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Abstract

Following the recent works [9, 17, 30, 31, 37], we investigate the problem of optimising
the total population size for logistic diffusive models with respect to resources distributions.
Using the spatially heterogeneous Fisher-KPP equation, we obtain a surprising fragmentation
phenomenon: depending on the scale of diffusivity (i.e the dispersal rate), it is better to either
concentrate or fragment resources. Our main result is that, the smaller the dispersal rate of
the species in the domain, the more optimal resources distributions tend to oscillate. This is
in sharp contrast with other criteria in population dynamics, such as the classical problem of
optimising the survival ability of a species, where concentrating resources is always favourable,
regardless of the diffusivity. Our study is completed by numerous numerical simulations that
confirm our results.
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1 Introduction

1.1 Scope of this article: fragmentation and concentration for spatial
ecology

In this article, we study a problem of great relevance in the field of spatial ecology. Namely,
considering a species dispersing in a domain where some resources are available:

How should we spread resources so as to maximise the total population size at equilibrium?

Here, we focus on a fine qualitative analysis of this question and emphasise the crucial role of the
characteristic diffusion rate of the population (or, equivalently, of the size of the domain).

Regarding mathematical biology, spatially heterogeneous models are of paramount importance,
as acknowledged, for instance, in [11]. Natural questions arise when considering such models: one
may for instance think of spatially heterogeneous systems of reaction-diffusion equations, in which
case a relevant question is that of existence and stability of (non-trivial) equilibria (see for instance
[12, 14, 13, 28]).

Here, we focus on single-species models, in which case two problems have drawn a lot of
attention from both the mathematical and the mathematical biology communities: the problem
of optimal survival ability, and the problem of optimising the total population size. We expand
on bibliographical references in Subsection 1.2 of this Introduction, but let us stress the following
fact: while the optimisation of the survival ability with respect to resources distribution is fairly
well-understood (in terms of qualitative analysis, see for instance [3, 18, 22]), the problem of the
total population size, which has been the subjects of several recent articles (we refer for instance to
[2, 9, 17, 30, 31, 37]) is still elusive when considered from a qualitative point of view. For instance,
for the optimal survival ability, the following paradigm has been established:

Concentration of resources favors survival ability.
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This was first observed in [32], and given a proper mathematical analysis in [3], in terms of
rearrangements. One of the other conclusions of [3] is that heterogeneity is favorable to survival
ability: under natural assumptions (made precise in Section 1.2 throught the definition of the
admissible class, Equation (2)), in order to maximise the survival ability of a population, one should
work with patch-models. Here, this means the following: provided the population evolves in Ω
and the resources distributions m : Ω→ IR satisfy pointwise (0 6 m 6 1) and integral (

´
Ω
m 6 C)

bounds, the optimal resources distribution for survival ability m∗ satisfies Ω = {m = 0}t{m = 1}.
Such results generally do not depend on the dispersal rate: regardless of this characteristic speed,
resources distributions should be concentrated if we want to optimise the survival ability.

The problem of optimising the total population size, on the other hand, is much more compli-
cated to tackle at the mathematical level. One of the main questions that have been investigated
is the influence of diffusion on the population size criterion (which in some models favours the
total population size, see [25]), and we refer to [37], as well as the recent survey [9] for a biological
perspective on this question. In these two last references, the following question is also presented:
can the total population size exceed the total amount of resources? This question, for the model
we are going to consider, has been solved in dimension 1 in [2] and, in dimension n > 2, in the
recent preprint [17]. In all of these papers, the dispersal rate plays a crucial role in the analysis.

Regarding qualitative properties, as will be explained further in Section 1.2, very few things
are known. The relevance of patch-models for this optimisation problem has been investigated in
[30] and [31], but, so far, the only qualitative results can be found in [30]: for large dispersal rates,
concentrating resources favours the total population size while, for small diffusivities, fragmentation
(i.e scattering resources across the domain) may be better.

The goals of this article is to give a complete treatment of the case of small dispersal rates for
the logistic-diffusive Fisher-KPP equation, and our main result, Theorem 1, may be interpreted as
follows:

To maximise the total population size, the smaller the diffusivity, the more one should fragment
resources.

From a calculus of variations (or optimal control) perspective, our article’s main innovation
is that it gives a qualitative analysis of a non-energetic optimisation problems. Such problems
are notoriously hard to analyse, given that their structure prohibits using classical tools (e.g rear-
rangements, symmetrisation) and that the analysis of optimality conditions is very tricky. Here,
we propose an approach relying on strong non-monotonicity properties of the functional that is to
be optimised.

Finally, we provide several numerical experiments that validate our results.
This article is organised as follows:

• In Section 1.2, we present the model under consideration as well as the variational problem
under consideration and recall the several qualitative properties available in the literature.

• In Section 1.3, we state our main result.

• In Section 2, we prove our main result.

• In Section 3, we give several numerical simulations to illustrate Theorem 1.
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1.2 Setting and bibliographical references
{Se:Bibl}

We are working here with the spatially heterogeneous Fisher-KPP equation (which originated in
the seminal [10, 20]). Let us consider, in n-dimensions, the box

Ω =

n∏
i=1

[0; 1],

which will serve as our domain. We could consider more general boxes Ω =
∏n
i=1(0; ai), but the

results and proofs would be the same. We consider a positive parameter µ > 0, which will be
referred to as dispersal rate, or diffusivity. To model the spatial heterogeneity, we use resources
distributions, i.e functions m : Ω → IR. Finally, we take into account an intra-specific, non-linear
reaction term from the classical Malthusian equation. This gives the following equation: assuming
the population density θm,µ has reached an equilibrium, it solves

µ∆θm,µ + θm,µ (m− θm,µ) = 0 in Ω,

∂θm,µ
∂ν = 0 on ∂Ω,

θm,µ > 0 in Ω.

(1) {LDE}{LDE}

For Equation (1) to have a solution, one must restrict the class of resources distributions. If we
assume

m ∈ L∞(Ω) ,

 
Ω

m > 0,

then [3, 5, 6] guarantee the existence, uniqueness and stability of a solution to (1).
We consider the functional

F : (m,µ) 7→
 

Ω

θm,µ

and the optimisation problem
sup

m,
ffl
Ω
m>0

F (m,µ).

This problem is ill-posed without further constraints on m. Two natural constraints can be set, a
pointwise (L∞) constraint, and a L1 constraint, which leads to introducing the admissible class:

M(Ω) :=

{
m ∈ L∞(Ω) , 0 6 m 6 κ ,

 
m = m0

}
. (2) {Eq:Ad}{Eq:Ad}

This admissible class was proposed in [26] and used, for instance, in [30, 31].
The optimisation problem under consideration is

max
m∈M(Ω)

 
Ω

θm,µ. (Pµ) {PV}{PV}

The direct method of the calculus of variations yields in a straightforward way the existence of a
solution m∗µ ∈M(Ω).
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A remark on the constraints We would like to stress the importance of the pointwise con-
straint 0 6 m 6 κ. As mentioned in the first part of this Introduction, a natural question was
that of knowing whether the total population size could exceed the total amount of resources, see
[9, 37]. In other words, what can be said about the ratio

E(m) := sup
µ>0

ffl
Ω
θm,µffl

Ω
m

,

where m satisfies m > 0, m 6= 0? It follows from [25] that

E(m) > 1.

In the one-dimensional case, Bai, He and Li proved, in [2] that

E(m) 6 3

and that this bound is not attained for any m.
In the n-dimensional case, n > 2, Inoue and Kuto proved, in the preprint [17], that

sup
m>0 ,m 6=0

E(m) = +∞.

Qualitative properties for (Pµ) One of the main features of problems such as (Pµ) is the
bang-bang property: denoting by m∗µ a maximiser for (Pµ), is it true that there exists a set
E∗µ such that m∗µ = κ1E∗µ? Such characteristic functions are called bang-bang functions. This
property is of paramount importance in optimisation and, from a mathematical biology point of
view, corroborates the relevance of patch-models, see [7].

Let us briefly sum up the main conclusions of [30, 31], which contain the most up to date
qualitative informations of that sort about (Pµ):

1. A bang-bang property is proved in [31]: if the set {0 < m < κ} contains an open ball, then
m is not a solution of (Pµ). Here, a regularity assumption is thus needed.

2. In [30], it is proved that the bang-bang property holds for all large enough diffusivities.

3. It is furthermore proved, also in [30] that:

(a) In the one-dimensional case Ω = (0; 1), there exists µ1 > 0 such that, for every µ > µ1,
the unique solutions of (Pµ) are

m∗ := κ1(0;`) and m∗ := κ1(1−`;`),

with κ` = m0. We note that these are also optimal configurations for survival ability
(see [3, 22]).

(b) In the 2-dimensional case Ω = (0; 1) × (0; 1), concentration holds for large diffusivities
in the following sense: any sequence {m∗µ}µ→∞ of solutions of (Pµ) converges, up to
a subsequence, to a bang-bang function m∗∞ = κ1E∗∞ which is decreasing in every
direction: x 7→ m(x, y) (resp. y 7→ m(x, y)) is non-increasing for almost every y (resp.
non-increasing for almost every x)

4. Finally, in [30] it is proved that, for small enough diffusivities, fragmentation may be better
in the following sense: two crenels are better than one crenel.
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As already mentioned, our goal is to prove a strong fragmentation phenomenon for small dif-
fusivities. A way to formalise this fragmentation would be to restrict ourselves to looking for
bang-bang solutions of (Pµ), i.e solutions of the form m∗µ = κ1E∗µ and to prove that

Per(E∗µ) →
µ→0

+∞

for some notion of perimeter.
However, the problem

sup
m∈M(Ω) , m bang-bang

F (m,µ)

does not necessarily have a solution, as remarked above.

Mathematical formulation of fragmentation To quantify the perimeter or the regularity of
the optimal resources distribution, we introduce, for a fixed M > 0, the class

MM (Ω) :=
{
m ∈M(Ω) , ‖m‖BV (Ω) 6M

}
. (3) {Eq:AdM}{Eq:AdM}

Here, the BV (Ω)-norm refers to the bounded-variations norm. We note that, for instance, a set
E has a finite perimeter (in the sense of Caccioppoli) if and only if 1E is a function of bounded
variations, so that it gives us a natural extension of the notion of perimeter to the set of admissible
resources distributions.

For a general introduction to functions of bounded variations and their link to perimeter, we
refer to [1].

1.3 Main result
{TH}

The main result of this article is the following fragmentation property.
{Th:Frag}

Theorem 1. Let, for any µ > 0, m∗µ be a solution of (Pµ). There holds

‖m∗µ‖BV (Ω) →
µ→0+

+∞. (4) {fragmentation}{fragmentation}

More precisely, we prove:

∀M > 0, ∃µM > 0 ,∀µ 6 µM , sup
m∈MM (Ω)

 
Ω

θm,µ < sup
m∈M(Ω)

 
Ω

θm,µ. (5) {Eq:fragmentation2}{Eq:fragmentation2}

Remark 1. Since ||m∗µ||L1(Ω) = m0, the above statement actually says that the TV (Ω)-seminorm
of m∗µ blows up as µ→ 0.

Remark 2. Two remarks should be made:

• We could actually prove, using our method, that

lim
µ→0+

(
sup

m∈M(Ω)

F (m,µ)

)
= ||F ||L∞(M(Ω)×IR+),

as will be explained later, see Remark 3. Proving this actually gives a (weaker) fragmentation
result (i.e one could find a subsequence of maximisers such that the corresponding sequences
of BV (Ω)-norms diverges to +∞). This seems to indicate that finding the limit problem is
very challenging. Finally, we were only able to prove that

lim
µ→0+

(
sup

m∈M(Ω)

F (m,µ)

)
> m0 = inf

m∈M(Ω) ,µ∈IR+

F (m,µ).
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• Theorem 1 can be recast in terms of perimeters. In this case, one may consider the set of
admissible subsets

O(Ω) :=
{
E ⊂ Ω , |E| = m0

κ

}
and the auxiliary subsets

OM (E) := {E ∈ O(Ω) , P er(E) 6M} .

Here, the perimeter is to be understood in the sense of Caccioppoli. Note that, as already
pointed out, the existence of a solution to

sup
E∈O(Ω)

F (1E , µ)

is not known for general µ, see [30]. However, we can prove, in the same fashion that, for
every M > 0, there exists µM > 0 such that, for any µ 6 µM , there holds

sup
E∈OM (Ω)

F (1E , µ) < sup
E∈O(Ω)

F (1E , µ).

2 Proof of Theorem 1
{Proof}

2.1 The influence of periodisation

The main idea is to exploit the non-monotonicity of the function

µ 7→ F (m,µ),

for a fixed m.
We recall (see [25]) that

1. Setting F (m, 0) = F (m,+∞) = m0 extends F to a continuous function on [0; +∞].

2. m0 is a strict, global minimiser of F (m, ·) if and only if m 6≡ m0. If m ≡ m0, then F (m, ·) ≡
m0.

3. F (m, ·) may have several local maxima (see [24], where construct m such that F (m, ·) has at
least two local maxima).

Our method of proof consists in exploiting this non-monotonicity, as well as Neumann boundary
conditions and the fact that we are working in an orthotope.

Indeed, let k ∈ IN. We can extend m and θm,µ to [−1; 1]n by reflecting them across each of
the axis segments {xi = 0, 0 6 xi 6 1} , i = 1, . . . , n and, then, we can extend them to 2-periodic
(in each direction) functions on IRn. It then makes sense to define, for a given m ∈ M(Ω), the
functions

mk(x) := m
(
2kx
)
, θk(x) := θm,µ(2kx).

Straightforward computations show that (mk, θk) solves
µ

22k
∆θk + θk(mk − θk) = 0 in Ω ,

∂θk
∂ν

= 0 on ∂Ω.

(6)
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Furthermore,
 

[0;1]n
θk(x)dx =

1

(2k)n

ˆ
[0;2k]n

θm,µ(y)dy

=

 
[0;1]n

θm,µ.

As a consequence of these identities, we have

F
(
mk,

µ

22k

)
= F (m,µ). (7) {Eq:Period}{Eq:Period}

Visually, if we represent, for instance, F (m, ·) as

m0

µ

then fk := F (mk, ·) can be visualised as

m0

µ

Using (7), we are going to that there exists η > 0 and µη > 0 such that

inf
06µ6µη

(
sup

m∈M(Ω)

F (m,µ)

)
> m0 + η.

Then, we will show that, for any M > 0, for any ε > 0, there exists µM,ε > 0 such that

inf
06µ6µM,ε

sup
m∈MM (Ω)

F (m,µ) 6 m0 + ε.

The conclusion of Theorem 1 follows immediately from these two steps.

2.2 Technical preliminaries

Technical background We briefly recall some well-known facts about Equation 1. From the
method of sub- and super-solutions ( we refer for instance to [3]) we have

∀µ ∈ (0; +∞) ,∀m ∈M(Ω) , 0 6 θm,µ 6 κ.

Lou, in [25], proves the three following results: first,

∀µ ∈ (0; +∞) , µ

 
Ω

|∇θm,µ|2

θm,µ
2 =

 
Ω

θm,µ −m0. (8)
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Then,
∀m ∈M(Ω) ,∀p ∈ [1; +∞) , ‖θm,µ −m‖Lp(Ω) →

µ→0
0. (9) {Eq:CVM}{Eq:CVM}

Finally, he obtains the following estimate in [25, Claim, Equation 2.4]: there exists a constant C
independent of m and µ > 0 such that

∀(m,m′) ∈M(Ω)2 ,∀µ > 0 , ‖θm,µ − θm′,µ‖L1(Ω) 6 C‖m−m′||
1
3

L1(Ω). (10) {Eq:Lou}{Eq:Lou}

Although Lou, in [25], assumes that m′ is regular, it is readily checked that his proof does not
depend on the smoothness of m′ and can be extended to all elements ofM(Ω) in a straightforward
way.

Uniform convergence in MM (Ω) (as µ→ 0+) Our goal is to make the convergence result (9)
uniform in m ∈MM (Ω). This is the content of the following Lemma:

{Le:Unif}
Lemma 1. For any M > 0, the convergence result (9) is uniform in MM (Ω) in the following
sense: let M > 0 be fixed. Then

∀ε0 > 0 ,∃µM,ε0 ,∀m ∈M(Ω) ,∀0 6 µ 6 µM,ε0 , ‖θm,µ −m‖L1(Ω) 6 ε0. (11) {Eq:Le1}{Eq:Le1}

Proof of Lemma 1. We argue by contradiction. If we assume that (11) does not hold then there

exists ε0 > 0 and a sequence {mk, µk} ∈ (MM (Ω)× (0; +∞))
IN

such that:

1. {µk}k∈IN is decreasing and converging to 0,

2. There holds:
∀k ∈ IN , ‖θmk,µk −mk‖L1(Ω) > ε0 > 0. (12)

The embedding BV (Ω) ↪→ L1(Ω) is compact. Hence, there exists m∞ ∈MM (Ω) such that

mk →
k→∞

m∞ strongly in L1(Ω). (13) {Eq:Int}{Eq:Int}

Thus, we can write, for any k ∈ IN,

‖θm∞,µk −m∞‖L1(Ω) > ‖θmk,µk −mk‖L1(Ω) − ‖mk −m∞‖L1(Ω) − ‖θmk,µk − θm∞,µk‖L1(Ω)

> ε0 + o
k→∞

(1) + o
k→∞

(1) by, successively, (11), (13) and (10)-(13).

This is in contradiction with (9). Lemma 1 is proved.

Estimating lim
µ→0

(
supM(Ω) F (·, µ)

)
The goal of this paragraph is the following Lemma:

{Le:2}
Lemma 2. There exists η > 0 and µη > 0 such that

inf
06µ6µη

(
sup

m∈M(Ω)

F (m,µ)

)
> m0 + η. (14) {Eq:L2}{Eq:L2}

Proof of Lemma 2. Let m ∈ M(Ω) be any non-constant admissible resources distribution. We
know that m0 is a strict local minimum of F (m, ·) on [0; +∞), and that µ 7→ F (m,µ) is continuous
on [0; +∞). Let µ > 0 be a real number and consider the interval

I0 :=
[
µ, 4µ

]
.
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Since m0 is only reached at µ = 0 and µ =∞, it follows that

inf
µ∈I0

F (m,µ) > m0.

Thus, let η > 0 be such that
inf
µ∈I0

F (m,µ) > m0 + η.

We then consider, for any k ∈ IN, the interval

Ik :=

[
µ

22k
,

4µ

22k

]
.

We first remark that, once again setting mk(·) = m(k·) and, thanks to (7), we have

F (mk, ·)(Ik) = F (m, ·)(I0)

so that
∀k ∈ IN , inf

µ∈Ik
F (mk, µ) = inf

µ∈I0
F (m, ·) > m0 + η.

Hence,

inf
µ∈Ik

(
sup

m∈M(Ω)

F (m,µ)

)
> m0 + η. (15) {eq3}{eq3}

Now, we have built our sequence in such a way that

sup(Ik+1) = inf(Ik).

Hence, setting

I∞ :=

∞⋃
k=1

Ik,

we can write
I∞ =

(
0, 4µ

)
and, as a consequence of (15),

inf
µ∈I∞

(
sup

m∈M(Ω)

F (m,µ)

)
> m0 + η.

This concludes the proof.

{Rem}
Remark 3. We can use the same method to prove that

lim
µ→0+

(
sup

m∈M(Ω)

F (m,µ)

)
= ||F ||L∞(M(Ω)×IR+).

Indeed, consider the problem

sup
µ>0,m∈M(Ω)

F (m,µ) = F (m∗, µ∗).

Uniqueness does not hold for this problem, because of the periodisation process we used above.
One can actually see that we can choose µ∗ > 0. In this case, considering the sequence(

m∗k,
µ∗

22k

)
k∈IN

immediately gives the result.
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2.3 The proof

Proof of Theorem 1. Let M > 0 be fixed. We are going to prove that there exists µM > 0 such
that, for any µ 6 µM ,

sup
m∈MM (Ω)

F (m,µ) < sup
m∈M(Ω)

F (m,µ). (16) {Eq:goal}{Eq:goal}

Theorem 1 follows immediately from (16).
Let η > 0 and µη > 0 (given by Lemma 2) be fixed throughout the rest of this demonstration:

∀µ 6 µη , sup
m∈M(Ω)

F (m,µ) > m0 + η. (17) {Eq:4}{Eq:4}

From Lemma 1, there exists µM, η2
> 0 such that, for any µ 6 µM, η2

, we have

sup
m∈MM (Ω)

‖θm,µ −m‖L1(Ω) 6
η

2
.

Thus

∀µ 6 µM, η2
,∀m ∈MM (Ω) ,

 
Ω

θm,µ 6 m0 +
η

2
.

Plugging this in (17) then proves that, for µ 6 min(µη, µM, η2
), no solution m∗µ of (Pµ) can belong

to MM (Ω). This concludes the proof.

Remark 4. We quickly comment on the following, expected, remark: not only does the BV (Ω)-
norm blow up, but also, every X(Ω)-norm, where X(Ω) is compactly embedded in L1(Ω). Indeed,
the only part where BV is used is in the proof of Lemma 1, and it is used to get strong L1(Ω)
convergence.

3 Numerical simulations
{Num}

We present several numerical simulations in order to emphasise the results of Theorem 1. All of
these simulations were obtained using Ipopt [36]. As is expected, the smaller the diffusivity µ, the
higher the number of connected components of the set {m∗µ = 1}, m∗µ being the optimal resources
distribution.

Let h > 0 be the discretization parameter. We work with a uniform space discretisation
of size h. Since, numerically, such optimisation problems can be very complicated, we run our

optimisation program with different initial guesses m
(1)
h , . . . ,m

(k)
h , . . . to obtain, for each initial

guess, a potential candidate to be the optimiser. We then select, among these candidates, the
optimal one by comparing the value of the criteria and, to check our results, we apply a gradient
descent as a final step.

The simulations are done in the following way (we only present it in the one-dimensional case):

• Generating random initial guesses (θ
(k)
h ,m

(k)
h ) . We generate a random sample of initial

guessest m
(k)
h by randomising their first five Fourier coefficients on each discretisation inter-

val. In other words, we define

m
(k)
h = m

(k)
h,i on Ii := [hi;h(i+ 1)]

11



where each of the m
(k)
h,i is a a random function generated as follows in the one-dimensional

case:

m
(k)
h,i = a0 +

5∑
j=1

aj sin(jπih) + bj cos(jπih) (18)

where aj and bj are uniform random variables with values in [−0.5, 0.5]. To ensure that the

resulting function m
(k)
h satisfies the constraint m

(k)
h ∈ M(0; 1), we apply an affine transfor-

mation 
T
(
m

(k)
h

)
= am

(k)
h + b

a = min

(∣∣∣∣ κ−m0

maxi(m
(k)
h,i−

∑
im

(k)
h,i)

∣∣∣∣ , ∣∣∣∣ −m0

mini(m
(k)
h,i−

∑
im

(k)
h,i)

∣∣∣∣)
b = m0 − a

∑
i

m
(k)
h,i .

The resulting function satisfies m
(k)
h ∈M(Ω).

Now, to each of these random initial guess we need to associate an initial guess for the
solution of the partial differential equation. We choose an energetic approach: we minimise

with Ipopt the discretised energy functional associated with Equation (1) to obtain θ
(k)
h ,

which is a piecewise constant function: θ
(k)
h = θ

(k)
h,i on [ih; (i + 1)h]; in other words, θ

(k)
h is

the minimiser of

Jh(θh) =
µ

2
θh (−4h)θh −

N∑
i=1

(
1

2
θ2
h,im

(k)
h,i −

1

3
θ3
h,i

)
. (19) {numfun}{numfun}

where 4h is the discrete Laplacian with Neumann boundary conditions, in 1D:

4h :=
1

h2



−2 2 0 0 0 · · · 0
1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0

. . .
. . .

. . .

0 · · · 0 1 −2 1
0 · · · 0 2 −2


(20)

In then end, we get an initial random guess for an optimiser, which we denote (θh,mh).

• Optimisation under a finite difference scheme constraint We use Ipopt to maximise the total

population
∑
θ

(k)
h,i for every k with respect to mh. We implement the partial differential

equation (1) as a constraint in the scheme:

µ(−4hθh)i = θh,imh,i − θ2
h,i,

and, obviously, the constraint m ∈ M(0; 1). Among all random initialisations, we choose
the optimal solution.

• Gradient descent We recall that, in this context, the adjoint state for the variational problem
(Pµ) is the function pθm,µ where p solves

−µ∆p− p(m− 2θm,µ) = 1

12



with Neumann boundary conditions; in other words, for an admissible perturbation ξ at an
admissible resources distribution m (i.e, for every t small enough, m + tξ ∈ M(0; 1)) the
derivative of the criterion at m in the direction ξ is

ˆ
Ω

pθm,µξ.

We refer to [30].

first compute, with the same space discretisation, the discretised adjoint state ph:

− µ4hph − diag(ph)(mh − 2θh) = 1 (21)

and we find the admissible perturbation ξh that gives the highest rise of the total population
via maximizing with Ipopt the following quantiy:

max
06mh,i+ξh,i6κ,

∑
i ξh,i=0

∑
i

ph,iθh,iξh,i, (22)

which corresponds to the highest directional derivative with respect to m, and we apply the
gradient descent with Armijo rule. We use a classical stopping criterion, and display the
results.

3.1 Simulations in the one-dimensional case

For one-dimensional simulations, we work in

Ω = [0; 1],

with κ = 1 and Nx = 1000 discretization points . For each value of the parameter µ, we represent,
on the same picture the optimal resources distribution m∗µ (the blue zones correspond to m = 1),
which we observe, in each of our case, to be a bang-bang function, and the corresponding solution
θm∗µ,µ of (1).

In order to emphasise the influence of the parameter m0 on the qualitative properties of optimal
resources distributions, we present two different values of m0.

13



3.1.1 κ = 1, m0 = 0.3

Figure 1

Figure 2

14



Figure 3

3.1.2 κ = 1, m0 = 0.6

Figure 4
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Figure 5

Figure 6

3.2 Simulations in the two-dimensional case

For two-dimensional simulations, we work in

Ω = [0; 1]2,

with κ = 1. For each value of the parameter µ, we represent, on the left picture, the optimal
resources distribution m∗µ, which we observe, in each of our case, to be a bang-bang function. On
the right, we represent the corresponding solution θm∗µ,µ of (1).

In order to emphasise the influence of the parameter m0 on the qualitative properties of op-
timal resources distributions, we present, as in the one-dimensional case, two different cases. We
once again highlight the fact that these simulations prohibit, at a theoretical level, the use of re-
arrangements to derive qualitative properties but we do notice, in this two dimensional case, the
presence of many symmetries. It is a very challenging and interesting project to obtain symmetry
properties for this kind of problems. The number of discretisation points in the x and y variable
are Nx = Ny = 60; the method is otherwise similar to that in the one-dimensional case.
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Figure 7

Figure 8

3.2.1 κ = 1, m0 = 0.3

Figure 9
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Figure 10

Figure 11
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3.2.2 κ = 1, m0 = 0.6

Figure 12

Figure 13

19



Figure 14

Figure 15

Figure 16
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