically almost periodic functions from I into E.

Let us recall that that for each number p ∈ [1,∞) we have that Q − AAP (I :
E) ⊆ SpQ − AAP (I : E) as well as that any asymptotically Stepanov p-almost
periodic function is Stepanov p-quasi-asymptotically almost periodic. Furthermore,
if 1 ≤ p ≤ q < ∞, then SqQ − AAP (I : E) ⊆ SpQ − AAP (I : E) and for any
function f ∈ LpS(I : E), we have that f(·) is Stepanov p-quasi-asymptotically

almost periodic iff the function f̂ : I → Lp([0, 1] : E), defined by (1.2), is quasi-
asymptotically almost periodic. It is said that f(·) is Stepanov quasi-asymptotically
almost periodic iff f(·) is Stepanov 1-quasi-asymptotically almost periodic. Any
asymptotically almost periodic function f : I → E is quasi-asymptotically almost
periodic.

Let us also recall the notion of an (equi-)Weyl-p-almost periodic function (cf.
[29, Section 2.3] for more details).

Definition 1.10. Let 1 ≤ p <∞ and f ∈ Lploc(I : E).

(i) We say that the function f(·) is equi-Weyl-p-almost periodic, f ∈ e−W p
ap(I :

E) for short, iff for each ε > 0 we can find two real numbers l > 0 and L > 0
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such that any interval I ′ ⊆ I of length L contains a point τ ∈ I ′ such that

sup
x∈I

[
1

l

∫ x+l

x

∥∥f(t+ τ)− f(t)
∥∥p dt]1/p

≤ ε.

(ii) We say that the function f(·) is Weyl-p-almost periodic, f ∈ W p
ap(I : E)

for short, iff for each ε > 0 we can find a real number L > 0 such that any
interval I ′ ⊆ I of length L contains a point τ ∈ I ′ such that

lim
l→∞

sup
x∈I

[
1

l

∫ x+l

x

∥∥f(t+ τ)− f(t)
∥∥p dt]1/p

≤ ε.

Before recollecting the material about almost automorphic type functions, let
us recall that PAP0(R : E) stands for the space consisting of all pseudo-ergodic
components, i.e., bounded continuous functions Φ : R→ E such that

lim
l→∞

1

2l

∫ l

−l
‖Φ(s)‖ ds = 0.

For simplicity, we will mostly use the usual ergodic components henceforth.
Let f : R → E be continuous. Then it is said that f(·) is almost automorphic

iff for every real sequence (bn) there exist a subsequence (an) of (bn) and a map
g : R→ E such that

lim
n→∞

f
(
t+ an

)
= g(t) and lim

n→∞
g
(
t− an

)
= f(t),(1.10)

pointwise for t ∈ R. If the convergence of limits appearing in (1.10) is uniform
on compact subsets of R, then we say that f(·) is compactly almost automorphic.
It is worth noting that an almost automorphic function f(·) is compactly almost
automorphic iff it is uniformly continuous as well as that an almost automorphic
function is always bounded.

Let p ∈ [1,∞). A function f ∈ Lploc(R : E) is called Stepanov p-almost automor-
phic (see e.g., G. M. N’Guérékata and A. Pankov [23]) iff for every real sequence
(an), there exist a subsequence (ank

) and a function g ∈ Lploc(R : E) such that

lim
k→∞

∫ t+1

t

∥∥∥f(ank
+ s
)
− g(s)

∥∥∥p ds = 0 and lim
k→∞

∫ t+1

t

∥∥∥g(s− ank

)
− f(s)

∥∥∥p ds = 0

for each t ∈ R; a function f ∈ Lploc(I : E) is called asymptotically Stepanov p-almost
automorphic iff there exists an Sp-almost automorphic function g(·) and a function
q ∈ LpS(I : E) such that f(t) = g(t) + q(t), t ∈ I and q̂ ∈ C0(I : Lp([0, 1] : E))
(see also the paper [13] by H.-S. Ding and S.-M. Wan for the case that I = R).
Any Stepanov p-almost automorphic function f(·) has to be Stepanov p-bounded.
Furthermore, if 1 ≤ p ≤ q <∞ and a function f(·) is (asymptotically) Stepanov q-
almost automorphic, then f(·) is (asymptotically) Stepanov p-almost automorphic.
We say that a function f(·) is (asymptotically) Stepanov almost automorphic iff
f(·) is f(·) is (asymptotically) Stepanov 1-almost automorphic. Let us recall that
any uniformly continuous Stepanov almost periodic (automorphic) function f(·) is
almost periodic (automorphic); see [11, Theorem 3.3].

The following lemma can be deduced by using an elementary argumentation
involving [28, Proposition 3.1], the above-mentioned theorem (cf. also [26, Lemma
1]) and a simple observation that any uniformly continuous function q ∈ C0(I :
Lp([0, 1] : E)) belongs to the space C0(I : E) :
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Lemma 1.11. Let f : I → E be uniformly continuous and p ∈ [1,∞).

(i) If f(·) is asymptotically Stepanov p-almost periodic, then f(·) is asymptot-
ically almost periodic.

(ii) If f(·) is asymptotically Stepanov p-almost automorphic, then f(·) is asymp-
totically almost automorphic.

We also need the following important definition.

Definition 1.12. (S. Abbas, [1]) Let p ∈ [1,∞). Then we say that a function
f ∈ Lploc(R : E) is Weyl p-almost automorphic iff for every real sequence (sn), there
exist a subsequence (snk

) and a function f∗ ∈ Lploc(R : E) such that

lim
k→+∞

lim
l→+∞

1

2l

∫ l

−l

∥∥∥f(t+ snk
+ x
)
− f∗(t+ x)

∥∥∥p dx = 0

and

lim
k→+∞

lim
l→+∞

1

2l

∫ l

−l

∥∥∥f∗(t− snk
+ x
)
− f(t+ x)

∥∥∥p dx = 0

for each t ∈ R.

Before we switch to the next subsection, we would like to observe that the Weyl p-
almost automorphicity does not imply the Besicovitch p-unboundedness, in general
(see e.g., [29, Definition 3.1.2] and [29, Definition 3.1.4] for the notion); a simple

counterexample with p = 1 is given by the function h(x) :=
√
|x|, x ∈ R, which is

Weyl (1-)almost automorphic with the limit function h∗ ≡ h. This simply follows
from the fact that for each numbers t, ω ∈ R we have

lim
l→+∞

1

2l

∫ l

−l
|h(t+ x+ ω)− h(t+ x)| dx = 0.

1.2. Lower and upper (Banach) g-densities. Unless stated otherwise, in this
paper we will always assume that g : [0,∞) → [1,∞) is an increasing mapping
satisfying that there exists a finite number L ≥ 1 such that

x ≤ Lg(x), x ≥ 0,(1.11)

which clearly implies lim infx→+∞ g(x)/x > 0. If A ⊆ [0,∞) and a, b ≥ 0, then we
define A(a, b) := {x ∈ A ; x ∈ [a, b]}.

For simplicity and better exposition, in this paper we will use the Lebesgue
measure m(·) on the non-negative real line, only. The use of Lebesgue measure
is sufficiently enough for our analyses of uniformly continuous �g-almost periodic
functions; we feel it is our duty to say that the general case is much more compli-
cated and almost not considered below.

Let us define (cf. [30]-[31] for more details):

(i) The lower g-density of A, denoted in short by dgc(A), as follows

dgc(A) := lim inf
x→+∞

m(A(0, g(x)))

x
;

(ii) the upper g-density of A, denoted in short by dgc(A), as follows

dgc(A) := lim sup
x→+∞

m(A(0, g(x)))

x
,

as well as:
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(i) the lower l; gc-Banach density of A, denoted in short by Bdl;gc(A), as follows

Bdl;gc(A) := lim inf
x→+∞

lim inf
y→+∞

m(A(y, y + g(x)))

x
;

(ii) the lower u; gc-Banach density of A, denoted in short by Bdu;gc(A), as
follows

Bdu;gc(A) := lim sup
x→+∞

lim inf
y→+∞

m(A(y, y + g(x)))

x
;

(iii) the (upper) l; gc-Banach density of A, denoted in short by Bdl;gc(A), as
follows

Bdl;gc(A) := lim inf
x→+∞

lim sup
y→+∞

m(A(y, y + g(x)))

x
;

(iv) the (upper) u; fc-Banach density of A, denoted in short by Bdu;gc(A), as
follows

Bdu;gc(A) := lim sup
x→+∞

lim sup
y→+∞

m(A(y, y + g(x)))

x
.

Remark 1.13. It is worth noting that, for every set A ⊆ [0,∞), we have

lim inf
x→+∞

lim sup
y→+∞

m([I \A](y, y + g(x)))

x

= lim inf
x→+∞

lim sup
y→+∞

[
g(x)−m(A(y, y + g(x)))

x

]

= lim inf
x→+∞

[
g(x)

x
− lim inf

y→+∞

m(A(y, y + g(x)))

x

]
.(1.12)

Similarly,

lim sup
x→+∞

lim sup
y→+∞

m([I \A](y, y + g(x)))

x

= lim sup
x→+∞

[
g(x)

x
− lim inf

y→+∞

m(A(y, y + g(x)))

x

]
,(1.13)

lim inf
x→+∞

m([I \A](0, g(x)))

x
= lim inf

x→+∞

[
g(x)

x
− lim sup

x→+∞

m(A(0, g(x)))

x

]
(1.14)

and

lim sup
x→+∞

m([I \A](0, g(x)))

x
= lim sup

x→+∞

[
g(x)

x
− lim inf
x→+∞

m(A(0, g(x)))

x

]
.(1.15)

Case g(x) := (1 + |x|)q, x ≥ 0 is the most important (q ≥ 1), when we denote
the corresponding densities by dqc(A), dqc(A), Bdl;qc(A), Bdu;qc(A), Bdl;qc(A) and
Bdl;qc(A). Arguing similarly as in [31, Example 2.1(i)], for each number q > 1 we

can simply construct a set A ⊆ [0,∞) such that Bdl;qc(A) = 0 and Bdu;qc(A) =
+∞; using the construction given in [31, Example 2.1(ii)], for each number q > 1 we
can simply construct a set A ⊆ [0,∞) such that dqc(A) = +∞ and Bdu;qc(A) = 0
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so that the case q > 1 is not standard. Further on, if q = 1, then we get the usual
concepts of lower and upper Banach densities: in this case, we have the following

Theorem 1.14. Let A ⊆ [0,∞). Then we have

Bdl;1c(A) = Bdu;1c(A)

= sup
x>0

lim inf
y→+∞

m(A(y, y + x))

x
= sup

x>0
inf
y≥0

m(A(y, y + x))

x
:= Bdc(A)(1.16)

and

Bdl;1c(A) = Bdu;1c(A)

= inf
x>0

lim sup
y→+∞

m(A(y, y + x))

x
= inf
x>0

sup
y≥0

m(A(y, y + x))

x
:= Bdc(A).(1.17)

Proof. Using the continuous version of Fekete’s lemma, for the proof of first equality
in (1.17) it suffices to show that the function

F (x) := lim sup
y→+∞

m(A(y, y + x)), x > 0

is subadditive, i.e., that for each fixed real numbers x1, x2 > 0 we have

lim
t→+∞

sup
t≥y

m
(
A(t, t+x1+x2)

)
≤ lim
t→+∞

sup
t≥y

m
(
A(t, t+x1)

)
+ lim
t→+∞

sup
t≥y

m
(
A(t, t+x2)

)
.

This follows immediately if we prove that for each real number y ≥ 0 we have

m
(
A(t, t+ x1 + x2)

)
≤ sup

t≥y
m
(
A(t, t+ x1)

)
+ sup

t≥y
m
(
A(t, t+ x2)

)
.

But, this is a simple consequence of the fact that for each real number y ≥ 0 we
have t+ x1 ≥ y and

m
(
A(t, t+ x1 + x2)

)
≤ m

(
A(t, t+ x1)

)
+m

(
A(t+ x1, t+ x1 + x2)

)
;

see also P. Ribenboim’s paper [35]. Since

lim sup
y→+∞

m(A(y, y + x))

x
≤ sup

y≥0

m(A(y, y + x))

x
≤ lim inf

x→+∞
sup
y≥0

m(A(y, y + x))

x
,

for the proof of (1.17) it remains to be shown that

lim inf
x→+∞

sup
y≥0

m(A(y, y + x))

x
≤ Bdu;1c(A).(1.18)

For this, we will slightly adapt the arguments proposed in the proof of discrete
version of this statement, given in [20]. Define

D =
{
x ∈ [0, 1] : ∀L > 0 ∃interval I ′ ⊆ [0,∞) s.t. m(I ′) ≥ L and m(A ∩ I ′)/m(I ′) ≥ x

}
.

Repeating literally the arguments given in [20, Subsection 2.1], we obtain that

lim infx→+∞ supy≥0
m(A(y,y+x))

x ≤ b := supD. The proof of (1.17) will be completed
if one shows that b ≤ infx>0(lim supy→+∞m(A(y, y+x))/x). Suppose the contrary.
Then there are a positive real number x0 > 0 and two real numbers x1, x2 ∈ [0, 1]
such that x1 < x2 < b and

lim sup
y→+∞

m(A(y, y + x0)) < x0x1.

By definition of lim supy→+∞ ·, this implies that there exists a positive real number
y0 > 0 such that m(A(y, y + x0)) < x0x1 for all y ≥ y0. We will prove that there
exists a sufficiently large number L > 0 such that every subinterval I ′ ⊆ I with
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m(I ′) ≥ L satisfies m(A ∩ I ′) < x2m(I ′), showing that x2 /∈ D and implying the
contradiction. To see this, suppose that I ′ = [y, y + h] for some h > 0. Then there
exists q ∈ N0 such that qx0 ≤ h < (q + 1)x0 and therefore

m(A(y, y + h)) ≤ y0 +m
(
A(y0, y + h)

)
≤ y0 +

q∑
j=0

m
(
A(y0 + jx0, y0 + (j + 1)x0)

)
≤ y0 + (q + 1)x0x1 ≤ y0 + x0x1 + qx0x1 < y0 + x0x1 + hx1 < hx2,

for any h > 0 sufficiently large. The proof of (1.18) follows from (1.12)-(1.13) and
(1.17), which also shows that for each subset A ⊆ [0,∞) we have

Bdc(I \A) +Bdc(A) = 1.(1.19)

�

Since the case g(x) ≡ x is very special in our analysis, we will also prove the
following result which is well known in the discrete case (we then write dc(A) ≡
dgc(A) and dc(A) ≡ dgc(A)):

Theorem 1.15. Let A ⊆ [0,∞). Then we have

0 ≤ Bdc(A) ≤ dc(A) ≤ dc(A) ≤ Bdc(A) ≤ 1.

Proof. The only non-trivial parts are Bdc(A) ≤ dc(A) and dc(A) ≤ Bdc(A); due
to (1.19), it suffices to show that dc(A) ≤ Bdc(A). Suppose the contrary. Due to
(1.17) and definition of lim supx→+∞ ·, it follows that

lim
t→+∞

sup
t≥x

m(A(0, t))

t
> inf
x>0

sup
y≥0

m(A(y, y + x))

x
.

Since the mapping in the above limit is monotonically decreasing in variable t, we
get the existence of positive real numbers δ > 0, x0 > 0 and y0 > 0 such that

m(A(0, y))

y
≥
m
(
A(z, z + x0)

)
x0

+ δ, y ≥ y0, z ≥ 0.(1.20)

Due to (1.20), we get

m(A(0, y)) ≤
by/x0c∑
j=0

m
(
A(jx0, (j + 1)x0

)
≤
(⌊
y/x0

⌋
+ 1
)(m(A(0, y))

y
− δ

)
x0,

i.e., (
1− x0

y

(⌊
y/x0

⌋
+ 1
))m(A(0, y))

y
≤ −δx0

(⌊
y/x0

⌋
+ 1
)
/y, y ≥ y0.

After taking the limits as y → +∞, we obtain 0 ≤ −δ, which is a contradiction. �

Let us finally note that, in the combinatorial and additive number theory, the
sets with positive upper Banach density play a major role; see e.g., [19, Section
5.7, Section 5.8]. A great number of results about the lower and upper (Banach)
densities, known for subsets of integers, cannot be so easily reformulated and re-
considered for the subsets of the non-negative real axis. This is not the case with
the statements of [31, Proposition 2.5-Proposition 2.7, Corollary 2.2], which can be
simply reformulated for (Banach) g-densities; details can be left to the interested
reader.
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Before going any further, the author would like to thank Prof. A. Haraux for
his permission given us to submit the first version of this paper to J. Fourier Anal.
Appl. as an addendum to the paper [25], writen in his collaboration with Prof. P.
Souplet. After that, the paper enlarged to a great extent and we gave up this idea.

2. �g-Almost periodic functions, uniformly recurrent functions and
their Stepanov generalizations

We will always assume henceforth that g : [0,∞) → [1,∞) is an increasing
mapping satisfying that there exists a finite number L ≥ 1 such that (1.11) holds.
Let �g denote exactly one of the symbols dgc, dgc, Bdl;gc, Bdu;gc, Bdl;gc or Bdu;gc.

We start by introducing the following notion:

Definition 2.1. Let f : I → E be continuous. Then it is said that f(·) is �g-almost
periodic iff for each ε > 0 we have �g(ϑ(f, ε)) > 0.

We will use hereafter the following fundamental properties of �g-almost periodic
functions and uniformly recurrent functions, collected as follows (for parts (iv)-(vi),
see [5, pp. 3-4]; for parts (vii)-(viii), see [34, p. 3]):

(i) Any constant function is �g-almost periodic, and for any �g-almost peri-
odic (uniformly recurrent) function f(·) we have that the function ‖f(·)‖ is
�g-almost periodic (uniformly recurrent). Any �g-almost periodic function
is uniformly recurrent.

(ii) Since for each ε > 0 and c ∈ C \ {0} we have ϑ(cf, ε) = ϑ(f, ε/|c|), the
�g-almost periodicity of function f(·) implies the �g-almost periodicity of
function cf(·). Similarly, the uniform recurrence of function f(·) implies the
uniform recurrence of function cf(·).

(iii) The set consisting of all �g-almost periodic (uniformly recurrent) functions
is translation invariant in the sense that for each τ ∈ I and any �g-almost
periodic (uniformly recurrent) function f(·), the function f(· + τ) is also
�g-almost periodic (uniformly recurrent).

(iv) If (fn(·)) is a sequence of�g-almost periodic (uniformly recurrent) functions
and (fn(·)) converges uniformly to a function f : I → E, then the function
f(·) is �g-almost periodic (uniformly recurrent).

(v) If E = C, infx∈I |f(x)| > m > 0 and f(·) is a bounded �g-almost peri-
odic (uniformly recurrent) function, then the function 1/f(·) is likewise a
bounded �g-almost periodic (uniformly recurrent).

(vi) If f(·) is a bounded �g-almost periodic (uniformly recurrent) function and
g : [0,∞) → X is continuous, then the mapping g(‖f(·)‖) is bounded and
�g-almost periodic (uniformly recurrent).

(vii) If f(·) is a bounded �g-almost periodic (uniformly recurrent) function and
r > 0, then the function ‖f(·)‖r is bounded and �g-almost periodic (uni-
formly recurrent).

Furthermore, it can be simply shown that:

(viii) If f : R → E is a bounded �g-almost periodic (uniformly recurrent) func-
tion and ψ ∈ L1(R), then the function (ψ ∗ f)(·) is bounded, uniformly
continuous and �g-almost periodic (uniformly recurrent).

(ix) If f : [0,∞)→ E is uniformly recurrent and belongs to the space C0([0,∞) :
E), then f ≡ 0.
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(x) If f : R→ E is �g-almost periodic (uniformly recurrent), then the function

f̌ : R→ E, defined by f̌(·) := f(−·), is�g-almost periodic (uniformly recur-

rent). If, additionally, f|[0,∞)(·) ∈ C0([0,∞) : E) or f̌|[0,∞)(·) ∈ C0([0,∞) :
E), then f ≡ 0.

(xi) If a ∈ I and the function f(·) is �g-almost periodic (uniformly recurrent),
then the function f(·+a)−f(·) is �g-almost periodic (uniformly recurrent).

For the sake of completeness, we will include short proofs of the following two
propositions (the first proposition improves the corresponding result for almost
periodic functions; for almost automorphic functions, see [29, Lemma 3.9.9]):

Proposition 2.2. (Supremum formula) Suppose that f : I → E is uniformly
recurrent. Then we have

sup
t∈I
‖f(t)‖ = sup

t≥a
‖f(t)‖ ∈ [0,∞], a ∈ I.

Proof. Let a ∈ I, t ∈ I and ε > 0 be fixed. It suffices to show that

‖f(t)‖ ≤ ε+ sup
s≥a
‖f(s)‖.

In order to do that, take any strictly increasing sequence (αn) of positive real
numbers such that limn→+∞ αn = +∞ and (1.1) holds. Let n ∈ N be such that
t+ αn ≥ a. Then ‖f(t+ αn)− f(t)‖ ≤ ε and therefore

‖f(t)‖ ≤ ε+ ‖f(t+ αn)‖ ≤ ε+ sup
s≥a
‖f(s)‖,

as claimed. �

Proposition 2.3. Any almost periodic function f : I → E is �g-almost periodic.

Proof. Let us recall that any almost periodic function is uniformly continuous.
Using this fact, it can be easily seen that for each ε > 0 there exist two finite
constants δ > 0 and l > 0 such that any segment [y, y + g(x)] for x ≥ L(1 + l)
and y ≥ 0 contains the segment [y, y + x/L] (cf. (1.11)) and therefore at least
bx/Llc ≥ 1 disjunct intervals of length δ whose elements are ε-periods for f(·); see
also [5, Corollary, p. 2]. This clearly implies �g(ϑ(f, ε)) > δ/Ll > 0. �

Now we will prove the following

Proposition 2.4. Let f : I → E be continuous and g(x) ≡ x. Then f(·) is almost
periodic iff f(·) is �g-almost periodic.

Proof. Having in mind Proposition 2.3 and Theorem 1.15, it suffices to show that
any Bdc-almost periodic function f : I → E is almost periodic. Towards this end,
it suffices to show that any set A ⊆ [0,∞) satisfying Bdc(A) > 0 is relatively dense.
Otherwise, for every real number L > 0, we have that there exists an interval IL
of length L which does not contain any ε-period of f(·). Thus, an unbounded set⋃
n∈N I2n does not contain any ε-period of f(·), which immediately implies that

Bdc(A) = 0 by definition. �

Concerning the notions of Bdl;gc-almost periodicity and Bdu;gc-almost periodic-
ity, the things are pretty clear. In the following proposition, whose discrete analogue
has been considered in [31, Proposition 2.4], we will prove that these notions are
equivalent with the almost periodicity:
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Proposition 2.5. Let f : I → E be continuous and let g : [0,∞) → [1,∞) be
an increasing mapping satisfying that there exists a finite number L ≥ 1 such that
(1.11) holds. Then f(·) is almost periodic iff f(·) is Bdl;gc-almost periodic iff f(·)
is Bdu;gc-almost periodic.

Proof. Due to Proposition 2.3 and the fact that any Bdl;gc-almost periodic func-
tion is Bdu;gc-almost periodic, it suffices to show that any Bdu;gc-almost periodic
function is almost periodic. Suppose the contrary and fix a number x > 0. Then
there exists a number ε > 0 such that, for every n ∈ N, there exists an interval In =
[yn, yn+2n+2g(x)] ⊆ [0,∞) of length 2n+2g(x) such that the set ϑ(f, ε) does not
meet In. Then, for every n ∈ N, the interval I ′n = [yn+n+g(x), yn+2n+2g(x)] does
not meet ϑ(f, ε) and has the length n+ g(x) ≥ g(x). This implies m(([ϑ(f, ε)](yn +
n+g(x), yn+2n+2g(x))) = 0. Hence, lim infy→+∞m([ϑ(f, ε)](y, y+x)) = 0, which
contradicts condition Bdu;gc(ϑ(f, ε)) > 0. �

Remark 2.6. Let f : I → E be continuous and let c ∈ I \ {0}. Define the function
fc : I → E by fc(t) := f(ct), t ∈ I. Then we have |c|ϑ(f, ε) ⊆ ϑ(fc, ε) for all ε > 0,
which simply implies that for any uniformly recurrent function f(·) we have that the
function fc(·) is uniformly recurrent. Due to Proposition 2.5 and the corresponding
statement for almost periodic functions, the same holds for �g-almost periodicity

with �g ∈ {Bdl;gc, Bdu;gc}. If �g is one of the densities dgc, dgc, Bdl;gc or Bdu;gc,
then directly from their definitions and the definition of �g-almost periodicity we
may conclude, keeping in mind the fact that for any Lebesgue measurable subset
A ⊆ [0,∞) the set cA is also Lebesgue measurable with m(cA) = cm(A), that the
�g-almost periodicity of function f(·) implies the �g-almost periodicity of function
fc(·) for any c ∈ I \ {0} with |c| ≤ 1. Assume now that �g is one of the above four
densities and |c| > 1. In this case, it is almost inevitable to impose some additional
conditions on the function g(·) under which the �g-almost periodicity of function
f(·) implies the �g-almost periodicity of function fc(·). For example, it is very
natural to assume additionally that g(·) is continuous, strictly increasing as well as
that there exist two numbers t0 > 0 and δ > 0 such that |c|g(t) ≤ g(t/δ) for all
t ≥ t0. For the Banach density Bdu;gc, the claimed statement then follows from the
computation (x > 0 satisfies that t = g−1(g(x)/c) ≥ t0):

lim sup
y→+∞

m(cA(y, y + g(x)))

x
= lim sup

y→+∞

cm(A(y/c, y/c+ (g(x)/c)))

x

= lim sup
y→+∞

m(A(y, y + (g(x)/c)))

x
= lim sup

y→+∞

m(A(y, y + g(t)))

g−1(cg(t))

= lim sup
y→+∞

m(A(y, y + g(t)))

t

t

g−1(cg(t))
≥ δ lim sup

y→+∞

m(A(y, y + g(t)))

t
.

For the Banach density Bdl;gc and for the densities dgc, dgc, the claimed statement
follows similarly.

Remark 2.7. (see also [25, Lemma 2.1]) If f : R → R is a (uniformly) continuous,
�g-almost periodic (uniformly recurrent) function, ε > 0, c ∈ R and τ ∈ ϑ(f, ε),
then τ ∈ ϑ(min(c, f), ε) and the function min(c, f(·)) is (uniformly) continuous and
�g-almost periodic (uniformly recurrent).

Remark 2.8. Let f : R → R be an almost periodic function such that there exist
two real numbers a and b such that a < 0 < b and an analytic function F :
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{z ∈ C : a < <z < b} → C such that F (ix) = f(x) for all x ∈ R. Then the
function h : R → R, defined by h(x) := sign(f(x)), x ∈ R is Stepanov p-almost
periodic for any finite exponent p ≥ 1. For p = 1, this has been proved in [33,
Theorem 5.3.1, p. 210], while the general case follows from the consideration given
in [29, Example 2.2.3(i)] (we feel duty bound to say that we have made small
mistakes in the formulations of conditions in [29, Example 2.2.2, Example 2.2.3(ii)]
by neglecting the necessary condition on the analytical extensibility of function
f((−i)·) to the strip {z ∈ C : a < <z < b}). The Bochner criterion is essentially
employed in the proof of the above-mentioned theorem and we would like to observe
here that the above condition on the analytical extensibility of function f((−i)·)
can be neglected in some situations, even for the uniform recurrence and �g-almost
periodicity. More precisely, let f : R → R be a uniformly recurrent function (an
�g-almost periodic function) satisfying that

(∃L ≥ 1) (∀ε > 0) (∀y ∈ R) m
(
{x ∈ [y, y + 1] : |f(x)| ≤ ε}

)
≤ Lε.

Then the function h(·), defined above, is uniformly recurrent (�g-almost periodic),
which follows from the foregoing arguments.

Now we will introduce the following definition:

Definition 2.9. (i) Suppose that f ∈ C(I : E). Then we say that the func-
tion f(·) is asymptotically uniformly recurrent iff there exist a uniformly
recurrent function h : I → E and a function φ ∈ C0(I : E) such that
f(t) = h(t) + φ(t) for all t ∈ I.

(ii) Suppose that f ∈ C(I : E). Then we say that the function f(·) is asymp-
totically �g-almost periodic iff there exist an �g-almost periodic function
h : I → E and a function φ ∈ C0(I : E) such that f(t) = h(t) + φ(t) for all
t ∈ I.

From this definition and previously proved results in this section, it is clear that
we have the following:

Proposition 2.10. (i) Any asymptotically almost periodic function is asymp-
totically �g-almost periodic, and any asymptotically �g-almost periodic
function is asymptotically uniformly recurrent.

(ii) Let f : I → E be continuous and g(x) ≡ x. Then f(·) is asymptotically
almost periodic iff f(·) is asymptotically �g-almost periodic.

(iii) Let f : I → E be continuous and let g : [0,∞) → [1,∞) be an increasing
mapping satisfying that there exists a finite number L ≥ 1 such that (1.11)
holds. Then f(·) is asymptotically almost periodic iff f(·) is asymptotically
Bdl;gc-almost periodic iff f(·) is asymptotically Bdu;gc-almost periodic.

Now we have an open door to introduce the concepts of (asymptotical) Stepanov
p-uniform recurrence and (asymptotical) Stepanov (p,�g)-almost periodicity:

Definition 2.11. (i) Let 1 ≤ p < ∞. A function f ∈ Lploc(I : E) is said to

be Stepanov p-uniformly recurrent iff the function f̂ : I → Lp([0, 1] : E),
defined by (1.2), is uniformly recurrent.

(ii) Let 1 ≤ p < ∞. A function f ∈ Lploc(I : E) is said to be Stepanov (p,�g)-
almost periodic iff the function f̂ : I → Lp([0, 1] : E), defined by (1.2), is
�g-almost periodic.



ALMOST PERIODIC TYPE FUNCTIONS AND DENSITIES 19

Definition 2.12. (i) Let 1 ≤ p < ∞. A function f ∈ Lploc(I : E) is said to
be asymptotically Stepanov p-uniformly recurrent iff there exist a Stepanov
p-uniformly recurrent function h(·) and a function q ∈ LpS(I : E) such that
f(t) = h(t) + q(t), t ∈ I and q̂ ∈ C0(I : Lp([0, 1] : E)).

(ii) Let 1 ≤ p < ∞. A function f ∈ Lploc(I : E) is said to be asymptotically
Stepanov (p,�g)-almost periodic iff there exist a Stepanov (p,�g)-almost
periodic function h(·) and a function q ∈ LpS(I : E) such that f(t) =
h(t) + q(t), t ∈ I and q̂ ∈ C0(I : Lp([0, 1] : E)).

We can simply state the analogues of Proposition 2.3-2.5 and Proposition 2.10
for the Stepanov classes. Taking into account Proposition 2.5 and Proposition
2.10(iii), in the remainder of paper we will always assume, if not explicitly stated
otherwise, that �g denotes exactly one of the densities dgc, dgc, Bdl;gc or Bdu;gc.
Before proceeding any further, we would like to note that we can similarly introduce
and analyze the concepts of �g-almost anti-periodicity and Stepanov (p,�g)-almost
anti-periodicity ([29]).

The following result, which is closely related with [32, Theorem 2.5, Theorem
2.10], plays a significant role in the proof of Theorem 1.4:

Theorem 2.13. (i) Suppose that the function f : I → E is asymptotically uni-
form recurrent and quasi-asymptotically almost periodic. Then the function
f(·) is asymptotically almost periodic.

(ii) Suppose that 1 ≤ p < ∞, the function f ∈ LSp (I : E) is asymptotically
Stepanov p-uniform recurrent and Stepanov p-quasi-asymptotically almost
periodic. Then the function f(·) is asymptotically Stepanov p-almost peri-
odic.

Proof. The proof of theorem essentially follows from the argumentation contained
in the proof of [29, Theorem 2.5]; for the sake of completeness, we will include all
details of proof. Suppose that the function f : I → E satisfies the assumptions in
(i). Then there exist a uniformly recurrent function h(·) and a function q ∈ C0(I :
E) such that f(t) = h(t)+q(t), t ∈ I and for each ε > 0 there exists a finite number
L(ε) > 0 such that any interval I ′ ⊆ I of length L(ε) contains at least one number
τ ∈ I ′ satisfying that there exists a finite number M(ε, τ) > 0 such that

‖[h(t+ τ)− h(t)] + [q(t+ τ)− q(t)]‖ ≤ ε, provided t ∈ I and |t| ≥M(ε, τ).(2.1)

Since f(·) is bounded and q ∈ C0(I : E), we have that h(·) is bounded. The above
implies the existence of a finite number M1(ε, τ) ≥M(ε, τ) such that

‖h(t+ τ)− h(t)‖ ≤ 2ε, provided t ∈ I and |t| ≥M1(ε, τ).(2.2)

Define the function H : I → E by H(t) := h(t+ τ)− h(t), t ∈ I. Then the function
H(·) is bounded and, due to the property (xi), we have that the function H(·) is
uniformly recurrent. Applying supremum formula clarified in Proposition 2.2 and
(2.2), we get

sup
t∈I
‖H(t)‖ = sup

t≥M1(ε,τ)

‖H(t)‖ = sup
t≥M1(ε,τ)

‖h(t+ τ)− h(t)‖ ≤ 2ε.

Hence, ‖h(t+ τ)− h(t)‖ ≤ 2ε for all t ∈ I and h(·) is almost periodic by definition,
which completes the proof of part (i). For part (ii), observe first that there exist
an Stepanov p-uniformly recurrent function h(·) and a function q ∈ LpS(I : E) such
that f(t) = h(t) + q(t), t ∈ I and q̂ ∈ C0(I : Lp([0, 1] : E)). Repeating verbatim the
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arguments given in the proof of part (i), with the function f(·) replaced therein with

the function f̂(·), we get that the function ĥ : I → Lp([0, 1] : E) is asymptotically
almost periodic. This simply completes the proof of (ii). �

Example 2.14. Denote by c0 the Banach space of all numerical sequences tending
to zero, equipped with the sup-norm. Define

f(t) :=

(
4n2t2

(t2 + n2)2

)
n∈N

, t ≥ 0.

Then f ∈ Q− AAA([0,∞) : c0) ∩ BUC([0,∞) : c0) and f(·) is not asymptotically
almost automorphic (see [32, Example 2.6, Theorem 2.5]). Due to Theorem 2.13(ii)
and Lemma 1.11(i), we have that the function f(·) is not asymptotically Stepanov
(1-)uniform recurrent.

The results presented in the subsequent proposition are expected to a certain
extent:

Proposition 2.15. Let p ∈ [1,∞).

(i) If f : R→ E is uniformly recurrent and asymptotically almost automorphic,
then f(·) is almost automorphic.

(ii) If f : I → E is uniformly recurrent and asymptotically almost periodic,
then f(·) is almost periodic.

(iii) If f : R→ E is Stepanov p-uniformly recurrent and asymptotically Stepanov
p-almost automorphic, then f(·) is Stepanov p-almost automorphic.

(iv) If f : I → E is Stepanov p-uniformly recurrent and asymptotically Stepanov
p-almost periodic, then f(·) is Stepanov p-almost periodic.

Proof. We will prove only (i) and (ii). Suppose that f : R → E is uniformly
recurrent and asymptotically almost automorphic. Then there exist a function
h ∈ AA(R : E), a function q ∈ C0(R : E) and a strictly increasing sequence
(αn) of positive real numbers tending to plus infinity such that (1.1) holds and
f(t) = h(t) + q(t) for all t ∈ R. Fix a number t ∈ R. Then limn→+∞ q(t+ αn) = 0
and, in combination with (1.1), we get

lim
n→+∞

h
(
t+ αn

)
= f(t) and lim

n→+∞
f
(
t− αn

)
= f(t).(2.3)

Since h(·) is almost automorphic, we can extract a subsequence (βn) of (αn) such
that there exists a mapping f1 : R→ E satisfying

lim
n→+∞

h
(
t+ βn

)
= f1(t) and lim

n→+∞
f1

(
t− βn

)
= h(t) for all t ∈ R.(2.4)

The uniqueness of the first limits in (2.3) and (2.4) yields f1(t) = f(t). Using
the uniqueness of the second limits in (2.3) and (2.4), we get f(t) = h(t), which
completes the proof of (i). Since any almost periodic function f : R→ E is almost
automorphic, part (ii) follows from the proof of (i). If I = [0,∞), then we can use
the above result with I = R since any almost periodic function f : [0,∞) → E
has a unique almost periodic extension to the whole real line and any function
q ∈ C0([0,∞) : E) can be extended to an even function q1 ∈ C0(R : E). �

In the following theorem, we reconsider the statements given in Lemma 1.11
for the (asymptotical) Stepanov p-uniform recurrence and (asymptotical) Stepanov
(p,�g)-almost periodicity:
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Theorem 2.16. Let p ∈ [1,∞).

(i) If the function h : I → E is uniformly recurrent, φ ∈ C0(I : E) and
f(t) = h(t) + φ(t) for all t ∈ I, then

{h(t) : t ∈ I} ⊆ {f(t) : t ∈ I}.(2.5)

(ii) If h : I → E is uniformly continuous and Stepanov p-uniformly recurrent
(Stepanov (p,�g)-almost periodic), then the function h(·) is uniformly re-
current (�g-almost periodic).

(iii) If f : I → E is uniformly continuous and asymptotically Stepanov p-
uniformly recurrent (asymptotically Stepanov (p,�g)-almost periodic), then
the function f(·) is asymptotically uniformly recurrent (asymptotically �g-
almost periodic).

Proof. Part (i) can be simply deduced as follows. Let the numbers t ∈ R and ε > 0
be fixed. It is clear that there exists a strictly increasing sequence (αn) of positive
real numbers such that ‖h(t)−h(t+αn)‖ < ε/2, n ∈ N. Hence, there exists n0 ∈ N
such that∥∥h(t)− f(t+ αn)

∥∥ ≤ ∥∥h(t)− h(t+ αn)
∥∥+

∥∥q(t+ αn)
∥∥ ≤ ε/2 + ε/2 = ε.

This, in turn, implies (2.5). If the function h : I → E satisfies the requirements of
(ii), then for each σ ∈ (0, 1) the function hσ : I → E, given by

hσ(t) :=
1

σ

∫ t+σ

t

h(s) ds, t ∈ I,(2.6)

is continuous and, due to the uniform continuity of h(·), we have the existence of a
number δ ∈ (0, 1) such that ‖h(t′)−h(t′′)‖ < ε, provided t′, t′′ ∈ I and |t′− t′′| < δ.
Therefore, if σ ∈ (0, δ), then we have∥∥hσ(t)− h(t)

∥∥ ≤ 1

σ

∫ t+σ

t

‖h(s)− h(t)‖ ds < ε, t ∈ R,(2.7)

and limσ→0+ hσ(t) = h(t) uniformly in t ∈ I. By property (iv) from the beginning of
section, it suffices to show that for each fixed number σ ∈ (0, 1) the function hδ(·) is
uniformly recurrent (�g-almost periodic). But, this follows from the argumentation
given on [5, p. 80], where it has been proved that for each number ε > 0 we have

ϑ(ĥ, σε) ⊆ ϑ(hσ, ε). This completes the proof of (ii). To deduce (iii), observe that
there exist a Stepanov p-uniformly recurrent (Stepanov (p,�g)-almost periodic)
function h(·) and a function q ∈ LpS(I : E) such that f(t) = h(t) + q(t), t ∈ I and
q̂ ∈ C0(I : Lp([0, 1] : E)). Using (i) and the arguments contained in the proof of
[28, Proposition 3.1], we get that the both functions h(·) and q(·) are uniformly
continuous. This yields that q ∈ C0(I : E) and, due to part (ii), h(·) is uniformly
recurrent (�g-almost periodic). The proof of the theorem is thereby completed. �

In [39, Proposition 12], R. Xie and C. Zhang have proved that any uniformly
continuous function f ∈ SpSAPω(I : E) belongs to the space APω(I : E); see [39]
for the notion. Due to [32, Proposition 2.11], we have SpSAPω(I : E) ⊆ SpQ −
AAP (I : E) and it is reasonable to ask whether we can extend the above result by
showing that any uniformly continuous function f ∈ SpQ−AAP (I : E) belongs to
the space Q−AAP (I : E). This is actually the case, as the next proposition shows:

Proposition 2.17. Let p ∈ [1,∞), and let f ∈ SpQ − AAP (I : E) be uniformly
continuous. Then f ∈ Q−AAP (I : E).
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Proof. The proof of proposition is very similar to the proof of Theorem 2.16(ii).
Clearly, it suffices to consider the case p = 1. Define, for every number σ ∈ (0, 1),
the function fσ(·) by replacing the function h(·) in (2.6) with the function f(·).
Then the function fσ(·) is bounded and continuous (σ ∈ (0, 1)). Furthermore, (2.7)
holds with the functions hσ(·) and h(·) replaced therein with the functions fσ(·)
and f(·). Due to [32, Theorem 2.13(ii)], it suffices to show that the function fσ(·) is
quasi-asymptotically almost periodic for each number σ ∈ (0, 1). But, this simply
follows from the estimate∥∥fσ(t+ τ)− fσ(t)

∥∥ ≤ 1

σ

∫ t+1

t

‖f(s+ τ)− f(s)‖ ds, t ∈ I, τ ∈ I, σ ∈ (0, 1),

which can be proved as on [5, p. 80]. �

Remark 2.18. The proof of Proposition 2.17 considerably shortens the proof of [39,
Proposition 12]. Therefore, the word “Stepanov” in the formulations of Theorem
1.4 and Theorem 1.5 can be encompassed with the round brackets.

The following proposition will be important in the sequel:

Proposition 2.19. Suppose that the function f : I → E is uniformly continuous
and (asymptotically) uniformly recurrent. Then there exist a finite number L ≥ 1
and an increasing mapping g : [0,∞) → [1,∞) such that (1.11) holds and f(·) is
(asymptotically) ·g-almost periodic for ·g ∈ {dgc, dgc}.

Proof. Without loss of generality, we may assume that the equation (1.1) holds with
the sequence (αn) satisfying αn+1 −αn ≥ 1. It suffices to prove the proposition for
uniformly recurrent functions. Let ε > 0 be fixed. Due to the uniform continuity of
f(·), we have that there exist an integer n0 ∈ N and a finite real number δ > 0 such
that the set ϑ(f, ε) contains the union of disjunct intervals [αn−δ, αn+δ] for n ≥ n0.
Let g : [0,∞)→ [1,∞) be any increasing mapping such that g(n) > αn+1 for all n ∈
N. Hence, (1.11) holds with some finite number L ≥ 1. Furthermore, if x ∈ [n, n+1],
then the interval [0, g(x)] contains at least (n − n0) disjunct intervals of length δ
whose union belongs to ϑ(f, ε). This simply implies that m([ϑ(f, ε)](0, g(x))) ≥
δ(n − n0) and therefore m([ϑ(f, ε)](0, g(x)))/x ≥ δ(n − n0)/(n + 1). This simply
implies dc(ϑ(f, ε)) > 0, so that f(·) is dgc-almost periodic and therefore dgc-almost
periodic. �

Remark 2.20. The proof of Proposition 2.19 does not work for the upper l; gc-
Banach density Bdl;gc(·) and the upper u; gc-Banach density Bdu;gc(·). In general,
these densities differ from the densities

Bdl:gc(A) := lim inf
x→+∞

sup
y≥0

m(A(y, y + g(x)))

x

and

Bdu:gc(A) := lim sup
x→+∞

sup
y≥0

m(A(y, y + g(x)))

x
,

respectively. Repeating verbatim the above arguments, it can be simply proved
that for any uniformly continuous, uniformly recurrent function f : I → E there
exist a finite number L ≥ 1 and an increasing mapping g : [0,∞) → [1,∞) such
that (1.11) holds and f(·) is ·g-almost periodic for ·g ∈ {Bdl:gc, Bdu:gc}.
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Remark 2.21. By the proof of Proposition 2.19, it follows that, for every uniformly
continuous, uniformly recurrent functions fi : I → E (1 ≤ i ≤ n), we can find a
finite number L ≥ 1 and an increasing mapping g : [0,∞)→ [1,∞) such that (1.11)
holds and fi(·) is ·g-almost periodic for all 1 ≤ i ≤ n and ·g ∈ {dgc, dgc}.

Keeping in mind the corresponding definitions and Proposition 2.19, the next
result follows immediately (the previous two remarks can be reformulated in this
context, as well):

Proposition 2.22. Suppose that 1 ≤ p < ∞, f : I → E is (asymptotically)

Stepanov p-uniformly recurrent and f̂ : I → Lp([0, 1] : E) is uniformly continuous.
Then there exist a finite number L ≥ 1 and an increasing mapping g : [0,∞) →
[1,∞) such that (1.11) holds and f(·) is (asymptotically) Stepanov (p,�g)-almost

periodic for ·g ∈ {dgc, dgc}.
It is worth noticing that Proposition 2.19 cannot be applied to the compactly

almost automorphic functions which are not asymptotically uniform recurrent, in
general. Concerning this problematic, we would like to present the following illus-
trative example:

Example 2.23. Any almost periodic function has to be compactly almost auto-
morphic, while the converse statement is not true, however. The first example of a
scalar-valued compactly almost automorphic function which is not almost periodic
has been constructed by A. M. Fink (see [17, p. 521]). Set an :=sign(cos(nπ

√
2)),

n ∈ Z and define after that the function f : R → R by f(t) := αan + (1 − α)an+1

if t ∈ [n, n + 1) for some integer n ∈ Z and t = αn + (1 − α)(n + 1) for some
number α ∈ (0, 1]. As verified in [17], this function is compactly almost automor-
phic (therefore, uniformly continuous) but not almost periodic. We will extend this
result by showing that the function f(·) is not asymptotically uniformly recurrent.
If we suppose the contraposition, then there exists a strictly increasing sequence
(τn) of positive real numbers tending to plus infinity such that, for every ε > 0, we
have the existence of two finite numbers M > 0 and n0 ∈ N such that∥∥f(x+ τn)− f(x)

∥∥ ≤ 2ε, |x| ≥M, n ≥ n0.

Let ε ∈ (0, 1/2) and n ≥ n0. Then it is clear that there exists l ∈ N, as large as
we want, such that al > 0 and al+1 < 0. Then f(l + (1/2)) = 0 and therefore
|f(l + (1/2) + τn)| ≤ 2ε. This clearly implies the existence of an integer k ∈ Z
such that the number l+ (1/2) + τn lies in a certain small neighborhood of number
k + (1/2); more precisely, since the linear function connecting the points (k,−1)
and (k + 1, 1) is given by y = 2x − 2k − 1, we get from the above that |2(l +
(1/2) + τn) − 2k − 1| ≤ 2ε, which simply implies |τn − (k − l)| ≤ ε and therefore
τn ∈ (0, ε] ∪

⋃
k∈N[k − ε, k + ε]. Fix now an integer k ∈ N. We will show that the

inclusion τn ∈ [k − ε, k + ε] cannot be true. Otherwise, for each real number t ∈ R
we have |f(t+ τn)− f(t+ k)| ≤ 2 · ε = 2ε, which can be easily approved, so that

|f(t+ k)− f(t)| ≤
∣∣f(t+ k)− f(t+ τn)

∣∣+
∣∣f(t+ τn)− f(t)

∣∣
≤ 2ε+ ε = 3ε, |t| ≥M.

This contradicts Lemma 1.8. Notice also that the argumentation given above shows
that, for every ε ∈ (0, 1), we have ϑ(f, ε) ∩ (ε/2,+∞) = ∅. Furthermore, for every
ε ∈ (0, 1) and τ ∈ (0, ε/2], we have |f(t+ τ)− f(t)| ≤ 2τ ≤ ε so that, actually,

∀ε ∈ (0, 1) : ϑ(f, ε) = (0, ε/2].



24 MARKO KOSTIĆ

See also [16, Example 6.1], which will not be reconsidered here.

Before providing the proofs of Theorem 1.2, Theorem 1.4, Theorem 1.5 and
Theorem 1.7, we would like to address one more problem to our readers:

Question 2.24. Define

f(t) :=
2 + eit + eit

√
2∣∣2 + eit + eit
√

2
∣∣ , t ∈ R.

It is well known that f(·) is an almost automorphic function which is not compactly
almost automorphic (see e.g., the papers by W. A. Veech [37]-[38]). We would
like to ask whether for each number ε ∈ (0, 1) we have that ϑ(f, ε) 6= ∅ (ϑ(f, ε) is
unbounded)?

Proof of Theorem 1.2. We will first prove that for each fixed number τ ∈ R
we have that the function f(·+τ)−f(·) belongs to the space ANP (R : C). Towards
this end, note that

f(t+ τ)− f(t) =

∞∑
n=1

1

n

[
sin2 t+ τ

2n
− sin2 t

2n

]

=

∞∑
n=1

1

2n

[
cos

t

2n−1
− cos

t+ τ

2n−1

]

=

∞∑
n=1

1

n
sin

2t+ τ

2n
sin

τ

2n

=

∞∑
n=1

1

n

[
sin

t

2n−1
cos

τ

2n
+ cos

t

2n−1
sin

τ

2n

]
sin

τ

2n
, t ∈ R.

Since the functions t 7→ sin t
2n−1 , t ∈ R and t 7→ cos t

2n−1 , t ∈ R are anti-periodic of

anti-period T = 2n−1π, it follows that the function

fk(t) :=

k∑
n=1

1

n

[
sin

t

2n−1
cos

τ

2n
+ cos

t

2n−1
sin

τ

2n

]
sin

τ

2n
, t ∈ R

belongs to the space ANP0(R : E). Moreover, limk→+∞ fk(t) = f(t + τ) − f(t)
uniformly on R since∣∣∣∣∣

∞∑
n=k+1

1

n

[
sin

t

2n−1
cos

τ

2n
+ cos

t

2n−1
sin

τ

2n

]
sin

τ

2n

∣∣∣∣∣ ≤ |τ |
∞∑

n=k+1

1

n2n−1
, t ∈ R.

Especially, due to the fact that ANP (R : C) = APR\{0}(R : C), we have 0 /∈
σ(f(·+ τ)− f(·)), i.e.,

lim
t→+∞

1

t

∫ t

0

|f(s+ τ)− f(s)| ds = 0.

This readily implies

lim
t→+∞

1

t

∫ t

0

|f(s+ τ)− f(s)|p ds = 0, p ≥ 1,
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because

|f(s+ τ)− f(s)|p ≤ |f(s+ τ)− f(s)| ·

(
sup
x≥0
|f(x+ τ)− f(x)|

)p−1

, s ≥ 0.

Taking into account [29, Proposition 2.13.4], we easily get that for each numbers
t, τ ∈ R we have

lim
l→+∞

1

2l

∫ l

−l

∣∣f(t+ τ + x
)
− f(t+ x)

∣∣p dx
= lim sup

l→+∞

1

2l

∫ l

−l

∣∣f(t+ τ + x
)
− f(t+ x)

∣∣p dx = 0,

so that the function f(·) is Weyl p-almost automorphic with the limit function
f∗ ≡ f. This completes the proof of Theorem 1.2. �

Proof of Theorem 1.4. Suppose that the function h(·) is Stepanov quasi-
asymptotically almost periodic. It is clear that the function h(·) is asymptotically
Stepanov uniform recurrent, so that Theorem 2.13(ii) implies that the function h(·)
is asymptotically Stepanov almost periodic. Since h(·) is uniformly continuous,
Lemma 1.11(i) implies that the function h(·) is asymptotically almost periodic.
This cannot be true because the restriction of function h(·) to the non-negative real
axis is not asymptotically (Stepanov) almost automorphic by Lemma 1.3. �

Proof of Theorem 1.5. The function f(·), given by (1.5), satisfies that for
each ε > 0 there exists a positive real number δ > 0 such that the set ϑ(f, ε) contains
the set

⋃
n≥d1/εe[τn − δ, τn + δ] as well as f(x) = fn(x) for all x ∈ [−τn−1, τn−1]

(n ∈ N). Furthermore, the function f(·) equals zero on arbitrarily long intervals
and for each number ε ∈ (0, 1) we have that the sets {x ∈ R : f(x) /∈ [1− ε, 1 + ε]}
and ϑ(f, ε) are disjunct (see [18, Example 8, pp. 31-33] for more details). This
essentially implies that the function f(·) cannot be asymptotically Stepanov almost
automorphic (we will present a direct proof, without appealing to Lemma 1.11(ii)
and Proposition 2.15(iii)). If we suppose the contraposition, then there exist a
Stepanov almost automorphic function h(·) and a function q ∈ C0(R : L1([0, 1] : C))
such that f(t) = h(t) + q(t) for a.e. t ∈ R. Moreover, we have the existence of
disjunct intervals In = [bn, b

′′
n] ⊆ [0,∞) whose length is strictly greater than n2 and

which satisfy that f(x) = 0 for all x ∈ In (n ∈ N). Define bn := (b′n+b′′n)/2 (n ∈ N).
Then there exist a subsequence (an) of (bn) and a function g∗ ∈ L1

loc(R : C) such
that

lim
n→+∞

∫ t+1

t

∣∣f(x+ an)− q(x+ an)− g∗(x)
∣∣ dx = 0

for all t ∈ R, and

lim
n→+∞

∫ t+1

t

∣∣g∗(x− an)− [f(x)− q(x)]
∣∣ dx = 0

for all t ≥ 0. Let ε ∈ (0, 1/2) be given. Then there exists n0 ∈ N such that

n0/(n0−1) > 3ε/2 and
∫ 1+τn0

τn0
|q(x)| dx < ε/8. Since 1 ≥ f(x) ≥ fn(x) ≥ n0/(n0−1)

for x = τn0
, fn(x) = 0 for x = τn0

+1 and the function fn(·) is linear on the interval
[τn0

, τn0
+ 1] (see also [6, part I, p. 115]), the second limit equality with t = τn0
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easily implies the existence of an integer n1 ≥ n0 such that∫ 1+τn0
−an

τn0
−an

∣∣g∗(x)
∣∣ dx ≥ n0

2(n0 − 1)
− ε

2
>
ε

4
, n ≥ n1.

Returning to the first limit equation, with t = τn0 − an1 , and taking into account

that limm→∞
∫ t+1

t
|q(x + am)| dx < ε/8 for all m ∈ N sufficiently large, we obtain

the existence of an integer m1 ≥ n1 such that∫ 1+τn0−an1+am

τn0
−an1

+am

|f(x)| dx =

∫ 1+τn0−an1

τn0
−an1

∣∣f(x+ am
)∣∣ dx > ε

4
− ε

8
> 0

for all m ≥ m1. But, this is simply impossible because for large values of m we have
that [τn0

− an1
+ am, 1 + τn0

− an1
+ am] is contained in a larger interval where the

function f(·) equals zero. If we assume that the function f(·) is Stepanov quasi-
asymptotically almost periodic, then the first part of proof of Theorem 1.4 yields
that the function f(·) is asymptotically Stepanov almost periodic, which cannot be
true according to the first part of proof of this theorem. �

Example 2.25. Without going into full details, let us only note that the function
f(·) considered above can be Weyl p-almost automorphic (p ≥ 1) if the sequence (τn)
marches rapidly to plus infinity. This follows from the fact that the function f(·) is
bounded and belongs to the space PAP0(R : C). To explain this in more detail, let
an denote the number of triangles appearing on the graph of function fn(·). Then
a1 = 1 and an = (2n − 1)an−1, n ∈ N \ {1} so that an = (2n − 1)!!, n ∈ N. The

Lebesgue measure of each such triangle cannot exceed 1 so that
∫ +∞
−∞ fn(x) dx ≤

(2n − 1)!!, n ∈ N. Suppose, for simplicity, that limn→+∞(2n − 1)!!/τn−2 = 0. If
τn−1 ≥ l ≥ τn−2 for some sufficiently large integer n ∈ N, then

1

l

∫ l

−l
f(x) dx =

1

l

∫ l

−l
fn(x) dx ≤ 1

τn−2

∫ ∞
−∞

fn(x) dx ≤ (2n− 1)!!

τn−2
,

so that liml→+∞(1/2l)
∫ l
−l f(x) dx = 0, as claimed. Needless to say that, due to

Proposition 2.19, there exists a suitable function g(·) such that the function f(·) is
·g-almost periodic for ·g ∈ {dgc, dgc} (see also [24, pp. 477-478]).

Proof of Theorem 1.7. It is already known that the function f(·) satisfies
limi→+∞ ‖f(·+ 2pi)− f(·)‖∞ = 0, so that f(·) is uniformly recurrent. Keeping in
mind Proposition 2.17 and arguing as in the proof of Theorem 1.4, we get that f(·)
is (Stepanov) quasi-asymptotically almost periodic iff f(·) is asymptotically almost
periodic. By Proposition 2.15(ii), this would imply that the function f(·) is almost
periodic; this is not the case because the function f(·) is not almost automorphic
(asymptotically almost automorphic, equivalently, due to Proposition 2.15(i)). If
we suppose the contrary, then there exist a subsequence (pik) of (pi) and a function
ω : R → R such that limk→+∞ f(t + pik) = ω(t) and limk→+∞ ω(t − pik) = f(t)
for all t ∈ R. Observe that the function fi(·) satisfies fi(t + pi) ≥ 1 − ε, provided
|t| ≤ εpi and i ∈ N. Let t ∈ R and ε > 0 be given. Then there exists i0 ∈ N such
that |t| ≤ εpi for all integers i ≥ i0. Therefore, for any integer i ≥ i0, we have

1 ≥ f
(
t+ pi

)
≥ fi

(
t+ pi

)
≥ 1− ε,

so that 1 = limi→+∞ f(t + pi) = limk→+∞ f(t + pik) = ω(t). Therefore, ω(t) ≡ 1
and returning to the second limit equality we get f(t) ≡ 1, which is a contradiction
(see also [9, Figure 3.7.3, p. 208]). �
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3. Applications to abstract integro-differential equations

Concerning applications, we shall mostly be concerned with the invariance of
(asymptotical) uniform recurrence and (asymptotical) �g-almost periodicity under
the actions of convolution products. As mentioned in the introductory part, this
section will be written in a semi-heuristical manner.

Let f : R → E. We will first investigate the uniformly recurrent and �g-almost
periodic properties of the function

F (t) :=

∫ t

−∞
R(t− s)f(s) ds, t ∈ R,(3.1)

where a strongly continuous operator family (R(t))t>0 ⊆ L(E,X) satisfies certain
assumptions. In our recent research studies regarding this question, it is commonly
assumed that the function f(·) is Stepanov p-bounded for some finite number p ≥ 1.

If this is the case and τ ∈ R is an ε-period of function f̂ : R → Lp([0, 1] : E),
then the resulting function G(·) satisfies, under certain conditions on (R(t))t>0, an
estimate of the type ‖F (t + τ) − F (t)‖X ≤ Lε, t ∈ R, where L ≥ 1 is a finite

constant independent of t, ε and τ. Hence, the assumption �g(ϑ(f̂ , ε)) > 0 for all
ε > 0 implies that �g(ϑ(F, ε)) > 0 for all ε > 0. This fact, taken together with the
argument used for proving the continuity of function F (·) in [29, Proposition 3.5.3],
enables us to simply reformulate the statement of [29, Proposition 2.6.11] in our
new framework (cf. also [40, Examples 4, 5, 7, 8; pp. 32-34], which can be simply
reformulated for the uniform recurrence and �g-almost periodicity):

Proposition 3.1. Suppose that 1 ≤ p <∞, 1/p+1/q = 1 and (R(t))t>0 ⊆ L(E,X)
is a strongly continuous operator family satisfying that M :=

∑∞
k=0 ‖R(·)‖Lq [k,k+1] <

∞. If f : R → E is Stepanov p-bounded and Stepanov p-uniformly recurrent
(Stepanov (p,�g)-almost periodic), then the function F : R→ X, given by (3.1), is
well-defined and uniformly recurrent (�g-almost periodic).

Basically, the case in which the function f : R → E is not Stepanov p-bounded
has not attracted the attention of the authors so far. Keeping in mind our previous
results, we would like to state the following proposition with regards to this question

(the uniform continuity of function f̂ : R → Lp([0, 1] : E) has not been assumed
above):

Proposition 3.2. Suppose that 1 ≤ p <∞, 1/p+ 1/q = 1, f : R→ E is Stepanov
p-uniformly recurrent (Stepanov (p,�g)-almost periodic), there exists a continuous
function P : R→ [1,∞) such that(∫ t+1

t

‖f(s)‖p ds

)1/p

≤ P (t), t ∈ R(3.2)

and (R(t))t>0 ⊆ L(E,X) is a strongly continuous operator family satisfying that
for each t ∈ R we have

∞∑
k=0

‖R(·)‖Lq [k,k+1]P (t− k) <∞.

If the function f̂ : R → Lp([0, 1] : E) is uniformly continuous, then the function
F : R → X, given by (3.1), is well-defined and uniformly recurrent (�g-almost
periodic).
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Proof. The proof is very similar to the proof of [29, Proposition 2.6.11], so that we
will only outline the most important details for Stepanov (p,�g)-almost periodic
functions. The function F (·) is well defined since∫ ∞

0

‖R(s)‖‖f(t− s)‖ ds =

∞∑
k=0

∫ k+1

k

‖R(s)‖‖f(t− s)‖ ds

≤
∞∑
k=0

‖R(·)‖Lq [k,k+1]P (t− k), t ∈ R

and (3.2) holds true. It is clear that our assumptions imply

M :=

∞∑
k=0

‖R(·)‖Lq [k,k+1] <∞,

so that ϑ(f, ε) ⊆ ϑ(F,Mε). Since we have assumed that the function f̂ : R →
Lp([0, 1] : E) is uniformly continuous, the arguments contained in the proof of the
above-mentioned proposition can be repeated verbatim in order to see that the
function F (·) is continuous. This simply completes the proof of proposition. �

Proposition 3.1 and Proposition 3.2 can be simply incorporated in the study
of the existence and uniqueness of uniformly recurrent and �g-almost periodic
solutions of the fractional Cauchy inclusion

Dγ
t,+u(t) ∈ Au(t) + f(t), t ∈ R,

where Dγ
t,+ denotes the Riemann-Liouville fractional derivative of order γ ∈ (0, 1],

f : R→ E satisfies certain properties, and A is a closed multivalued linear operator
(see [29] for more details).

Taking into account Proposition 3.1 and Proposition 3.2, we can simply pro-
vide extensions of [29, Proposition 2.6.13, Theorem 2.9.5, Theorem 2.9.7, Theorem
2.9.15], concerning the asymptotical Stepanov p-uniform recurrence/asymptotical
Stepanov (p,�g)-almost periodicity of the finite convolution product

F(t) :=

∫ t

0

R(t− s)f(s) ds, t ≥ 0.

These results can be applied in the qualitative analysis of asymptotically uniformly
recurrent/asymptotically �g-almost periodic solutions (asymptotically Stepanov p-
uniformly recurrent/asymptotically Stepanov (p,�g)-almost periodic solutions) of
the following abstract Cauchy inclusion

(DFP)f,γ :

{
Dγ
t u(t) ∈ Au(t) + f(t), t ≥ 0,
u(0) = x0,

where Dγ
t denotes the Caputo fractional derivative of order γ ∈ (0, 1], x0 ∈ E,

f : [0,∞) → E satisfies certain properties, and A is a closed multivalued linear
operator (see [29] for more details).

The sum of two uniformly recurrent (�g-almost periodic) functions need not be
uniformly recurrent (�g-almost periodic), unfortunately. But, it is worth noticing
that there exist many concrete situations where this difficulty can be overcomed.
For example, it is very simple to extend the assertions of [29, Theorem 2.14.7] and
[12, Theorem 2.3] for the asymptotical Stepanov (p,�g)-almost periodicity. To
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explain this in more detail, let us observe that the equation appearing on [12, p.
240, l. 5] can be rewritten as∫ t

−∞
Γ(t, s)f(s) ds = lim

k→+∞

∫ k

0

Γ(t, t− s)f(t− s) ds, t ∈ R;

arguing as in the proof of above-mentioned theorem from [12] we may conclude that

for each integer k ∈ N the function t 7→
∫ k

0
Γ(t, t− s)f(t− s) ds, t ∈ R is �g-almost

periodic, provided that the function f(·) is Stepanov (p,�g)-almost periodic and
Stepanov p-bounded (p > 1), while the case p = 1 follows from the same arguments
and the proof of [29, Theorem 2.14.6], when it is necessary to assume that f(·) is
Stepanov (1,�g)-almost periodic and Stepanov 1-bounded. In both cases, p > 1
and p = 1, we need to employ the property (iv) to achieve the final results.

We close the paper with the observation that the results whose proofs lean heavily
on the use of Bochner criterion cannot be really reconsidered for uniformly recurrent
and �g-almost periodic functions.
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[23] G. M. N’Guérékata, A. Pankov, Stepanov-like almost automorphic functions and monotone
evolution equations, Nonlinear Anal. 68 (2008), 2658–2667.

[24] A. Haraux, Asymptotic behavior of trajectories for some nonautonomous, almost periodic

processes, J. Diff. Equ. 49 (1983), 473–483.
[25] A. Haraux, P. Souplet, An example of uniformly recurrent function which is not almost

periodic, J. Fourier Anal. Appl. 10 (2004), 217–220.
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