Issa Cherif 
  
A study on the estimation of the Transmuted Generalized Uniform Distribution *

Keywords: Numerical optimization, iterative method, maximum likelihood, parameter estimation, transmuted distribution

In this paper, we consider the maximum likelihood (ML) estimation of the parameters a new probability distribution recently developed and called transmuted generalized uniform distribution (TGUD). Because of the complicated form of its log-likelihood function, this estimation can only be done by using numerical optimization algorithms but this problem has not been studied yet. We address this lack through a comprehensive simulation study in R software using some of the best optimization algorithms (Newton, quasi-Newton and Nelder-Mead algorithms). It is found that the Nelder-Mead algorithm is the best of all the selected algorithms.

Introduction

In parametric statistics, significant efforts are continuously made to develop new distributions with the aim of better modelling data in fields such as quality and reliability control, environmental sciences, insurance, public health, medicine, biology, physics, industry, computer science, communications, engineering, lifetime testing and many others [START_REF] Zubair Ahmad | Recent developments in distribution theory: a brief survey and some new generalized classes of distributions[END_REF]. In this context, the last twenty years or so have seen the flourishing of new families of distributions obtained by adding new parameters to the classical distributions (see [START_REF] Zubair Ahmad | Recent developments in distribution theory: a brief survey and some new generalized classes of distributions[END_REF] for a detailed survey).

Subramanian and Rather [START_REF] Subramanian | Transmuted generalized uniform distribution[END_REF] have developed the transmuted generalized uniform distribution (TGUD) by applying the quadratic rank transmutation map to the generalized uniform distribution [START_REF] Lee | Estimations in a generalized uniform distribution[END_REF]. The cumulated distribution function (CDF) of the TGUD is given by:

F (x) = x β α+1 1 + λ -λ x β α+1 , 0 < x < β, α > -1 (1) 
and its probability density function (PDF) is given by:

f (x) = α + 1 β x β α 1 + λ -2λ x β α+1 . (2) 
The TGUD has a parameter vector θ = (α, β, λ) where α > -1 is the shape parameter, β > 0 is the scale parameter and λ is the transmutation parameter such that |λ| 1.

Subramanian and Rather [START_REF] Subramanian | Transmuted generalized uniform distribution[END_REF] provided a comprehensive study of its statistical properties (moments, survival function, failure rate, reverse hazard rate, distribution of order statistics) and derived the maximum likelihood (ML) method. Because of the complicated form of the log-likelihood, the maximum likelihood estimates of the parameters could not be obtained in closed-form. Numerical algorithms such as the Newton algorithm and the quasi-Newton algorithms have been proposed by the authors for the ML estimation. However, this numerical optimization problem has not been studied.

In this paper, we address this lack by making a comprehensive numerical study of the ML estimation of the parameters of the TGUD in R software [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF] based on simulated samples. For the numerical maximization of the log-likelihood, we compare three of the most used optimization algorithms that are the Newton-Raphson algorithm, the quasi-Newton Broden-Fletcher-Goldfarb-Shanno algorithm and the Nelder-Mead algorithm. The choice of these three algorithms is motivated by two reasons: (a) these algorithms use different strategies to find the solution so that if one fails, it is reasonable to hope that the others can give the solution; (b) choosing several algorithms also enables to compare their performances and to determine which one is more efficient for the ML estimation problem considered in this paper.

The rest of the paper is organized as follows. In Section 2, the ML estimation of the parameters of the TGUD is presented. Afterwards, the numerical optimization algorithms selected for the numerical ML estimation are described in Section 3. In Section 4, we describe the quantile function of the TGUD because its plays an important role in the random generation of the samples used in the simulation study. Section 5 presents the main results of our simulation study and Section 6 gives some concluding remarks.

Estimation of the parameters of the TGUD via the maximum likelihood method

Let x 1 , . . . , x n be a random sample of size n from the TGUD with parameters θ = (α, β, λ) where α > -1, β > 0 and |λ| 1. The log-likelihood function is given by

(θ) = n log(α + 1) -n(α + 1) log β + α n i=1 log x i + n i=1 log 1 + λ -2λ x i β α+1 . (3) 
Therefore, the MLE of θ is solution to the following non-linear system of equations:

∂ ∂α = n α + 1 -n log β + n i=1 log x i - n i=1 2λ x i β α+1 log x i β 1 + λ -2λ x i β α+1 = 0 (4) 
∂ ∂β = (α + 1) β      -n + n i=1 2λ x i β α+1 1 + λ -2λ x i β α+1      = 0 (5) 
∂ ∂λ = n i=1 1 -2 x i β α+1 1 + λ -2λ x i β α+1 = 0 (6) 
Subramanian and Rather [START_REF] Subramanian | Transmuted generalized uniform distribution[END_REF] noted that Equations ( 4), ( 5) and ( 6) are in a complicated form. So, it is very difficult to obtain closed-form expressions of their solutions. They proposed the use of non-linear optimization algorithms such as Newton-Raphson algorithm or quasi-Newton algorithms to maximize the log-likelihood function (3). However, this numerical optimization problem has not been studied.

In this paper, we address this lack by making a comprehensive numerical study of this numerical optimization problem in R software [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF] based on simulated samples. For the numerical maximization of the log-likelihood, we use the Newton-Raphson algorithm, the quasi-Newton Broden-Fletcher-Goldfarb-Shanno algorithm and also the Nelder-Mead algorithm. These three algorithms are described below.

Numerical algorithms for ML estimation

Newton-Raphson's algorithm

It is the very first algorithm that comes to mind when dealing with a numerical optimization problem. This algorithm starts with an initial estimate θ (0) given by the user and compute successive iterates as

θ (k+1) = θ (k) -∇ 2 (θ (k) ) -1 ∇ (θ (k) ) (7) 
where ∇ and ∇ 2 respectively denote the gradient vector and the Hessian matrix.

Newton-Raphson's (NR) algorithm converges quickly to the solution if θ (0) is close enough to the unknown value of the parameter to be estimated [START_REF] Griva | Linear and Nonlinear Optimization: Second Edition[END_REF]. However, it can diverge violently when θ (0) is far from the unknown solution [START_REF] Dennis | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF] and it is impossible to implement if, at some step k, ∇ 2 (θ (k) ) is singular.

Quasi-Newton BFGS algorithm

Quasi-Newton algorithms are inspired from the NR algorithm [START_REF] Nocedal | Numerical optimization[END_REF] but they are different from the NR algorithm in that they compute approximations of the inverse of the Hessian matrix using first derivatives and these approximations must be positive definite in order to ensure that the log-likelihood increases with the iterations i.e. (θ (k+1) ) (θ (k) ). One of the most famous and effective quasi-Newton algorithms is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [7, chapter 6]. At each iteration, the BFGS algorithm computes the inverse of the Hessian matrix using the formula

H k+1 = (I -ρ k s k y T k )H k (I -ρ k y k s T k ) + ρ k s k s T k ( 8 
)
where I is the identity matrix,

s k = θ (k+1) -θ (k) , y k = ∇ (θ (k+1) ) -∇ (θ (k)
), H k is the approximated inverse of the Hessian matrix at step k and

ρ k = 1/(y T k s k ).
The main advantage of quasi-Newton algorithms is that they only require the gradient of . Nocedal and Wright [START_REF] Nocedal | Numerical optimization[END_REF] show under some regularity conditions on the objective function , that BFGS algorithm is convergent.

Nelder-Mead's algorithm

The Nelder-Mead's (NM) algorithm [START_REF] Nelder | A simplex algorithm for function minimization[END_REF] is a very famous derivative-free algorithm i.e. it does not evaluate derivatives of the function and computes the successive iterates only from the values of on a finite set of points.

Each iteration of the NM algorithm is based on a simplex whose vertices are sorted by increasing order of and the vertex with the lowest value of (called the worst point) is replaced by a new vertex through operations on the centroid of the other vertices (all vertices except the worst one). The iterations are repeated until the images of the vertices by are sufficiently close. For more details about the NM algorithm, we refer the reader to [START_REF] Lagarias | Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions[END_REF].

Because of the complexity of the mathematical analysis of the NM algorithm, there does not exist in the literature any general convergence result [START_REF] Jeffrey C Lagarias | Convergence of the Restricted Nelder-Mead Algorithm in Two Dimensions[END_REF]. However, the NM algorithm remains very popular because of its simplicity and is widely used in many scientific and engineering applications [START_REF] Jeffrey C Lagarias | Convergence of the Restricted Nelder-Mead Algorithm in Two Dimensions[END_REF].

Quantile function and random number generation

We are particularly interested in the quantile function because it plays a big role in the generation of TGUD samples. For any u ∈ [0, 1], the quantile of order u of TGUD(α, β, λ) is the solution to the equation F (x) = u where F is the CDF defined by [START_REF] Zubair Ahmad | Recent developments in distribution theory: a brief survey and some new generalized classes of distributions[END_REF]. It therefore comes down to finding x such that

(1 + λ) x β α+1 -λ x β 2α+2 = u
or, equivalently, λy 2 -(1 + λ)y + u = 0 where y = (x/β) α+1 .

The case λ = 0 being obvious (x = βu 1/(α+1) ), it is assumed in the rest of this section that λ = 0. The discriminant ∆ is such that

∆ = (1 + λ) 2 -4λu = [λ + (1 -2u)] 2 + 4u(1 -u) > 0 because u ∈ [0, 1].
We have two solutions which are

y 1 = (1 + λ) -(1 + λ) 2 -4λu 2λ and y 2 = (1 + λ) + (1 + λ) 2 -4λu 2λ 
The condition 0 < x < β is equivalent to 0 < y < 1 so it is sufficient to find which of the real numbers y 1 and y 2 belongs to the interval [0, 1]. We distinguish the following two cases:

(a) if 0 < λ 1, then both y 1 and y 2 are positive because y 2 > 0 and the product y 1 y 2 equals u λ which is positive. Moreover,

y 1 < 1 ⇐⇒ (1 + λ) -(1 + λ) 2 -4λu < 2λ ⇐⇒ (1 + λ) 2 -4λu > 1 -λ ⇐⇒ (1 + λ) 2 -4λu > (1 -λ) 2 ⇐⇒ 4λ(1 -u) > 0 and y 2 < 1 ⇐⇒ (1 + λ) + (1 + λ) 2 -4λu < 2λ ⇐⇒ (1 + λ) 2 -4λu < λ -1.
The inequality y 1 < 1 always holds (because 0 < u < 1) while inequality y 2 < 1 never holds (because λ -1 is negative and (1 + λ) 2 -4λu cannot be negative).

(b) if -1 λ < 0, then y 2 < 0 (because its numerator is positive and its denominator is negative). On the one hand, we have

(1 + λ) 2 -4λu > (1 + λ) 2
or, equivalently, (1 + λ) 2 -4λu > (1 + λ). So, the numerator and the denominator of y 1 are both negative and, consequently, y 1 > 0. On the other hand,

y 1 < 1 ⇐⇒ (1 + λ) -(1 + λ) 2 -4λu > 2λ ⇐⇒ (1 + λ) 2 -4λu < 1 -λ ⇐⇒ (1 + λ) 2 -4λu < (1 -λ) 2 ⇐⇒ 4λ(1 -u) < 0 (which is true).
Thus, we also have y 1 < 1.

We have thus demonstrated the following theorem:

Theorem 1. Let α > -1, β > 0, λ such that |λ| 1 and u ∈ [0, 1].
Then, the quantile of order u of the TGUD(α, β, λ) is given by

           x = β 1 + λ -(1 + λ) 2 -4λu 2λ 
1 α+1 if λ = 0 x = βu 1/(α+1) if λ = 0. (9) 
In our study, the samples from the TGUD are generated by the inversion method, that is, using formula [START_REF] Lagarias | Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions[END_REF] where u ∼ U (0, 1).

Simulation study

We study the ML estimation of the parameter vector θ of the TGUD using R software [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF]. Instead of selecting just only one of the many existing optimization algorithms, we have chosen three of the most performing optimization algorithms and we compare the performances of these algorithms. The selected algorithms are: NR, BFGS and NM. The NR algorithm is implemented using the newton function of the R package Bhat [START_REF] Luebeck | General likelihood exploration[END_REF] and the BFGS and NM algorithms are implemented using the constrOptim.nl function of the package alabama [START_REF] Varadhan | alabama: Constrained Nonlinear Optimization[END_REF]. Our main criteria for evaluating the selected algorithms is the mean squared error (MSE) defined as:

MSE( θ) = 1 3 θ -θ 2 = 1 3 (α -α) 2 + ( β -β) 2 + ( λ -λ) 2
where θ = (α, β, λ) is the true value of the parameter vector and θ = (α, β, λ) is the estimate.

Our simulation study is based on generating one thousand replications of samples of size n ∈ {25, 50, 100, 500, 1000, 5000} from the TGUD with parameters (α, β, λ) = (1, 0.7, 0.3) and (α, β, λ) = (2, 1, 0.5). The precision for convergence is 10 -5 . The mean values over 1000 replications are given in Tables 1 and2. Note that, for the NR algorithm, the values contained in these tables only concern the replications for which convergence was achieved. Three important remarks can be made:

(a) The NR algorithm has a very low rate of convergence. Out of twelve thousand (12000) replications, it has only converged 741 times, i.e. NR had a convergence rate of 6.175 %. The main reasons for failure of the NR algorithm are: singular Hessian matrices and number of iterations exceeded.

(b) For all algorithms, the MSE decreases as the sample size increases.

(c) The Nelder-Mead's algorithm seems by far to be the best algorithm because it has a convergence rate of 100 % and its MSEs are generally the smallest.

Concluding remarks

In this paper, we studied the maximum likelihood (ML) estimation of the parameters of the transmuted generalized uniform distribution (TGUD) that was not studied yet. Because of the complex expression of the log-likelihood function, numerical optimization algorithms are required. We studied, via intensive simulation experiments, three well-known algorithms (Newton-Raphson, quasi-Newton BFGS and Nelder-Mead) for the numerical ML estimation of the parameters. Of these three algorithms, the NM algorithm appears to be the best because it has a convergence rate of 100% and the smallest mean squared errors.

Table 1 :

 1 Estimation results for (α, θ, λ) = (1, 0.7, 0.3) over 1000 replications. The values in brackets are the standard deviations.

	NR	BFGS	NM

Table 2 :

 2 Estimation results for (α, θ, λ) = (2, 1, 0.5) over 1000 replications. The values in brackets are the standard deviations.

	NR	BFGS	NM