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Abstract

We consider the Robin boundary value problem div(AVu) = divf + F in Q, C!
domain, with (AVu — f)-n + au = g on I', where the matrix A belongs to VMO(R?),
and discover the uniform estimates on ||ul[y1.» (), with 1 < p < oo, independent on . At
the difference with the case p = 2, which is simpler, we call here the weak reverse Holder
inequality. This estimates show that the solution of Robin problem converges strongly
to the solution of Dirichlet (resp. Neumann) problem in corresponding spaces when the
parameter « tends to oo (resp. 0).

1 Introduction and statement of main result

This paper is concerned with the second order elliptic operator of divergence form with
Robin boundary condition. In a bounded domain (open, connected set) 2 in R? with f €

LP(Q),F € L'®)(Q) and g € W_%’p(I‘), consider the following problem

Lyu=divf+ F in €, (1.1)
(AVu—f) n+au=g on T’ .
where
L =div(AV) (1.2)

with A(z) = (a;5(x)) is an 3 x 3 matrix with real-valued, bounded, measurable entries satis-
fying the following uniform ellipticity condition

1 ‘
plé? < A(z)¢-€ < ;m? for all ¢, x € R? and some p > 0.
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Here n is the outward unit normal vector on the boundary.

We want to study the well-posedness of the problem (1.1), precisely, the existence, unique-
ness of weak solution of (1.1) in WP(Q) for any p € (1,00) and the bound on the solution,
uniform in . Assuming o > 0 a constant or a smooth function, the proof of existence of a
unique solution provided A € VMO(R?) uses Neumann regularity results for elliptic prob-
lems; the interested reader is referred to [5] for details. The case a < 0 corresponds to the
so-called Steklov eigenvalue problem. A recent survey on this topic can be seen in [l 1] and
the references therein. That being said, our main interest in this work is to obtain precise
estimates on the solution, in particular uniform estimates in .

Note that, formally, & = oo corresponds to the Dirichlet boundary condition whereas
a = 0 gives the Neumann boundary condition. In both Dirichlet and Neumann cases, we
have the classical WP estimate of the solution. And so for the Robin problem as follows:

Julbwrsioy < 1) (1F120) + IF sy + ol g )

where C'(a)) depends also on p and on . Such well-posedness results on Robin boundary
value problem for arbitrary domains can be found, for example, in [1]. But the continuity
constant depends on « whereas the constant in Dirichlet (and Neumann) estimate has no «.
So it is natural to expect we may obtain a-independent bound of the solution of problem
(1.1). That is, if we let @ tend to oo, we show rigorously that we get back the solution of
the Dirichlet problem. The case when « goes to 0 is relatively easier to handle (though not
trivial) assuming the compatibility condition of the Neumann problem.

The purpose of this article is to estimate the continuity constant C(«) uniformly with
respect to a. Among the vast literature on Robin boundary value problem and various related
questions to study, we did not find any reference concerning the question of behavior of the
solution on the parameter « in the existing literature so far, even for Laplacian.

One of the main motivation comes from the Stokes (and also the Navier-Stokes) problem
with Navier slip boundary condition

{—Z/Au+V7T:f, divu =0 in

(1.3)
u-n=0, 2[Du)n] +aur=0 onl.

where the function « refers to the friction coefficient. Here, to understand the behavior of
the solution with respect to the friction coefficient is an important question to study (see
[3], [16]). Obtaining bound uniform in « in this case leads to study the limit problem: the
solution of the Navier-Stokes equations with Navier boundary condition converges strongly
in W1P(Q) to the solution of the Navier-Stokes-Dirichlet problem as « tends to oo (see [1]).
This observation may further enable us to recover informations concerning the solutions of
the Navier-Stokes problem with Dirichlet boundary condition. Observe that the above Stokes
system reduces to the problem (1.1) in the simplest case, replacing the Stokes operator by
Laplacian and the Navier boundary condition by Robin. To work with the full Navier-Stokes
system with the complicated boundary condition was at the beginning quite cumbersome,
thus we concentrated on the simpler scalar version. Surprisingly we found that this is itself
an interesting question and still difficult to answer.

Here is our main result. Throughout this work, the following assumption on « will be
considered which we do not mention each time:

ael'™T) and a>a, >0 onl (1.4)



where t(p) defined by

(p) =2 if p=2
(p)=2+e if $<p<3,p#2 (1.5)
t(p) = %max{p,p’} + ¢ otherwise

t
t

where € > 0 is arbitrary, satisfies t(p) = t(p’).
Also let F € L"P)(Q) where

3 . 3
1"?2?3 if p> 5

7(p) = { any arbitrary real number > 1 if p=3 (1.6)
1 if p<3.

Theorem 1.1. Let Q be a C* bounded domain in R3, p € (1,00), f € LP(Q), F € L"®(Q),

g€ Wﬁi’p(F) and o € L'P/(T). Suppose that the coefficients of the operator L, defined in
(1.2), are symmetric and in VMO(R®). Then the solution u € WP (Q) of (1.1) satisfies the
following estimate:

lulbwrs < Cotst.a) (Il + Pl + ol 3o ) G
where the constant Cy(2, o) > 0 is independent of a.

Remark 1.2. Here we remark that the symmetry assumption on the coefficient matriz A in
the above theorem is not necessary to prove the existence and regularity of the solution which
can be seen in [2, condition (2)]. In that case, the ellipticity condition on A would be replaced
accordingly as (cf. [2])

Ax) + A*(x) > 201 a.e.

Notice that, with above estimate result, we immediately get that the solution of the
Robin problem (1.1) converges strongly to the solution of Dirichlet boundary problem in the
corresponding spaces as « goes to co. To prove the above theorem, we first obtain the result
for ' =0, g =0 and p > 2 and then for p < 2 using duality argument; And finally for F' # 0,
g # 0. Essentially we want to utilise the a-independent L? gradient estimate (which follows
from the variational formulation) to yield LP gradient estimate. The main tool in the proof for
p > 2 is a weak reverse Holder inequality (wRHI) for gradient satisfied by the solution of the
homogeneous problem, shown in Theorem 2.10. Note that for Lipschitz domain, the weak
reverse Holder inequality is only true for certain values of p, even for Dirichlet boundary
condition. It was first proved by Giaquinta [9, Proposition 1.1, Chapter V] in the case
of Dirichlet condition, on smooth domain and for Laplace operator which follows from an
argument by Gehring [6]. wRHI in the case of B(z,r) C 2 follows from the classical interior
estimate for harmonic functions. But in the case when = € T', some suitable boundary Holder
estimate is required. In the present paper, to treat the operator in divergence form with
V M O-coefficients, we use an approximation argument from the constant coefficient operator
case, found in [3]. In the case of Neumann problem and for general second order elliptic
operator, the proof of wRHI has been done in [7, section 4] in Lipschitz domain; Whereas the
sketch of the proof for Neumann problem in smooth domain has been given in [14, p. 914].

We obtain the similar result for H*-bound (on Lipschitz domain) for s € (0, 1) in Theorem
2.16 and W2P-estimate (on C'! domain) in Theorem 3.1.



2 Related results and Proof of Theorem 1.1

To prove Theorem 1.1, we start with studying the existence result. Only the 3-dimension
case has been discussed here for the sake of clarity but all the results are true for 2-dimension
as well and the exact same proofs follow with the necessary modifications.

Theorem 2.1 (Existence result in WP (Q),p > 2). Let Q be a C* bounded domain in
R? and p > 2. Suppose that the coefficients of the operator L, defined in (1.2), are symmetric

and in VMO(R3). Then for any f € LP(Q), F € L"P(Q) and g € W_%’p(I‘), there exists a
unique solution u € WHP(Q) of Problem (1.1).
Remark 2.2. For p = 2, Q Lipschitz is sufficient to show the existence of solution u € H'(Q).

Proof. Tt is trivial to see that u € WHP(Q) is a solution of (1.1) iff u € W1P(Q) satisfies the
following variational formulation:

Yo € W' (Q), /AVU'Ver/au«p—/f-Vw—/F@ + (9, )1 (2.1)
T Q Q

where (-, ) denotes the duality between W_%’p(l‘) and W#?' (T"). Note that the boundary
integral [ au ¢ is well defined. For p = 2, the bilinear form

Y u,p € HY(Q), a(u,gp):/AVu-VLp—F/augo
Q r

is clearly continuous. Also, due to the ellipticity hypothesis on A(x) and by Friedrich’s
inequality and the assumption o > o, > 0 on I', we may have

o, ) = / AV Vu+ / aluf? > Claw, ) ull3 g
Q T

which shows that the bilinear form is coercive on H'(€). And the right hand side of (2.1)
defines an element in the dual of H'(2). Thus, by Lax-Milgram lemma, there exists a unique
u € HY(Q) satisfying (2.1). So we obtain the existence of a unique solution of (1.1) in H(€2).

Now for p > 2, since LP(Q) < L2(), L"®)(Q) < L/5(Q),W »*(I') — H~3(I) and
LHP)T) « L*(T), there exists a unique u € H'(Q) solving (1.1). It remains to show that
u € Whr(Q).

(i) 2 < p < 3. Since u € H'(Q) — LYT) and a € L**¢(T'), we have au € L% (T') where
L—14 ﬁ But using the Sobolev embedding L% (T") < Wﬁé’pl(l“) with p; = 3¢1 (since

L
. 1 2 1+ 1
re. —=—-|- ,
pr 3\4 2+4¢

q > %)
Neumann regularity result (cf. [5]) implies u € W1PL(Q) since Q is CL. If p; > p, we are
done. Otherwise, u € W1PL(Q). Hence, u € L**(T') where




1
as p1 < p < 3. Then au € L®(T) where - = - + o1z, But, L%(I") — W »"*(T') with
D2 = %QQ i.€.

12 1+ 1 1+ 1\ 2/ 2 1+1
pr 3\4 2+4+e 2 24¢) 3\2+4e 2 4)°

If po > p, then as before, we have u € WHP(Q). Otherwise, u € WP2(Q). Proceeding
similarly, we get u € W1Pr+1(Q) with

1 2(k+1 k+1
pre1 3 \2+e 2 4)°
1 1

(where in each step, we assumed that py < 3). Now choosing k = [Z — 5| + 1 such that

Pk+1 > 3 > p (where |a] stands for the greatest integer less than or equal to a), we obtain
u € WhHP(Q).

(ii) p > 3. From the previous case, we obtain u € W13(Q) which gives u € LI(T) for
1

all 1 < g <oo. But a € L%p+8(1“) implies au € L%p(F) — W »P(T). Therefore, using same

reasoning as before, from the Neumann regularity result, we get u € WHP(Q) . |

Next we discuss the estimate of the solution of problem (1.1) for p > 2 with F' = 0 and
g = 0, independent of a.

Theorem 2.3 (W1P() estimate, p > 2 with RHS f). Let Q be a C* bounded domain
inR3, p>2and f € LP(2). Suppose that the coefficients of the operator L, defined in (1.2),
are symmetric and in VMO(R?). Then the solution u € WiP(Q) of (1.1) with F = 0 and
g = 0, satisfies the following estimate:

ullwrr) < Cp(€, o) [[fllLr (o) (2.2)
where the constant Cp(£2, o) > 0 is independent of a.

The proof of the above theorem is similar to that of Neumann problem [7], once we have
the wRHI. Since Q is C!, there exists some 79 > 0 such that for any zq € T, there exists a
coordinate system (z’, z3) which is isometric to the usual coordinate system and a C! function
¥ : R?2 = R so that,

B(xg,r0) N = {(x’,xg) € B(xo, 1) : x3 > w(x')}
and
B(zo,m0) NI = {(2/,23) € B(zo,70) : 23 = (') }.

In some places, we may write B instead of B(x,r) where there is no ambiguity and
aB := B(z,ar) for a > 0. Also we use the usual notation to denote the average for any
integrable function f on a domain w:

Z[f::,wl‘w/f::f-

We first prove the following weak reverse Holder inequality for some p = 2 +¢, ¢ > 0
whose proof is straight forward but this is not sufficient to deduce Theorem 2.3.



Lemma 2.4. Let Q be a C* bounded domain in R® and L be the operator defined in (1.2).
For any B(z,r) with the property that 0 < r < 2 and either B(x,2r) C Q or x € T, the
following weak Reverse Hélder inequalities hold: for some ¢ > 0,

(i) if B(z,2r) C Q,
1/(2+¢) 1/2
][ |Vv|?te <C f |Vvl? (2.3)
B(z,r) B(z,2r)

whenever v € HY(B(z,2r)) satisfies Lv = 0 in B(z,2r).

(ii) if v €T,
1/(2+¢) 1/2
FowPemep | <c| (P ) (2.4
B(z,r)NQ (z,2r)NQ
whenever v € HY(B(x,2r) N Q) satisfies
Lv =0 in B(z,2r)NnQ (2.5)
AVv-n+av =0 on B(z,2r)nT. '

The constants C > 0 in the above estimates are independent of «.

Proof. The proof of the weak Reverse Holder inequality for Robin problem follows the similar
argument as for the Dirichlet problem, established in [9].

case(i) : 2B C Q.
Since v satisfies the equation div(A(x)V)v = 0 in 2B, we can have the following Caccioppoli

inequality,
1
/|V’U|2</’U UZ’QB’/’U
2B

for some constant C' > 0 1ndependent of «a. Now using the following Sobolev-Poincaré in-
equality, for any w € WHP(Q), p > 1,

o 1
I =l @) < CIVUl@), =g /w

where p* is the Sobolev exponent, we obtain,

v < [ wop
7‘2

B 2B

2/q

with ¢ = 6/5 (this value comes from the dimension n = 3). Upon normalizing both sides, we

can write,
1/2 1/4

1 1 _
Tg/yw? <C T3/|W|q
B 2B



Here note that in R3, |B| = ¢r3. Then setting g = |Vv|? and ¢ = 5/3 = 2/4, we have,

1 1
ﬁ/gng 73/9
B

2B

q

Hence, [9, Proposition 1.1] with f = 0 and 6 = 0 implies, for some ¢ > 0,

1/2+¢ 1/2

][\vm2+f <c ]l\wP

B 2B

case(ii) : z € I.
We follow the same path of the above interior estimate. First we want to prove a Caccioppoli
type inequality for the problem (2.5) up to the boundary. For that, let n € C°(2B) be a
cut-off function such that

| Q

0<n<1, n=1onB and |Vn <

-
Now multiplying (2.5) by n%v and integrating by parts, we get,
/ AVv -V (n*v) + / an*v® =0
2BNQ d(2BNQ)
which yields,

1 / n*|Vol* + / an*v? < / n? A(z)Vu - Vo + / an*v? = =2 / nuVu - V.

2BNQ 2BNI° 2BNQ 2BNI’ 2BNQ

Using Cauchy’s inequality on the right hand side, we obtain,

1
/|VU|2772+ / an?v? <2 1 / ?|Vol? + 4 / v V2| .

2BNQ 2BNT 2BNQ 2BNQ
Simplifying the above estimate gives
/ IVoln? + / an’v? < C / v? |Vl
2BNQ 2BNT 2BNQ
which yields the Caccioppoli-type inequality, up to the boundary,
Vo2 2 Vol2n? 2,2 « c 2 2.6
|Voul* + av” < [Vol*n® + anv” < -5 V7. (2.6)
BN BT 2BNQ 2BMT 2BNQ

But we also have,

[o51 3oy < € /\V“’2+/v2 < C(a) /|VU|2+/av2

BN BNr BNQ BN



Hence, using (2.6), we obtain,

2/4
Caw) Caw) .
[k ety <S5 [ e <S5 (] qup s wopi
BN 2BNQ 2BNQ2
with § = 6/5 so that (§)* = 2. Thus,
(o) 2/6
1 Clay .
o [ Pty S5 [ o+ wopy
BNQO 2BNQ2
2/
1 .
—Cla) | 5 [ (o VoP)”2
2BNQ2
Now setting,
() = (Jv]? + |Vv|?)3/? if ye2BNQN
=0 it ye2B\Q
and ¢ = 2/4, we obtain,
q
1 1
Tg/quC(a*) 7ag/g
B 2B
Once again [9, Proposition 1.1] with f = 0 and # = 0 implies, for some ¢ > 0,
1/q+e 1/q
][gQ+€ < C ][gq
B 2B
i.e.
1/q+e /2
(0P + [vepyari | <o o+ voP)
BNQ 2BNQ
or equivalently, for some s > 2,
1/s 1/2
Fowrewery?) <ol QP o)
BNQ 2BNQ

Next we prove wRHI for all p > 2. For that we state the following boundary Holder
estimate for £ under Robin boundary condition.

Theorem 2.5. Let Q be a C' bounded domain in R®, p > 1 and v € (0,1). Suppose that the
operator L defined in (1.2) has constant and symmetric coefficients and

Lv =0 in B(Q,r)NQ
AVv-n+av =0 on B(Q,r)NT



for some Q €T and 0 < r < ro, Then for any xz,y € B(Q,r/2) N,
1/p

[o]? (2.7)
B(Q,r)NQ

lz —yl\”

r

[v(z) — v(y)] < c(

where C' > 0 depends only on Q,p and the ellipticity constant p, but independent of a.
Proof. Follows from classical regularity theory (for example, see [10, Theorem 8.27]). |

Now the weak reverse Holder inequality for any p > 2 is proved in the case of constant
coefficients.

Lemma 2.6. Let Q be a C' bounded domain in R and p > 2. Suppose that L, defined in
(1.2), has constant and symmetric coefficients. Then for any B(xz,r) with the property that
0<r <’ and either B(z,2r) CQ or x € I, the following weak Reverse Hélder inequalities
hold:

(i) if B(z,2r) C Q,

1/p 1/2
][ wop | <c ][ Vo2 (2.8)
B(z,r) B(w,2r)
whenever v € H'(B(x,2r)) satisfies Lv = 0 in B(x,2r).
(ii) ifz €T,
1/p 1/2
][ o+ | <c ][ Vo2 + Jo]? (2.9)
B(z,r)NQ B(z,2r)NQ
whenever v € H'(B(x,2r) N Q) satisfies
Lv =0 in B(z,2r)NnQ
AVv-n+av =0 on B(z,2r)NT(ifzel).

The constant C' > 0 at most depends on 2, p and the ellipticity constant .

Proof. Since A is symmetric and positive definite, by a change of coordinate system, we may
assume that £ = A (although we may consider the full operator and all the results hold true

as well).
The proof we will follow has been used for elliptic equations with Neumann boundary
condition in [14], just after the statement of Theorem 4.1.

case(i) : B(xg,2r) C Q.
The weak reverse Holder inequality (2.8) holds for any p > 2, by the following well-known
interior estimates for Harmonic functions, even when (2 is Lipschitz:

1/2

sup |[Vu| <C f |Vvl?
B(zo,r)
B(zo,2r)

9



, Lemma

case(ii)
3
sup  [v]
z,2c0(x)) &

txp el
From the interior gradient estimate for harmonic function, we can write (eg. see [

1.10))
Vv
Vole)] < () B(w,cs(x))
for any z € B(xo,7) N Q where §(z) = d(x,T") and ¢ > 0 is chosen such that B(

Remark 1.19], we may then write
1/2

B(zp,2r)N Q. From [12,
¢ 2
< —
Vi@ <z | f
B(z,cd(x))
Now for fixed y € B(z,2c¢d(x)), let u(x) = v(z) — v(y). Then Lu = 0 in B(x,2c¢i(z)) and
thus we may write from the above argument
1/2
o

<
|Vu(z)| < 5)
B(z,c6(x))

which gives, along with the boundary Holder estimate (2.7)
1/2

¢ 2
< _
Vo) < 55 o(2) = o(y)dz
B(z,cé(x))
1/2
C / 9
= s v(z) —v dz
o o(2) = v(o)|
B(z,c(x))
1/2
_ 2y
S(z)tt2 T
B(z,2c¢6(z)) B(zo,2r)NQ
1/2 1/2
1
S nes 4 N AL =1 B AR (210)
5($)1+5 rY
B(z,2r)NQ B(z,2¢6(z))
Let us now calculate the last integral in the last inequality. Substituting w = 406(96), we get
/ |z —y|Pdz < C / z)) 3 dw
B(x,2¢6(x)) B(0,1)
1 27
27+3//7“27r2 dr d6
0 0
27
<C ((5(:1:))27+3.

€ (3 g <

10



Plugging the value of the above integral in (2.10), along with the Sobolev inequality, we then
obtain

1/2
C 1
Vi@l i | | et
(6(a)) 2 m
B(z0,2r)NQ
1/2
y—
=, (6(x)) F—3/2 / |v\2
rYy
B(zo,2r)NQ
1/6
v—1
<o, (6(z)) F1-3/2 / |v|6
rY
B(zo,2r)NQ
1/2
<o ()7 ][ IVol? + [vf?
7\ d(2)
B(z0,2r)NQ
Since 7 € (0, 1) is arbitrary, we thus have,
1/2
Vo) <o, (=) ][ IVl + |o)?
— 7 \d(2)
B(z,2r)NQ
Finally it yields choosing v so that py < 1,
1/p 1/2
fower| <ol f werepr
B(zo,r)NQ B(z0,2r)NQ
This completes the proof. |

A function f in BMO(R") is said to be in VMO(R") if

1 _
lim sup — / lf—flde=0
r—0 zoER™ rn

B(zo,r)

where f = 7|B($107r)‘ fB(xO,T) f.

To treat the elliptic operator with VMO coefficients, we prove the following approxima-
tion argument, found in [3].

Lemma 2.7. Let Q be a C' bounded domain in R3. Suppose that the coefficients of operator
L, defined in (1.2), are symmetric and in VMO(R3). Then there exists a function h(r) and
some constants C' > 0,c > 0 with the following properties:

11



i) lim h(r) = 0;
r—0
ii) for any v € H' solution of

(2.11)

Lv =0 in B(z,8r)NQN
AVv-n+av =0 on B(z,8)NT

with x € Q and 0 < r < crg, there exists a function w € WHP(B(x,r) N Q) such that for any
p>2

1/2 1/2
][ Vo— Vol +jv—wl|  <h) ][ Vol? + [o]? (2.12)
B(z,r)NQ B(z,8r)NQ
1/p 1/2
fowerswr| <ol fowPeRE| o @)
B(z,r)NQ B(z,8r)NQ

where the constant C > 0 depends at most on Q,p, as, b and A.

Proof. Let us fix 9 € Q and 0 < r < ¢rg where 0 < ¢ << 1 is such that Lemma 2.6 can be
applied suitably. Let v € H'(B(xo,87) N Q) be a weak solution of (2.11). Consider

(2.14)

div(BVw) =0 in B(xg,4r) N
(BVw) -n + aw = (AVv) -n+ av on J(B(zp,4r) N Q)

where B = (b;j)1<i,j<3 are the constants given by
b= gy | @
= a;j(z) dz.
7 |B(xo, 8r)] N
B(xzo,8r)
So, w € HY(B(xo,4r) N Q) is a weak solution of (2.14) if for all ¢ € H'(B(xo,4r) N Q),
/ BVw -V + / aw @ = / AVv -V + / au .
B(zg,4r)NQ O(B(z0,4r)NQ) B(zo,41)NQ A(B(zo,4r)NQ)

The existence of w € H'(B(xg,4r) N ) follows immediately from the regularity of v. It then
follows

/ BV(v—w)-Vp+ / alv—w)p = / (B—A)Vv-Vo.

B(z0,4r)NQ O(B(z0,4r)NQ) B(z0,4r)NQ

Next we show that w satisfies estimates (2.12) and (2.13).

12



To see (2.12), choosing ¢ = v — w, by ellipticity and Cauchy inequality, we obtain

po [ Re-wPs [ a-wp

B(zg,4r)NQ O(B(z0,4r)NN)
< [ 1B avve-w)
B(z0,4r)NQ
<c / (B — A)Vof? + / V(o —w).
B(zo,4r)NQ B(z0,4r)NQ

But we also have the equivalence of norm,

o = w2 e ey < C / V(o - w) + / v — wf?
B(x0,4r)NQ B(zo,4r)NI

< Clay) / V(v —w)|* + / alv — wl|?
B(z,41)NQ B(xg,4r)NI"
where the above constant C' > 0 depends on 2 and «, but is independent of r and «. This
gives

1/2
][ Vv — Vw]? + v — w]?
B(.Z‘()A’I‘)QQ
1/2
<c| f iE-aw
B(zo,47)NQ
1/2q 1/2¢
<c| v foomea
B(zo,41)NQ B(z0,41)NQ
Defining
1/2¢'
h(r) = Csup ][ B — A]>
2oesl B(z0,4r)NQ
the last inequality yields
1/2 1/2q
][ Vo — Vw|? + |v — w|? < h(r) ][ | V|2
B(zo,47)NQ B(z,4r)NQ
1/2
< h(r) ][ Vol? + [of?
B(z0,8r)NQ

13



Note that in the last line, we used L**¢ weak reverse Holder inequality (i.e. for some g > 1) for
v which follows from Lemma 2.4. It is known from John-Nirenberg inequality that h(r) — 0
as r — 0. Indeed, John-Nirenberg inequality says, for any BM O-function f,

/ MIFTI < g
B

for some constant C' > 0 depending only on n. Since A € VMO(R?), by definition we get
that h(r) — 0.

Finally, to see (2.13), note that (BVw) - n + aw = 0 on B(xg,4r) NT. Thus, by Lemma
2.6, we obtain, for any p > 2,

1/p
fovur
B(zo,r)NQ
1/2
<c| f wuPspf
B(x0,4r)NQ
1/2 1/2
<c ][ o+ | +c ][ V(o —w)P + |v — w]?
B(zo,4r)NQ B(zo,41)NQ
1/2
<C ][ IVo|? + |v]?
B(z0,8r)NQ
This shows that in fact w € WP(B(zg,r) N ) which completes the proof. [ |

With Lemma 2.7 at our hand, we may use the following approximation theorem, motivated
from the paper of Caffarelli and Peral [3] and proved in [7], to finish the proof of the weak
reverse Holder inequality for VMO coeflicient.

Theorem 2.8. Let E C R" be any open set and F : E — R" locally square integrable. Let
p > 2. Suppose there exists some constants 5 > 1, C > 1 and € > 0 such that for every cube
Q with 2Q = Q(xo,2r) C E, there exists a measurable function Rg on 2Q satisfying

1/p 1/2
1/;3 rl <ol L /|F\2 (2.15)
Q) =7 | 18Q] ‘
Q BQ

and
1/2

1/2
1 1
Q|/|F—RQ|2 <e !ﬁ@l/|F‘2 : (2.16)
Q BQ
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Let 2 < q < p. Then, there exists ey = eo(C, n,p, q, B) such that if € < ey, we have

1/q 1/2
1/|F|‘1 <o | L /|F|2 (2.17)
Ql =7 129 ‘
Q 2Q

where Cp > 0 depends only on C,n,p,q, .

Remark 2.9. For the interest of the reader, we also refer to the paper [15] where a very
similar scheme has been implemented earlier, to get higher integrability estimates from certain
reverse Hélder inequalities; See in particular Section 7.

Theorem 2.10. Let Q be a C* bounded domain in R® and p > 2. Suppose that the coefficients
of operator L, defined in (1.2), are symmetric and in VMO(R3). Then for any B(z,r) with
the property that 0 < r < ¢ and either B(z,2r) C Q or x € I, the weak Reverse Holder
inequalities (2.8) and (2.9) hold with constant C > 0 independent of c.

Proof. Let h(r) be same as in Lemma 2.7 and choose ¢ such that 2 < ¢ < p. Let ¢ be the

same as in Theorem 2.8 and then we choose 79 small enough such that sup h(r) < eo.
0<r<ro

Let v € HY(B(z0,87) N ) be a weak solution of

Lv =0 in B(zo,8")NQ
AVv-n+av =0 on B(z,8)NT

where 0 < r < %2 and either B(zo,2r) C Q or g € I'. To apply Theorem 2.8, take
E = B(x0,8r) and B(x,r) is any ball with B(x,2r) C E. Then the proof divides in the
following cases:
i) if B(z,7)NQ =10, we take F =0 = Rp,
ii) if B(x,r) C , set F' = Vv and Rp = Vu,
i) if B(x,7) NQ # 0 and B(z,r) N (Q)° # (), we further consider the two situations:

—if z € Q, set

(Vw,w) on B(z,r)NLQ,

F = (Vu, and Rp=
(Vo,o)xa  an b {0 on B(x,r)N QS

—ifx ¢ Q, by a geometric observation, it is easy to find a ball B = B(y,2r) such that
y€l'and B C B C E, we then set
(Vw,w) on B(y,2r)NQ,

F=(Vvu)xa and Rp= {0 on Bly,2r) N 0°

The estimates (2.15) and (2.16) now follow from (2.13) and (2.12). This finishes the proof.
[ |

Now to complete the proof of Theorem 2.3, we also need the following lemma which is
proved in [7, Theorem 2.2].

15



Lemma 2.11. Let Q be a bounded Lipschitz domain in R® and p > 2. Let G € L*(Q) and
f € L1(Q) for some 2 < q < p. Suppose that for each ball B with the property that |B| < 5|9
and either 2B C §) or B centers on ', there exist two integrable functions Gg and Rp on
2B N Q such that |G| < |Gg|+ |Rp| on 2BNQ and

1/p
1
- - R p
12BN Q| / R
2BNQ
1 1
<o |1 / a2| 4 sup / 2
U pBaa ) @ s\ e )
vBN§ B'NQ
and
1/2 1/2
1 1
S — Ggl? <C S 2 2.19
man|/)'B < 25%/|Rm9/‘” (2.19)
2BNQ B'NQ

where C1,Co >0 and 0 < 8 <1 <. Then we have,

1/q 1/2 1/q

1 1 1
M/w <c mﬁw *‘mﬁ” (2.20)

Q Q Q
where C' > 0 depends only on C1,Ca,n,p,q, B, and €.

Proof of Theorem 2.3. Given any ball B with either 2B C € or B centers on I', let
¢ € C°(8B) is a cut-off function such that 0 < ¢ <1 and

B 1 on4B
e 0 outside 8B

and we decompose u = v + w where v, w satisfy

Loy =div(pf) in (2.21)
AVv-n+av=9¢f -n on I’
and
Lw=div((1—¢)f) in (2.22)
AVw-n+aow=(1—¢)f -n on I
Multiplying (2.21) by v and integrating by parts, we get,
/A(x)Vv . Vv+/a|v|2 = /gof - Vv
Q r Q
which gives
1
[Vl g2y < ;HCPfHL%Qy (2.23)
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and since a > a, >0on I,
[0[l3 () < C(Q, ) | IV0llZ2qy +/0é|v|2 <O, aq) [lef 2@l VL)
r

This yields the complete L2-estimate

[0l m1@) < C(Q o) 0F [l L2(0)- (2.24)

(i) First we consider the case 4B C . We want to apply Lemma 2.11 with G =
|Vu|,Gg = |Vv| and Rp = |Vw|. It is easy to see that

G| < |G|+ [R5l

Now we verify (2.18) and (2.19). For that, using (2.23) we get,

(Q, )
2 2 2 * 2
|2B|/' 5l" = 2B!/'V oF = |2Brm|/'v oF = 2Brm|/’ fl

C(92, o) 9
\SBmQ| / £l

8BNQ

where in the last inequality, we used that [8B N Q| < |Q|. This gives the estimate (2.19).
Next, from (2.22), we observe that Lw = 0 in 4B. Hence, by the weak reverse Holder
inequality in Theorem 2.10 (using 2B instead of B), we have

1/p 1/2
1 1
og | 1V =0 gy [ 19
2B 4B

which implies together with (2.23),

1/p 1/2
1 1
_ p < - 2
o [ 1) <€ g [ 190
2B 4B
1/2 1/2
<c 1/yw|2 + 1/|w2
- |4B| |4B|
i 4B 4B
1/2 1/2
1 2 1 2
< — Q. o _—
4B 8BNQ

This gives (2.18). So from Lemma 2.11, it follows that

1/q 1/2

1 1 1
o / v <G || / vl |+ |y / 7
Q Q Q

17



for any 2 < ¢ < p where C,(£2) > 0 does not depend on o.

Because of the self-improving property of the weak Reverse Holder condition (2.3), the
above estimate holds for any ¢ € (2, p) for some p > p also and in particular, for ¢ = p, which
clearly implies (2.2).

(ii) Next consider B centers on I'. We apply Lemma 2.11 now with G = |u|+ |Vu|,Gg =
|v| + |[Vov| and Rp = |w| + |Vw|. Obviously, |G| < |Gg| + |Rp| and again by (2.24),

1 2 1 2 1
DBHQBJ;K%’_ﬂﬂNW%;QOw_HVM)_BBmQ“WM1
(Q, ) 9
|2Brm|/| 7l

C(£, ax) 9
BBmm /'ﬂ

8BNQ

which yields (2.19). Also w satisfies the problem

Lw=0 in4B NN
AVw-n+aw =0 on4BnNT.

So by the weak reverse Holder inequality in Theorem 2.10 and the estimate (2.23), we can
write,

1/p
1
- - p
12BN Q) / |
2BNQ2
1/p
1 2
< | —- p/2
<\ gprg [ (ul+ VD
2BNQ2
1/2
1 2 2
< -
<Clrgrg [ (wk+Ivud)
4BNQ
r 1/2 1/2
1 2 2 1 2 2
< - -
<l qprg [ WF=vet) |+ | pag [ (R 1veR)
L 4BNQ 4BNQ
1/2 1/2
<o L1 / 2| +o@an) |t / 2
- |4B N Q| TN I8BN Q|
41BN 8BNS
which yields (2.18). Thus we have,
1/q 1/2 1/q

u| + |Vul)? < CH(9, ay — ul® + |Vu + | — fle
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for any 2 < ¢ < p where Cp(£, ax) > 0 does not depend on «. This completes the proof
together with the previous case. |

The next proposition will be used to study the complete estimate of the Robin problem
(1.1). The result is not optimal and will be improved in Proposition 2.14.

Proposition 2.12 (W1P(Q) estimate, p > 2 with RHS F). Let Q be a C' bounded
domain in R3, p > 2, and F € LP(Q). Suppose that the coefficients of the operator L, defined
in (1.2), are also symmetric and in VMO(R3). Then the unique solution u € WLHP(Q) of
(1.1) with f =0 and g = 0, satisfies the following estimate:

ullwre@) < Cp(Q, ax) [|F]lr o) (2.25)
where the constant Cy(§2, o) > 0 is independent of a.

Proof. The result follows using the same argument as in Theorem 2.3 and hence we do not
repeat it. |

Proposition 2.13 (W1P () estimate with RHS f). Let Q be a C* bounded domain in
R3, p € (1,00) and f € LP(Q). Suppose that the coefficients of the operator L, defined in
(1.2), are also symmetric and in VMO(R3). Then there exists a unique solution u € WHP(Q)
of (1.1) with F =0 and g = 0, satisfying the following estimate:

ullwre) < Cp(€, o) [[fllLr (o) (2.26)
where the constant Cp(§2, o) > 0 is independent of c.

Proof. The existence of a unique solution and the corresponding estimate for p > 2 is done
in Theorem 2.1 and Theorem 2.3 respectively. Now suppose that 1 < p < 2. We first discuss
the estimate and then the existence of a solution.

(i) Estimate I: Let g € C3°(Q) and v € WH'(Q) be the solution of Lv = div g in Q
and g—z +av=0onT. Since p’ > 2, from Theorem 2.3, we have

HUHWLP/(Q) < Cp(Qva*)HQHLP’(Q)-

Also if u € WHP(Q) is a solution of (1.1) with F = 0,g = 0, using the weak formulation of
the problems satisfied by u and v, we have

/f-Vv:/g-Vu

Q Q

which gives,

\/g -Vl < Fllze@ Vol g ) < 1 Fllze@ vl o)
Q

and hence,

Vu-g
|Vullr) = sup Lo Vu-gl

< Cp(&, )| fll e (o)
ozger’ (@) 19llLe (@)
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(ii) Estimate II: Next we prove that
lull Lo () < Cp(2, )l Fll Lr(o)- (2.27)

For that, from Proposition 2.12, we get for any ¢ € L¥ (Q), the unique solution w € Wh*'(Q)
of the problem

Lw = in Q
AVw -n+aoaw =0 on T

satisfies
||wHW1,p’(Q) < Cp(Q, ax) H‘PHLP’(Q)-

Therefore using the weak formulation of the problems satisfied by v and w, we obtain,
/u gpz/udiv(A(m)V)w: /A(az)Vu-Vw+/uAVw-n: /f-Vw
Q Q Q r Q

which implies

| Jqu o
lully = sup S0 el

< Cp(Q,ax) [ flle(e)-
0£peLP (Q) ”SDHLP’(Q)

This completes proof of the estimate (2.26).

(iii) Existence and uniqueness: The uniqueness of solution of (1.1) follows from (2.26).
For the existence, we will use a limit argument. Let {fi} € C5°(€2) such that

fe—f in LP(Q)
and ug, € W' (Q) be the unique solution of

Luy, = div fg in Q

{(Avuk —fk) nt+auy=0 on T (2.28)

Note that uj, € WHP(§) since p’ > 2. Also from (i) we have,

[ukllwrpi) < Cp( ) (| FrllLr ()

and
Juk — wellwrr@) < Cp(Q o) (| fx — FellLr(a)-

Thus it follows u — up — 0 in WHP(Q) as k,£ — oo i.e. {ug} is a Cauchy sequence in
WLP(Q). Then as WHP(Q) is a Banach space, there exists u € W1P(2) such that

up — u in WHP(Q)

satisfying
[ullwrr@) < Cp(Q ) | fllLe()-
Clearly u also solves the system (1.1). [ |
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Proposition 2.14 (W1P(Q) estimate with RHS F). Let Q be a C' bounded domain in

R3, p e (1,00), F € L"P(Q) and g € W_%m(f‘). Suppose that the coefficients of the operator
L, defined in (1.2), are symmetric and in VMO(R3). Then the solution u € W1P(Q) of the

problem
Lu=F in
(2.29)
AVu-n+au=g onT
satisfies the following estimate:
fulbwrsio < Cotst ) (1P + 9l ) (2:0)

where the constant Cp(§2, o) > 0 is independent of c.

Proof. 1t suffices to prove the estimate since the existence and uniqueness of u follows from
the same argument as in Proposition 2.13.

(i) Estimate I: Let f € C5°(Q) and v € W' (Q) be the weak solution of Lv = div f
in Q and (AVv — f)-n+av=0onI'. By Proposition 2.13, we then have

||UHW1,p’(Q) < Cp(Qva*)HfHLp’(Q)

Also, if u € WP(Q) is a solution of (2.29), from the weak formulation of the problems
satisfied by u and v, we get

/f.vu:/A(x)Vu-Vv-l-/auv:—/FU+<9aU>F

Q Q r Q

This implies

[ 94 < 1Pyl + 191, oy 01,

P (F
Q
< (1Pl + ngw,g,pm) ol
since ﬁ = Z% 3= GO ( 77 for p > 3 and W' (Q) < L®(Q) when p < 3. Thus,
Jo Vu- f| (
Vu = sup —o——— < Cp(Q, oy Fllproyy + 9l _1, .
IVelere orrerr @ I1fllLy () P00 (F ey + ol -3, ()

(ii) Estimate II: Next we prove the following bound as done in (2.27):
lollzsio < Cp(@h ) (I lroney + loll, 1)) 231)

except that we do not need to assume p < 2 here as in (2.27). For any ¢ € L (Q), there
exists a unique w € W' (Q) solving the problem

Lw = in Q
AVw -n+aw =0 onTI
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and satisfying
||w||W1,p/(Q) < Cp(Qva*)H@”Lp’(Q)'

(For p < 2 the above estimate can be proved by the exact same argument as in Proposition
(2.13)). Finally we may write,

/ugpz/uﬁw:/Euw—/(AVu'n)w—l—/u(AVw)~n:/Fw—<g7w)F
Q

Q Q r r Q

which yields as before

oy < Coi820) (1Pl + loll g

and thus we obtain (2.31). [ |

Proof of Theorem 1.1. Let u; € WHP(2) be the weak solution of

div(A(z)Vuy) =divf in Q
(AVu; — f) n4+au; =0 onl

given by Proposition 2.13 and us € W1P(2) be the weak solution of

div(AVug) = F in
AVus -n+aus =g onl

given by Proposition 2.14. Then u = uj + ug is the solution of the problem (1.1) which also
satisfies the estimate (1.7). [ |

Next we prove uniform H* bound for s € (0, %)

Proposition 2.15. Let Q be a Lipschitz bounded domain in R3, g € L*(T') and o is a

constant. Suppose that the coefficients of the operator L, defined in (1.2), are symmetric and
in VMO(R?). Then the problem

Lu=0 in €
(2.32)
AVu-n+au=g onT
has a solution v € H3?(Q) which also satisfies the estimate
ull zr3/2 ) < CE)lgllL2(ry- (2.33)

Proof. A solution u € H'(f2) of the problem (2.32) satisfies the variational formulation:

Vo € HY(Q), /A(az)Vu-Vgo+/aug0:/gcp.
Q r r

Multiplying the above relation by a and substituting ¢ = u, we get

o [ A@Tu- Vut faulae = a [ gu < gz laulem
Q T
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and thus
lowl L2y < Mgl z2ery-

Now from the regularity result for Neumann problem [13, Theorem 2], we obtain
lull 3 o) < CDlg = aull 2y < CDgllz2(r)
which gives the required estimate. |

Theorem 2.16 (H®(Q2) estimate). Let  be a Lipschitz bounded domain in R3, s € (0, 1)

and « is a constant. Then for g € HS_%(F), the problem (2.32) has a solution u € H*%(Q)
which also satisfies the estimate

o+ < C@lgll oy

Proof. We obtain the result by interpolation between H!(f2) and H 3 (Q) regularity results in
Theorem 2.1 and Proposition 2.15 respectively. |
3 Estimate for strong solution

Theorem 3.1 (W?2P(£) estimate). Let Q be a C*' bounded domain in R3, p € (1,00) and
1
o be a constant. Then for F € LP(Q) and g € W' »P(T'), the solution u of the problem

Au=F in Q,

u (3.1)
— tau=gyg on T’
on
belongs to W*P(Q) and satisfies the following estimate:
fulhvsstey < Cotstae) (1 ley + 9l 1 ) 32

where the constant Cp(£2, o) > 0 is independent of a.

Remark 3.2. We can in fact show the existence of u € W?2P?(Q) for more general a, not
necessarily constant; in particular for o € Wl_é’q(F) with g > % if p < % and g = p otherwise.
Proof. For the given data, there exists a unique solution u of (3.1) in W'P(2), by Theorem
1.1. Then it can be shown that in fact u belongs to W?2P(Q2) by Neumann regularity result
using bootstrap argument. But concerning the estimate, we do not obtain a a independent
bound on u, using the estimate for Neumann problem. So we consider the following argument.

As T is compact and of class C'!, there exists an open cover U; i.e. I' C Uf“'lei and
bijective maps H; : Q — U; such that

H; € CPNQ), J'=H;' e C(Th), Hi(Q+) =QNU; and H;(Qo) =T NU;

where we denote
Q = {z = (2/,23);[2'] <1 and |23 < 1}

Q+=Q ﬁRi
Qo = {z = (2/,0);]2'| < 1}.
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Then we consider the partition of unity 6; corresponding to U; with supp 6; C U;. So we can
write u = Z?:o O;u where g € C°(Q). It is easy to see that v; = f;u € W2P(QNU;) and

satisfies:
Av; = 0;F +2V0;Vu+uldf; =: f; in QNU;

801' + + 89,
av; = —
on =97 on
Precisely, we have, for all ¢ € Wh7' (QNT;),

/Vvi-ch—l—oz/vW—— / fz-cp—i—/higo (3.3)

QNU; rnuU; QNU; rnu;

u=:h; on JQNU).

where f; € LP(2) and h; € Wlf%’p(lﬂ). Now to transfer v;|ony, to Q+, set w;(y) = vi(H;(y))
for y € Q4. Then,

87)2‘ o awi 8J]Z€
8.73j N g 8yk 87%

Also let v € HY(Qy) and set p(z) = (J*(z)) for z € QN U;. Then ¢ € H(QNU;) and

dp o 8.J}
81’]' Z .

Thus, putting these in (3.3), we obtain under this change of variable, for all 1 € H'(Q.),

/ aklmg;";g‘;f vafww=- [Fu+ [hw (3.4)
o o o o

with ag(z) = Z]- %%’ det Jac H;|, fz = fioJ* and h; = h; o Ji. Here det Jac H; denotes

the determinant of the Jacobian matrix of H;. Note that ag € C'(Q1), f; € LP(Q.) and
hi € WYP'P(Qq). Also (3.4) is a Robin problem of the form (1.1) for w; on Q, since w;
vanishes in a neighbourhood of Q1 ~\ Q.

For notational convenience, in this last part, we omit the index i i.e. we simply write w
instead of w;. Now denoting 0; = a%j, we see that z; := O;w,i = 1,2 solves the following
problem

div(AVz) = div(fe;) — div(9;AVw)  in Q4

{ _ - (3.5)
(AVz; — fe;) - n+ az; = —(0;AVw) - n + d;h on Qo

where e; is the unit vector with 1 in " position Thus, we can apply Theorem 1.1 for the
above system and may conclude

latlwisigu < Co(@0) (Ilm@) + 10A@Tulirigu) + 18], 1, )

which yields, for all 4,5 =1,2,3 except ¢ = j = 3,

12 wlm0, < Co(@s) (rf\mmw\w||W1,p<Q+>+HEH . ) (3.6)
Wr " (Qo)
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Now to show the estimate for 93;w, we can write from the equation (3.4) (omitting the index
i),
9 1 /7 2 .
83311} = a—% (f — Qjj 3ijw — 81'611']‘ 8jw> m Q+.

But since J is an one-one map, ass # 0 and thus together with (3.6), we obtain the same
estimate (3.6) for 93;w. Therefore, we can conclude, for all i = 1, ..., k,

fetssqanty < o (IFlsin + lall g + o)

)
and consequently (3.2), using W1P-estimate result. |
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