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Introduction and Preliminaries

The concept of almost periodicity was first studied by H. Bohr around 1925 and later generalized by many other mathematicians (cf. the research monographs by A. S. Besicovitch [START_REF] Besicovitch | Almost Periodic Functions[END_REF], H. Bohr [START_REF] Bohr | Almost Periodic Functions[END_REF], A. M. Fink [START_REF] Fink | Almost Periodic Differential Equations[END_REF], B. M. Levitan [START_REF] Levitan | Almost Periodic Functions, Gos. Izdat. Tekhn-Theor. Lit[END_REF] and B. M. Levitan, V. V. Zhikov [START_REF] Levitan | Almost Periodic Functions and Differential Equations[END_REF] for the basic introduction to the theory of almost periodic functions). Almost periodic functions and almost automorphic functions have received a great attention recently, primarily from their invaluable importance in the qualitative analysis of solutions of abstract integro-differential equations in Banach spaces (cf. also the research monographs by T. Diagana [START_REF] Diagana | Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces[END_REF], G. M. N'Guérékata [START_REF] N'guérékata | Almost Automorphic and Almost Periodic Functions in Abstract Spaces[END_REF]- [START_REF] N'guérékata | Topics in Almost Automorphy[END_REF], M. Kostić [START_REF] Kostić | Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations[END_REF] and S. Zaidman [START_REF] Zaidman | Almost-Periodic Functions in Abstract Spaces[END_REF]).

In order to better explain the main ideas of this paper, we will first recall the basic facts about almost periodic functions, uniformly recurrent functions and their generalizations. Throughout this paper we assume that (E, • ) is a complex Banach space. By C(I : E), C b (I : E), C 0 (I : E) and BU C(I : E) we denote the vector spaces consisting of all continuous functions f : I → E, all bounded continuous functions f : I → E, all bounded continuous functions f : I → E satisfying that lim |t|→+∞ f (t) = 0 and all bounded uniformly continuous functions f : I → E, respectively. As is well known, C b (I : E), C 0 (I : E) and BU C(I : E) are Banach spaces equipped with the sup-norm, denoted by • ∞ . Let I = R or I = [0, ∞); unless stated otherwise, we will always assume henceforth that f : I → E is a continuous function. Given > 0, we call τ > 0 an -period for f (•) iff

f (t + τ ) -f (t) ≤ , t ∈ I.
The set constituted of all -periods for f (•) is denoted by ϑ(f, ). It is said that f (•) is almost periodic iff for each > 0 the set ϑ(f, ) is relatively dense in [0, ∞), which means that there exists l > 0 such that any subinterval of [0, ∞) of length l meets ϑ(f, ). By AP (I : E) we denote the vector space consisting of all almost periodic functions from the interval I into E. Equipped with the sup-norm, AP (I : E) becomes a Banach space. The function f : I → E is said to be asymptotically almost periodic iff there exist an almost periodic function h : I → E and a function φ ∈ C 0 (I : E) such that f (t) = h(t) + φ(t) for all t ∈ I (the existing literature is somewhat controversial about the definition of an asymptotically almost periodic f : R → E; in the case that I = R, we will use here the approach of C. Zhang from [START_REF] Zhang | Ergodicity and asymptotically almost periodic solutions of some differential equations[END_REF]). This is equivalent to saying that, for every > 0, we can find numbers l > 0 and M > 0 such that every subinterval of I of length l contains, at least, one number τ such that f

(t + τ ) -f (t) ≤ provided |t|, |t + τ | ≥ M.
Within the theory of topological dynamical systems, the notion of recurrence plays an important role; for more details, the reader may consult the research monographs [START_REF] Vries | Elements of Topological Dynamics[END_REF] by J. de Vries and [START_REF] Eisner | Operator Theoretic Aspects of Ergodic Theory[END_REF] by T. Eisner et al. Following A. Haraux and P. Souplet [START_REF] Haraux | An example of uniformly recurrent function which is not almost periodic[END_REF], we say that the function f (•) is uniformly recurrent iff there exists a strictly increasing sequence (α n ) of positive real numbers such that lim n→+∞ α n = +∞ and

lim n→∞ sup t∈R f (t + α n ) -f (t) = 0. (1.1)
It is well known that any almost periodic function is uniformly recurrent, while the converse statement is not true in general. Any g -almost periodic function under our consideration is uniformly recurrent, so that the class of uniformly recurrent functions plays a leadership role in our investigation. It is worth noting that the convergence of the above limit is uniform in the variable t ∈ R, so that the notion of a uniformly recurrent function should not be mistakenly identified with the notion of a reccurent function in the continuous Bebutov system [START_REF] Bebutov | On dynamical systems in the space of continuous functions[END_REF], where the author analyzed the usual Fréchet space C(R) and the topology of uniform convergence on compact sets (cf. also the paper [START_REF] Danilov | The uniform approximation of recurrent functions and almost recurrent functions[END_REF] by L. I. Danilov and references cited therein for further information in this direction).

A function f ∈ L p loc (I : E) is said to be Stepanov p-bounded iff

f S p := sup t∈I t+1 t f (s) p ds 1/p < ∞.
Equipped with the above norm, the space L p S (I : E) consisted of all Stepanov pbounded functions is a Banach space. A function f ∈ L p S (I : E) is said to be Stepanov p-almost periodic iff the function f : I → L p ([0, 1] : E), defined by f (t)(s) := f (t + s), t ∈ I, s ∈ [0, 1] (1.2) is almost periodic. Furthermore, we say that a function f ∈ L p S (I : E) is asymptotically Stepanov p-almost periodic iff there exist a Stepanov p-almost periodic function g ∈ L p S (I : E) and a function q ∈ L p S (I : E) such that f (t) = g(t) + q(t), t ∈ I and q ∈ C 0 (I : L p ([0, 1] : E)). It is well known that, if 1 ≤ p ≤ q < ∞ and f (•) is (asymptotically) Stepanov q-almost periodic, then f (•) is (asymptotically) Stepanov p-almost periodic. It is said that f (•) is (asymptotically) Stepanov almost periodic iff f (•) is (asymptotically) Stepanov 1-almost periodic.

After recalling these definitions, we can proceed further with the description of the main ideas and aims of this paper. Albeit the definitions of an almost periodic function and a uniformly recurrent function are quite easy and understandable, the class consisting of all almost periodic functions and the class consisting of all uniformly recurrent functions are sometimes very unpleasant and difficult to deal with. For example, already H. Bohr has marked in his pioneering papers that it is not so satisfactory to introduce the concept of almost periodicity by requiring that for each number > 0 the set ϑ(f, ) is unbounded (see e.g., [START_REF] Bohr | Almost Periodic Functions[END_REF]). A bounded uniformly continuous function f : I → R satisfying this property need not be almost periodic, its Bohr-Fourier coefficients cannot be defined in general, and moreover, if two bounded uniformly continuous functions f : I → R and g : I → R satisfy this property, then its sum f + g : I → R need not satisfy this property (see [6, part I, pp. 117-118]). Furthermore, saying that for each number > 0 the set ϑ(f, ) is unbounded is equivalent to saying that f (•) is uniformly recurrent; hence, the sum of two bounded uniformly continuous uniformly recurrent functions is not uniformly recurrent, in general. Taking into account Proposition 2.19 below, we get that the sum of two bounded uniformly continuous g -almost periodic functions is not g -almost periodic, in general. This example can be also used for proving the fact that the pointwise product of two bounded uniformly continuous, uniformly recurrent ( g -almost periodic) functions is not uniformly recurrent ( g -periodic), in general.

The above observation of H. Bohr has motivated us to further analyze some very specific examples of generalized almost periodic functions in more detail here (see [START_REF] Basit | Some problems concerning different types of vector valued almost periodic functions[END_REF] for a non-updated list of unsolved problems in the theory). First of all, we recall that B. Basit 

|f (t + τ ) -f (t)| ≥ 1 for all τ ≥ 2. (1.3)
The construction concretely goes as follows. Define a continuous 2 n+1 -periodic function f n : R → R by f n (t) := sin(2 n πt) for t ∈ [2 n -1, 2 n ], f n (t) := 0 for t ∈ [-2 n , 2 n -1), and extend it 2 n+1 -periodically to the whole real axis. Then supp(f n ) = [2 n -1, 2 n ] + 2 n+1 Z, which simply implies that supp(f n ) and supp(f m ) are disjunct sets for each integers n, m ∈ N with n = m. Therefore, the function f (x) := ∞ n=1 f n (x), x ∈ R is well-defined. This function satisfies all above properties, and we will provide a small contribution here by proving that the set ϑ(f, ) is empty for each number ∈ (0, 1) :

. Suppose that τ ∈ ϑ(f, ). Due to (1.3), we have τ ∈ (0, 2) so that there exist two possibilities: τ ∈ (0, 1) or τ ∈ [1, 2). In the first case, there exists a sufficiently large number n ∈ N such that (

2 n + 1) -(2 n -1 + 2 -n-1 ) > τ. Let t = 2 n -1 + 2 -n-1 ; then t + τ ∈ (2 n , 2 n + 1) and therefore f (t) = 1 while f (t + τ ) = 0 so that |f (t + τ ) -f (t)| = 1 > .
In the second case, there exists a sufficiently large number n ∈ N such that τ > 2 -n-1 . In this case, take t = 2 n -2 -n-1 ; then t + τ ∈ (2 n , 2 n + 1) and therefore

f (t) = -1 while f (t + τ ) = 0 so that |f (t + τ ) -f (t)| = 1 > .
Basically, the functions f (•) satisfying that there exists a number ∈ (0, 1) such that the set ϑ(f, ) is bounded will not occupy our attention henceforth. In connection with the above example, we would like to propose the following question: Question 1.1. Suppose that f : I → E is a bounded, continuous and Stepanov almost periodic. Is it true that ϑ(f, ) = ∅ (ϑ(f, ) is unbounded) for all > 0? More concretely, assume that α, β ∈ R and αβ -1 is a well defined irrational number. Then we know that the functions m(t) := sin 1 2 + cos αt + cos βt , t ∈ R and n(t) := cos 1 2 + cos αt + cos βt , t ∈ R are bounded, continuous and Stepanov p-almost periodic for any finite exponent p ≥ 1 as well as that any of them is not almost periodic since it is not uniformly continuous (see e.g., [START_REF] Kostić | Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations[END_REF]). Is it true that ϑ(m,

) = ∅ (ϑ(m, ) is unbounded) [ϑ(n, ) = ∅ (ϑ(n, ) is unbounded)] for all > 0?
We continue by observing that A. Haraux and P. Souplet have proved, in [25, Theorem 1.1], that there exists a function f : R → R which is uniformly continuous, uniformly recurrent and unbounded. The function f : R → R is given by

f (t) := ∞ n=1 1 n sin 2 t 2 n dt, t ∈ R (1.4)
and it is closely connected with the small divisors problem. From the argumentation given in the proof of the above-mentioned theorem, it immediately follows that the function f (•) given by (1.4) is neither Besicovitch almost periodic [START_REF] Kostić | Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations[END_REF] nor asymptotically Stepanov almost automorphic (see Subsection 1.1 for the notion used here as well as in the formulations of Theorem 1.2-Theorem 1.5 and Theorem 1.7). The reason for that is quite simple, this function is even and enjoys the property that lim sup

t→+∞ 1 2t t -t f (s) ds = +∞.
Since the concepts of H. Weyl and A. S. Besicovitch suggest very general ways of approaching almost automorphicity ( [START_REF] Kostić | Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations[END_REF]), it is logical to ask whether the function f (•) is Weyl almost automorphic. In this paper, we will prove the following result: Theorem 1.2. The function f (•), given by (1.4), is Weyl p-almost automorphic for any finite exponent p ≥ 1 and satisfies that for each number τ ∈ R the function f (• + τ ) -f (•) belongs to the space AN P (R : C).

Concerning this contribution, it is worth noting that the unbounded functions f : R → R such that for each number τ ∈ R the function f (• + τ ) -f (•) belongs to the space AP (R : C) have been analyzed by A. M. Samoilenko and S. I. Trofimchuk in [START_REF] Samoilenko | Unbounded functions with almost periodic differences[END_REF] (let us recall that the bounded functions satisfying this condition are always almost periodic due to the famous Loomis theorem). Let us also note that the function f (•), given by (1.4), has been employed by H. Y. Zhao and M. Fečkan in [START_REF] Zhao | Pseudo almost periodic solutions of an iterative equation with variable coefficients[END_REF], for proving the fact that for each finite real numbers M, L > 0 the set consisting of all almost periodic functions h

: R → R such that |h(t)| ≤ M, t ∈ R and |h(t 1 ) -h(t 2 )| ≤ L|t 1 -t 2 |, t 1 , t 2 ∈ R is not precompact in C(R).
Further on, in [25, Theorem 1.2], A. Haraux and P. Souplet have proved that for each real number c > 0 the function h(•) = min(c, f (•)), where f (•) is given by (1.4), is bounded uniformly continuous, uniformly recurrent and not asymptotically almost periodic. Since the function h(•) is uniformly continuous, Lemma 1.11(ii) below implies that h(•) is asymptotically Stepanov p-almost automorphic (p ≥ 1) iff h(•) is asymptotically almost automorphic. But, this is actually not the case because [25, Lemma 2.1] can be improved in the following manner: Lemma 1.3. Let ω : R → [0, ∞) be Lipschitz continuous and such that the set ω([0, +∞)) is unbounded. Define, for each finite number c > lim inf t→+∞ ω(t), the function ω 1 : R → [0, ∞) by ω 1 (t) := min(c, ω(t)), t ∈ R. Then the restriction of function ω 1 (•) to the non-negative real axis is not asymptotically almost automorphic.

The proof of Lemma 1.3 is almost the same as that of [START_REF] Haraux | An example of uniformly recurrent function which is not almost periodic[END_REF]Lemma 2.1]. The only thing worth noticing is that the existence of an almost automorphic function ω * 1 (•) such that lim t→+∞ |ω 1 (t) -ω * 1 (t)| = 0 implies, as in the proof of the abovementioned lemma, that ω * 1 ≡ c; this follows by using the same arguments, almost directly from definition of almost automorphicity (we do not need the fact that the limits in the second part of proof are uniform on R).

We will extend [START_REF] Haraux | An example of uniformly recurrent function which is not almost periodic[END_REF]Theorem 1.2] in the following way:

Theorem 1.4. Let the function f (•) be given by (1.4), and let c > 0. Then the function h(t) := min(c, f (t)), t ∈ R is bounded uniformly continuous, uniformly recurrent, not asymptotically (Stepanov) almost automorphic, and not (Stepanov) quasi-asymptotically almost periodic.

Concerning this contribution, we have made a decision to further analyze the function constructed by H. Bohr on pp. 113-115 of the first part of his landmark trilogy [START_REF] Bohr | Zur theorie der fastperiodischen Funktionen I; II; III[END_REF]. In actual fact, the results obtained by A. M. Fink in his doctoral dissertation [START_REF] Fink | Almost periodic points in topological transformation semi-groups[END_REF] tell us that this function is uniformly continuous (nonexpansive, in fact), uniformly recurrent and not almost periodic. The construction of this function goes as follows. Let τ 1 := 1, τ 2 > 2 and let the sequence (τ n ) n∈N of positive real numbers satisfy τ n > 2 n-1 i=1 iτ i for all n ∈ N. Let the sequence (f n : R → R) n∈N be defined as follows. Set f 1 (x) := 1 -|x| for |x| ≤ 1 and f 1 (x) := 0, otherwise. If the functions f 1 (•), • • •, f n-1 (•) are already defined, set

f n (x) := f n-1 (x) + n-1 m=1 n -m n f n-1 x -mτ n + f n-1 x + mτ n , x ∈ R.
Then

f n (x + τ n ) -f n (x) ≤ 1 n , n ∈ N, x ∈ R,
and the function

f (x) := lim n→+∞ f n (x), x ∈ R (1.5)
is well defined, even and satisfies that 0 ≤ f (x) ≤ 1 for all x ∈ R. It is worth observing that this function also satisfies all clarified properties of function h(•) from Theorem 1.4: Theorem 1.5. The function f : R → R, given by (1.5), is bounded uniformly continuous, uniformly recurrent, not asymptotically (Stepanov) almost automorphic, and not (Stepanov) quasi-asymptotically almost periodic.

In Example 2.25, we will show that, for some concrete choices of sequences (τ n ) n∈N , the function f : R → R, given by (1.5), is Weyl p-almost automorphic for each finite exponent p ≥ 1. Since any Stepanov p-quasi-asymptotically almost periodic function is Weyl-p-almost periodic (p ≥ 1) in the sense of A. S. Kovanko's approach (see [START_REF] Kostić | Quasi-asymptotically almost periodic functions and applications[END_REF]Proposition 2.11]), it is quite reasonable to ask the following: Question 1.6. Is it true that the function f (•), given by (1.5), is (equi-)Weyl-palmost periodic for some (each) finite exponent p ≥ 1?

We would like to note that the function used by J. de Vries in [9, point 6., p. 208] can serve as a much simpler example of a bounded uniformly continuous function f : R → R satisfying all clarified properties of functions examined in Theorem 1.4 and Theorem 1.5: Let (p i ) i∈N be a strictly increasing sequence of natural numbers such that p i |p i+1 , i ∈ N and lim i→∞ p i /p i+1 = 0. Define the function

f i : [-p i , p i ] → [0, 1] by f i (t) := |t|/p i , t ∈ [-p i , p i ]
and extend the function f i (•) periodically to the whole real axis; the obtained function, denoted by the same symbol

f i (•), is of period 2p i (i ∈ N). Set f (t) := sup f i (t) : i ∈ N , t ∈ R. (1.6)
We will prove the following: Theorem 1.7. The function f : R → R, given by (1.6), is bounded uniformly continuous, uniformly recurrent, not asymptotically (Stepanov) almost automorphic, and not (Stepanov) quasi-asymptotically almost periodic.

We proceed with much elementary things, by considering a general continuous function f : I → E. Suppose first that there exists a number > 0 such that ϑ(f, ) = ∅, say τ ∈ ϑ(f, ). Setting M := sup t∈I,|t|≤τ f (t) , it can be simply proved by induction that we have f (t) ≤ M + n for all t ∈ I with |t| ∈ [nτ, (n + 1)τ ] (n ∈ N). Hence, f (t) ≤ M + |t| /τ for all t ∈ I with |t| ∈ [nτ, (n + 1)τ ] (n ∈ N), so that

f (t) ≤ M + |t| /τ, t ∈ R (1.7)
and the function f (•) is linearly bounded as |t| → +∞. Further on, it is clear that the assumption ϑ(f, ) = ∅ for each > 0 implies that ϑ(f, ) is infinite for each > 0 as well as that there does not exist a finite constant M such that the interval [0, M ] contains the union of sets ϑ(f, ) when > 0; this is a simple consequence of the fact that for each > 0 we have jϑ(f, /n) ⊆ ϑ(f, ) for all j = 1, • • •, n. Let us observe that a linear function f : I → C can serve as an example of a function for which the growth order in (1.7) cannot be improved and for which the assumption ϑ(f, ) = ∅ for each > 0 does not imply the existence of a number 0 > 0 such that the set ϑ(f, 0 ) is unbounded.

To the best of our knowledge, this is the first systematic study of vector-valued uniformly recurrent functions. In this paper, we attempt to further profile the sets of -periods of uniformly recurrent functions by introducing the class of g -almost periodic functions, which is simply defined by using the notions of lower and upper (Banach) densities for the subsets of the non-negative real axis (we feel it is our duty to say that we have only partially succeeded in our mission because it is very difficult to practically control and give intrinsic characterizations of -periods). The lower and upper (Banach) m n -densities for the subsets of N, considered recently in [START_REF] Kostić | F -Hypercyclic operators on Fréchet spaces[END_REF], are discrete analogues of the lower and upper (Banach) g-densities considered in this paper. In the discrete setting, these densities play an important role in the field of linear chaos, for example, in definitions of frequent hypercyclicity and reiterative m n -distributional chaos of linear continuous operators on Fréchet spaces. In the continuous setting, these densities play an important role in the qualitative analysis of solutions to the abstract (fractional) integro-differential equations in Fréchet spaces; see e.g., the recent research monograph [START_REF] Kostić | Chaos for Linear Operators and Abstract Differential Equations[END_REF] by the author and references cited therein for a brief introduction to the theory of linear chaos. We generalize the notion of almost periodicity by analyzing several different types of (Stepanov) galmost periodicity for functions with values in complex Banach spaces. Speakingmatter-of-factly, we analyze the lower and upper (Banach) g-densities of sets ϑ(f, ), where > 0 and g : [0, ∞) → [1, ∞) is an increasing mapping satisfying the condition (1.11) below.

The organization of paper can be briefly described as follows. In Subsection 1.1, we recall the basic facts and results about generalized almost periodic functions and generalized almost automorphic functions that we will need later on. Subsection 1.2 investigates the lower and upper (Banach) g-densities for the subsets of the nonnegative real line; in this subsection, we present our first significant contributions, Theorem 1.14 and Theorem 1.15, in which we transfer the main result of paper [START_REF] Grekos | A note on uniform or Banach density[END_REF] by G. Grekos, V. Toma and J. Tomanová to the continuous setting and reconsider the notion and several recent results from [START_REF] Kostić | F -Hypercyclic operators on Fréchet spaces[END_REF].

In Section 2, we analyze g -almost periodic functions, uniformly recurrent functions and their Stepanov generalizations. With the notation explained below, we say that a continuous function f : I → E is g -almost periodic iff for each > 0 we have g (ϑ(f, )) > 0; see Definition 2.1, in which the symbol g denotes exactly one of the densities d gc , d gc , Bd l;gc , Bd u;gc , Bd l;gc or Bd u;gc . In the paragraph following Definition 2.1, we collect the basic properties of g -almost periodic functions and uniformly recurrent functions. The main purpose of Proposition 2.2 is to clarify the supremum formula for uniformly recurrent functions; in Proposition 2.3, we prove that any almost periodic function f : I → E is g -almost periodic. All introduced concepts are equivalent in case g(x) ≡ x, and reduced then to the concept of almost periodicity (Proposition 2.4). After that, in Proposition 2.5, we prove that the almost periodicity is equivalent with the Bd l;gc -almost periodicity and Bd u;gc -almost periodicity for every increasing mapping g(•) satisfying the condition (1.11). Definition 2.9 introduces the notions of asymptotical uniform recurrence and asymptotical g -almost periodicity, while Proposition 2.10 restates all results from Section 2 proved by then in this context. We introduce the notion of (asymptotical) Stepanov p-uniform recurrence and (asymptotical) Stepanov (p, g )-almost periodicity in Definition 2.11. The main purpose of Theorem 2.13 is to show that any asymptotically uniform recurrent, quasi-asymptotically almost periodic function is asymptotically almost periodic; the Stepanov analogue of this statement is also considered here. Proposition 2.15 shows that the uniform recurrence and asymptotical almost automorphicity (asymptotical almost periodicity) implies almost automorphicity (almost periodicity), for the usually considered classes and Stepanov classes. Further on, in Theorem 2.16 and Proposition 2.17 • g -almost periodic for • g ∈ {d gc , d gc } (see also Remark 2.20, where we use the densities Bd l:gc (•) and Bd u:gc (•)). In Example 2.23, we prove that the compactly almost automorphic function constructed by A. M. Fink in [START_REF] Fink | Extensions of almost automorphic sequences[END_REF] is not asymptotically uniformly recurrent; the proofs of Theorem 1.2, Theorem 1.4, Therorem 1.5 and Theorem 1.7 are provided after that.

The main aim of Section 3, which is written in a concise, semi-heuristical manner, is to investigate the existence and uniqueness of uniformly recurrent and galmost periodic type solutions of abstract integro-differential equations in Banach spaces; in this section, we pay special attention to the invariance of (asymptotical) uniform recurrence and (asymptotical) g -almost periodicity under the actions of convolution products. For simplicity, we will not consider two-parameter uniformly recurrent ( g -almost periodic) functions, composition principles and applications to abstract semilinear integro-differential equations.

We use the standard notation throughout the paper. If X is also a complex Banach space, then L(E, X) stands for the space of all continuous linear mappings from

E into X; L(E) ≡ L(E, E). Given s ∈ R in advance, set s := sup{l ∈ Z : s ≥ l} and s := inf{l ∈ Z : s ≤ l}. The function sign : R → {-1, 0, 1} is defined by sign(t) := -1 (0, 1) iff t < 0 (t = 0, t > 0); if c ∈ R and A ⊆ R, then we define cA := {ca : a ∈ A}. If ψ : R → C and f : R → E are measurable functions, the convolution product ψ * f is defined by ψ * f (t) := ∞ -∞ ψ(t -s)f (s) ds, t ∈ R, if this integral exists in the Bochner sense. Let us recall that a function f : (0, ∞) → R is called subadditive iff f (x + y) ≤ f (x) + f (y), x, y > 0. A continuous version of Fekete's lemma states that, for every measurable subadditive function f : (0, ∞) → R, the limit lim t→+∞ f (t) t exists in [-∞, ∞) and lim t→+∞ f (t) t = inf t>0 f (t) t
(see e.g., [START_REF] Hille | Functional Analysis and Semi-Groups[END_REF]Theorem 6.6.1]). We will use the following simple lemma: Lemma 1.8. There do not exist k ∈ N and n 0 ∈ N such that

sign cos (n + k)π √ 2 = sign cos nπ √ 2 , n ∈ Z, |n| ≥ n 0 . (1.8) Proof. Since cos(nπ √ 2) = 0 for all n ∈ Z, it is clear that (1.8) is equivalent to saying that cos((n + k)π √ 2) • cos(nπ √ 2) > 0, n ∈ Z, |n| ≥ n 0 .
If k ∈ N satisfies the above condition and kπ √ 2 = 2k 0 π + a for some numbers k 0 ∈ Z and a ∈ (0, 2π), then we get from the above: cos(nπ

√ 2 + a) • cos(nπ √ 2) > 0, n ∈ Z, |n| ≥ n 0 .
This cannot be satisfied because the set {e inπ √ 2 : n ∈ Z, |n| ≥ n 0 } is dense in the unit sphere and cos x = (e ix ), x ∈ R.

1.1. Almost periodic functions, almost automorphic functions and their generalizations. Let f ∈ AP (I : E). Then the Bohr-Fourier coeffcient P r (f ) := lim t→∞ 1 t t 0 e -irs f (s) ds exists for all r ∈ R; furthermore, if P r (f ) = 0 for all r ∈ R, then f (t) = 0 for all t ∈ R, and σ(f ) := {r ∈ R : P r (f ) = 0} is at most countable. By AP (Λ : E), where Λ is a non-empty subset of R, we denote the vector subspace of AP (I : E) consisting of all functions f ∈ AP (I : E) for which the inclusion σ(f ) ⊆ Λ holds good. It can be easily seen that AP (Λ : E) is a closed subspace of AP (I : E) and therefore Banach space itself.

Let us recall that f (•) is anti-periodic iff there exists p > 0 such that f (x + p) = -f (x), x ∈ I. Any such function needs to be periodic, as it can be easily proved. Given > 0, we call τ > 0 an -antiperiod for f (•) iff f (t + τ ) + f (t) ≤ , t ∈ I. By ϑ ap (f, ) we denote the set of all -antiperiods for f (•). It is said that f (•) is almost anti-periodic iff for each > 0 the set ϑ ap (f, ) is relatively dense in [0, ∞) (see [START_REF] Kostić | Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations[END_REF] for more details). We know that any anti-periodic function needs to be almost anti-periodic as well as that any almost anti-periodic function needs to be almost periodic. Denote by AN P 0 (I : E) the linear span of almost anti-periodic functions from I into E. Then AN P 0 (I : E) is a linear subspace of AP (I : E) and the linear closure of AN P 0 (I : E) in AP (I : E), denoted by AN P (I : E), satisfies

AN P (I : E) = AP R\{0} (I : E). (1.9)
The (Stepanov) quasi-asymptotically almost periodic functions have been recently analyzed in [START_REF] Kostić | Quasi-asymptotically almost periodic functions and applications[END_REF]. For our further work, it will be necessary to recall the following definition: Definition 1.9. Suppose that I = [0, ∞) or I = R.

(i) A bounded continuous function f : I → E is said to be quasi-asymptotically almost periodic iff for each > 0 there exists a finite number L( ) > 0 such that any interval I ⊆ I of length L( ) contains at least one number τ ∈ I satisfying that there exists a finite number M ( , τ ) > 0 such that

f (t + τ ) -f (t) ≤ , provided t ∈ I and |t| ≥ M ( , τ ).
Denote by Q -AAP (I : E) the set consisting of all quasi-asymptotically almost periodic functions from 

I into E. (ii) Let f ∈ L p S (I : E). Then it is said f (•) is Stepanov p-quasi-
≤ p ≤ q < ∞, then S q Q -AAP (I : E) ⊆ S p Q -AAP (I : E) and for any function f ∈ L p S (I : E), we have that f (•) is Stepanov p-quasi-asymptotically almost periodic iff the function f : I → L p ([0, 1] : E), defined by (1.2), is quasi- asymptotically almost periodic. It is said that f (•) is Stepanov quasi-asymptotically almost periodic iff f (•) is Stepanov 1-quasi-
f (t + τ ) -f (t) p dt 1/p ≤ .
(ii) We say that the function f (•) is Weyl-p-almost periodic, f ∈ W p ap (I : E) for short, iff for each > 0 we can find a real number L > 0 such that any interval

I ⊆ I of length L contains a point τ ∈ I such that lim l→∞ sup x∈I 1 l x+l x f (t + τ ) -f (t) p dt 1/p ≤ .
Before recollecting the material about almost automorphic type functions, let us recall that P AP 0 (R : E) stands for the space consisting of all pseudo-ergodic components, i.e., bounded continuous functions Φ : R → E such that

lim l→∞ 1 2l l -l Φ(s) ds = 0.
For simplicity, we will mostly use the usual ergodic components henceforth.

Let f : R → E be continuous. Then it is said that f (•) is almost automorphic iff for every real sequence (b n ) there exist a subsequence (a n ) of (b n ) and a map g : R → E such that for each t ∈ R; a function f ∈ L p loc (I : E) is called asymptotically Stepanov p-almost automorphic iff there exists an S p -almost automorphic function g(•) and a function q ∈ L p S (I : E) such that f (t) = g(t) + q(t), t ∈ I and q ∈ C 0 (I : L p ([0, 1] : E)) (see also the paper [START_REF] Ding | Asymptotically almost automorphic solutions of differential equations with piecewise constant argument[END_REF] by H.-S. Ding and S.-M. Wan for the case that I = R). The following lemma can be deduced by using an elementary argumentation involving [28, Proposition 3.1], the above-mentioned theorem (cf. also [26, Lemma 1]) and a simple observation that any uniformly continuous function q ∈ C 0 (I : L p ([0, 1] : E)) belongs to the space C 0 (I :

lim n→∞ f t + a n = g(t) and lim n→∞ g t -a n = f (t), (1.
Any Stepanov p-almost automorphic function f (•) has to be Stepanov p-bounded. Furthermore, if 1 ≤ p ≤ q < ∞ and a function f (•) is (asymptotically) Stepanov q- almost automorphic, then f (•) is (asymptotically) Stepanov p-almost automorphic. We say that a function f (•) is (asymptotically) Stepanov almost automorphic iff f (•) is f (•) is (asymptotically) Stepanov
E) : Lemma 1.11. Let f : I → E be uniformly continuous and p ∈ [1, ∞). (i) If f (•) is asymptotically Stepanov p-almost periodic, then f (•) is asymptot- ically almost periodic. (ii) If f (•) is asymptotically Stepanov p-almost automorphic, then f (•) is asymp- totically almost automorphic.
We also need the following important definition.

Definition 1.12. (S. Abbas, [START_REF] Abbas | A note on Weyl pseudo almost automorphic functions and their properties[END_REF]) Let p ∈ [1, ∞). Then we say that a function f ∈ L p loc (R : E) is Weyl p-almost automorphic iff for every real sequence (s n ), there exist a subsequence (s n k ) and a function

f * ∈ L p loc (R : E) such that lim k→+∞ lim l→+∞ 1 2l l -l f t + s n k + x -f * (t + x) p dx = 0 and lim k→+∞ lim l→+∞ 1 2l l -l f * t -s n k + x -f (t + x) p dx = 0 for each t ∈ R.
Before we switch to the next subsection, we would like to observe that the Weyl palmost automorphicity does not imply the Besicovitch p-unboundedness, in general (see e.g., [29, Definition 3.1.2] and [29, Definition 3.1.4] for the notion); a simple counterexample with p = 1 is given by the function h(x) := |x|, x ∈ R, which is Weyl (1-)almost automorphic with the limit function h * ≡ h. This simply follows from the fact that for each numbers t, ω ∈ R we have

lim l→+∞ 1 2l l -l |h(t + x + ω) -h(t + x)| dx = 0.
1.2. Lower and upper (Banach) g-densities. Unless stated otherwise, in this paper we will always assume that g : [0, ∞) → [1, ∞) is an increasing mapping satisfying that there exists a finite number L ≥ 1 such that

x ≤ Lg(x), x ≥ 0, (1.11) which clearly implies lim inf x→+∞ g(x)/x > 0. If A ⊆ [0, ∞) and a, b ≥ 0, then we define A(a, b) := {x ∈ A ; x ∈ [a, b]}.
For simplicity and better exposition, in this paper we will use the Lebesgue measure m(•) on the non-negative real line, only. The use of Lebesgue measure is sufficiently enough for our analyses of uniformly continuous g -almost periodic functions; we feel it is our duty to say that the general case is much more complicated and almost not considered below.

Let us define (cf. [START_REF] Kostić | Chaos for Linear Operators and Abstract Differential Equations[END_REF]- [START_REF] Kostić | F -Hypercyclic operators on Fréchet spaces[END_REF] for more details): Case g(x) := (1 + |x|) q , x ≥ 0 is the most important (q ≥ 1), when we denote the corresponding densities by d qc (A), d qc (A), Bd l;qc (A), Bd u;qc (A), Bd l;qc (A) and Bd l;qc (A). Arguing similarly as in [31, Example 2.1(i)], for each number q > 1 we can simply construct a set A ⊆ [0, ∞) such that Bd l;qc (A) = 0 and Bd u;qc (A) = +∞; using the construction given in [31, Example 2.1(ii)], for each number q > 1 we can simply construct a set A ⊆ [0, ∞) such that d qc (A) = +∞ and Bd u;qc (A) = 0 so that the case q > 1 is not standard. Further on, if q = 1, then we get the usual concepts of lower and upper Banach densities: in this case, we have the following This follows immediately if we prove that for each real number y ≥ 0 we have

m A(t, t + x 1 + x 2 ) ≤ sup t≥y m A(t, t + x 1 ) + sup t≥y m A(t, t + x 2 ) .
But, this is a simple consequence of the fact that for each real number y ≥ 0 we have t + x 1 ≥ y and m A(t, t + x 1 + x 2 ) ≤ m A(t, t + x 1 ) + m A(t + x 1 , t + x 1 + x 2 ) ; see also P. Ribenboim's paper [START_REF] Ribenboim | Density results on families of diophantine equations with finitely many solutions[END_REF]. Since For this, we will slightly adapt the arguments proposed in the proof of discrete version of this statement, given in [START_REF] Grekos | A note on uniform or Banach density[END_REF]. Define

D = x ∈ [0, 1] : ∀L > 0 ∃interval I ⊆ [0, ∞) s.t. m(I ) ≥ L and m(A ∩ I )/m(I ) ≥ x .
Repeating literally the arguments given in [20, Subsection 2.1], we obtain that lim inf x→+∞ sup y≥0 m(A(y,y+x))

x

≤ b := sup D. The proof of (1.17) will be completed if one shows that b ≤ inf x>0 (lim sup y→+∞ m(A(y, y + x))/x). Suppose the contrary. Then there are a positive real number x 0 > 0 and two real numbers

x 1 , x 2 ∈ [0, 1] such that x 1 < x 2 < b and lim sup y→+∞ m(A(y, y + x 0 )) < x 0 x 1 .
By definition of lim sup y→+∞ •, this implies that there exists a positive real number y 0 > 0 such that m(A(y, y + x 0 )) < x 0 x 1 for all y ≥ y 0 . We will prove that there exists a sufficiently large number L > 0 such that every subinterval I ⊆ I with m(I ) ≥ L satisfies m(A ∩ I ) < x 2 m(I ), showing that x 2 / ∈ D and implying the contradiction. To see this, suppose that I = [y, y + h] for some h > 0. Then there exists q ∈ N 0 such that qx 0 ≤ h < (q + 1)x 0 and therefore m(A(y, y + h)) ≤ y 0 + m A(y 0 , y + h) ≤ y 0 + q j=0 m A(y 0 + jx 0 , y 0 + (j + 1)x 0 )

≤ y 0 + (q + 1)x 0 x 1 ≤ y 0 + x 0 x 1 + qx 0 x 1 < y 0 + x 0 x 1 + hx 1 < hx 2 ,
for any h > 0 sufficiently large. The proof of (1.18) follows from (1.12)-(1.13) and (1.17), which also shows that for each subset A ⊆ [0, ∞) we have

Bd c (I \ A) + Bd c (A) = 1. (1.19)
Since the case g(x) ≡ x is very special in our analysis, we will also prove the following result which is well known in the discrete case (we then write d c (A) ≡ d gc (A) and d c (A) ≡ d gc (A)): x .

Theorem 1.15. Let A ⊆ [0, ∞). Then we have 0 ≤ Bd c (A) ≤ d c (A) ≤ d c (A) ≤ Bd c (A) ≤ 1.
Since the mapping in the above limit is monotonically decreasing in variable t, we get the existence of positive real numbers δ > 0, x 0 > 0 and y 0 > 0 such that

m(A(0, y)) y ≥ m A(z, z + x 0 ) x 0 + δ, y ≥ y 0 , z ≥ 0. (1.20) Due to (1.20), we get m(A(0, y)) ≤ y/x0 j=0 m A(jx 0 , (j + 1)x 0 ≤ y/x 0 + 1 m(A(0, y)) y -δ x 0 , i.e., 1 - x 0 y y/x 0 + 1 m(A(0, y)) y ≤ -δx 0 y/x 0 + 1 /y, y ≥ y 0 .
After taking the limits as y → +∞, we obtain 0 ≤ -δ, which is a contradiction.

Let us finally note that, in the combinatorial and additive number theory, the sets with positive upper Banach density play a major role; see e.g., [19, Section 5.7, Section 5.8]. A great number of results about the lower and upper (Banach) densities, known for subsets of integers, cannot be so easily reformulated and reconsidered for the subsets of the non-negative real axis. This is not the case with the statements of [31, Proposition 2.5-Proposition 2.7, Corollary 2.2], which can be simply reformulated for (Banach) g-densities; details can be left to the interested reader.

Before going any further, the author would like to thank Prof. A. Haraux for his permission given us to submit the first version of this paper to J. Fourier Anal. Appl. as an addendum to the paper [START_REF] Haraux | An example of uniformly recurrent function which is not almost periodic[END_REF], writen in his collaboration with Prof. P. Souplet. After that, the paper enlarged to a great extent and we gave up this idea.

g -Almost periodic functions, uniformly recurrent functions and their Stepanov generalizations

We will always assume henceforth that g : [0, ∞) → [1, ∞) is an increasing mapping satisfying that there exists a finite number L ≥ 1 such that (1.11) holds. Let g denote exactly one of the symbols d gc , d gc , Bd l;gc , Bd u;gc , Bd l;gc or Bd u;gc .

We start by introducing the following notion:

Definition 2.1. Let f : I → E be continuous. Then it is said that f (•) is g -almost periodic iff for each > 0 we have g (ϑ(f, )) > 0.

We will use hereafter the following fundamental properties of g -almost periodic functions and uniformly recurrent functions, collected as follows (for parts (iv)-(vi), see [5, pp. 3-4]; for parts (vii)-(viii), see [34, p. 

f |[0,∞) (•) ∈ C 0 ([0, ∞) : E) or f|[0,∞) (•) ∈ C 0 ([0, ∞) : E), then f ≡ 0. (xi) If a ∈ I and the function f (•) is g -almost periodic (uniformly recurrent),
then the function f (•+a)-f (•) is g -almost periodic (uniformly recurrent). For the sake of completeness, we will include short proofs of the following two propositions (the first proposition improves the corresponding result for almost periodic functions; for almost automorphic functions, see [29, Lemma 3.9.9]): Proposition 2.2. (Supremum formula) Suppose that f : I → E is uniformly recurrent. Then we have

sup t∈I f (t) = sup t≥a f (t) ∈ [0, ∞], a ∈ I.
Proof. Let a ∈ I, t ∈ I and > 0 be fixed. It suffices to show that

f (t) ≤ + sup s≥a f (s) .
In order to do that, take any strictly increasing sequence (α n ) of positive real numbers such that lim n→+∞ α n = +∞ and (1.1) holds. Let n ∈ N be such that t + α n ≥ a. Then f (t + α n ) -f (t) ≤ and therefore Proof. Let us recall that any almost periodic function is uniformly continuous. Using this fact, it can be easily seen that for each > 0 there exist two finite constants δ > 0 and l > 0 such that any segment [y, y + g(x)] for x ≥ L(1 + l) and y ≥ 0 contains the segment [y, y + x/L] (cf. (1.11)) and therefore at least x/Ll ≥ 1 disjunct intervals of length δ whose elements are -periods for f (•); see also [START_REF] Besicovitch | Almost Periodic Functions[END_REF]Corollary,p. 2]. This clearly implies g (ϑ(f, )) > δ/Ll > 0. Now we will prove the following Proposition 2.4. Let f : I → E be continuous and g(x

f (t) ≤ + f (t + α n ) ≤ + sup s≥a f (s) ,
) ≡ x. Then f (•) is almost periodic iff f (•) is g -almost periodic.
Proof. Having in mind Proposition 2.3 and Theorem 1.15, it suffices to show that any Bd c -almost periodic function f : I → E is almost periodic. Towards this end, it suffices to show that any set A ⊆ [0, ∞) satisfying Bd c (A) > 0 is relatively dense. Otherwise, for every real number L > 0, we have that there exists an interval I L of length L which does not contain any -period of f (•). Thus, an unbounded set n∈N I 2 n does not contain any -period of f (•), which immediately implies that Bd c (A) = 0 by definition.

Concerning the notions of Bd l;gc -almost periodicity and Bd u;gc -almost periodicity, the things are pretty clear. In the following proposition, whose discrete analogue has been considered in [31, Proposition 2.4], we will prove that these notions are equivalent with the almost periodicity: Proposition 2.5. Let f : I → E be continuous and let g : [0, ∞) → [1, ∞) be an increasing mapping satisfying that there exists a finite number L ≥ 1 such that

(1.11) holds. Then f (•) is almost periodic iff f (•) is Bd l;gc -almost periodic iff f (•) is Bd u;gc -almost periodic.
Proof. Due to Proposition 2.3 and the fact that any Bd l;gc -almost periodic function is Bd u;gc -almost periodic, it suffices to show that any Bd u;gc -almost periodic function is almost periodic. Suppose the contrary and fix a number x > 0. Then there exists a number > 0 such that, for every n ∈ N, there exists an interval I n = [y n , y n + 2n + 2g(x)] ⊆ [0, ∞) of length 2n + 2g(x) such that the set ϑ(f, ) does not meet I n . Then, for every n ∈ N, the interval I n = [y n +n+g(x), y n +2n+2g(x)] does not meet ϑ(f, ) and has the length n + g(x) ≥ g(x). This implies m(([ϑ(f, )](y n + n+g(x), y n +2n+2g(x))) = 0. Hence, lim inf y→+∞ m([ϑ(f, )](y, y +x)) = 0, which contradicts condition Bd u;gc (ϑ(f, )) > 0.

Remark 2.6. Let f : I → E be continuous and let c ∈ I \ {0}. Define the function f c : I → E by f c (t) := f (ct), t ∈ I. Then we have |c|ϑ(f, ) ⊆ ϑ(f c , ) for all > 0, which simply implies that for any uniformly recurrent function f (•) we have that the function f c (•) is uniformly recurrent. Due to Proposition 2.5 and the corresponding statement for almost periodic functions, the same holds for g -almost periodicity with g ∈ {Bd l;gc , Bd u;gc }. If g is one of the densities d gc , d gc , Bd l;gc or Bd u;gc , then directly from their definitions and the definition of g -almost periodicity we may conclude, keeping in mind the fact that for any Lebesgue measurable subset A ⊆ [0, ∞) the set cA is also Lebesgue measurable with m(cA) = cm(A), that the g -almost periodicity of function f (•) implies the g -almost periodicity of function f c (•) for any c ∈ I \ {0} with |c| ≤ 1. Assume now that g is one of the above four densities and |c| > 1. In this case, it is almost inevitable to impose some additional conditions on the function g(•) under which the g -almost periodicity of function f (•) implies the g -almost periodicity of function f c (•). For example, it is very natural to assume additionally that g(•) is continuous, strictly increasing as well as that there exist two numbers t 0 > 0 and δ > 0 such that |c|g(t) ≤ g(t/δ) for all t ≥ t 0 . For the Banach density Bd u;gc , the claimed statement then follows from the computation (x > 0 satisfies that t = g -1 (g(x)/c) ≥ t 0 ):

lim sup y→+∞ m(cA(y, y + g(x))) x = lim sup y→+∞ cm(A(y/c, y/c + (g(x)/c))) x = lim sup y→+∞ m(A(y, y + (g(x)/c))) x = lim sup y→+∞ m(A(y, y + g(t))) g -1 (cg(t)) = lim sup y→+∞ m(A(y, y + g(t))) t t g -1 (cg(t)) ≥ δ lim sup y→+∞ m(A(y, y + g(t))) t .
For the Banach density Bd l;gc and for the densities d gc , d gc , the claimed statement follows similarly. {z ∈ C : a < z < b} → C such that F (ix) = f (x) for all x ∈ R. Then the function h : R → R, defined by h(x) := sign(f (x)), x ∈ R is Stepanov p-almost periodic for any finite exponent p ≥ 1. For p = 1, this has been proved in [START_REF] Levitan | Almost Periodic Functions, Gos. Izdat. Tekhn-Theor. Lit[END_REF]Theorem 5.3 by neglecting the necessary condition on the analytical extensibility of function f ((-i)•) to the strip {z ∈ C : a < z < b}). The Bochner criterion is essentially employed in the proof of the above-mentioned theorem and we would like to observe here that the above condition on the analytical extensibility of function f ((-i)•) can be neglected in some situations, even for the uniform recurrence and g -almost periodicity. More precisely, let f : R → R be a uniformly recurrent function (an

g -almost periodic function) satisfying that (∃L ≥ 1) (∀ > 0) (∀y ∈ R) m {x ∈ [y, y + 1] : |f (x)| ≤ } ≤ L .
Then the function h(•), defined above, is uniformly recurrent ( g -almost periodic), which follows from the foregoing arguments.

Now we will introduce the following definition:

Definition 2.9.

(i) Suppose that f ∈ C(I : E). Then we say that the function f (•) is asymptotically uniformly recurrent iff there exist a uniformly recurrent function h : I → E and a function φ ∈ C 0 (I : E) such that f (t) = h(t) + φ(t) for all t ∈ I. (ii) Suppose that f ∈ C(I : E). Then we say that the function f (•) is asymptotically g -almost periodic iff there exist an g -almost periodic function h : I → E and a function φ ∈ C 0 (I : E) such that f (t) = h(t) + φ(t) for all t ∈ I.

From this definition and previously proved results in this section, it is clear that we have the following: Proposition 2.10.

(i) Any asymptotically almost periodic function is asymptotically g -almost periodic, and any asymptotically g -almost periodic function is asymptotically uniformly recurrent. (i) Let 1 ≤ p < ∞. A function f ∈ L p loc (I : E) is said to be asymptotically Stepanov p-uniformly recurrent iff there exist a Stepanov p-uniformly recurrent function h(•) and a function q ∈ L p S (I : E) such that f (t) = h(t) + q(t), t ∈ I and q ∈ C 0 (I : L p ([0, 1] : E)).

(ii) Let 1 ≤ p < ∞. A function f ∈ L p loc (I : E) is said to be asymptotically Stepanov (p, g )-almost periodic iff there exist a Stepanov (p, g )-almost periodic function h(•) and a function q ∈ L p S (I : E) such that f (t) = h(t) + q(t), t ∈ I and q ∈ C 0 (I : L p ([0, 1] : E)).

We can simply state the analogues of Proposition 2.3-2.5 and Proposition 2.10 for the Stepanov classes. Taking into account Proposition 2.5 and Proposition 2.10(iii), in the remainder of paper we will always assume, if not explicitly stated otherwise, that g denotes exactly one of the densities d gc , d gc , Bd l;gc or Bd u;gc . Before proceeding any further, we would like to note that we can similarly introduce and analyze the concepts of g -almost anti-periodicity and Stepanov (p, g )-almost anti-periodicity ( [START_REF] Kostić | Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations[END_REF]).

The following result, which is closely related with [32, Theorem 2.5, Theorem 2.10], plays a significant role in the proof of Theorem 1.4: Proof. The proof of theorem essentially follows from the argumentation contained in the proof of [START_REF] Kostić | Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations[END_REF]Theorem 2.5]; for the sake of completeness, we will include all details of proof. Suppose that the function f : I → E satisfies the assumptions in (i). Then there exist a uniformly recurrent function h(•) and a function q ∈ C 0 (I : E) such that f (t) = h(t) + q(t), t ∈ I and for each > 0 there exists a finite number L( ) > 0 such that any interval I ⊆ I of length L( ) contains at least one number τ ∈ I satisfying that there exists a finite number M ( , τ ) > 0 such that 

[h(t + τ ) -h(t)] + [q(t + τ ) -q(t)] ≤ , provided t ∈ I and |t| ≥ M ( , τ ). (2.1) Since f (•) is bounded and q ∈ C 0 (I : E), we have that h(•) is bounded. The above implies the existence of a finite number M 1 ( , τ ) ≥ M ( , τ ) such that h(t + τ ) -h(t) ≤ 2 , provided t ∈ I and |t| ≥ M 1 ( , τ ). (2.2) Define the function H : I → E by H(t) := h(t + τ ) -h(t), t ∈ I.
H(t) = sup t≥M1( ,τ ) h(t + τ ) -h(t) ≤ 2 .
Hence, h(t + τ ) -h(t) ≤ 2 for all t ∈ I and h(•) is almost periodic by definition, which completes the proof of part (i). For part (ii), observe first that there exist an Stepanov p-uniformly recurrent function h(•) and a function q ∈ L p S (I : E) such that f (t) = h(t) + q(t), t ∈ I and q ∈ C 0 (I : L p ([0, 1] : E)). Repeating verbatim the arguments given in the proof of part (i), with the function f (•) replaced therein with the function f (•), we get that the function ĥ : I → L p ([0, 1] : E) is asymptotically almost periodic. This simply completes the proof of (ii).

Example 2.14. Denote by c 0 the Banach space of all numerical sequences tending to zero, equipped with the sup-norm. Define Proof. We will prove only (i) and (ii). Suppose that f : R → E is uniformly recurrent and asymptotically almost automorphic. Then there exist a function h ∈ AA(R : E), a function q ∈ C 0 (R : E) and a strictly increasing sequence (α n ) of positive real numbers tending to plus infinity such that (1.1) holds and f (t) = h(t) + q(t) for all t ∈ R. Fix a number t ∈ R. Then lim n→+∞ q(t + α n ) = 0 and, in combination with (1.1), we get

f (t) := 4n 2 t 2 (t 2 + n 2 ) 2 n∈N , t ≥ 0. Then f ∈ Q -AAA([0, ∞) : c 0 ) ∩ BU C([0, ∞) : c 0 ) and f (•) is
lim n→+∞ h t + α n = f (t) and lim n→+∞ f t -α n = f (t). (2.3) Since h(•) is almost automorphic, we can extract a subsequence (β n ) of (α n ) such that there exists a mapping f 1 : R → E satisfying lim n→+∞ h t + β n = f 1 (t) and lim n→+∞ f 1 t -β n = h(t) for all t ∈ R. (2.4)
The uniqueness of the first limits in (2.3) and (2.4) yields f 1 (t) = f (t). Using the uniqueness of the second limits in (2.3) and (2.4), we get f (t) = h(t), which completes the proof of (i). Since any almost periodic function f : R → E is almost automorphic, part (ii) follows from the proof of (i). If I = [0, ∞), then we can use the above result with I = R since any almost periodic function f : [0, ∞) → E has a unique almost periodic extension to the whole real line and any function q ∈ C 0 ([0, ∞) : E) can be extended to an even function q 1 ∈ C 0 (R : E).

In the following theorem, we reconsider the statements given in Lemma 1.11 for the (asymptotical) Stepanov p-uniform recurrence and (asymptotical) Stepanov (p, g )-almost periodicity: Proof. Part (i) can be simply deduced as follows. Let the numbers t ∈ R and > 0 be fixed. It is clear that there exists a strictly increasing sequence (α n ) of positive real numbers such that h(t) -h(t + α n ) < /2, n ∈ N. Hence, there exists n 0 ∈ N such that

Theorem 2.16. Let p ∈ [1, ∞). (i) If the function h : I → E is uniformly recurrent, φ ∈ C 0 (I : E) and f (t) = h(t) + φ(t) for all t ∈ I, then {h(t) : t ∈ I} ⊆ {f (t) : t ∈ I}. (2.5) (ii) If h : I → E is
h(t) -f (t + α n ) ≤ h(t) -h(t + α n ) + q(t + α n ) ≤ /2 + /2 = .
This, in turn, implies (2.5). If the function h : I → E satisfies the requirements of (ii), then for each σ ∈ (0, 1) the function h σ : I → E, given by

h σ (t) := 1 σ t+σ t h(s) ds, t ∈ I, (2.6) 
is continuous and, due to the uniform continuity of h(•), we have the existence of a number δ ∈ (0, 1) such that h(t ) -h(t ) < , provided t , t ∈ I and |t -t | < δ. Therefore, if σ ∈ (0, δ), then we have

h σ (t) -h(t) ≤ 1 σ t+σ t h(s) -h(t) ds < , t ∈ R, (2.7) 
and lim σ→0+ h σ (t) = h(t) uniformly in t ∈ I. By property (iv) from the beginning of section, it suffices to show that for each fixed number σ ∈ (0, 1) the function h δ (•) is uniformly recurrent ( g -almost periodic). But, this follows from the argumentation given on [5, p. 80], where it has been proved that for each number > 0 we have ϑ( ĥ, σ ) ⊆ ϑ(h σ , ). This completes the proof of (ii). To deduce (iii), observe that there exist a Stepanov p-uniformly recurrent (Stepanov (p, g )-almost periodic) function h(•) and a function q ∈ L p S (I : E) such that f (t) = h(t) + q(t), t ∈ I and q ∈ C 0 (I : L p ([0, 1] : E)). Using (i) and the arguments contained in the proof of [28, Proposition 3.1], we get that the both functions h(•) and q(•) are uniformly continuous. This yields that q ∈ C 0 (I : E) and, due to part (ii), h(•) is uniformly recurrent ( g -almost periodic). The proof of the theorem is thereby completed.

In [START_REF] Xie | Space of ω-periodic limit functions and its applications to an abstract Cauchy problem[END_REF]Proposition 12], R. Xie and C. Zhang have proved that any uniformly continuous function f ∈ S p SAP ω (I : E) belongs to the space AP ω (I : E); see [START_REF] Xie | Space of ω-periodic limit functions and its applications to an abstract Cauchy problem[END_REF] for the notion. Due to [START_REF] Kostić | Quasi-asymptotically almost periodic functions and applications[END_REF]Proposition 2.11], we have S p SAP ω (I : E) ⊆ S p Q -AAP (I : E) and it is reasonable to ask whether we can extend the above result by showing that any uniformly continuous function f ∈ S p Q -AAP (I : E) belongs to the space Q -AAP (I : E). This is actually the case, as the next proposition shows: Proposition 2.17. Let p ∈ [1, ∞), and let f ∈ S p Q -AAP (I : E) be uniformly continuous. Then f ∈ Q -AAP (I : E).

Proof. The proof of proposition is very similar to the proof of Theorem 2.16(ii). Clearly, it suffices to consider the case p = 1. Define, for every number σ ∈ (0, 1), the function f σ (•) by replacing the function h(•) in (2.6) with the function f (•). Then the function f σ (•) is bounded and continuous (σ ∈ (0, 1)). Furthermore, (2.7) holds with the functions h σ (•) and h(•) replaced therein with the functions f σ (•) and f (•). Due to [START_REF] Kostić | Quasi-asymptotically almost periodic functions and applications[END_REF]Theorem 2.13(ii)], it suffices to show that the function f σ (•) is quasi-asymptotically almost periodic for each number σ ∈ (0, 1). But, this simply follows from the estimate

f σ (t + τ ) -f σ (t) ≤ 1 σ t+1 t f (s + τ ) -f (s) ds, t ∈ I, τ ∈ I, σ ∈ (0, 1),
which can be proved as on [5, p. 80].

Remark 2.18. The proof of Proposition 2.17 considerably shortens the proof of [START_REF] Xie | Space of ω-periodic limit functions and its applications to an abstract Cauchy problem[END_REF]Proposition 12]. Therefore, the word "Stepanov" in the formulations of Theorem 1.4 and Theorem 1.5 can be encompassed with the round brackets.

The following proposition will be important in the sequel: It is worth noticing that Proposition 2.19 cannot be applied to the compactly almost automorphic functions which are not asymptotically uniform recurrent, in general. Concerning this problematic, we would like to present the following illustrative example:

Example 2.23. Any almost periodic function has to be compactly almost automorphic, while the converse statement is not true, however. The first example of a scalar-valued compactly almost automorphic function which is not almost periodic has been constructed by A. M. Fink (see [17, p. 521]). Set a n :=sign(cos(nπ √ 2)), n ∈ Z and define after that the function f : R → R by f (t) := αa n + (1 -α)a n+1 if t ∈ [n, n + 1) for some integer n ∈ Z and t = αn + (1 -α)(n + 1) for some number α ∈ (0, 1]. As verified in [START_REF] Fink | Extensions of almost automorphic sequences[END_REF], this function is compactly almost automorphic (therefore, uniformly continuous) but not almost periodic. We will extend this result by showing that the function f (•) is not asymptotically uniformly recurrent. If we suppose the contraposition, then there exists a strictly increasing sequence (τ n ) of positive real numbers tending to plus infinity such that, for every > 0, we have the existence of two finite numbers M > 0 and n 0 ∈ N such that

f (x + τ n ) -f (x) ≤ 2 , |x| ≥ M, n ≥ n 0 .
Let ∈ (0, 1/2) and n ≥ n 0 . Then it is clear that there exists l ∈ N, as large as we want, such that a l > 0 and a l+1 < 0. Then f (l + (1/2)) = 0 and therefore |f (l + (1/2) + τ n )| ≤ 2 . This clearly implies the existence of an integer k ∈ Z such that the number l + (1/2) + τ n lies in a certain small neighborhood of number k + (1/2); more precisely, since the linear function connecting the points (k, -1) and (k + 1, 1) is given by y = 2x -2k -1, we get from the above that |2(l

+ (1/2) + τ n ) -2k -1| ≤ 2 , which simply implies |τ n -(k -l)| ≤ and therefore τ n ∈ (0, ] ∪ k∈N [k -, k + ].
Fix now an integer k ∈ N. We will show that the inclusion τ n ∈ [k -, k + ] cannot be true. Otherwise, for each real number t ∈ R we have |f (t + τ n ) -f (t + k)| ≤ 2 • = 2 , which can be easily approved, so that

|f (t + k) -f (t)| ≤ f (t + k) -f (t + τ n ) + f (t + τ n ) -f (t) ≤ 2 + = 3 , |t| ≥ M.
This contradicts Lemma 1.8. Notice also that the argumentation given above shows that, for every ∈ (0, 1), we have ϑ(f, ) ∩ ( /2, +∞) = ∅. Furthermore, for every ∈ (0, 1) and τ ∈ (0, /2], we have |f (t + τ ) -f (t)| ≤ 2τ ≤ so that, actually, ∀ ∈ (0, 1) : ϑ(f, ) = (0, /2].

See also [START_REF] Fink | Almost Periodic Differential Equations[END_REF]Example 6.1], which will not be reconsidered here.

Before providing the proofs of Theorem 1.2, Theorem 1.4, Theorem 1.5 and Theorem 1.7, we would like to address one more problem to our readers: 2 + e it + e it √ 2

, t ∈ R.

It is well known that f (•) is an almost automorphic function which is not compactly almost automorphic (see e.g., the papers by W. A. Veech [START_REF] Veech | Almost automorphic functions on groups[END_REF]- [START_REF] Veech | On a theorem of Bochner[END_REF]). We would like to ask whether for each number ∈ (0, 1) we have that ϑ(f, ) = ∅ (ϑ(f, ) is unbounded)?

Proof of Theorem 1.2. We will first prove that for each fixed number τ ∈ R we have that the function f (•+τ )-f (•) belongs to the space AN P (R : C). Towards this end, note that

f (t + τ ) -f (t) = ∞ n=1 1 n sin 2 t + τ 2 n -sin 2 t 2 n = ∞ n=1 1 2n cos t 2 n-1 -cos t + τ 2 n-1 = ∞ n=1 1 n sin 2t + τ 2 n sin τ 2 n = ∞ n=1 1 n sin t 2 n-1 cos τ 2 n + cos t 2 n-1 sin τ 2 n sin τ 2 n , t ∈ R.
Since the functions t → sin t 2 n-1 , t ∈ R and t → cos t 2 n-1 , t ∈ R are anti-periodic of anti-period T = 2 n-1 π, it follows that the function

f k (t) := k n=1 1 n sin t 2 n-1 cos τ 2 n + cos t 2 n-1 sin τ 2 n sin τ 2 n , t ∈ R belongs to the space AN P 0 (R : E). Moreover, lim k→+∞ f k (t) = f (t + τ ) -f (t) uniformly on R since ∞ n=k+1 1 n sin t 2 n-1 cos τ 2 n + cos t 2 n-1 sin τ 2 n sin τ 2 n ≤ |τ | ∞ n=k+1 1 n2 n-1 , t ∈ R.
Especially, due to the fact that AN P (R :

C) = AP R\{0} (R : C), we have 0 / ∈ σ(f (• + τ ) -f (•)), i.e., lim t→+∞ 1 t t 0 |f (s + τ ) -f (s)| ds = 0. This readily implies lim t→+∞ 1 t t 0 |f (s + τ ) -f (s)| p ds = 0, p ≥ 1, because |f (s + τ ) -f (s)| p ≤ |f (s + τ ) -f (s)| • sup x≥0 |f (x + τ ) -f (x)| p-1 , s ≥ 0.
Taking into account [29, Proposition 2.13.4], we easily get that for each numbers t, τ ∈ R we have

lim l→+∞ 1 2l l -l f t + τ + x -f (t + x) p dx = lim sup l→+∞ 1 2l l -l f t + τ + x -f (t + x) p dx = 0,
so that the function f (•) is Weyl p-almost automorphic with the limit function f * ≡ f. This completes the proof of Theorem 1.2.

Proof of Theorem 1.4. Suppose that the function h(•) is Stepanov quasiasymptotically almost periodic. It is clear that the function h(•) is asymptotically Stepanov uniform recurrent, so that Theorem 2.13(ii) implies that the function h(•) is asymptotically Stepanov almost periodic. Since h(•) is uniformly continuous, Lemma 1.11(i) implies that the function h(•) is asymptotically almost periodic. This cannot be true because the restriction of function h(•) to the non-negative real axis is not asymptotically (Stepanov) almost automorphic by Lemma 1.3.

Proof of Theorem 1.5. The function f (•), given by (1.5), satisfies that for each > 0 there exists a positive real number δ > 0 such that the set ϑ(f, ) contains the set n≥ 1/ [τ n -δ, τ n + δ] as well as f (x) = f n (x) for all x ∈ [-τ n-1 , τ n-1 ] (n ∈ N). Furthermore, the function f (•) equals zero on arbitrarily long intervals and for each number ∈ (0, 1) we have that the sets {x ∈ R : f (x) / ∈ [1 -, 1 + ]} and ϑ(f, ) are disjunct (see [START_REF] Fink | Almost periodic points in topological transformation semi-groups[END_REF]Example 8, for more details). This essentially implies that the function f (•) cannot be asymptotically Stepanov almost automorphic (we will present a direct proof, without appealing to Lemma 1.11(ii) and Proposition 2.15(iii)). If we suppose the contraposition, then there exist a Stepanov almost automorphic function h(•) and a function q ∈ C 0 (R : L 1 ([0, 1] : C)) such that f (t) = h(t) + q(t) for a.e. t ∈ R. Moreover, we have the existence of disjunct intervals

I n = [b n , b n ] ⊆ [0, ∞) whose length is strictly greater than n 2 and which satisfy that f (x) = 0 for all x ∈ I n (n ∈ N). Define b n := (b n +b n )/2 (n ∈ N).
Then there exist a subsequence (a n ) of (b n ) and a function g

* ∈ L 1 loc (R : C) such that lim n→+∞ t+1 t f (x + a n ) -q(x + a n ) -g * (x) dx = 0 for all t ∈ R, and lim n→+∞ t+1 t g * (x -a n ) -[f (x) -q(x)] dx = 0
for all t ≥ 0. Let ∈ (0, 1/2) be given. Then there exists n 0 ∈ N such that n 0 /(n 0 -1) > 3 /2 and 1+τn 0 τn 0 |q(x)| dx < /8. Since 1 ≥ f (x) ≥ f n (x) ≥ n 0 /(n 0 -1) for x = τ n0 , f n (x) = 0 for x = τ n0 + 1 and the function f n (•) is linear on the interval [τ n0 , τ n0 + 1] (see also [6, part I, p. 115]), the second limit equality with t = τ n0 easily implies the existence of an integer n 1 ≥ n 0 such that 1+τn 0 -an

τn 0 -an g * (x) dx ≥ n 0 2(n 0 -1) - 2 > 4 , n ≥ n 1 .
Returning to the first limit equation, with t = τ n0 -a n1 , and taking into account that lim m→∞ t+1 t

|q(x + a m )| dx < /8 for all m ∈ N sufficiently large, we obtain the existence of an integer m 1 ≥ n 1 such that 

1+τn 0 -an 1 +am τn 0 -an 1 +am |f (x)| dx = 1+τn 0 -an 1 τn 0 -an 1 f x + a m dx > 4 - 8 > 0 for all m ≥ m 1 . But,
= (2n -1)a n-1 , n ∈ N \ {1} so that a n = (2n -1)!!, n ∈ N.
The Lebesgue measure of each such triangle cannot exceed 1 so that +∞ -∞ f n (x) dx ≤ (2n -1)!!, n ∈ N. Suppose, for simplicity, that lim n→+∞ (2n -1)!!/τ n-2 = 0. If τ n-1 ≥ l ≥ τ n-2 for some sufficiently large integer n ∈ N, then

1 l l -l f (x) dx = 1 l l -l f n (x) dx ≤ 1 τ n-2 ∞ -∞ f n (x) dx ≤ (2n -1)!! τ n-2 ,
so that lim l→+∞ (1/2l) l -l f (x) dx = 0, as claimed. Needless to say that, due to Proposition 2.19, there exists a suitable function g(•) such that the function f (•) is • g -almost periodic for • g ∈ {d gc , d gc } (see also [24, pp. 477-478]).

Proof of Theorem 1.7. It is already known that the function f (•) satisfies lim i→+∞ f (• + 2p i ) -f (•) ∞ = 0, so that f (•) is uniformly recurrent. Keeping in mind Proposition 2.17 and arguing as in the proof of Theorem 1.4, we get that f (•) is (Stepanov) quasi-asymptotically almost periodic iff f (•) is asymptotically almost periodic. By Proposition 2.15(ii), this would imply that the function f (•) is almost periodic; this is not the case because the function f (•) is not almost automorphic (asymptotically almost automorphic, equivalently, due to Proposition 2.15(i)). If we suppose the contrary, then there exist a subsequence (p i k ) of (p i ) and a function ω : R → R such that lim k→+∞ f (t + p i k ) = ω(t) and lim k→+∞ ω(t -p i k ) = f (t) for all t ∈ R. Observe that the function f i (•) satisfies f i (t + p i ) ≥ 1 -, provided |t| ≤ p i and i ∈ N. Let t ∈ R and > 0 be given. Then there exists i 0 ∈ N such that |t| ≤ p i for all integers i ≥ i 0 . Therefore, for any integer i ≥ i 0 , we have 1 ≥ f t + p i ≥ f i t + p i ≥ 1 -, so that 1 = lim i→+∞ f (t + p i ) = lim k→+∞ f (t + p i k ) = ω(t). Therefore, ω(t) ≡ 1 and returning to the second limit equality we get f (t) ≡ 1, which is a contradiction (see also [START_REF] Vries | Elements of Topological Dynamics[END_REF]Figure 3.7.3,p. 208]).

Applications to abstract integro-differential equations

Concerning applications, we shall mostly be concerned with the invariance of (asymptotical) uniform recurrence and (asymptotical) g -almost periodicity under the actions of convolution products. As mentioned in the introductory part, this section will be written in a semi-heuristical manner.

Let f : R → E. We will first investigate the uniformly recurrent and g -almost periodic properties of the function

F (t) := t -∞ R(t -s)f (s) ds, t ∈ R, (3.1)
where a strongly continuous operator family (R(t)) t>0 ⊆ L(E, X) satisfies certain assumptions. In our recent research studies regarding this question, it is commonly assumed that the function f (•) is Stepanov p-bounded for some finite number p ≥ 1. If this is the case and τ ∈ R is an -period of function f : R → L p ([0, 1] : E), then the resulting function G(•) satisfies, under certain conditions on (R(t)) t>0 , an estimate of the type F (t + τ ) -F (t) X ≤ L , t ∈ R, where L ≥ 1 is a finite constant independent of t, and τ. Hence, the assumption g (ϑ( f , )) > 0 for all > 0 implies that g (ϑ(F, )) > 0 for all > 0. This fact, taken together with the argument used for proving the continuity of function F (•) in [START_REF] Kostić | Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations[END_REF]Proposition 3.5.3], enables us to simply reformulate the statement of [START_REF] Kostić | Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations[END_REF]Proposition 2.6.11] in our new framework (cf. also [START_REF] Zaidman | Almost-Periodic Functions in Abstract Spaces[END_REF]Examples 4,[START_REF] Besicovitch | Almost Periodic Functions[END_REF][START_REF] Bohr | Almost Periodic Functions[END_REF][START_REF] Danilov | The uniform approximation of recurrent functions and almost recurrent functions[END_REF], which can be simply reformulated for the uniform recurrence and g -almost periodicity): Proposition 3.1. Suppose that 1 ≤ p < ∞, 1/p+1/q = 1 and (R(t)) t>0 ⊆ L(E, X) is a strongly continuous operator family satisfying that M := ∞ k=0 R(•) L q [k,k+1] < ∞. If f : R → E is Stepanov p-bounded and Stepanov p-uniformly recurrent (Stepanov (p, g )-almost periodic), then the function F : R → X, given by (3.1), is well-defined and uniformly recurrent ( g -almost periodic).

Basically, the case in which the function f : R → E is not Stepanov p-bounded has not attracted the attention of the authors so far. Keeping in mind our previous results, we would like to state the following proposition with regards to this question (the uniform continuity of function f : R → L p ([0, 1] : E) has not been assumed above): Proposition 3.2. Suppose that 1 ≤ p < ∞, 1/p + 1/q = 1, f : R → E is Stepanov p-uniformly recurrent (Stepanov (p, g )-almost periodic), there exists a continuous function P : R → [1, ∞) such that and (R(t)) t>0 ⊆ L(E, X) is a strongly continuous operator family satisfying that for each t ∈ R we have

∞ k=0 R(•) L q [k,k+1] P (t -k) < ∞.
If the function f : R → L p ([0, 1] : E) is uniformly continuous, then the function F : R → X, given by (3.1), is well-defined and uniformly recurrent ( g -almost periodic).

Proof. The proof is very similar to the proof of [START_REF] Kostić | Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations[END_REF]Proposition 2.6.11], so that we will only outline the most important details for Stepanov (p, g )-almost periodic functions. The function F (•) is well defined since 

M := ∞ k=0 R(•) L q [k,k+1] < ∞,
so that ϑ(f, ) ⊆ ϑ(F, M ). Since we have assumed that the function f : R → L p ([0, 1] : E) is uniformly continuous, the arguments contained in the proof of the above-mentioned proposition can be repeated verbatim in order to see that the function F (•) is continuous. This simply completes the proof of proposition. Proposition 3.1 and Proposition 3.2 can be simply incorporated in the study of the existence and uniqueness of uniformly recurrent and g -almost periodic solutions of the fractional Cauchy inclusion D γ t,+ u(t) ∈ Au(t) + f (t), t ∈ R, where D γ t,+ denotes the Riemann-Liouville fractional derivative of order γ ∈ (0, 1], f : R → E satisfies certain properties, and A is a closed multivalued linear operator (see [START_REF] Kostić | Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations[END_REF] for more details).

Taking into account Proposition 3.1 and Proposition 3.2, we can simply provide extensions of [29, Proposition 2.6.13, Theorem 2.9.5, Theorem 2.9.7, Theorem 2.9.15], concerning the asymptotical Stepanov p-uniform recurrence/asymptotical Stepanov (p, g )-almost periodicity of the finite convolution product F(t) := t 0 R(t -s)f (s) ds, t ≥ 0. These results can be applied in the qualitative analysis of asymptotically uniformly recurrent/asymptotically g -almost periodic solutions (asymptotically Stepanov puniformly recurrent/asymptotically Stepanov (p, g )-almost periodic solutions) of the following abstract Cauchy inclusion (DFP) f,γ : D γ t u(t) ∈ Au(t) + f (t), t ≥ 0, u(0) = x 0 , where D γ t denotes the Caputo fractional derivative of order γ ∈ (0, 1], x 0 ∈ E, f : [0, ∞) → E satisfies certain properties, and A is a closed multivalued linear operator (see [START_REF] Kostić | Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations[END_REF] for more details).

The sum of two uniformly recurrent ( g -almost periodic) functions need not be uniformly recurrent ( g -almost periodic), unfortunately. But, it is worth noticing that there exist many concrete situations where this difficulty can be overcomed. For example, it is very simple to extend the assertions of [START_REF] Kostić | Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations[END_REF]Theorem 2.14.7] and [START_REF] Ding | Almost periodic solutions to abstract semilinear evolution equations with Stepanov almost periodic coefficients[END_REF]Theorem 2.3] for the asymptotical Stepanov (p, g )-almost periodicity. To

  , we prove that any uniformly continuous (asymptotically) Stepanov p-uniformly recurrent [(asymptotically) Stepanov (p, g )-almost periodic/Stepanov p-quasi-asymptotically almost periodic] function f : I → E is asymptotically uniformly recurrent [asymptotically g -almost periodic, quasi-asymptotically almost periodic]. Proposition 2.19 clarifies an interesting result which shows that for any (asymptotically) uniformly continuous, uniformly recurrent function we can find an increasing mapping g : [0, ∞) → [1, ∞) such that (1.11) holds and f (•) is (asymptotically)

  asymptotically almost periodic iff for each > 0 there exists a finite number L( ) > 0 such that any interval I ⊆ I of length L( ) contains at least one number τ ∈ I satisfying that there exists a finite number M ( , τ ) > 0 such that t+1 t f (s + τ ) -f (s) p ds ≤ p , provided t ∈ I and |t| ≥ M ( , τ ). Denote by S p Q -AAP (I : E) the set consisting of all Stepanov p-quasiasymptotically almost periodic functions from I into E. Let us recall that that for each number p ∈ [1, ∞) we have that Q -AAP (I : E) ⊆ S p Q -AAP (I : E) as well as that any asymptotically Stepanov p-almost periodic function is Stepanov p-quasi-asymptotically almost periodic. Furthermore, if 1

  asymptotically almost periodic. Any asymptotically almost periodic function f : I → E is quasi-asymptotically almost periodic. Let us also recall the notion of an (equi-)Weyl-p-almost periodic function (cf. [29, Section 2.3] for more details). Definition 1.10. Let 1 ≤ p < ∞ and f ∈ L p loc (I : E). (i) We say that the function f (•) is equi-Weyl-p-almost periodic, f ∈ e-W p ap (I : E) for short, iff for each > 0 we can find two real numbers l > 0 and L > 0 such that any interval I ⊆ I of length L contains a point τ ∈ I such that sup x∈I 1 l x+l x

  10) pointwise for t ∈ R. If the convergence of limits appearing in (1.10) is uniform on compact subsets of R, then we say that f (•) is compactly almost automorphic. It is worth noting that an almost automorphic function f (•) is compactly almost automorphic iff it is uniformly continuous as well as that an almost automorphic function is always bounded. Let p ∈ [1, ∞). A function f ∈ L p loc (R : E) is called Stepanov p-almost automorphic (see e.g., G. M. N'Guérékata and A. Pankov [23]) iff for every real sequence (a n ), there exist a subsequence (a n k ) and a function g ∈ L p loc (R : E) such that lim k→∞ t+1 t f a n k + s -g(s) p ds = 0 and lim k→∞ t+1 t g s -a n k -f (s) p ds = 0

  1-almost automorphic. Let us recall that any uniformly continuous Stepanov almost periodic (automorphic) function f (•) is almost periodic (automorphic); see [11, Theorem 3.3].

Remark 1 . 13 .

 113 (i) The lower g-density of A, denoted in short by d gc (A), as follows d gc (A) := lim inf x→+∞ m(A(0, g(x))) x ; (ii) the upper g-density of A, denoted in short by d gc (A), as follows d gc (A) := lim sup x→+∞ m(A(0, g(x))) x , as well as: (i) the lower l; gc-Banach density of A, denoted in short by Bd l;gc (A), as follows Bd l;gc (A) := lim inf x→+∞ lim inf y→+∞ m(A(y, y + g(x))) x ; (ii) the lower u; gc-Banach density of A, denoted in short by Bd u;gc (A), as follows Bd u;gc (A) := lim sup x→+∞ lim inf y→+∞ m(A(y, y + g(x))) x ; (iii) the (upper) l; gc-Banach density of A, denoted in short by Bd l;gc (A), as follows Bd l;gc (A) := lim inf x→+∞ lim sup y→+∞ m(A(y, y + g(x))) x ; (iv) the (upper) u; f c-Banach density of A, denoted in short by Bd u;gc (A), as follows Bd u;gc (A) := lim sup x→+∞ lim sup y→+∞ m(A(y, y + g(x))) x . It is worth noting that, for every set A ⊆ [0, ∞), I \ A](y, y + g(x))) x

Theorem 1 . 14 .and

 114 Let A ⊆ [0, ∞). Then we have Bd l;1c (A) = Bd u;1c (A) Bd l;1c (A) = Bd u;1c (A) y, y + x)) x := Bd c (A). (1.17) Proof. Using the continuous version of Fekete's lemma, for the proof of first equality in (1.17) it suffices to show that the function F (x) := lim sup y→+∞ m(A(y, y + x)), x > 0 is subadditive, i.e., that for each fixed real numbers x 1 , x 2 > 0 we have lim t→+∞ sup t≥y m A(t, t+x 1 +x 2 ) ≤ lim t→+∞ sup t≥y m A(t, t+x 1 ) + lim t→+∞ sup t≥y m A(t, t+x 2 ) .

  y, y + x)) x ,for the proof of (1.17) it remains to be shown that lim inf x→+∞ sup y≥0 m(A(y, y + x)) x ≤ Bd u;1c (A).(1.18) 

Proof.

  The only non-trivial parts are Bd c (A) ≤ d c (A) and d c (A) ≤ Bd c (A); due to (1.19), it suffices to show that d c (A) ≤ Bd c (A). Suppose the contrary. Due to (1.17) and definition of lim sup x→+∞ •, it follows that lim y, y + x))

  3]): (i) Any constant function is g -almost periodic, and for any g -almost periodic (uniformly recurrent) function f (•) we have that the function f (•) is g -almost periodic (uniformly recurrent). Any g -almost periodic function is uniformly recurrent. (ii) Since for each > 0 and c ∈ C \ {0} we have ϑ(cf, ) = ϑ(f, /|c|), the g -almost periodicity of function f (•) implies the g -almost periodicity of function cf (•). Similarly, the uniform recurrence of function f (•) implies the uniform recurrence of function cf (•). (iii) The set consisting of all g -almost periodic (uniformly recurrent) functions is translation invariant in the sense that for each τ ∈ I and any g -almost periodic (uniformly recurrent) function f (•), the function f (• + τ ) is also g -almost periodic (uniformly recurrent). (iv) If (f n (•)) is a sequence of g -almost periodic (uniformly recurrent) functions and (f n (•)) converges uniformly to a function f : I → E, then the function f (•) is g -almost periodic (uniformly recurrent). (v) If E = C, inf x∈I |f (x)| > m > 0 and f (•) is a bounded g -almost periodic (uniformly recurrent) function, then the function 1/f (•) is likewise a bounded g -almost periodic (uniformly recurrent). (vi) If f (•) is a bounded g -almost periodic (uniformly recurrent) function and g : [0, ∞) → X is continuous, then the mapping g( f (•) ) is bounded and g -almost periodic (uniformly recurrent). (vii) If f (•) is a bounded g -almost periodic (uniformly recurrent) function and r > 0, then the function f (•) r is bounded and g -almost periodic (uniformly recurrent). Furthermore, it can be simply shown that: (viii) If f : R → E is a bounded g -almost periodic (uniformly recurrent) function and ψ ∈ L 1 (R), then the function (ψ * f )(•) is bounded, uniformly continuous and g -almost periodic (uniformly recurrent). (ix) If f : [0, ∞) → E is uniformly recurrent and belongs to the space C 0 ([0, ∞) : E), then f ≡ 0. (x) If f : R → E is g -almost periodic (uniformly recurrent), then the function f : R → E, defined by f (•) := f (-•), is g -almost periodic (uniformly recurrent). If, additionally,

Proposition 2 . 3 .

 23 Any almost periodic function f : I → E is g -almost periodic.

Remark 2 . 7 .

 27 (see also[START_REF] Haraux | An example of uniformly recurrent function which is not almost periodic[END_REF] Lemma 2.1]) If f : R → R is a (uniformly) continuous, g -almost periodic (uniformly recurrent) function, > 0, c ∈ R and τ ∈ ϑ(f, ), then τ ∈ ϑ(min(c, f ), ) and the function min(c, f (•)) is (uniformly) continuous and g -almost periodic (uniformly recurrent). Remark 2.8. Let f : R → R be an almost periodic function such that there exist two real numbers a and b such that a < 0 < b and an analytic function F :

  (ii) Let f : I → E be continuous and g(x) ≡ x. Then f (•) is asymptotically almost periodic iff f (•) is asymptotically g -almost periodic. (iii) Let f : I → E be continuous and let g : [0, ∞) → [1, ∞) be an increasing mapping satisfying that there exists a finite number L ≥ 1 such that (1.11) holds. Then f (•) is asymptotically almost periodic iff f (•) is asymptotically Bd l;gc -almost periodic iff f (•) is asymptotically Bd u;gc -almost periodic. Now we have an open door to introduce the concepts of (asymptotical) Stepanov p-uniform recurrence and (asymptotical) Stepanov (p, g )-almost periodicity: Definition 2.11. (i) Let 1 ≤ p < ∞. A function f ∈ L p loc (I : E) is said to be Stepanov p-uniformly recurrent iff the function f : I → L p ([0, 1] : E), defined by (1.2), is uniformly recurrent. (ii) Let 1 ≤ p < ∞. A function f ∈ L p loc (I : E) is said to be Stepanov (p, g )almost periodic iff the function f : I → L p ([0, 1] : E), defined by (1.2), is g -almost periodic.Definition 2.12.

Theorem 2. 13 .

 13 (i) Suppose that the function f : I → E is asymptotically uniform recurrent and quasi-asymptotically almost periodic. Then the function f (•) is asymptotically almost periodic. (ii) Suppose that 1 ≤ p < ∞, the function f ∈ L S p (I : E) is asymptotically Stepanov p-uniform recurrent and Stepanov p-quasi-asymptotically almost periodic. Then the function f (•) is asymptotically Stepanov p-almost periodic.

  not asymptotically almost automorphic (see [32, Example 2.6, Theorem 2.5]). Due to Theorem 2.13(ii) and Lemma 1.11(i), we have that the function f (•) is not asymptotically Stepanov (1-)uniform recurrent. The results presented in the subsequent proposition are expected to a certain extent: Proposition 2.15. Let p ∈ [1, ∞). (i) If f : R → E is uniformly recurrent and asymptotically almost automorphic, then f (•) is almost automorphic. (ii) If f : I → E is uniformly recurrent and asymptotically almost periodic, then f (•) is almost periodic. (iii) If f : R → E is Stepanov p-uniformly recurrent and asymptotically Stepanov p-almost automorphic, then f (•) is Stepanov p-almost automorphic. (iv) If f : I → E is Stepanov p-uniformly recurrent and asymptotically Stepanov p-almost periodic, then f (•) is Stepanov p-almost periodic.

  uniformly continuous and Stepanov p-uniformly recurrent (Stepanov (p, g )-almost periodic), then the function h(•) is uniformly recurrent ( g -almost periodic). (iii) If f : I → E is uniformly continuous and asymptotically Stepanov puniformly recurrent (asymptotically Stepanov (p, g )-almost periodic), then the function f (•) is asymptotically uniformly recurrent (asymptotically galmost periodic).

Proposition 2 . 19 .Remark 2 . 20 .

 219220 Suppose that the function f : I → E is uniformly continuous and (asymptotically) uniformly recurrent. Then there exist a finite number L ≥ 1 and an increasing mapping g : [0, ∞) → [1, ∞) such that(1.11) holds and f (•) is (asymptotically) • g -almost periodic for • g ∈ {d gc , d gc }.Proof. Without loss of generality, we may assume that the equation (1.1) holds with the sequence (α n ) satisfying α n+1 -α n ≥ 1. It suffices to prove the proposition for uniformly recurrent functions. Let > 0 be fixed. Due to the uniform continuity of f (•), we have that there exist an integer n 0 ∈ N and a finite real number δ > 0 such that the set ϑ(f, ) contains the union of disjunct intervals [α n -δ, α n +δ] for n ≥ n 0 . Let g : [0, ∞) → [1, ∞) be any increasing mapping such that g(n) > α n+1 for all n ∈ N. Hence, (1.11) holds with some finite number L ≥ 1. Furthermore, if x ∈ [n, n+1], then the interval [0, g(x)] contains at least (n -n 0 ) disjunct intervals of length δ whose union belongs to ϑ(f, ). This simply implies that m([ϑ(f, )](0, g(x))) ≥ δ(n -n 0 ) and therefore m([ϑ(f, )](0, g(x)))/x ≥ δ(n -n 0 )/(n + 1). This simply implies d c (ϑ(f, )) > 0, so that f (•) is d gc -almost periodic and therefore d gc -almost periodic. The proof of Proposition 2.19 does not work for the upper l; gc-Banach density Bd l;gc (•) and the upper u; gc-Banach density Bd u;gc (•). In general, these densities differ from the densities Bd l:gc (A) := lim inf x→+∞ sup y≥0 m(A(y, y + g(x))) x and Bd u:gc (A) := lim sup x→+∞ sup y≥0 m(A(y, y + g(x))) x , respectively. Repeating verbatim the above arguments, it can be simply proved that for any uniformly continuous, uniformly recurrent function f : I → E there exist a finite number L ≥ 1 and an increasing mapping g : [0, ∞) → [1, ∞) such that (1.11) holds and f (•) is • g -almost periodic for • g ∈ {Bd l:gc , Bd u:gc }. Remark 2.21. By the proof of Proposition 2.19, it follows that, for every uniformly continuous, uniformly recurrent functions f i : I → E (1 ≤ i ≤ n), we can find a finite number L ≥ 1 and an increasing mapping g : [0, ∞) → [1, ∞) such that (1.11) holds and f i (•) is • g -almost periodic for all 1 ≤ i ≤ n and • g ∈ {d gc , d gc }. Keeping in mind the corresponding definitions and Proposition 2.19, the next result follows immediately (the previous two remarks can be reformulated in this context, as well): Proposition 2.22. Suppose that 1 ≤ p < ∞, f : I → E is (asymptotically) Stepanov p-uniformly recurrent and f : I → L p ([0, 1] : E) is uniformly continuous. Then there exist a finite number L ≥ 1 and an increasing mapping g : [0, ∞) → [1, ∞) such that (1.11) holds and f (•) is (asymptotically) Stepanov (p, g )-almost periodic for • g ∈ {d gc , d gc }.

Question 2 .

 2 24. Definef (t) := 2 + e it + e it √ 2

  ) L q [k,k+1] P (t -k), t ∈ R and (3.2) holds true. It is clear that our assumptions imply

  .1, p. 210], while the general case follows from the consideration given in [29, Example 2.2.3(i)] (we feel duty bound to say that we have made small mistakes in the formulations of conditions in [29, Example 2.2.2, Example 2.2.3(ii)]

  Then the function H(•) is bounded and, due to the property (xi), we have that the function H(•) is uniformly recurrent. Applying supremum formula clarified in Proposition 2.

		2 and
	(2.2), we get	
	sup	H(t) = sup
	t∈I	t≥M1( ,τ )

  this is simply impossible because for large values of m we have that [τ n0 -a n1 + a m , 1 + τ n0 -a n1 + a m ] is contained in a larger interval where the function f (•) equals zero. If we assume that the function f (•) is Stepanov quasiasymptotically almost periodic, then the first part of proof of Theorem 1.4 yields that the function f (•) is asymptotically Stepanov almost periodic, which cannot be true according to the first part of proof of this theorem.

Example 2.25. Without going into full details, let us only note that the function f (•) considered above can be Weyl p-almost automorphic (p ≥ 1) if the sequence (τ n ) marches rapidly to plus infinity. This follows from the fact that the function f (•) is bounded and belongs to the space P AP 0 (R : C). To explain this in more detail, let a n denote the number of triangles appearing on the graph of function f n (•). Then a 1 = 1 and a n
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explain this in more detail, let us observe that the equation appearing on [12, p. 240, l. 5] can be rewritten as

arguing as in the proof of above-mentioned theorem from [START_REF] Ding | Almost periodic solutions to abstract semilinear evolution equations with Stepanov almost periodic coefficients[END_REF] we may conclude that for each integer k ∈ N the function t

almost periodic and

Stepanov p-bounded (p > 1), while the case p = 1 follows from the same arguments and the proof of [29, Theorem 2.14.6], when it is necessary to assume that f (•) is Stepanov (1, g )-almost periodic and Stepanov 1-bounded. In both cases, p > 1 and p = 1, we need to employ the property (iv) to achieve the final results.

We close the paper with the observation that the results whose proofs lean heavily on the use of Bochner criterion cannot be really reconsidered for uniformly recurrent and g -almost periodic functions.