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Abstract

In this paper, we study a model of magnetohydrodynamics problem and prove the existence
of weak solution to the stationary magnethohydrodynamic system in a three dimensional
bounded domain Q of class C%!. To our knowledge, all previous works consider the
domain {2 simply-connected. Our proof is based on some weak estimates concerning vectors
potential in negative Sobolev spaces. We also give some regularity results in LP-theory.
Keywords: Magnetohydrodynamics, Stokes equations, Navier-Stokes equations, vector

potentials, weak solutions, strong solutions.

1. Introduction

Magnetohydrodynamics (MHD) is the theory of macroscopic interaction of electrically
conducting fluids and electromagnetic fields. (MHD) flow is governed by the Navier-
Stokes equations for the fluid velocity and Maxwell’s equations for the magnetic field.
The equations are non-linearly coupled via Ohm’s law and the Lorentz force.

Studying this coupled system is of interest since they have many applications in engi-
neering problems, such as sustained plasma confinement for controlled thermonuclear fu-

sion, liquid-metal cooling of nuclear reactors and electromagnetic casting of metals. They
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are also used in fusion technology and submarine propulsion devices. Other applications
and uses of micro-polar fluids can be found in Lukaszewicz [13].

The present work is concerned with the existence and the regularity of the solution
for the stationary magnetohydrodynamic equations which describe the steady state flow
of a viscous, incompressible, electrically conducting fluid in three dimensional bounded
domain §2.

We consider here the following system denoted by (MHD):

1 1 1
—yAu+(u~V)u——(B-V)B—FEVGB\Q)—i—;VW:f in Q,

P
—-AMB+ (u-V)B—(B-V)u=k in ,
divu=div B=0 in €,
u=0, B-n=0, curlBxn =0 on I,
B-n=0,1<j</J,
\ Zj
where  is a bounded open connected set of R3 of class C'1!, possibly multiply-connected,
I
with boundary I' such that I' = |J I'; where I'; are the connected components of I'. When
i=0

Q) is not simply-connected, we suppose that there exists J connected open surfaces, called
‘cuts’, contained in €2, such that each surface XJ; is an open part of a smooth manifold and
the boundary of each ¥; is contained in I'. The intersection 3; NY; is empty for i # j and

J
the open set Q° = Q\ |J ¥; is simply-connected. See Figure 1, for J =1 with I =3
j=1

Figure 1

If Q is simply-connected, the last condition on the flow of B through the cuts is not

required any more.



The unknown variables are w, ™ and B which represent the velocity field, the pressure
and the magnetic field respectively, while f and k are given external forces, v, 4 and p are
the constants of kinematic viscosity, magnetic permeability and density of Eulerian flow
respectively and A = T With electrical resistivity 7.

To our knowledge in all previous works, the domain 2 is supposed to be simply-
connected. In our work, the domain may be simply-connected or not simply-connected.
In this last case, it is necessary to add the condition concerning the flows of B through
the cuts ;. We will see later the justification of this condition when the domain is not
simply-connected.

There are quite vast literature available concerning the solvability of (MHD) under
different types of boundary conditions though most of these works are done with the
time-dependent problem. Sermange and Temam [17] proved in two-dimension, the global
existence and uniqueness of weak solution that is strong for regular data. They also
obtained as for the Navier-Stokes equations, a global weak solution in three-dimension
and for more regular data, they showed that a strong solution exists and is unique locally
in time. By using the spectral Galerkin method, Rojas-Medar and Boldrini [15] proved,
under smallness of data, global in time existence of strong solutions and gave several
estimates for the solution and their approximations. The (MHD) flow of a second grad
fluid has been studied by Hamdache and Jaffal-Mourtada [11] where they showed that a
unique solution exists for small time and it is actually global in time for small initial data.

Concerning the stationary (MHD) problem, Gunzburger, Meir and Peterson [10] stud-
ied the system in a bounded, three-dimensional simply-connected domain, either of class
CH! or convex, with inhomogeneous Dirichlet boundary condition for the velocity, satisfy-
ing naturally some smallness condition and with the normal and the tangential component
of the vorticity of the magnetic field given. They proved the existence and uniqueness of
weak solution (u, B) € H'(Q) x H'(Q) under smallness assumption on boundary data
for the velocity. On the other hand, Bermudez, Munoz-Sola and Vazquez [5] considered
a coupling between the equations of magnetohydrodynamics and the heat equation in a

simply connected domain of class C! or a bounded Lipschitz polyedron and gave existence



results of weak solution under certain conditions. Using a Faedo-Galerkin approximation
combined with Schaefer’s fixed point theorem, C. Zhao and K. Li [19] proved the exis-
tence of weak solution in three dimensional bounded domain with homogeneous Dirichlet
boundary conditions for the velocity and for the magnetic field. The uniqueness result
proved in Theorem 3.1 of [19] means that in fact the magnetic field is trivial and then the
coupled problem is actually reduced to the Navier-Stokes equation. For further references,
we mention [6], [8], [14], [16].

In the present work we study the existence and the regularity of weak solution for
the (MHD) problem with the same boundary conditions as in [10] or in [5]. But here we
consider the more general case where the domain €2 is not necessarily simply connected. To
prove the existence result, we use the Leray-Schauder fixed point theorem. And to obtain
the compactness properties of the operator, one main tool is given by some estimates
for very weak vector potentials corresponding to vector fields belonging to some negative
Sobolev spaces. We also investigate the LP-theory for the solution. More precisely, we will
prove the existence of generalized in W1P(Q) for p > 2 and strong solution in W2P(()
for p > %.

The first main result of our work, stated in Theorem 3.4, concerns the existence and
uniqueness of a vector potential, in particular the estimate (3.9) which is important to
obtain some further estimates for the magnetic field.

Theorem 4.1 gives existence of weak solutions for the magnetohydrodynamic problem
(MHD) and some estimates.

We end the introduction giving an outline of the paper. In Section 2, notations, some
basic assumptions and preliminary results are stated. In Section 3, some results concerning
weak vector potentials are given and we study the existence of very weak vector potentials
for vector fields belonging to negative Sobolev spaces. In Section 4, the existence of weak
solution for the (MHD) problem is established. Finally Section 5 is devoted to study the
regularity of the weak solution.

Unless otherwise stated, we follow the convention that C' is an unspecified positive

constant that may vary from expression to expression, even across an inequality (but not



across an equality) and depends only on the data of the problem (v, p, u, A and Q).

2. Notations and preliminary results

For 1 <p < oo and m € R, let LP(Q2) and W"™P(Q2) be the usual Lebesgue and Sobolev
spaces respectively. We denote by LP(Q) = [LP(Q)]*, Wm2(Q) = [W™P(Q)]* and we use

the bold notation for vector fields. Then we define the following Banach spaces:
HP?(curl,Q) = {v € L?(Q); curlv € LP(Q)},
HP?(div,Q) = {v € LP(Q); divv € LP(Q)}
equiped with the norms
» » /p
[0l ez eurt ) = (010, + leurlvlf, o)

and

. /p
[l ez aivey = (010 + liv ol g )

We also define the space
X?(Q) = HP(curl,Q) N HP(div, ),

and the subspaces
X () ={ve XP(Q);vxn=0o0onT},

X2(Q)={veXP(Q);v-n=00nT}.

1
Note that any function v in HP(curl,2) has a tangential trace v x n in W~ »*?(T),

defined by
Vo e WH'(Q), (v xmn,p)p = / v-curly dr — / @ - curlv dz (2.1)
Q Q

where (-,-)r denotes the duality bracket between W_%’p(l’) and W#* (T), p and p’

are conjugate exponents. In fact, (2.1) holds also for v € LP(Q) and curl v € L"®)(Q),



(see (2.10) for the definition of 7(p)).

And any function v in HP(div,?) has a normal trace v-n in Wﬁi’p(F), defined by

Vo e WH'(Q), (v-n,p)r = / v-gradp dr + / (divw) pdz. (2.2)
Q Q

Theorem 2.1. i) The space XR}() is continuously imbedded in W1P(Q), and we have

the following inequality: for every function v € WP(Q) with v x n =0 on T,

I

V]l wreo) < Cllleurl || Ly o) + [|div vllLe @) + Z |{(v-m, 1)r,])
i=1

ii) The space X2.(Q) is continuously imbedded in W'P(Q), and we have the following

inequality: for every function v € WHP(Q) withv-n =0 on T,
J
1ol s () < Clllcurl ] L) + [|div olle) + ) [{v-n, 1) )
=1

Furthermore, we give the following theorem which extends Theorem 2.1 in the case
where the boundary conditions v - n and v X n are replaced by inhomogeneous one, see

[4], Theorem 3.5 and Corollary 5.2. For that, we introduce the following spaces:
XP(Q) = {v € XP(Q), v-ne Wl—%vp(r)} ,
YhP(Q) = {’U € XP(Q), vxne Wlf%’p(l“)} .
Theorem 2.2. i) The space X P(Q) is continuously imbedded in WP (Q) and we have

the following estimate for any v in X1P(Q),

[vllwr@) < C[v]lLr) + lleurl v pp ) + [[div | Leq) + (v nHWk%,p(F))-

ii) The space Y P(Q) is continuously imbedded in WP(Q) and we have the following

estimate for any v in Y1P(Q),

[vllwir) < C[v] e + llcurlv|| geq) + [divo| Le) + [[v X n||W1_%,p(F))-

To study the existence and the uniqueness of a weak vector potential, we shall need to

introduce the following spaces:

Ky(@Q)={veL*Q),divv =0, curlv=0 inQ, vxn=0 onTl }, (2.3)



H:{v€L2(Q); dive=0 in @, v-n=0onT},

and
Kr(Q)={ve H; curlv=0in Q}. (2.4)
As given in [2], Proposition 3.18 and Proposition 3.14, we recall that:

i) The space Ky(f2) is spanned by the functions Vg,1 < i < I, where each ¢ is the

unique solution in H'(€) of the problem

(

—AqlN =0 in Q,

qu|FO =0 and ¢|r, =constant, 1 <k <1, (2.5)

(Ong, V), =6 1<E<T, and  (9,g), 1), =1,

ii) The space K7 () is spanned by the functions Vq]T, 1 < j < J, where each q;‘-F c H'(Q°)
is unique up to an additive constant and satisfies:
—quT =0 in Q°,

8nq]'T:0 on I,
(2.6)
[q;f}k = constant and [&Lq;f]k =0, 1<k<J

<anqu, 1>Z =i 1<k <.
k

We note that K7(€Q) = {0} if and only if € is simply-connected. Likewise Ky (2) = {0}
if and only if T" is connected.

We recall now a basic theorem about a vector potential given in [2], Theorem 3.20:

Theorem 2.3. For any function f € L?(Q) which satisfies:
divf=0inQ, f-n=0onl, (f-n,l)s, =0 1<j5</ (2.7)
there exists a unique vector potential v € Hg(Q) such that

f=curly in Q, with div(Ay) =0 in Q,

0
(div1,b),1> = 0, 0<i<I
<6n r

i
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and satisfying the estimate

]z ) < CE)IFllL2@)- (2.9)

Remark 1. i) Note that the condition (2.7) is necessary to the above vector potential.

ii) The condition div (A%) = 0 in Q implies that the quantity

<8 (dive), 1> )
on H™5(Ty)xH? (T;)

makes sense. The uniqueness of the function ) is given by the two last conditions of (2.8)

and follows from the characterization of the kernel
Ky(Q) = {we H}(Q); curlw =0 and div(Aw) =0 in Q},

which is of dimension I and spanned by the functions V¢; with 1 <4 < I and where each
¢ is the unique solution in H?(2) of the problem

(

A%g; =0 in Q
Gilro =0 qilr, =cst, 1<k<I

9 _
an—O onI

<%(A%)’ 1>Fk - 5““’ 1 < k < I7 <%(A%)a 1>I‘ = -1

0

Note that Vg; = 0 on I' because Vg; -n = 0 on I' and since ¢; is constant on each
connected component of I' we have also V¢; x n = 0 on I'. For more details, we can see

[2], Proposition 3.21.

To study the regularity of the week solution for the problem (MHD), we give the

following theorem. Before that, we define, for any 1 < p < oo:

r(p):max{l,z%} if p#%,

(2.10)

This definition of r(p) makes sense to the RHS below, see (2.15).



Theorem 2.4. ©) Let f€ L’"(p)(Q) with divf=0 inQ and verifying the following

compatibility conditions:

forany ve Kp(Q), Qf- vdx =0, (2.11)
frn=0 onl. (2.12)
Then, the problem
—Ag=f and divE=0 in €,
(ET) E-n=0 and curléxn=0 onl,

(€-m 1)x, =0, 1<j<.

has a unique solution & in WYP(Q) satisfying the estimate:

1€ llwngy < CON Aoy (2.13)

i) Moreover if f€ LP(Q)  and Q is of class C*', then the solution & is in W?2P(()

and satisfies the estimate:

1€llwzr ) < CE)fllLr (o) (2.14)

Proof. 1) The existence result of the solution & was proved in [3], Proposition 4.3 with
f € LP(Q). We will see that we can obtain the same result with f only in L") (Q).

Observe that Problem (Er) is equivalent to the following:

Find & € VE(Q)  such that

/ (2.15)
Vo € VE (Q), /curlﬁ-curlgo dx = /f-cpdw,
Q Q

where

VE(Q) = {geW“’(Q); divE=0in Q &n=0onT and (£-n,1)y =0, 1gng}.
(2.16)
And note that for f € L") (Q), the integral in (2.15) is well defined because W' (Q) <

LIr®) for any 1 < p < oo. In particular, for p = %, WL3(Q) — LI(Q) for any ¢ < oo



and then the RHS of (2.15) is well defined for ¢ € WH3(Q) provided that f € L") (Q)
with r(p) > 1.

As proved in [3], Proposition 4.3, Problem (2.15) has a unique solution & € V&(Q2) by
using the inf-sup condition given in [4], Lemma 4.4. So that, for any ¢ € [Vé)(Q)]/ there
exists a unique & solution of (2.15). In particular, if ¢(yp) = / f-@ de with f € L") (Q).
In order to interpret the above variational formulation, we r?eed to extend (2.15) to any
test function ¢ without condition on the fluxes over . The variational formulation (2.15)

is equivalent to the following problem :
Find &€ € VZ(Q)  such that
Ve € X%’:(Q), / curl ¢ -curl ¢ dx = / f-pdx
Q Q

Clearly, (2.17) implies (2.15). Conversely, let be & € V() solution of (2.17) and ¢ €
Xé’:(Q). Setting

(2.17)

J

G=p—Vx—) ((p—Vx)-n,l)y5 Vg’ (2.18)
j=1

where y € H?(f2) is the unique solution, up to an additive constant, satisfying
0
— Ay =dive in O a—x =0 on . (2.19)
n

Then ¢ € XCI}/(Q) and for any 1 < k < J, we have (p-n,1)y, = 0, because
<§CJV§F-TL,1>E = d;;. That means that ¢ € VZp/(Q) and then

j
/curl£~curlcpd:z :/ curl £ - curl ¢ dz :/f-cﬁd:z.
Q Q Q

Now, because div f =0 in Q, (2.11) and (2.12), we have

/f-de:rfz/f-?qfdx:O
Q Q
and then
/curlﬁ.curlcpdx:/ f-pd.
Q Q

Now, we claim that

curlcurl € =f in Q@ and curléxn=0 on I.

10



Indeed, taking ¢ € D(Q) in (2.17), we deduce immediately the first property. Setting
z = curl &, we deduce, in particular that z € LP(Q) and curl z € L"®)(Q). So, for any
pE XCI;/(Q), we have
/ curl curl £ - p dx :/f-cpdm.
Q Q
Using Green formula (2.1) with z € LP(Q), curl z € L"®(Q) and ¢ € W' (Q), we
deduce that for any ¢ € Xg:(Q),

(curl € x n, ) =0.
1 .7 /
Now, for any element p € WP ('), there exists ¢ € WP (Q) such that ¢ = p, on
I, where p, is the tangential component of g on I'. Then ¢ belongs to Xg(Q) and
0= (curl £ xn,p)p = (curl & X n, p.)p = (curl & x n, p)p,

which implies that
curl ¢ xn=0 in W_%’p(l“).

ii) We suppose now that f belongs to LP(Q2) and let & € WP (Q) the solution given in

i). Then z = curl £ satisfies
ze LP(Q), divz=0, curlz=f e LP’(Q) and 2xn=0 on I.

Applying Theorem 2.2, we obtain that z € WP(Q). As Q is of class C?', then we get,
by Corollary 3.5 in [4], that & belongs to W2P(Q) and satisfies the estimate (2.14). O

Remark 2. Using the theory of vector potentials developed in [4], we obtain immediately
the regularity (2.13) when  is C1! and (2.14) in the case €2 is C*!. But it is possible to
prove the regularity W?2P(£2) only for Q of class C!'! since the problem (E7) takes the form
of an uniformly elliptic operator with complementing boundary conditions in the sense of

Agmon-Douglis-Nirenberg [1].

3. Very weak vector potentials

In this section we are interested to study the existence of potential vectors 1 for vector
fieled u belonging to negative Sobolev spaces.

As consequence of Theorem 2.3, we have the following remark.

11



Remark 3. i) Let w € H. Then we have the following equivalence:

(u-n, 1>2j =0, for any 1 < j < J if and only if for any ¢ € Kr(Q), /uwpda;:O.
Q
ii) Let us define the following spaces

E = {1,b € H}(Q); div(A) =0 inQ, <8(divw), 1> =0,1<i< I},

on r,
and
[Kp(Q)]* = {v e H/ v-p=0, Vpec KT(Q)} . (3.1)
Q
It is then clear, by Theorem 2.3, that the following operator
curl: E — [Kp(Q)]*
is an isomorphism.
We can then rewrite Theorem (2.3) as follow:

Theorem 3.1. For any f € [Kp(Q)]* there exists a unique o € E such that
curly = f in Q
with the following estimate:

1%l @) < COOFllL20)- (3.2)

Remark 4. In general, to study the existence of vector potentials, we consider vectors
fields in some Lebesgue spaces, for example in L?(f2), with the following compatibility
condition:

divf=0in Q, and (f-n,l)r,=0, V1<i<I.

In this case, the vector potential solution 1) belongs to H'(2). What about if now, the
vector field f belongs only to H~1(Q) ?

Let then f € H-1(Q) with div £ = 0 in . We want to study the following problem:

Find 4 € [K7(Q)]" such that
curly = f in €.

12



We remark that if % € [Kp(Q)]* is solution of problem (P), then the condition

div f = 0 in Q is clearly necessary. On the other hand, for any 1 < i < I, we have

(curley, Vg >H*1(Q)><H(%(Q) =0,

because the space

V(Q) ={peD(Q); dive =0 in Q}

is dense in the space

{p e Hj(Q); dive =0 inQ}.
As consequence, to solve problem (P)we need to suppose that f satisfies the condition

Proposition 3.2. Let f € H '(Q) with divf = 0 in Q and satisfying the con-
dition (3.3). Then the problem (P)is equivalent to the following very weak variational

formulation

Find v € [Kp(Q)]* such that
(Q)
Ve € E, /Q Yocurlp dz = (f, ¢ >H*1(Q)><H(%(Q)

Proof. i) The implication (P) = (Q) is trivial, because for any ¥ € [Kp(Q)]" satisfy-
ing (P), and using the density of D(Q2)in HZ (), we have

( curla, ‘P>H*1(Q)><H§(Q) = /Q@Z)-curlgodx

ii) Conversely, suppose that 1 € [K7(€Q)]" is solution of (Q). Given w € HL(Q), let

X € H3(2) the unique solution satisfying
A?x = div(Aw) in Q.

Setting

13



We easily verify that z € £ and

(curl ¢, w)H*(Q)xH&(Q) = /QQ,ZJ - curl w dz

= /¢ - curl z dx
Q

= (f, = >H*1(Q)><H§(Q)

= (f,w >H*1(Q)><H§(Q)'

because divf = 0 in Q implies that ( f, Vx >H_1(Q)XH&(Q) = 0 since we have y €

HZ(Q) and by assumption

(f, Vg >H*1(Q)><H3(Q) =0, V1<et<1.
We proved that f = curl ¢ and then 4 is solution of Problem (P). ]

The following theorem gives an existence and uniqueness result of very weak vector

potential and ensures a positive answer to the above question.

Theorem 3.3. Let f € H'(Q) with divf =0 in Q and satisfying the condition
(3.3). Then Problem (P) has a unique solution v € [Kr(Q)]" satisfying

1%l L2) < COONFllE—1(0)- (3.5)

Proof. In fact, we will solve problem (Q) by using a duality argument. For that, let
f e H(Q) with div f = 0in Q be fixed and let F € [K7(Q)]". Theorem 3.1 implies

that there exists a unique v € E such that
curlv = F in
satisfying the following estimate
[l ) < CO)IF]|L2(q)- (3.6)
Considering the linear mapping
(: [Kr(Q]F — R
F — (f,v)gvqxai©)-

14



We have
[ f o) < Iflla-ollvlla@ < CENFla-—1olFl L @)-

€1

So the linear form ¢ is continuous on the Hilbert space [K7 ()]~ . By Riesz theorem,

we deduce the existence of a unique ¢ € [K7(Q)]* such that for any v € E,

/QF-wda:—<f,v>

and satisfying the estimate (3.5). O

Now, if the data f belongs to L%(Q) which is a subspace of H (), with additional

condition on her normal trace, we will prove

Theorem 3.4. Let f € Lg(Q), and satisfying
divf=0in Q, f-n=0 onT and <f’n71>27- =0, VI<j<J (3.7)
i) There exists a unique v € ng(Q) with diveo =0 in Q and such that
curlv=Ff in Q, vxn=0 on I' and (v-n,1)r,=0 V1<i<I.
and satisfying the following estimate:

< 0@

[0l 1£1,8 0

1) Moreover, we have
vllz2) < CEIFllrr )y - (3.9)

where [HTI(Q)], is the dual space of
H Q) ={weH'(Q) ;w-n=0 on T'}.

Proof. The proof is divided into five steps.
Step 1. Let f be satisfying the above hypothesis. Then f € H~'(Q) and

<f7vQ’i>H*1(Q)><H&(Q) = /Qf -Vg; de = 0.

15



By Theorem 3.3 , there exists a unique o € [K7(Q)] such that
curlyg=f in Q (3.10)

and
[¥ollr2) < CEOflla-1) < CEONFll @) - (3.11)

As f € Lg(Q) and Q is of class C1!, then by Theorem 2.2 point i), ¥ € Wl’g(Q) and

we have the following estimate

00y, gy < € (b0l g ) + 118 ) < CNFN g (3.12)

Step 2. Using Lax-Milgram theorem, we know that the following problem:

Find € € V() such that,

Vi € V2(Q), / curl ¢ - curl ¢ dz = / Yo - curl ¢ do — / curl 1o - ¢ dx
Q Q @
(3.13)

has a unique solution. The coercivity in Vi3(Q2) of the above bilinear form is due to the

equivalence
1€l 1) = lleurl € z2(q), (3.14)
(see Theorem 2.1 point ii)).
The variational formulation (3.13) in fact is equivalent to the following:
Find € € V() such that,

Ve € X2(9), / curl £ - curl ¢ dx :/ Yo - curl ¢ d:c—/ curl ¥ - ¢ dx
N N ? (3.15)
Clearly (3.15) implies (3.13).
Conversely, let be & € Vi3(Q) solution of (3.13) and ¢ € X2(Q). As in the proof of

Theorem 2.4, with the same notations, we get

/cur1§~curlgodaz = /curl&curl@daz
Q Q

= /tl)o-curlgodx—/ curl ¢ - ¢ dx
Q Q

16



because
/ curlq/)O‘dea::/ curl¢g'VA/qudx:0,
Q Q

where the second identity holds thanks to (3.7), since from Lemma 3.10 in [2] we have

/S]curlwo-@dx:[)f-qu d$=Z<f'n, [qﬂj>2_:Z[q]:‘r]j<f'"a1>zjzo-
j )

Step 3. Now, we will prove that
curlcurl € =0 in Q and curlé xn=vYgxn on I

Indeed, taking ¢ € D(Q2) in (3.15), we deduce immediately the first property. Now taking
¢ € X2(2), we get after using Green formula (2.1)

((curl € - 3o) x n, @)y = 0.

Now, for any p € H%(Q), there exists ¢ € X2(f) such that ¢ = p, on I'. So,

0 = ((curl € — o) x @) = ((curl € — o) x n ar)p = {(curl & — o) x 1, )y

which means that

(curl € — ) xn =0 in H 2(T). (3.16)

Step 4. As in [2], we define the following vector field

I
v=1pp—curl{ = ((¢o—curlé) - n, 1), Vg, (3.17)
i=1
where {quN}1<i<1 is the basis of the space Ky () given in (2.3).

Now, we will verify that v satisfies the statements required in point i) of Theorem 3.4.

Setting z = curl &, we will firstly show that z € ng(Q) Note that we have
curlz=—-A¢ in Q@ and zxn=1v%yxn on I.

Then z € L%(Q) and verifies

SN[

divz=0, curl z=0 in Q and ZxneWs

(),
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since g € ng(Q) and Q is of class CYl. By Theorem 2.2 point ii), we deduce that

zec ng(Q) Moreover z satisfies the following estimate

A

=] o lleurl 2]

wite < O (Il g
O (=lzao + 1£1l 5 o + 10l 08 ) (3.18)

Q)

IN

Step 5. We are in position to prove the estimates (3.8) and (3.9). For that, taking ¢ = &
in (3.13), we get thanks to (3.10)
|curl gHQLQ(Q) = /Q o - curl € de — /ﬂ £ - curl ¥ dz
= /Q Yo-curl&de — (f, &) (1)) xm0)

Then
|curl €H2L2(Q) < H¢0HL2(Q)HCUI‘15HL2(Q) + HfH[H;(Q)]’HEHHl(Q)

Now, as £ € X2(0), we deduce from (3.14) that

lcurl €|z < C ( oLz + (| £z ) < ClF g oy- (3.19)

Consequently, by (3.17), we have

I
[vllz2@) < lltbo — curlé|lpzo) + 1Y (o — curl €) -n 1) Vg [[r2)-  (3.20)
=1

But note that for every h € L?(Q2), with divh = 0, we have

I I I
||Z;<h~n, )p, Ve llrze) < z;|<h-n, U1, 1Vg || 2 <CZ}””””H—%(Q)
and

I
DIl gy = Il gy < Clblzzo

Applying these inequalities for h = 1y — curl € and using estimates (3.11), (3.19) and
(3.20) we get the estimate (3.9). Finally, using (3.18), (3.11), (3.17) and (3.19) we deduce
the estimate (3.8). O

18



4. Application to MHD problem

In this section we will establish the existence of weak solution for the (MHD) equations.
We will apply Leray-Schauder fixed theorem and the results obtained in Section 3 for weak
and very weak vector potentials.

We define the following Hilbert spaces
V ={uec Hj(Q); divu=0 inQ},
W={BcH'Q); divB=0 inQ, B-n=0onT, / B - n=01<j<J},
Z =V xW, =
and we set
[(w, B)llz = llulm (o) + IBlla @)
Theorem 4.1. Let f € H Y(Q), k€ Lg(Q) with
divk=0inQ, E-n=0onT and /Qk:-cpda:—O Vo € Kr(2) (4.1)
Then Problem (MHD) has at least one weak solution
(u, B,m) € H'(Q) x H'(Q) x L*(Q)
satisfying the following estimate
lullerso) + 1Bl < C (I lm-io)+ 1kl 5., ) (42)

Moreover

B e W%5(Q).
Proof. i) Necessary condition. Let (u, B,7) € H'(Q) x H'(Q2) x L?(2) solution of
Problem (M H D). We firstly observe that since div w = div B = 0, then
curl (ux B)=B-Vu—u-VB. (4.3)

Setting 1 = A curl B— ux B, we have k = curl ¢ with ¥ € L?(Q), curly € Lg(Q)
and ¢ xn =0 in H_%(F). So, divk=0 inQand kxn¢€ W—%g(r) We will prove
that

k-n=0 on I. (4.4)
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Indeed for any x € H?(2) we have

/chrl - Vxde=(k-n, X>W*%*g(r)xW%'6(F) (4.5)
and
/chrl Y- -Vxde=— (¢ xn, Vx)Hf%(F)XH%(F) =0 (4.6)

because when x describes H*(Q), x,r describes H %(I‘)
That means that k-n =0 in Hfg(lj) and also in ngg(f‘)

We also have by Green formula, for all ¢ € Kp(9),

/kocpd:c:)\/ Y -curl p dr + )\/('wxn)-gadx:().
Q Q r

ii) Existence. We will use Leray-Schauder fixed point theorem to show the existence of
weak solution. For proving the compactness, the idea is to apply the estimates of the very
week vector potential obtained in Section 3.

Let (u, B) € Z given and let us consider the following system denoted by MHD:

1 1 1
—vAd+-Vi=f—(u-V)u+—(B-V)B—-—V(|B?) in Q
P P 2pp
~MB=k+(B-V)u—(u-V)B in Q,
diva=divB =0 in Q,
=0, B~n:0, curl Bxn = 0 on I,
B-n =0, 1<j<J
D

Because the RHS of the first equation belongs to H~!(Q), we know that there exists
a unique solution (@, 1) € H(Q x L*(Q)/R, with div @ = 0 in Q. The RHS of the second
equation belongs to L%(Q) and it is with divergence free thanks to (4.3).

Now we need to verify that this RHS satisfies the compatibility conditions (2.11)-(2.12).
Indeed, we observe that for any ¢ € K7 (£2), we have:

[1B-Vu-@-9)Bl-¢= [(weB-Bow:Ve=0
Q Q

because

/B®u:ch:/Bkuia% :/Biuka(pk:/Biukaw:/u@B:ch.
Q Q Oz Jo oz;  Jg Oz, Jo
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Above, we used the implicit summation on the repeated induces and the fact that curl ¢ =
0, which proves the first compatibility condition (2.11). Now, as B-n =0 and v =0
on I', we have

(B-V)u= (B, V. )u=0 onT (4.7)

and of course (u-V)B =0 onI. Then
k+(B-V)u—(u-V)B]-n=0 on I,

which proves the compatibility condition (2.12).
We are now in position to use Theorem 2.4, there exists a unique solution B € H'(Q)
satisfying the corresponding equations of MHD.

Let us consider the following operator

T:Z—ZxL*(Q/R—Z

(u, B) — (@, B,7) — (@, B)

where (@, B, 7) is the unique weak solution of MHD. We realize that a fixed point of
the operator T is a weak solution of (MHD). So, we must prove that 7" is a compact

operator on Z and

3C > 0 such that ||(u, B)||z < C, V(u,B) € Z
and V a € [0,1] such that (u, B) = aT'(u, B),

(see [9], Theorem 11.3).
1/ Let us prove that T is compact. Suppose (u,B) € Z, we consider the sequence

(ug, Br)nen € Z  such that
(ug, Bi) — (u, B) in Z — weak.

Let us define ('&k,Bk) = T(ug, By) for all n € N. Then (uy — 4, B, — B) satisfies the
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following system denoted by (M HD)y,

—uA(«zk—aH;vm—ﬁ):<u-v>u—<uk-v>uk+

4 (B~ V) By~ (B-V) Bl + 5 - [V (1Bif = |B) i o
—AM\(By,—B)=(Bi-V)uy,— (B-V)u—(ug-V)Bp+ (u-V)B in
div (@, — @) =0 in Q,
div(B,—B) =0 in Q,
U, —u=0 on T,
(By—B)-n=0, curl(By,—B)xn =0 on I,
/ (By—B)-n=0 1<j<J
2

We will prove that
G, — @ and B, — B in HY(Q), ask— .
i) By applying usual estimates for weak solutions to the Stokes problem, we have

vifag — all g <Ol (ur - V)ug — (u- V) ulg-1q) +

+ || (B - V) By — (B-V) Bllg-1) + IV (IBi|* = B]?) | z-1(0)-
Note that for any (v, w) € V, we have (v - V)w = div(v ® w). So, we get

[ (ur - V)ug — (w-V)ullg-1q) = [div((ur ®ug) — (u@u)) |g-1(0)

N

Cllug ® up — u @ ullp2(g)

N

C (llurl o) + llullLs@y) lue — wllLs @

N

Cllu, — ulgs@) — 0, as k — o0

because H'(Q2) < L%(Q) and the embedding H'(Q) < L3(2) is compact. With similar

arguments, we show that
I (By-V) By — (B-V)Blla-1a+ IV (B> = [Bil*) lm-1@) — 0 as k = occ.

Therefore

ap — @ in H'(Q) as k — oo. (4.9)
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ii) Now, we will show that B, — B in H'(Q) as k — oo.

Setting now

Fi. = fr — gr,
where
fr = (B -V)u, — (B - V)u, gr = (ug - V)B — (u-V)B. (4.10)
and
z;, = A curl (B, — B), (4.11)
we have

2z, € L*(Q), divz, =0, curl zz = F, inQ and 2y xn =0 on T.
Because (4.11), we deduce from Lemma 3.5 of [2] that
Vlgig[, <Zk-’n,1>ri20.

As F, € L%(Q) — Lg(Q), from Theorem 2.1 i) we know that zj € ng(Q)
Since zp satisfies the same properties that the vector potential given by Theorem 3.4,

hence
Izt 20 < Cll Bl gz ey (4.12)

But Fy=div (By®@ur —B®u+up® By —u® B), then

< C||By®u,r — B ®u||L2(Q) + ||lug ® By —u ® BHLQ(Q)-

Writing
B, ®ur,—B®u=(By,—B)u+ B® (u; —u),

we get
|Br ® up — B ® ul|g2q) < [|Br — Bllpyqllullpaq) + 1 Blloa@)lur — ullpaq)-
Because H'(Q) — L*(Q2) compactly, we deduce that
B, ®u, -~ B®u— 0 in L*(Q), as k — oo
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With similar arguments we show that

u,® B, — u®B in L?(Q), ask — oo,

and finally
zy — 0 in L*(Q), as k — oo,
which means that

curl B, — B in L*(Q) as k — .

By (3.14), we deduce that
B, — B in H'(Q), ask— oo

and finally T is compact.

2) Let us show the condition (4.8). Let (u, B) = oT'(u, B) with (u,B) € Z and a €
0,1]. As (@, B) = T(u,B) then (u,B) = a(@,B) = (cti,aB) and (4,B) =
T(ot,aB) satisfies the following system:

2

2
fyAqufor:ffaQﬁ~V)ﬁ+a—(B-V)BfQ—V(|I§\2) in Q
p g 2pp

—)\AB:k+a2(B V)'&—aQ(ﬁ-V)B n Q
diva = 0 in €,
divB = 0 in Q,
u = 0 on T,
B-n=0, curlBxn =0 on I
/B-n_o 1<j<J
2

Multiplying the first equation by @& and the second one by B and integrating by parts, we
get
u/yva|2 dx—/f-adx+o‘2 (B-V)B - dx (4.13)
Q Q PH S
and

)\/ lcurl B|? dx = —aQ/(B-V)B-'&dX—k/ k - Bdx. (4.14)
Q Q Q
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1
Multiplying then (4.14) by —and summing, we obtain

pi
VHVﬁHQLz(Q) + iHCUFIBHZLz(Q) < C\flla—@lltl g @) + HkHLg(Q)HBHLﬁ(Q) :
pi
Therefore
|6 g0y + 1Bl e o) < ClIFIE-10) + Hk”Lg(m]
and
I(w, B)||z = al|(@, B)||z < C) (4.15)

where C7 = C} (Q,I/,)\,p,,u, £l -1 %]l is a positive constant independent of

(u, B) and «.

L%(Q))

iii) Regularity of B. Finally as (B-V)u—(u-V)B € L%(Q) and k € Lg(Q), we deduce
by Theorem 2.4 that B € Wzg(Q) O

Remark 5. With the same proof, we can obtain similar results if we replace the Dirichlet

boundary condition by the Navier-type boundary condition:

u-n =0, curluxn=0 onl.

5. Regularity of the weak solution

In this section, we will study the regularity of the weak solution of the problem (MHD).
The demonstration is based on the results of regularity of solution for the Stokes and the

Poisson equations and the Sobolev embedding.

Theorem 5.1. (Regularity W1P(Q) with p > 2) Let

3p

c W-LP(Q d ke L' ith -
f (€2) an (€2)  with r(p) o

and satisfying the condition (4.1) Then the weak solution for the (MHD) system given by
Theorem (4.1) satisfies

(u,B,m,) € WHP(Q) x W2TP)(Q) x LP(Q). (5.1)
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Proof. We can rewrite the problem (MHD) in the following form:

—I/Au—i-;VW: f+h in Q,
-AMB= g+k in Q
divu=0, divB=0 in €,
u=0, B-n=0, curlBxn=0 on I,
/B-n:O 1<j<J,
SO
where
1 1
h:—(u~V)u+@(B-V)B—%V(\B]2)
and

g=(B-V)u—(u-V)B.

Let (u,B,m) € H(Q) x WQ%(Q) x L%(Q) be a weak solution for the problem (MHD).
According to the Sobolev embedding and the Holder inequality, the functions h and g
belong to L%(Q) — W13(Q). We have two cases:

i) Case 2 < p <3:Then we have f + h € W~1P(Q). By the regularity of the Stokes
equations we deduce that u € WP(Q) and 7 € LP(Q). Let us pass to the regularity
of B. We have g + k € L") (Q) because r(p) < 3. Thanks to Theorem 2.4, we have
B c w2r)(Q).

ii) Case p > 3: We know that u € W13(Q) and B ¢ W2%(Q) — W3(Q). Now
h € L*(?) and g € L%(Q) for all s < 3. But for any r > 1, in particular for r > p, there
is some s < 3 such that L%(Q) — W~L7(Q). By the regularity of the Stokes equations
with Dirichlet boundary conditions, we obtain u € W1P(€2). Concerning the regularity
of B we have g + k € L"")(Q) because 7(p) < 3. By Theorem 2.4 we deduce that
B c w2rP)(Q). O

Theorem 5.2. (Regularity W2P(Q) with p > &) Let
feLP(Q) and ke LP(Q)
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satisfying the condition (4.1). Then the weak solution for the (MHD) system given by
Theorem 4.1 satisfies

(u, B,m) € W2P(Q) x W2P(Q) x WP(Q). (5.2)

Proof. Because f and k belong to LS (€2) which is included in H~1(Q), we know by Theo-
rem 4.1 that there exists a weak solution (u, B, ) for the problem (MHD). Then we have
h e L%(Q) and g € L%(Q) We have two cases:

i) Case & <p<2:Wehave f+h e LP(Q)and also g+ k € LP(Q). By the regularity
of the Stokes equation we have u € W?2P(Q) and 7 € WHP(Q) and thanks to Theorem

2.4, B € W2P(Q).

ii) Case 3 < p < 3: From the above result, now we know that (u, B) € WZ%(Q) X
W23 (Q). But note that W23 (Q) < W13(Q) — L7(Q), for all 1 < r < +oo. It follows
that (B - V)u and (u - V)B belong to L*(Q2) for any 1 < s < 3 and then g € LP(Q).
Thanks to Theorem 2.4, we deduce that B € W2P((Q2). By the same arguments, we have
that h € LP(f2), and by the regularity of the Stokes equation, we get u € W2P(Q) and
T € WP(Q).

iii) Case 3 < p < oo : From the previous case, we know that

(u,B) € W29(Q) x W?24(Q) for any ¢ < 3. But W24(Q) — L*>®(Q) and W4(Q) —
L) for all 1 < t < oo. It follows that (B - V)u and (u - V)B belong in particular to
L?(Q) and then g € LP(€)). Thanks to Theorem 2.4, we deduce that B € W?2P(Q). By the
same arguments, we have that h € LP(Q2), and by the regularity of the Stokes equation,
we get u € W2P(Q) and 7 € WP(Q). O
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