
HAL Id: hal-02523151
https://hal.science/hal-02523151

Submitted on 28 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contemplata, a Free Platform for Constituency
Treebank Annotation

Jakub Waszczuk, Ilaine Wang, Jean-Yves Antoine, Anaïs Halftermeyer

To cite this version:
Jakub Waszczuk, Ilaine Wang, Jean-Yves Antoine, Anaïs Halftermeyer. Contemplata, a Free Platform
for Constituency Treebank Annotation. Language Resources and Evaluation Conference, LREC, May
2020, Marseille, France. �hal-02523151�

https://hal.science/hal-02523151
https://hal.archives-ouvertes.fr

Contemplata, a Free Platform for Constituency Treebank Annotation

Jakub Waszczuk1, Ilaine Wang2,3, Jean-Yves Antoine2, Anaı̈s Halftermeyer3
1Heinrich-Heine-Universität, Düsseldorf, Germany

2LIFAT, Université de Tours, France
3LIFO, Université d’Orléans, France

waszczuk@hhu.de, jean-yves.antoine@univ-tours.fr,
{ilaine.wang, anais.halftermeyer}@univ-orleans.fr

Abstract
This paper describes Contemplata, an annotation platform that offers a generic solution for treebank building as well as treebank
enrichment with relations between syntactic nodes. Contemplata is dedicated to the annotation of constituency trees. The framework
includes support for syntactic parsers, which provide automatic annotations to be manually revised. The balanced strategy of annotation
between automatic parsing and manual revision allows to reduce the annotator workload, which favours data reliability. The paper
presents the software architecture of Contemplata, describes its practical use and eventually gives two examples of annotation projects
that were conducted on the platform.

Keywords: treebank, syntactic annotation, spontaneous speech, French language, constituent trees

1. Introduction

This paper presents Contemplata, an annotation platform
that was originally created to fulfil the needs of temporal
annotation while providing a generic tool for the annotation
of constituency treebanks.
The representation and the processing of temporality is im-
portant for many understanding NLP tasks. Temporal an-
notation has benefitted from the normalisation efforts of the
ISO TC37/SC4 committee which has led to the definition of
the ISO-TimeML standard (ISO, 2012). While originally
developed for English, ISO-TimeML has been applied on a
large variety of languages (Italian, Korean, Romanian, Chi-
nese, French...) with only slight idiomatic adaptations. The
Temporal@ODIL project aims at building a new French
corpus annotated with both temporal mentions and tempo-
ral relations. The primary motivation behind the project
is to focus specifically on spontaneous speech, unlike the
French Time Bank (Bittar et al., 2011) which targets writ-
ten text. This leads Temporal@ODIL to review the ISO-
TimeML standard and propose enhancements, while pre-
serving coherence and upward compatibility with the in-
ternational standard (Lefeuvre-Halftermeyer et al., 2016).
In that respect, the project meets a larger variety of needs
in NLP and in corpus linguistics, in addition to offering
a coverage of spoken language for temporality annotation.
What makes the originality of this proposal is that temporal
mentions are delimited not by their minimal chunk (lex-
ical head) but by the range of the syntactic subtree that
covers the temporal mention. This large-span annotation
challenges the annotator’s ability to delimit the temporal
mentions with a satisfactory reliability. To ease this de-
limitation, we adopt a solution that was investigated for
multi-word expressions in the Prague Dependency Tree-
bank (Bejček and Straňák, 2010): temporal mentions are
directly defined on the syntactic structures of the utterances.
Thus, the delimitation task boils down to the selection of
one specific node. Data reliability is therefore favoured by
the reduction of the annotator’s cognitive load. In addition,

prior knowledge of the syntactic trees also eases the annota-
tion of the semantic relations. For instance, the annotation
of most of the subordinate relations (SLINK standing for
Subordination Link in the ISO-TimeML standard) can be
automatically inferred from the syntactic trees.

Temporal@ODIL adopts an incremental process of anno-
tation: first, the corpus of speech transcripts is parsed into
syntactic trees, resulting in the building of a treebank. Only
then, a round of semantic annotation consisting in the de-
limitation of temporal mentions and the definition of rela-
tions is carried out. As an annotation platform, Contem-
plata offers to handle both the syntactic and the seman-
tic annotations, thus offering a generic solution for tree-
bank building and treebank enrichment with the addition
of relations between syntactic nodes. The genericity of
Contemplata is however restricted by its specialization to
constituent trees. This restriction is due to our annotation
needs. From a theoretical point of view, the resolution of
temporal abstract anaphora often needs the consideration
of a whole clause or a whole speech turn (Zinsmeister and
Dipper, 2010), which cannot be modelled in a lexical head-
based representation like ISO TimeML. From a practical
point of view, the pilot experiments we conducted have con-
firmed that the cognitive load required by the manual anno-
tation of temporality is reduced if the phrase-based struc-
ture of the utterances is displayed to the annotator. Cog-
nitively speaking, the annotation of temporality seems to
require a syntactic disambiguation in most of the cases. In
addition, the definition of temporal relations such as SLINK
is directly resolved with constituent trees.

This paper presents Contemplata as an annotation platform,
with an emphasis on its ability to provide for any linguis-
tic annotation, including temporal. After shortly describing
related work, we proceed with an overall description of the
software architecture and the software interface. The fol-
lowing section explains how the platform is used in practice
to annotate, describing successively the roles of the admin-
istrator, the annotator and the adjudicator. In the last sec-

tion, we show the outcomes of two projects whose annota-
tions were conducted with Contemplata, Temporal@ODIL
and RAVIOLI, focusing on temporality annotation for the
first, and on the syntactic characterisation of injunctive ut-
terances for the second.

2. Related Work
An existing tool that matches our needs the closest is
TrEd1(Hajič et al., 2001), a highly configurable (via PML
schemas, stylesheets, macros, configuration files) tree edi-
tion tool. It has been primarily used for dependency anno-
tations, but can be also configured (via extensions) to an-
notate/modify constituency trees. TrEd allows editing node
attributes and assigning complex feature structures to them,
as well as adding references from nodes to other nodes. It
would thus allow to handle, after developing a dedicated
extension, both the multiple annotation layers of Tempo-
ral@ODIL and their complex features, and the references
between temporal entities (although, in contrast to Contem-
plata, TrEd does not allow to assign features to arcs be-
tween nodes, nor is it able to appropriately visualize refer-
ences between nodes from different sentences). However,
TrEd does not provide any support for spoken data charac-
teristics, such as speech turns and phatic expressions: the
former can be merged or split into several sentences, while
the latter are discarded in the trees but kept in the context
window, see Sec. 3.1.2. Moreover, TrEd is a standalone ap-
plication and cannot be run through a web-browser, which
is a drawback for a large annotation campaign.

3. Software Description
Contemplata is a platform designed to provide the functions
necessary for a syntactic and/or semantic annotation cam-
paign. This section describes how the platform is built for
this purpose and to what extent it can be adapted for a new
campaign. It is noteworthy that while some functions are
adapted to speech corpora, Contemplata is not dedicated to
speech and does not integrate audio/video playback.

3.1. Software Architecture
The tool is implemented in a client/server architecture. The
front-end annotation tool is written in Elm2, which com-
piles to JavaScript, thus the tool can be used in any modern
internet browser. The client annotation tool communicates
with a Haskell3 server via websockets, with the annotated
files serialized to JSON before being sent. Thanks to the
use of strongly-typed programming languages, annotation
data can be represented with appropriate data types on both
sides and many of its well-formedness properties checked
already at compile time. This reduced the chance of creat-
ing and storing malformed data in the database.
The client/server architecture has a couple of advantages
within the context of an annotation project. The annotator
does not have to install anything locally, and the server can
provide the user with more advanced functionality – for in-
stance, syntactic parsing. In the long run, this architecture
should also allow a more collaborative annotation style.

1https://ufal.mff.cuni.cz/tred/
2http://elm-lang.org/
3https://www.haskell.org/

3.1.1. Data Types Specification
Contemplata has the ambition of being easy to adapt to
different annotation tasks which involve labeling syntactic
nodes and relations between them with structured informa-
tion. To this end, Contemplata uses Dhall4 configuration
files, which notably define:

• The list of non-terminal and terminal categories which
can be assigned to syntactic nodes.

• The annotation entities, i.e., the objects (events, time
expressions, etc.) with which the nodes in syntactic
trees can be marked. The corresponding attributes, the
attributes’ types, and potential values, are also defined
in the configuration.

• The annotation relations and the corresponding at-
tributes, i.e., the objects which can connect two differ-
ent nodes belonging to two different syntactic trees.

For instance, the following configuration extract (simpli-
fied) defines an entity called Timex, which can be as-
signed to syntactic nodes (or relations, depending on the
remaining configuration). It specifies the possible Timex
types (["Date", "Time", "Duration"]), the de-
fault type when the entity is created (Time),5 and the pos-
sible attributes of a Timex: free-text Value, optional at-
tribute Mod whose value has to belong to ["Before",
"After"], as well as a special anchor attribute called
Anchor. Anchor attributes function as place-holders for
references to other syntactic nodes, to be specified dur-
ing annotation. Finally, two anchor attributes (Begin and
End) are defined as type dependent – they should be only
specified if the type of the Timex is Duration. For
instance, this allows to capture the relation between the
Timex from 12:00 to 13:00, on the one hand, and 12:00
(Begin) and 13:00 (End), on the other hand, in the sen-
tence he was running from 12:00 to 13:00.

{ name = "Timex"
-- Possible types

, typ =
{ among = ["Date", "Time", "Duration"]
, def = ["Time"] : Optional Text
}

-- Attributes
, attributes =

[{ name = "Value"
, value = Free {def = None Text}
}

, { name = "Mod"
, value = Closed

{ among = ["Before", "After"]
, def = None Text
, required = False }

}
, { name = "Anchor"

, value = Anchor
}

]
-- Type-dependent attributes

, attributesOnType =

4https://dhall-lang.org/
5In practice, the most frequent value is selected to avoid man-

ual revision.

https://ufal.mff.cuni.cz/tred/
http://elm-lang.org/
https://www.haskell.org/
https://dhall-lang.org/

[{ typ = "Duration"
, attributes =

[{ name = "Begin"
, value = Anchor
}

, { name = "End"
, value = Anchor
}

]
}

]
} : ./Entity.typ

The configuration is stored on the server and sent to the
front-end once the annotator decides to work on a specific
file. The front-end annotation tool then ensures that all cre-
ated entities conform the configuration.6 Other properties
of the framework – e.g., the specification of command invo-
cations (the corresponding menu items, command-line in-
structions, keyboard shortcuts, help messages, and so on) –
are also specified in the configuration files.

3.1.2. Data Model
As a framework adapted to processing and annotation of
spoken data, Contemplata allows to:

• Exclude irrelevant tokens (for instance, ah and other
speech-related interjections) from subsequent (syntac-
tic, temporal, etc.) processing and annotation.7

• Split and merge speech turn elements. Merging is use-
ful when a single syntactic unit happens to span sev-
eral speech turns due to speech overlap, as in Fig. 1. In
this example, we notice that the left part of the figure
displays a regular syntactic tree, while the right part
shows that a verbal nod (oui ‘yes‘) actually cuts the
unit in two parts. The tree shown is in fact the result
of the merge command used on two originally sepa-
rated parts: c’est toujours plus ‘it is always more‘ and
plus vite ‘more fast [faster]’.

Besides, in order to better adapt the input to subsequent au-
tomatic processing (parsing, in particular), split and merge
operations can be performed over sentence tokens.
All this leads to the data model depicted as a relational di-
agram in Fig. 2. In this model, the set of Sentences8 in
the File is divided into Partitions, with one syntac-
tic tree (SynTree) being assigned to each partition. Each
Sentence consists of a sequence of Tokens. In order to
allow for subsequent projection of the annotated data on the
original corpus (the set of sentences, grouped into speech
Turns), relations between syntactic leaves (one kind of
SynNodes) and Tokens are preserved. The set of speech
turns in the file, kept independently from the partitions, al-
lows for an adequate visualisation of speech turns. Node

6It should be noticed that, in order to use Contemplata for two
different annotation projects with different annotation configura-
tions, it is necessary to run two instances of the server.

7The list of stop words that should be automatically discarded
is application-specific and can be specified in the configuration.

8Speech utterances, typically, but we call them sentences for
the sake of genericity. The framework can be very well applied
to written corpora, in which case Sentence, Partition, and
Turn would be all conflated to a single entity.

Figure 1: Example of two speech turns (c’est toujours plus
‘it’s always more’ and plus vite ‘more quickly’) merged
back into one syntactic unit.

Figure 2: Relational diagram of the data model (excluding
annotation entities)

annotations (not depicted) are assigned directly to (non-
leaf) syntactic nodes, and Relation-related annotations
are stored in the scope of the entire file, since they can link
nodes occurring in different syntactic trees. Finally, due
to the special anchor attributes (see Sec. 3.1.1), additional
links (not depicted either) can be defined between syntactic
nodes, as well as between (linguistic) relations and nodes.
At the level of implementation, Contemplata defines the
data types/structures corresponding to the annotated objects
at different levels: files, sentences, syntactic trees, entities,
links, etc. For instance, the following extract contains a
(simplified) Haskell definition of the constituency tree:9

-- | Syntactic tree: multi-way tree labeled
-- with syntactic nodes (see below)
type SynTree = Tree SynNode

-- | Syntactic node (internal node or leaf)
data SynNode

= InternalNode
{ nodeId :: NodeId
-- ˆ Unique ID (within tree scope)

, nodeVal :: Text
-- ˆ Value assigned to the node

, nodeEnt :: Maybe Entity
-- ˆ Annotation of the node (if any)

}
| LeafNode

{ leafId :: NodeId
-- ˆ Leaf’s equivalent of ‘nodeId‘

, leafVal :: Text

9All Haskell (back-end) data types have their Elm (front-end)
equivalents, to ensure seamless data exchange. We plan to avoid
this code duplication in future versions.

-- ˆ Value assigned to the leaf
, leafPos :: Int
-- ˆ Position of the leaf in the
-- sentence

}

Each syntactic node (SynNode) is associated with a value,
non-terminal in case of internal nodes (nodeVal) and ter-
minal word forms in case of leaves (leafVal). The set of
possible non-terminals is specified in the configuration (see
Sec. 3.1.1). The forms assigned to leaves can differ from
the corresponding tokens – namely, the framework allows
to edit them manually to facilitate parsing.
Additionally, each node has an ID (nodeId and leafId),
unique within the scope of the tree. To address syntactic
nodes globally (i.e., within the scope of the file), tree IDs
are combined with node IDs. Each node can be also asso-
ciated with an annotation entity (nodeEnt), which corre-
sponds to one of the entities specified in the configuration.10

For each leaf, the position of the leaf in the sentence is spec-
ified. Since not every token is required to be referenced
from the tree (we allow to discard tokens, see above), we
need this information in order to be able to recover the re-
lationship between leaves and the original sentence tokens.
Secondly, this allows to represent non-projective trees (i.e.,
trees with discontinuous constituents). Namely, the frame-
work allows to change the order of the leaves in the tree
while preserving the mapping between them and sentence
tokens. For instance, in Fig. 3, the original sentence was
parce que les comment vous expliquer les les créanciers
(‘because the how to explain this to you the the creditors’),
as shown in the context window in the right part of the
figure, where the determiner les (‘the’) first appears de-
tached ahead of the NP. However, for the sake of the syn-
tactic annotation, the determiner was interchanged with the
Sint node. Contemplata automatically detects the parts
that are displaced by comparing the original and the final
position of each token and marks them in pink. The orig-
inal order of the tokens is still preserved, as can be seen
in the token nodes: les (‘the’) is still in position 110, even
though its node is now between leaves 113 and 114.

3.1.3. File Formats
Contemplata uses automatic serialization procedures to
generate easily-exchangeable JSON representations of data
annotations (see Sec. 3.1.2).
The input should be text (transcribed speech in the case
of oral data), either in a GLOZZ (Widlöcher and Mathet,
2012) or a Penn Treebank format. In the first case, the file is
automatically converted to a JSON format when uploaded;
in the latter case, the file has to be converted beforehand to
a JSON format using a command line tool that comes with
Contemplata. The generated files are therefore JSON files
which can be later converted to an annotation-specific for-
mat (e.g., Penn Treebank, CoNLL or XML-based TimeML
standard). To ensure that annotated data is consistent with
the annotation-specific standard, appropriate configuration

10This also illustrates one of the limitations of the current ver-
sion of framework – it is not possible to assign two or more entities
to a single node, nor is it possible to assign an entity to a group of
nodes (a workaround using relations is possible, though).

(see Sec. 3.1.1) should be used. For now, we provide
a Python script to convert Contemplata’s JSON data into
Penn Treebank’s syntactic bracketed format. Other output
formats will be available in a future release vesion.

3.1.4. Parsing
One of the main features of Contemplata is that it allows
to syntactically re-parse a given sentence in a way which
takes the constraints specified by the annotator (e.g. a par-
ticular tokenization) into account. This allows a more in-
teractive annotation style, in which the most obvious errors
are first corrected manually, thus making the parsing task
easier. After re-parsing, the annotator is confronted with a
better-quality constituency tree (see also Sec. 4.2).
Currently, two syntactic parsers are integrated in the frame-
work: the Stanford parser (Green et al., 2011) and Disco-
DOP (van Cranenburgh et al., 2016). To use a particular
parser, it should be installed and run on the server (al-
though using it remotely is also an option). Communica-
tion with the Stanford parser relies on Protocol Buffers,
with the benefit of having the parsing results automatically
converted into the Contemplata’s data structures. Parsing
results retrieved from the Disco-DOP’s web server, on the
other hand, follow the Penn Treebank-style bracketed for-
mat, which has to be additionally parsed into the Contem-
plata’s tree data structures.
It is possible to specify additional parsing constraints, e.g.,
a particular tokenization, POS tags, or (in case of Disco-
DOP) the set of constituency nodes (span/label pairs) that
the resulting tree should contain. Such constraints are sent
as a part of the HTTP request to the parser’s server together
with the sentence to be parsed.

3.2. Software Interface
The interface of the framework is divided into two indepen-
dent, switchable parts. The first one is the overview page
(see Fig. 4), which provides the annotator with an overview
of the files that she or he can explore and/or annotate, de-
pending on the assigned access level. The files are divided
into three categories: waiting (annotation of the file not
started), in progress (annotation started), and done
(annotation finished). The annotator can choose to anno-
tate a single file, or select two or more files for comparison
and, possibly, adjudication.
The second, core part of the interface is the actual anno-
tation mode. In this mode, the workspace consists of two
vertically arranged annotation windows, showing two syn-
tactic trees assigned to two (typically different) sentences
(technically, partitions, see Sec. 3.1.2) in a given file, as
shown in Fig. 5. To each workspace, the corresponding
side window is allocated on the right, which allows to (a)
edit the attributes of the selected node (specified in the
configuration, see 3.1.1), (b) see the context of speech
turns and sentences in which the given sentence occurs,
and (c) inspect the messages received from the Contem-
plata back-end server. The context window in particular
consists of two or more columns, depending on the num-
ber of speakers, with the currently selected sentence/parti-
tion marked in bold. The annotator can merge the selected
sentence with another one into a single partition by CTRL-

Figure 3: Example of a non-projective tree (parce que les comment vous expliquer les les créanciers ‘because the how to
explain this to you the the creditors’)

Figure 4: Overview page, showing the files available for annotation and/or inspection.

clicking on the second sentence in the context window. All
discarded words, which are not present in the syntactic tree,
are displayed in grey.
The size of the four windows can be easily adapted using
the arrows: left or right to move the vertical line sepa-
rating the workspaces, up or down to move the horizontal
line between the workspaces and the side windows. This
allows to, e.g., easily adapt the tool to a single-file annota-
tion mode, in which case the horizontal line can be moved
to the very bottom of the page. In case of the comparison
mode, the two windows can display syntactic trees from
two different files. The files being edited are shown in the
bottom-left corners of the respective workspaces, and can
be changed by clicking on the corresponding file names.
A menu with the main commands is placed at the top
of the upper workspace. Apart from the general com-
mands (menu to go to the overview page, save to send
the file to the back-end server and store it in the anno-
tation database), one of the annotation sub-modes can be
selected: segmentation, syntax, and temporal.11

Each sub-mode comes with its own set of dedicated
menu commands, shown on the right. For instance,
in Fig. 5, the segmentation sub-mode comes with
four segmentation-related commands: restart, split
sentence, split word, and join words.
The division of the menu commands into sub-modes serves
to better organize the annotation at different linguistic lev-
els. However, all the commands are also available via the

11In principle, the annotation sub-modes – together with the
corresponding commands – could be customizable in the configu-
ration. Currently, however, the sub-modes depend on a particular
Contemplata instantiation, adapted to a specific annotation task.

command line, and for the more frequently used commands
keyboard shortcuts are provided (e.g., p to syntactically
parse the sentence). The command line is invoked with
space and allows to type commands literally, with support
of auto-completion.
As mentioned before, one of the primary functionalities
provided by the tool is to allow manual correction of syn-
tactic trees. To this end, the tool allows the annotator to per-
form several structure-modifying operations: adding and
deleting nodes, changing the parent of a node, changing
the position of the node w.r.t. its parent, etc. Only the op-
erations which preserve the well-formedness of syntactic
structures are allowed.
All the tree editing operations rely on the concept of node
selection. The annotator can select, using the mouse,
one primary node and several secondary nodes in each
workspace. The semantics of the selection depends on the
command. For instance, the add command adds a new
node (with under-specified non-terminal symbol) over each
selected node in the current workspace. In case of the re-
attachment command, the sub-tree rooted at the main node
gets re-attached to the secondary node.
While the syntax-related editing commands apply to the
current workspace, there are also commands which apply
to the nodes selected in the two workspaces. For instance,
the TLink command in the Temporal annotation sub-
mode allows to connect the two main nodes with a directed
temporal relation. The relation itself can be selected and its
attributes modified, as shown below in Fig. 6.
Finally, Contemplata keeps track of all the editing opera-
tions performed during the annotation of a file (or a set of
files). These modifications can be easily reverted using the

undo command, and restored using the redo command (z).

4. Annotating with Contemplata
This section describes how Contemplata can be used to an-
notate a corpus, starting from the different roles to be con-
sidered to the actual annotation process.

4.1. Role Distribution
Working on a corpus rarely involves only one person, and
even when it does, this single person has to play different
parts. Contemplata provides a specific interface for each of
those roles. In this section, we first describe the different
roles that are implemented, before going through a classic
annotation process with Contemplata.

4.1.1. Administrator
Every project needs a leader and every system needs an ad-
ministrator. In our case, both roles can be fulfilled when
using the “admin” account, which has all rights. Under the
hat of the administrator, one can:

• create and delete regular users accounts;

• upload files to the database of the project;

• assign files to users and give them either reading or
editing rights to those files.

It is noteworthy that on Contemplata, while regular users
accounts can be used for either the annotation part or the ad-
judication part, they cannot be given administration rights.
Therefore, if a project has several leaders, all of them have
to log in to the admin account to do actions that are permit-
ted only to the administrator.

4.1.2. Annotator(s)
Regular user accounts are to be used by annotators. Unlike
the admin account, they do not come with the tool and have
to be created by the administrator.
Whether annotators can read or edit the files of the database
depends on the rights they were given for each sample of
the corpus by the administrator.

4.1.3. Adjudicator(s)
Annotation is a tedious task that requires an acute attention
and a full understanding of quite complex guidelines. It is
therefore virtually impossible to produce a perfect annota-
tion, but it is possible to reduce the number of errors by
reviewing the annotation. To this end, the third role imple-
mented in Contemplata for an annotation process is the role
of adjudicators, i.e., users who are in charge of the review
of annotations once they are done.
The roles of annotator and adjudicator are not mutually ex-
clusive: any regular user account can be assigned the role
of adjudicator on any file, while keeping their role of anno-
tator on other files.

4.2. Corpus Annotation Process
This section describes the actual process of annotation us-
ing Contemplata, from the attribution of files to the adju-
dication of the annotation. At this point, we assume that
a new project was created, that corpus samples were up-
loaded and that user accounts for each participant of the
project were created using the Admin account.

4.2.1. File Attribution
The very first step of an annotation process using Contem-
plata is the attribution of files to annotators and adjudica-
tors. As mentioned before, this can be done only via the
Admin account. Leaders of the project therefore have to log
in to the Admin account, select each file and assign them
one or several users for annotation or adjudication.
When they log in, annotators are redirected to the overview
page (Fig. 4). Depending on the rights they were given to a
file, they can see it either in the “With Write access” table
or the “With Read access” table. To help annotators keep
track of their work, each table has three tabs: “In progress”,
“Waiting” and “Done”, as described in Sec. 3.2 Annotators
then have to choose a file and click on its name to open the
annotation mode (Fig. 5).

4.2.2. Annotation
Contemplata was built to provide a platform for any type of
annotation that needs to be grounded on syntactic trees. Be-
fore proceeding to any further layer of annotation, the four
following steps of syntactic annotation must be completed:

1. a preliminary automatic syntactic annotation - the an-
notator uses the command parse to annotate a speech
turn using a syntactic parser.

2. a manual revision of utterance segmentation and POS
tagging - where the parser completely fails, the anno-
tator is asked to provide the appropriate revision: she
or he can either merge speech turns (see Sec. 3.1.2
and Fig. 1), split a speech turn into several sentences
and/or revise the POS tags directly.

3. a final automatic syntactic annotation - using the
parse command again, the annotator runs a second
round of parsing, this time taking into account the
newly revised segmentation, as well as the POS tag-
ging (command parsepos) if necessary.

4. a manual revision of constituent trees - this last step
consists in the revision of the residual errors (if any)
in the constituent trees.

In (Wang et al., 2020), the syntactic annotation process is
thoroughly depicted with five steps, adding the automatic
pre-processing of files as a ‘step zero’. This step consists
in the sidelining of irrelevant tokens (noises, interjections,
and phatic expressions) as described in Sec. 3.1.2. They
would appear greyed out in the Context window but are
not shown in the trees (see Fig. 1).
As soon as the syntactic annotation is validated, the an-
notators may proceed to a second layer of annotation (se-
mantic relations, temporal entities...) depending on the ob-
jectives of the project. We are illustrating two possibili-
ties in Sec. 5: the case of temporal annotations (Temporal-
@ODIL project) and the case of the annotation of injunc-
tions (RAVIOLI project).

4.2.3. Adjudication
If needed, once annotators consider that their work is done
and hit the Finish button (see Fig. 4) for a given file, this file
appears in the ‘Done’ tab for them but in the ‘Waiting’ tab

Figure 5: Annotation mode, with two main (top and bottom) workspaces showing the syntactic trees, and two (top and
bottom) corresponding side windows.

for the assigned adjudicator(s)12. To revise this file, users
who were given the role of adjudicator can select the anno-
tated file(s) they were attributed in the overview page (still
Fig. 4). If there were more than one annotator for a given
file, they may select two annotated files and compare them
directly thanks to the interface showing two workspaces si-
multaneously (Fig. 5).
After the approbation or revisions of the adjudicator(s), an-
notators can proceed with further annotations if there were
several layers of annotation.

5. Current Applications
5.1. Syntactic and temporal Annotation
As mentioned in the introduction of this paper, Contem-
plata was built to provide an annotation platform that al-
lows temporal annotations to be grounded on constituent
trees for a spoken corpus.
Contemplata therefore displays specific features for tempo-
ral annotation:

• marks for temporal entities such as events, time ex-
pressions (Timex) and signals - with specific at-
tributes for each of them;

• links for temporal relations between temporal entities,
such as subordination links (SLINK) or temporal links
(TLINK).

Those features can be added to syntactic nodes when rele-
vant, as shown in Fig. 6. In this example, two nodes have
been marked as temporal entities (orange nodes): the sen-
tence node as an event (hence the subscripted EV) and the
NP ce matin (‘this morning’) as a Timex (subscripted TI).
On top of that, a red arrow shows that there is a temporal
relation (TLINK) between the Event and the Timex (in
this case, they are simultaneous as the Event occurred at the
time of the Timex).

12To be implemented in the next version of Contemplata.

Figure 6: Annotation of an Event and Timex, linked
by a temporal relation (TLINK) (j’ai eu votre numéro de
téléphone à l’accueil ce matin ‘I got your phone number at
the reception this morning’)

5.2. Visualization of Injunctions
The second project that was partly conducted on Contem-
plata is the RAVIOLI13 Project. The main objective of this
project is to automatically identify, characterize and catego-
rize injunctions, whether they are expressions of an order,
an advice, an instruction or a request, using machine learn-
ing techniques. To this end, a manually annotated corpus
is used as the training corpus of a supervised model which
is supposed to use both signal-related features and (mor-
pho)syntactic features. As a matter of fact, one of the re-
search questions is to investigate whether or not injunctions
do coincide with syntactic units.
To provide (morpho)syntactic features as well as an answer
to the above-mentioned research question, the corpus used

13Stands for Reconnaissance Automatique des Valeurs
Injonctives à l’Oral, Langue en interaction, described in http:
//tln.li.univ-tours.fr/Tln_Ravioli.html

http://tln.li.univ-tours.fr/Tln_Ravioli.html
http://tln.li.univ-tours.fr/Tln_Ravioli.html

Figure 7: Annotation of two injunctions for the RAVIOLI Project (donc ce soir tu lui donnes à signer ‘so tonight you give
them to sign’ and et ils le font tout de suite ‘and they do it straight away’)

in RAVIOLI, which is a spoken French corpus14, has to be
parsed. Contemplata is an interesting annotation platform
for RAVIOLI because it is built to handle the particularities
of spoken language, is easily adaptable to a new project
and offers further possibilities of annotation. For instance,
if constituents prove to be interesting units for injunctions,
the semantico-pragmatic annotation needed to characterize
injunctions can also be carried out on Contemplata.
Fig. 7 shows how Contemplata was used to visualize the
semantically annotated corpus of RAVIOLI. In the original
corpus, injunctions were annotated with two units: the in-
junction nucleus (noyau injonctif) and the injunction as a
whole (intervention injonctive), including the nucleus and
peripheral elements. One of the main requirements of the
use of Contemplata for RAVIOLI was to allow to visually
identify these two units at a glance, while preserving a clear
distinction between injunctive elements and non-injunctive
elements. We therefore used the node coloring function of
Contemplata, already implemented for non-projective trees
(see Fig. 3), with additional contrasting colors: tokens that
are not part of an injunction remain blue as in the original
Contemplata configuration (not shown here), while tokens
pertaining to an injunction can be alternatively magenta or
purple, with the nucleus being bright and the peripheral el-
ements (if any) being toned down.

6. License
Contemplata is freely distributed under the BSD license.
The code is available in the dedicated git repository.15

7. Ackowledgements
The two projects presented here, Temporal@ODIL and
RAVIOLI, were both funded by the Council of the Centre
Val de Loire Region (as APR-IA).

8. Bibliographical References
Bejček, E. and Straňák, P. (2010). Annotation of Multi-

word Expressions in the Prague Dependency Treebank.
Language Resources and Evaluation, 44(1-2):7–21.

14The source corpus is ESLO2, the second series of Enquêtes
SocioLinguistiques à Orléans.

15https://github.com/contemplata/
contemplata

Bittar, A., Amsili, P., Denis, P., and Danlos, L. (2011).
French TimeBank: an ISO-TimeML Annotated Refer-
ence Corpus. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Hu-
man Language Technologies: Short Papers (ACL’2011),
pages 130–134, Portland, USA.

Green, S., de Marneffe, M.-C., Bauer, J., and Manning,
C. D. (2011). Multiword expression identification with
tree substitution grammars: A parsing tour de force with
french. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP ’11,
pages 725–735, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Hajič, J., Vidová-Hladká, B., and Pajas, P. (2001). The
prague dependency treebank: Annotation structure and
support. In Proceedings of the IRCS Workshop on Lin-
guistic Databases, pages 105–114.

ISO. (2012). Language Resource Management - Seman-
tic Annotation Framework (SemAF) - Part 1: Time and
Events. ISO 24617-1:2012. International Organization
for Standardization.

Lefeuvre-Halftermeyer, A., Antoine, J.-Y., Couillault, A.,
Schang, E., Abouda, L., Savary, A., Maurel, D., Eshkol-
Taravella, I., and Battistelli, D. (2016). Covering various
Needs in Temporal Annotation: a Proposal of Extension
of ISO TimeML that Preserves Upward Compatibility.
In Proceedings of LREC’2016, pages 3802–3806, Por-
torož, Slovenia.

van Cranenburgh, A., Scha, R., and Bod, R. (2016). Data-
oriented parsing with discontinuous constituents and
function tags. Journal of Language Modelling, 4(1):57–
111.

Wang, I., Pelletier, A., Antoine, J.-Y., and Halftermeyer,
A. (2020). ODIL Syntax, a Free Spontaneous Spoken
French Treebank Annotated with Constituent Trees. In
Proceedings of LREC’2020, Marseille, France.

Widlöcher, A. and Mathet, Y. (2012). The glozz platform:
A corpus annotation and mining tool. In Proceedings
of the 2012 ACM symposium on Document engineering,
pages 171–180.

Zinsmeister, H. and Dipper, S. (2010). Towards a Stan-
dard for Annotating Abstract Anaphora. In Proceedings
of LREC’2010, pages 54–59, Valletta, Malta.

https://github.com/contemplata/contemplata
https://github.com/contemplata/contemplata

	Introduction
	Related Work
	Software Description
	Software Architecture
	Data Types Specification
	Data Model
	File Formats
	Parsing

	Software Interface

	Annotating with Contemplata
	Role Distribution
	Administrator
	Annotator(s)
	Adjudicator(s)

	Corpus Annotation Process
	File Attribution
	Annotation
	Adjudication

	Current Applications
	Syntactic and temporal Annotation
	Visualization of Injunctions

	License
	Ackowledgements
	Bibliographical References

