
HAL Id: hal-02523121
https://hal.science/hal-02523121

Preprint submitted on 28 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Theoretical Analysis of The r th Best Relay Selection for
Amplify-and-Forward Systems

Amir Minayi Jalil, Vahid Meghdadi, Jean Pierre Cances, Adel-Omar Dahmane

To cite this version:
Amir Minayi Jalil, Vahid Meghdadi, Jean Pierre Cances, Adel-Omar Dahmane. Theoretical Analysis
of The r th Best Relay Selection for Amplify-and-Forward Systems. 2016. �hal-02523121�

https://hal.science/hal-02523121
https://hal.archives-ouvertes.fr


Theoretical Analysis of The rth Best Relay Selection

for Amplify-and-Forward Systems

Amir Minayi Jalil∗, Vahid Meghdadi∗, Jean-Pierre Cances∗, Adel-Omar Dahmane†

Email: ∗{amir.minayi-jalil, meghdadi, cances}@ensil.unilim.fr, †dahmane@uqtr.ca

Abstract—The two-hop relay network is well studied when
both hops experience Rayleigh Fading channels. It is also studied
when the SNR of one of the hops is the maximum among a set of
i.i.d. Rayleigh Fading channels. In this paper, the two-hop relay
network is analyzed when the SNR of one of the hops is the rth

biggest value among a set of N i.i.d. Rayleigh Fading channels.
Also we have analyzed the case when the SNR of the first hop
and the second hop are respectively the rth and qth biggest values
among their set. The explicit PDF and CDF and also the average
error probability for both cases are calculated in closed form.
The diversity order of the resulting link is also calculated. The
results have several applications in the analysis diversity schemes,
especially in the analysis of relay assignment based on max-min
criterion.

Keywords—Amplify-and-forward, cooperative networks, orders
statistics, relay selection.

I. INTRODUCTION

Amplify-and-Forward (AF) cooperative networks have at-
tracted a lot of attention in the last decade [1]–[4]. In cooper-
ative networks, a set of nodes act as data forwarders and relay
traffic for the other nodes, therefore the overall performance
can be improved [2]. Among different proposed cooperative
schemes, the AF scheme is an attractive choice due to both
performance [5] and simplicity, because it only requires scaling
and retransmission of the received signal.

Hasna et al. [1] studied the basic two-hop Amplify-and-
Forward link where the channels in both hops are i.i.d Rayleigh
flat fading channels with different average SNRs (Scenario 1 in
Table I). They calculated the probability density function (PDF)
and the cumulative density function (CDF) of the resulting SNR
of the equivalent two-hop link and also the average probability
of error for this link. Diversity combining techniques provide
higher diversity or coding gain compared to the simple two-hop
cooperative model. But the advantages of these schemes come
at the expense of the inefficient spectrum utilization, because
of the necessity of using orthogonal channels. To remedy this,
the best relay selection schemes are proposed. Krikidis et al.
[6] considered this problem when one of the hops has the
maximum instantaneous SNR among a set of available i.i.d.
Rayleigh fading channels (Scenario 2 in Table I).

This paper consists of two parts: The first part is a
generalization of the work of Krikidis et al. [6] where the
instantaneous SNR of the available relay is the rth magnitude
among all relays (Scenario 3 in Table I). The analysis of this
scenario is necessary to calculate the performance of some
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TABLE I. TWO-HOP CHANNEL SCENARIOS IN AF MODE. 1) ANALYZED
IN [1]; 2) ANALYZED IN [6]; 3) AND 4) ANALYZED IN THIS PAPER.

Scenario
Channel distribution Channel distribution

in the first hop in the second hop

1 Rayleigh Rayleigh

2 Rayleigh
Maximum of N
Rayleigh channels

3 Rayleigh
rth order statistic of

N Rayleigh channels

4
qth order statistic of rth order statistic of

N Rayleigh channels N Rayleigh channels

relay assignment schemes such as relay assignment based on
max-min criterion [7] and sequential relaying [8]. In relay
assignment based on max-min criterion (sometimes called the
linear bottleneck assignment) the minimum SNR value for
each relay assignment permutation is calculated and then the
permutation with the highest minimum SNR is selected. It
is shown that the performance of the results of this scheme
can be expressed in terms of order-statistics of the individual
relaying channels [9, p. 174], [10]. In sequential relaying, for
each realization of the channels, the sources are sequentially
assigned their relays from the available relays [8]. The priority
of the sources for relay assignment is according to the quality
of their direct channel to the destination, i.e. the priority is
given to the source node that has the weakest direct channel
to the destination. In this scenario, it is assumed that the
resource allocator is located in the destination and has the
SNR information of only the incoming channels. The results
of our analysis are also applicable to the case where among
different relays, the best relay is not necessarily available
for the intended source due to scheduling or load balancing
conditions. The results of this analysis are also applicable to
any application where among different relays, the best relay is
not necessarily available for the intended source.

Statistical analysis of the relative magnitude among a set
of random variables (RVs) leads to order statistics. We use
order statistics to analyze the performance of different relays
in our set and calculate the PDF and CDF of the received SNR

in analytic form. Then we propose a closed form expression
for the average probability of error. In the second part of the
paper, we extend the model of the first part in order to include
order-statistics in both hops (Scenario 4 in Table I).

Throughout this paper, the PDF and CDF of random variable
X are denoted by fX(x) and FX(x) respectively. The rest
of this paper is organized as follows. Section II reviews
the basic formulas for order statistics. Section III offers the
statistical analysis of two-hop relaying link when the SNR



information for only one hop is available. In section IV, same
analysis is performed when the SNR of both hops follow order
statistics. Some simulations are performed in section V in order
to validate the results and section VI offers the concluding
remarks.

II. PRELIMINARY: PDF AND CDF OF ORDER STATISTICS

If random variables X1, X2, ..., XN are arranged in order
of magnitude and then written as X1:N ≤ X2:N ≤ ... ≤ XN :N

then Xr:N is called the rth order statistic (r = 1, ..., N ).
Although random variables Xi are assumed to be i.i.d., Xr:N

are necessarily dependent because of the inequality relations
among them. If Fr:N (x) denotes the CDF of the rth order
statistic, then

Fr:N (x) = Pr{Xr:N ≤ x}
=Pr{at least r of the Xi are less than or equal to x}

=

N
∑

i=r

(

N

r

)

[FX(x)]i[1− FX(x)]N−i. (1)

We replace FX(x) by the exponential PDF (SNR for Rayleigh
fading channel) to derive the CDF of the rth order statistic:

Fr:N (x) =

N
∑

i=r

(

N

i

)

(1− e−λx)i(e−λx)N−i. (2)

A useful formula to calculate the order statistics comes from
the well-known relation between binomial sums and the in-
complete beta function [11]:

Fr:N (x) = IF (x)(r,N − r + 1). (3)

where Ip(a, b) is the incomplete beta function. By expanding
and calculating the derivative of (3) we have the following
simpler formula:

fr:N(x) =
(1− e−λx)r−1(e−λx)N−rλe−λx

B(r,N − r + 1)

=

r−1
∑

i=0

1

B

(

r − 1

i

)

(−1)iλe−λx(N−r+1+i) =

r−1
∑

i=0

Λie
−λix,

where the constantB(r,N−r+1) is the beta function which is
replaced by B for simplicity. Also 1

B

(

r−1
i

)

(−1)iλ is denoted
by Λi and (N − r + 1 + i)λ is denoted by λi.

III. SNR INFORMATION AVAILABLE FOR ONE HOP

Assume a simple relay configuration of one source S,
one destination D and N relays Ri, i = 1, ..., N (Fig.
1). The source has no direct link to the destination and
the transmission is performed only via relays. We make the
following assumptions:

We assume that the relays near to each other are gath-
ered into a cluster (location-based clustering). This clustered
structure is a common model in the literature and have been
selected by a long-term routing process. The related routing
scheme can track variations in path-loss and shadowing, hence
guarantees equivalent average SNR for the terminals in one
cluster (S → Ri). Then our relay-assignment algorithm
should combat the effects of small scale fading [6], [12]. The
channels in each cluster are assumed to be independent and

Fig. 1. A set of one source, N relays and one destination.

identically distributed (i.i.d) Rayleigh-fading channels. Thus,
their SNR follows exponential distribution and their CDF is
F (x) = (1− e−δx) where 1/δ specifies SNR mean value. The
considered links have an average SNR equal to XSR = 1/δ
for the links S → Ri and XRD = 1/λ for the links Ri → D
A two-slot relay mode is employed (as in [2]). In the first time
slot, the source node transmits and the relays receive. In the
second time slot, the relay nodes transmit and the destination
receives. All the wireless nodes are assumed to work in half-
duplex mode, i.e. they can not transmit and receive at the same
time.

The resource allocator continuously monitors the quality of
relay-destinations channels. Due to this information, the best
available relay link among Ri → D (i = 1, ..., N ) is assigned
to the intended source. Without loss of generality, we assume
that the relays are sorted in order of their SNR magnitude
and R1 shows the relay with the smallest received SNR at the
destination. We denote the index of the best available relay
by r, i.e. the PDF of the SNR in the second hop follows rth

order-statistic of exponential distribution (Fr:N(x)).

A. Statistical expressions

Theorem 1: The CDF of the equivalent SNR received at
the destination for the relaying link under consideration (S →
Rr → D) can be approximated as

FX(x) ≈ 1−
r−1
∑

i=0

2xΛi

√

δ

λi
e−x(δ+λi)K1

(

2x
√

δλi

)

U(x)

(4)

where, same as before 1
B

(

r−1
i

)

(−1)iλ and (N − r + i + 1)λ
are respectively denoted by Λi and λi and U(·) is the unit step
function.Ki(x) denotes the i

th order modified Bessel function
of the second kind.

Proof: See appendix A.

Theorem 2: The PDF of the equivalent SNR for the relaying
link under consideration (S → Rr → D) can be written as

fX(x) ≈
r−1
∑

i=0

2xδΛie
−x(δ+λi)

[

(δ + λi)√
δλi

K1

(

2x
√

δλi

)

U(x) + 2K0

(

2x
√

δλi

)]

U(x). (5)

Proof: See appendix B.



B. Average probability of error

Theorem 3: The average probability of error for the re-
laying link under consideration (S → Rr → D) can be
approximated as

PE ≈ c

2
−

r−1
∑

i=0

c

B

(

r − 1

i

)

(−1)i

(N − r + 1+ i)

× 1

2
√

1 + 2(δ + λi)/M
. (6)

In this expression, M is a constant which specifies the type of
modulation and PE = cQ(

√
Mγ) is the bit error probability of

this modulation for Gaussian channel. For example, for BPSK,
M is equal to 2 and c is equal to 1.

Proof: See appendix C.

Although equation (6) does not reveal the diversity order
explicitly, the diversity order of the equivalent link is one. We
will express the diversity order offered by 6 in theorem 7 in
the next section.

IV. SNR INFORMATION AVAILABLE FOR BOTH HOPS

In section III, since there were no information available
about the first hop, its SNR was assumed to be exponentially
distributed. In this section, we assume that there are N
orthogonal channels available for the first hop and each source
has the possibility of using the best available channel to its
corresponding relay. We assume that the SNR distribution for
this channel (S → Rr) follows the qth order-statistic of
exponential distribution (Fq:N (x)). The statistical expressions
(PDF and CDF), the average error probability and the diversity
order for this scenario are calculated in this section.

A. Statistical expressions

Theorem 4: The CDF of the equivalent SNR received at
the destination for the relaying link under consideration (S →
Rr → D) can be approximated as

FX(x) ≈ 1−
q−1
∑

i=0

r−1
∑

j=0

2x∆iΛj
1

√

δiλj

e−x(δi+λj)

×K1

(

2x
√

δiλj

)

U(x) (7)

where the constants 1
B(q,N−q+1)

(

q−1
i

)

(−1)iδ and (N − q +

1 + i)δ are respectively denoted by ∆i and δi.

Proof: See appendix D.

Theorem 5: The PDF of the equivalent SNR received at
the destination for the relaying link under consideration (S →
Rr → D) can be written as

fX(x) ≈
q−1
∑

i=0

r−1
∑

j=0

2x∆iΛje
−x(δi+λj)

[

(δi + λj)
√

δiλj

K1

(

2x
√

δiλj

)

U(x) + 2K0

(

2x
√

δiλj

)]

U(x). (8)

Proof: The proof is straightforwardly similar to the proof
of Theorem 2.
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Fig. 2. Comparison of Eq. (4) with Monte-Carlo simulation for N = 4 and
r = 2.

B. Average probability of error

Theorem 6: The average probability of error for the re-
laying link under consideration (S → Rr → D) can be
approximated as

PE ≈ c

2
−

q−1
∑

i=0

r−1
∑

j=0

c

B1B2

(

q − 1

i

)(

r − 1

j

)

(−1)i+j

1

δiλj

1

2
√

1 + δi + λj

(9)

where the constants B(q,N − q+1) and B(r,N − r+1) are
denoted by B1 and B2 respectively.

Proof: See appendix E.

Theorem 7: The diversity order for the relaying link under
consideration is min{q, r}

Proof: See appendix F.

V. SIMULATIONS AND DISCUSSIONS

Computer simulations were performed in order to validate
the proposed analytical expressions. Figures (2) and (3) com-
pare the expressions in Eq. (4) and Eq. (7) with Monte-Carlo
simulations. The perfect match between these curves and the
Monte-Carlo simulation is obvious from these figures. In both
simulations, we have assumed SNR = 20 dB and N = 4.
Fig. (4) shows the average probability of error when SNR

information is available for just one hop (Section III). It is
assumed that N = 7 and both hops have the same average
SNR value 1/δ = 1/λ. The simulation is performed by using
BPSK modulation and contains the results for five values of r.
It is seen that for high SNRs, there is a significant difference
between r = 1 and r = 2. This is because the first hop
for r = 2 achieves diversity 2, however this diversity is
dumped since the second hop (presenting a first order diversity)
plays the role of a bottleneck, but still shows itself as an
improvement in coding gain (a horizontal shift in the BER

curve). Another interesting observation is that for good signal
to noise ratios, the performance of the relaying link for r = 2
converges to that of r = N . It means that for good SNR region,
we can select the best between two randomly selected relays
and the performance will be almost the same as selection of
the best relay among all the available relays.
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Fig. 3. Comparison of Eq. (7) with Monte-Carlo simulation for N = 4,
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Fig. (5) shows the average probability of error when SNR

information is available for both hops (Section IV). Again it is
assumed that 1/δ = 1/λ, N = 7, q = 4 and the simulation is
performed by using BPSK modulation. Form this figure, we can
see that by increasing r, as far as r ≤ q there is an increase
in the diversity order. The amount of this diversity order is
exactly what we expected in theorem 7. We can not increase
the diversity order by increasing r more than r = q, but it will
be an improvement in the coding gain. Another interesting
observation is that for high SNR region, when r = q + 1, the
performance of the relaying link converges to that of r = N .
This result shows that, when there is a bottleneck in one of
the hops, (q is fixed), it is almost enough to have r = q + 1
in order to achieve the highest possible performance.

VI. CONCLUSION

This paper dealt with the statistical behavior of the two-
hop Amplify-and-Forward relaying link when the magnitude
of SNR in one of the hops is the rth order statistic among
a set of N i.i.d Rayleigh fading channels. Then the analysis
was extended to involve the case when the magnitude of SNR

in both hops are order statistics (qth and rth order statistics
respectively). For each case, PDF, CDF, the average probability
of error and the diversity order are expressed in analytical
form and confirmed by simulation. We concluded that when
the minimum between q and r is fixed (for example q), it
is almost enough to have r = q + 1 in order to achieve the
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highest possible performance; i.e. we can not further improve
the performance by increasing the number of choices in this
hop.

APPENDIX A
PROOF OF THEOREM 1: CDF

The RVs X1 and X2 denote the instantaneous SNRs of the
links S → R and R → D, respectively, with PDFs equal to







X1 ∼ δe−δxU(x)

X2 ∼
r−1
∑

i=0

Λie
−λixU(x)

(10)

Then we have






1
X1

∼ δ
x2 e

−δ/xU(x)

1
X2

∼ 1
x2

r−1
∑

i=0

Λie
−λi/xU(x)

(11)

Same as [1], the moment generating function (MGF) of the
variables 1/X1 and 1/X2 can be evaluated by the help of
[13] (eq. 3.471.9) and using the symmetry property of the
modified Bessel function (i.e., K−ν(z) = Kν(z)) given in
[13](eq. 8.486.16):







M1(s) = 2
√
δsK1(2

√
δs)

M2(s) = 2
r−1
∑

i=0

Λi

√

s
λi
K1(2

√
λis)

(12)

Therefore the MGF of X = (1/X1) + (1/X2) is

M(s) =

r−1
∑

i=0

2
√
δsK1(2

√
δs)2Λi

√

s

λi
K1(2

√

λis)

=
r−1
∑

i=0

4Λi

√

δ

λi
sK1(2

√
δs)K1(2

√

λis).

By using [14] Eq. (13.2.20) and the differentiation property of
the Laplace transform, we can write the CDF of X as

FX(x) = L−1{M(s)

s
}

= 1−
r−1
∑

i=0

2xΛi

√

δ

λi
e−x(λi+δ)K1

(

2x
√

λiδ
)

U(x). (13)



APPENDIX B
PROOF OF THEOREM 2: PDF

We must differentiate the CDF in (4) with respect to x.
For this purpose we need the derivative of the modified Bessel
function that is given in [13], eq. (8.486.12):

u
d

du
K1 (u) +K1 (u) = −uK0 (u) ⇒

d

dx
K1

(

2x
√

δλi

)

+
1

x
K1

(

2x
√

δλi

)

= −2
√

δλiK0

(

2x
√

δλi

)

.

By replacing the above result in the derivative of FX(x) we
have:

fX(x) =

[

r−1
∑

i=0

2xΛi

√

δ

λi
(δ + λi)e

−x(δ+λi)K1

(

2x
√

δλi

)

+

r−1
∑

i=0

4xΛiδe
−x(δ+λi)K0

(

2x
√

δλi

)

]

U(x)

=

r−1
∑

i=0

2xΛiδe
−x(δ+λi)

[

(δ + λi)√
δλi

×K1

(

2x
√

δλi

)

+ 2K0

(

2x
√

δλi

)]

U(x). (14)

APPENDIX C
PROOF OF THEOREM 3: AVERAGE PROBABILITY OF ERROR

We start with the definition of average error probability:

PE =

∫ ∞

0

cQ(
√
Mx)fr:N(x)dx

= c

∫ ∞

0

∫ ∞

√
Mx

1√
2π

e−y2/2fr:N(x)dydx

where M is determined by the type of modulation. By chang-
ing the order of integration, we have

PE = c

∫ ∞

0

∫ y2/M

0

1√
2π

e−y2/2fr:N(x)dxdy

= c

∫ ∞

0

1√
2π

e−y2/2Fr:N(y2/M)dy. (15)

Before we replace for Fr:N (y2/M) in the above expression,
we can simplify it for high SNR regime, where K1(x) can be
approximated by 1/x, ( [15], Eq. (9.6.9)). By substitution in
(4), the CDF of the considered link can be simplified as follows

FX(x) = 1−
r−1
∑

i=0

2xΛi

√

δ

λi
e−x(λi+δ)K1

(

2x
√

λiδ
)

U(x)

= 1−
r−1
∑

i=0

Λi
1

λi
e−x(λi+δ)U(x)

= 1−
r−1
∑

i=0

1

B

(

r − 1

i

)

(−1)i
e−x(λi+δ)

(N − r + 1 + i)
U(x).

(16)

Hence, the average error probability becomes:

PE = c

∫ ∞

0

1√
2π

e−y2/2Fr:N (y2/M)dy

= c

∫ ∞

0

1√
2π

e−y2/2

(

1−
r−1
∑

i=0

1

B

(

r − 1

i

)

(−1)i × e−
y2

M
(λi+δ)

(N − r + 1 + i)

)

dy.

This result is the integral of some Gaussian functions:

PE =
c

2
−

r−1
∑

i=0

c

B

(

r − 1

i

)

(−1)i
1

(N − r + 1 + i)

∞
∫

0

1√
2π

e−(y2/2)(1+2(λi+δ)/M)dy

=
c

2
−

r−1
∑

i=0

c

B

(

r − 1

i

)

(−1)i
1

(N − r + 1 + i)

1

2
√

1 + 2(λi + δ)/M
.

APPENDIX D
PROOF OF THEOREM 4: CDF

The proof of this theorem is straightforwardly similar to
the proof of theorem 1. The MGF of X = (1/X1) + (1/X2)
is

M(s) =

q−1
∑

i=0

2∆i

√

s

δi
K1(2

√

δis)

r−1
∑

j=0

2Λj

√

s

λj
K1(2

√

λjs)

=

q−1
∑

i=0

r−1
∑

j=0

4∆iΛj
1

√

δiλj

sK1(2
√

δis)K1(2
√

λjs).

Again by using the differentiation property of the Laplace
transform, similar to (13) we have

FX(x) = 1−
q−1
∑

i=0

r−1
∑

j=0

2x∆iΛj
1

√

δiλj

e−x(δi+λj)

×K1

(

2x
√

δiλj)

)

U(x).

APPENDIX E
PROOF OF THEOREM 6: AVERAGE PROBABILITY OF ERROR

Let us start from equation (15), but this time the CDF

function is Fq,r:N (x). Then by using the same simplification
as in equation (16) for Fq,r:N (y2/M) we have

PE = c

∞
∫

0

1√
2π

e−y2/2



1−
q−1
∑

i=0

r−1
∑

j=0

∆iΛj

δiλj
e−y2(δi+λj)/2



 dy

=
c

2
− c

q−1
∑

i=0

r−1
∑

j=0

1

B1B2

(

q − 1

i

)(

r − 1

j

)

(−1)i+j (17)



PE2 =c

∫ ∞

0

1√
2π

e−y2/2

∫ ∞

y2/2

fX2(x2)

N
∑

i=q

(

N

i

)





(

1− exp

(

−λ
y2

2

(y
2

2 + 1)

x2 − y2

2

))i (

exp

(

−λ
y2

2

(y
2

2 + 1)

x2 − y2

2

))N−i

−
(

1− exp

(

−λ
y2

2

))i (

exp

(

−λ
y2

2

))N−i
]

dx2dy. (23)

APPENDIX F
PROOF OF THEOREM 7: DIVERSITY ORDER ANALYSIS

We introduce a new random variable Υ for the SNR of this
link. From [1] the equivalent SNR of the two hop system (XΥ)
is given by:

XΥ =
X1X2

X1 +X2 + 1
(18)

where X1 and X2 are per-hop SNR values. The CDF of Υ can
be calculated by the following integral over the region Υ ≤ x

FΥ(x) =

∫∫

D

fX1(x1)fX2(x2)dx1dx2. (19)

The integration surface D in (19) can be divided into two
regions, namelyD1 andD2, whereD1 shows the region {x1 <
x}∪{x2 < x} and the remaining is denoted by D2 (Fig. (6)).
Let us denote the result of integral in (19) over D1 and D2 by
FΥ1(x) and FΥ2(x). So for D1 we have: FΥ1(x) = Pr{X1 ≤
x} + Pr{X2 ≤ x} − Pr{X1 ≤ x,X2 ≤ x}, where Pr{X1 ≤
x} = Fr:N(x) and Pr{X2 ≤ x} = Fq:N (x). Derivation of this
result gives the PDF of Υ1 around zero. Then, we can write the
Taylor expansion of FΥ1(x) around zero. By using proposition
1 in [16], the result implies that the system has a diversity order
of min(r, q). According to this proposition when the PDF of
SNR can be approximated by a single polynomial term for
x → 0+ (i.e. pX(x) = axt + O(xt+ǫ)), then the system has
a diversity order of t + 1. In here, ǫ > 0 and a is a positive
constant. For D2 we have:

Pr{Υ2 ≤ x} =

∫ ∞

x

∫

x(x2+1)

x2−x

x

fX1(x1)fX2(x2)dx1dx2

=

∫ ∞

x

fX2(x2)
N
∑

i=q

(

N

i

)

[

(1− Ω)i ΩN−i

−
(

1− e−λx
)i (

e−λx
)N−i

]

dx2. (20)

where Ω = exp
(

−λx (x2+1)
x2−x

)

. Now, let us consider the

average error probability for Υ2. By using (15) and FΥ2(x)
as the CDF function, we arrive at (23) at the top of this page.
In this expression, the Taylor expansion of fX2(x2) in terms
of λ is of order r (because X2 is the rth order statistic). The
Taylor expansion of the terms in brackets in terms of λ is
of order r. Hence the whole result of the integral (which is
a number between zero and one) at least is of order r + q.
Hence, in good SNR regime, this term is negligible compared
to the PE1 = kλmin{r,q} (resulting from FΥ1(x)).
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