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Introduction

Our aim in this paper is to establish the existence of bands of purely absolutely continuous (AC) spectrum for a large family of quantum trees. One of our motivations is to provide a collection of examples relevant for the Quantum Ergodicity result proven in [START_REF] Anantharaman | Quantum ergodicity for expanding quantum graphs in the regime of spectral delocalization[END_REF].

For discrete trees, the problem is quite well understood when the tree is somehow homogeneous. The adjacency matrix of the (q + 1)-regular tree T q has pure AC spectrum [-2 √ q, 2 √ q] as is well-known [START_REF] Kesten | Symmetric random walks on groups[END_REF]. If we fix a root o ∈ T q and regard the tree as descending from o, then the subtree descending from any offspring is the same (each is a q-ary tree), except for the subtree at the origin (which has (q + 1) children). We say that T q has two "cone types". It was shown in [START_REF] Keller | On the spectral theory of trees with finite cone type[END_REF] that if T is a general tree with finitely many cone types, such that each vertex has a child of its own type, and all types arise in each progeny subtree, then the spectrum consists of bands of pure AC spectrum. This problem was revisited in [START_REF] Anantharaman | Recent results of quantum ergodicity on graphs and further investigation[END_REF], where these assumptions were relaxed to allow T to be any universal cover of a finite graph of minimal degree at least 2. In this case however, besides the bands of AC spectrum, a finite number of eigenvalues may appear. A natural question is whether AC spectrum survives if we add a potential. This is motivated by the famous Anderson model [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF] where random independent, identicallydistributed potentials are attached at lattice sites. It remains a major open problem to prove such stability for the Anderson model on the euclidean lattice Z d , d ≥ 3 [START_REF] Simon | Schrödinger operators in the twenty-first century[END_REF]. The first mathematical proof showing the stability of pure AC spectrum was obtained in [START_REF] Klein | Extended states in the Anderson model on the Bethe lattice[END_REF] in the case of regular trees (Bethe lattice) under weak random perturbations, thus providing the first example of spectral delocalization for an Anderson model. More general trees were subsequently treated in [START_REF] Keller | Absolutely continuous spectrum for random operators on trees of finite cone type[END_REF][START_REF] Froese | Absolutely continuous spectrum for the Anderson model on a tree: a geometric proof of Klein's theorem[END_REF], always in the setting of discrete Schrödinger operators. The stability of AC spectrum under perturbation by a non-random radial potential was proved in [START_REF] Keller | On the spectral theory of trees with finite cone type[END_REF] in case of non-regular trees of finite cone type.

In this article we consider quantum trees, i.e. each edge is endowed some length L e and we study differential operators acting on the edges with appropriate boundary conditions at the vertices specified by certain coupling constants. The presence of AC spectrum for quantum trees appears to have been studied less systematically than in the case of discrete Schrödinger operators. In case of regular trees T q , it was shown in [START_REF] Carlson | Hill's equation for a homogeneous tree[END_REF] that the quantum tree obtained by endowing each edge with the same length L, the same symmetric potential W on the edges and the same coupling constant α at the vertices, has a spectrum consisting of bands of pure AC spectrum, along with eigenvalues between the bands. The setting was a bit generalized quite recently in [START_REF] Carlson | Quantum Cayley graphs for free groups[END_REF], where each vertex in a 2q-regular tree is surrounded by the same set of lengths (L 1 , . . . , L q ), each length repeated twice, similarly the same set of symmetric potentials (W 1 , . . . , W q ), and the boundary conditions are taken to be Kirchhoff. The nature of the spectrum is partly addressed, but the possibility that it consists of a discrete set of points is not excluded. Finally, it was shown in [START_REF] Aizenman | Absolutely continuous spectra of quantum tree graphs with weak disorder[END_REF] that the AC spectrum of the equilateral quantum tree [START_REF] Carlson | Hill's equation for a homogeneous tree[END_REF] remains stable under weak random perturbation of the edge lengths. The theorem however does not yield purity of the AC spectrum in some interval; one can only infer that the Lebesgue measure of the perturbed AC spectrum is close to the unperturbed one. We also mention the papers [START_REF] Hislop | Anderson localization for radial tree-like random quantum graphs[END_REF][START_REF] Rohleder | Absolutely Continuous Spectrum for Laplacians on Radial Metric Trees and Periodicity[END_REF] which consider radial quantum trees, for which a reduction to a half-line model can be performed.

Our aim here is twofold. First, go beyond regular graphs. We are mainly interested in the case where the tree is the universal cover of some compact quantum graph. This implies the set of different lengths, potentials and coupling constants is finite, but the situation can be much more general than the special Cayley graph setting considered in [START_REF] Carlson | Quantum Cayley graphs for free groups[END_REF]. We show in this framework that the spectrum will consist of (nontrivial) bands of pure AC spectrum, plus some discrete set of eigenvalues. Next, we consider random perturbations of these trees. We can perturb both the edge lengths and coupling constants. This setting is more general than [START_REF] Aizenman | Absolutely continuous spectra of quantum tree graphs with weak disorder[END_REF], where the tree was regular and the coupling constants were zero. But our main motivation here is especially to derive the purity of the perturbed AC spectrum, along with a strong control on the resolvent, which is an important ingredient to prove quantum ergodicity for large quantum graphs. We do this in a companion paper [START_REF] Anantharaman | Quantum ergodicity for expanding quantum graphs in the regime of spectral delocalization[END_REF].

1.1. Some definitions.

1.1.1. Quantum graphs. Let G = (V, E) be a graph with vertex set V and edge set E. We will assume that there are no self-loops and that there is at most one edge between any two vertices, so that we can see E as a subset of V × V . For each vertex v ∈ V , we denote by d(v) the degree of v. We let B = B(G) be the set of oriented edges (or bonds), so that |B| = 2|E|. If b ∈ B, we shall denote by b the reverse bond. We write o b for the origin of b and t b for the terminus of b. We define the map e : B -→ E by e((v, v ′ )) = {v, v ′ }. An orientation of G is a map or : E -→ B such that e • or = Id E .

A length graph (V, E, L) is a connected combinatorial graph (V, E) endowed with a map L : E → (0, ∞). If b ∈ B, we denote L b := L(e(b)).

A quantum graph Q = (V, E, L, W, α) is the data of:

• A length graph (V, E, L),

• A potential W = (W b ) b∈B ∈ b∈B C 0 ([0, L b ]; R) satisfying for x ∈ [0, L b ], (1.1) W b (L b -x) = W b (x) . • Coupling constants α = (α v ) v∈V ∈ R V .
The underlying metric graph is the quotient

G := {x = (b, x b ); b ∈ B, x b ∈ [0, L b ]}/ ∼ , where (b, x b ) ∼ (b ′ , x ′ b ′ ) if b ′ = b and x ′ b ′ = L b -x b .
A function on the graph will be a map f : G -→ R. It can also be identified with a collection of maps (f b ) b∈B such that f b (L b -•) = f b(•). We say that f is supported on e for some e ∈ E if f b ≡ 0 unless e(b) = e.

If each f b is positive and measurable, we define G f (x)dx := 1

When G = (V, E) is a tree, i.e., contains no cycles (which will be the case in most of the paper), we say that Q is a quantum tree, and we denote it by the letter T rather than Q, while the set G is called a metric tree and is denoted by T .

1.1.2. Orienting quantum trees. Let T be a combinatorial tree, that is, a graph containing no cycles. We denote its vertex set by V (T) or just V , its edge set by E(T), and its set of oriented edges by B(T). In all the paper, we will often write v ∈ T instead of v ∈ V (T) to lighten the notations.

In this paragraph, we explain how we can present the tree T in a coherent view, that is to say, fix an oriented edge b o ∈ B(T), and give an orientation to all the other edges of T, by asking that they "point in the same direction as b o ".

More precisely, let us fix once and for all an oriented edge b o ∈ B(T), corresponding to an edge e o ∈ E(T). If we remove the edge e o from T, we obtain two connected components which are still combinatorial trees. We will write T + bo for the connected component containing t bo , and T - bo for the component containing o bo . Let v ∈ T + bo be at a distance n from t bo . Amongst the neighbours of v, one of them is at distance n -1 from t bo : we denote it by v -, and say that v -is the parent of v. The other neighbours of v are at a distance n + 1 from t bo , and are called the children of v. The set of children of v is denoted by N + v . On the contrary, if v ∈ T - bo is at distance n from o bo , its unique neighbour at a distance n -1 from o bo is called the child of v, and denoted by v + , and its other neighbours are its parents, whose set we denote by N - v . These definitions are natural if we see the tree at the left of Figure 1 as a genealogical tree.

Let V * = V (T) \ {o bo , t bo } ∪ {o}. We define a map b : V * -→ B(T) as follows: we set b(o) = b o , and, if v ∈ T + bo , then b(v) = (v -, v), while if v ∈ T - bo , then b(v) = (v, v + ). One easily sees that e • b : V * -→ E(T) is a bijection, so that b • (e • b) -1 is an orientation of T. The map b serves to index all oriented edges: those in T + bo by their terminus, those in T - bo by their origin, and b o by its "midpoint" o. The latter makes sense once we turn T into a quantum tree T. We denote L v := L b(v) and W v := W b(v) . The metric tree T can be identified with the set

T ≡ v∈V * [0, L v ] = {x = (v, x v )|v ∈ V * , x v ∈ [0, L v ]} .
A function on T will then be the data of ψ = (ψ v ) v∈V * , where each ψ v is a function of the variable

x v ∈ [0, L v ].
On a quantum tree, we consider the Schrödinger operator

(1.2) (H T ψ v )(x v ) = -ψ ′′ v (x v ) + W v (x v )ψ v (x v
) with domain D(H T ), the set of functions (ψ v ) ∈ v∈V * W 2,2 (0, L v ) satisfying the so-called δ-conditions. Namely, for all v ∈ T + bo ,

(1.3) ψ v (L v ) = ψ v + (0) ∀v + ∈ N + v and v + ∈N + v ψ ′ v + (0) = ψ ′ v (L v ) + α v ψ v (L v ) , while for all v ∈ T - bo , (1.4) ψ v -(L v -) = ψ v (0) ∀v -∈ N - v and v -∈N - v ψ ′ v-(L v -) + α v ψ v (0) = ψ ′ v (0) . Finally, ψ o (L o ) = ψ o + (0) ∀o + ∈ N + o , o + ψ ′ o + (0) = ψ ′ o (L o ) + α t bo ψ o (L o ), and ψ o -(L o -) = ψ o (0), o -ψ ′ o -(L o -) + α o bo ψ o (0) = ψ ′ o (0)
. In a common convention we will refer to the α v = 0 case as the Kirchhoff-Neumann condition. Remark 1.1. The above conventions mean that we see T as a doubly infinite genealogical tree. This is what we called the coherent view; it can also be pictured by saying that we imagine an electric flow moving from T - bo to T + bo . There is another way of orienting the graph which we call the twisted view. This is done by turning b o into a V-shape and viewing V (T) as offspring of o. See Figure 1 for an illustration; here one should think that o is a source from which the electric flows moves outwards. When necessary to highlight this genealogical structure, we will write T + o for the set of offsprings of o. Each vertex v has a single parent v -and several children; all the edges take the form {v, v -} for a unique v.

The link between the two views is immediate: functions on T + bo in both views coincide, while on T - bo , one replaces b by b and derivatives take a sign. Here b = (t b , o b ) is the edge reversal of b. Hence, in the twisted view 1 , all functions in the domain of H satisfy (1.3).

Given v ∈ V * , z ∈ C, let C z (x) and S z (x) be a basis of solutions of the problem

-ψ ′′ v + W v ψ v = zψ v satisfying (1.5) C z (0) S z (0) C ′ z (0) S ′ z (0) = 1 0 0 1 .
Then any solution ψ v of the problem satisfies

(1.6) ψ v (L v , z) ψ ′ v (L v , z) = M z (v) ψ v (0, z) ψ ′ v (0, z) where M z (v) = C z (L v ) S z (L v ) C ′ z (L v ) S ′ z (L v )
.

If W v ≡ 0 then the basis of solutions is

S z (x) = sin √ zx √ z , C z (x) = cos √ zx; if W v (x) = c 1 + c 2 cos(2πx/L v ) then S z , C z would be Mathieu functions. It is a standard fact that S z (x), C z (x)
are analytic functions of z ∈ C (see for instance [START_REF] Pöschel | Inverse Spectral Theory[END_REF]Chapter 1]).

1 These views of the tree have the advantage of avoiding the assumption that T has a special "root" vertex of degree one [START_REF] Aizenman | Absolutely continuous spectra of quantum tree graphs with weak disorder[END_REF][START_REF] Rohleder | Absolutely Continuous Spectrum for Laplacians on Radial Metric Trees and Periodicity[END_REF]. Such assumption simplifies the orientation a bit, but is not satisfied in many natural situations. As will be clear later, we will only need to study functions supported in T ± bo , which is why we did not specify what happens on bo. But one could specify that ψo from the coherent view becomes (ψ

(1) o , ψ (2) 
o ) in the twisted view, with ψ We say that two quantum cones T + b and T + b ′ are isomorphic if there is an isomorphism of combinatorial graphs ϕ :

(1) o (x) = ψo(x + Lo 2 ) and ψ (2) o (x) = ψo( Lo 2 -x), for x ∈ [0, Lo 2 ].
T + b → T + b ′ such that L ϕ(v) = L v , W ϕ(v) = W v and α ϕ(v) = α v for all v ∈ T + b . Isomorphic T - b and T - b ′
are defined the same way. We say that T is a tree of finite cone type if there exists b o ∈ B(T) such that: (i) There are finitely many non-isomorphic quantum cones T + (v -,v) as v ∈ T + bo . (ii) There are finitely many non-isomorphic quantum cones T - (w,w + ) as w ∈ T - bo . Here (t bo ) -= o bo and (o bo ) + = t bo . Note that in a regular tree, all cones T ± b are isomorphic, but a necessary condition for it to be a quantum tree of finite cone type, is that its edges and vertices be endowed with finitely many lengths, potentials and coupling constants. 2 If T is a tree of finite cone type, with b o ∈ B(T) fixed, we may introduce a type function ℓ :

T + bo → N 0 = N ∪ {0}, taking values in a finite set, such that ℓ(v) = ℓ(w) iff T + (v -,v) ≡ T + (w -,w) as quantum trees. Similarly, ℓ : T - bo → N 0 satisfies ℓ(v) = ℓ(w) iff T - (v,v + ) ≡ T - (w,w + ) . Note that if ℓ(v) = ℓ(w), then W v = W w , L v = L w and α v = α w
, since the corresponding isomorphism respects this information. Hence, any coherent quantum tree T of finite cone type comes with the following structure: 

(a) A fixed b o ∈ B(T). (b) Two finite sets of labels A + = {i 1 , . . . , i m }, A -= {j 1 , . . . , j n } and two matrices M = (M i,j ) i,j∈A + , N = (N i,j ) i,j∈A -. If v ∈ T + bo has type j, it has M j,k children of type k. If w ∈ T - bo has type j, it has N j,k parents of type k. (c) Finite sets {L i } i∈A ± , {W i } i∈A ± and {α i } i∈A ± encoding
W o . If (v -, v) ∈ T + bo with ℓ(v) = i, then L v = L i , W v = W i and α v = α i . The same attribution is made if (v, v + ) ∈ T - bo with ℓ(v) = i.
If we take the twisted view instead, we only need one alphabet A = A + ∪ A -and one corresponding matrix M = (M i,j ) i,j∈A .

A trivial example is the equilateral, (q + 1)-regular quantum tree, with identical potentials W on each edge and identical coupling constant α on each vertex [START_REF] Carlson | Hill's equation for a homogeneous tree[END_REF]. In this case, all vertices in T ± bo have the same type, and we get two 1 × 1 matrices M = N = q . An important class of examples comes from universal covers of finite undirected graphs. More precisely, if G is a finite undirected graph and T is its universal cover, then T is a combinatorial tree satisfying condition (i). If we endow G with a quantum structure G and lift it to T in the natural way, then the corresponding T will be a quantum tree of finite cone type.

Quantum trees of finite cone type satisfying (a)-(c) will be our basic, "unperturbed" trees. We denote the Schrödinger operator (1.2) acting in this setting as H 0 . Later on, we shall study random perturbations of these trees, and denote the corresponding operator by H ω ǫ , where ǫ is the strength of the disorder. We make the following assumption on T:

(C1*) For any k, l ∈ A + , there is n = n(k, l) such that (M n ) k,l ≥ 1. Similarly, for i, j ∈ A -, there is n = n(i, j) with (N n ) i,j ≥ 1.
2 Also note that it is not required that there are finitely many non-isomorphic quantum trees T -

(v -,v)
as v ∈ T + bo . To illustrate this point, consider the binary tree (so each vertex has 3 neighbors except for the special root ⋆ with 2 neighbors), let bo = (⋆, v), with v either neighbor. Then all cones T + b ⊂ T + bo look the same; they are binary trees. However, the backward cones T - b are distinct in each generation, because they "see" the special root at distinct distances. Despite this, T has finite cone type.

See Remark 1.3 below for a discussion of this condition. We may now state a first theorem, which describes the structure of the spectrum of H 0 = H T on a tree T of finite cone type. We denote by G z 0 (x, y) = (H 0z) -1 (x, y) the Green's function of H 0 . Theorem 1.2. Let M, N satisfy (C1*). Then the spectrum of H 0 consists of a disjoint union of closed intervals and of isolated points: σ(H 0 ) = ( r I r ) ∪ P, where the I r are closed intervals, and P is a discrete set. The spectrum is purely absolutely continuous in the interior of each band Ir . For λ ∈ Ir , and for any v ∈ T, the limit G λ+i0 0 (v, v) exists and satisfies Im G λ+i0 0 (v, v) > 0, where G z 0 is the Green's function of H 0 . Let R ± z,0 be the Weyl-Titchmarsh functions of H 0 as defined in [START_REF] Aizenman | Absolutely continuous spectra of quantum tree graphs with weak disorder[END_REF], see (2.2). Let R ± λ,0 = R ± λ+i0,0 when the limit exists. Theorem 1.2 implies that Im R + λ,0 (v)+Im R - λ,0 (v) > 0 in Ir . We will need the stronger property that Im R + λ,0 (v) > 0 for all v. For this, we introduce the following strengthening of (C1*).

(C1) The quantum tree T is the universal cover of a finite quantum graph G of minimal degree ≥ 2 which is not a cycle.

Remark 1.3. Condition (C1*) means that on T + bo , any cone type l ∈ A + appears as offspring of any k ∈ A + after a finite number of generations, and similarly for T - bo . It is not required that cone types in A -appear in T + bo -we only need the matrices M and N to be separately irreducible. We can also allow for "rooted" trees where the root o has degree one. In this case the situation is a bit simpler actually; we only have to deal with one matrix M . Condition (C1*) applies in particular to trees with a "radial periodic" data, i.e. data that are periodic functions of the distance to the origin (such as some examples appearing in [START_REF] Rohleder | Absolutely Continuous Spectrum for Laplacians on Radial Metric Trees and Periodicity[END_REF]).

Assumption (C1) implies (C1*) (see Remark 3.7), and is in fact more restrictive. In particular, T is "unimodular", that is, all data is somehow homogeneous as we move along the tree. This excludes for example the binary tree and more generally radial periodic trees, where the root plays a special role. However, such unimodular trees are still very general, they are actually the most interesting for us, and many techniques (such as a reduction to a half-line model) fail to tackle them. Even in the very simple case where the base graph G is regular but the edge lengths are not equal, the lifted structure in general will be neither radial periodic, nor identical around each vertex (in contrast to [START_REF] Carlson | Quantum Cayley graphs for free groups[END_REF]).

Note that the case where G is a cycle is already known when the couplings are zero. In this case H T is just a periodic Schrödinger operator on R (of period ≤ |G|), it is well-known that the spectrum is purely AC in this case [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF]Section XIII.16].

Theorem 1.4. If T satisfies (C1), then the spectrum of H 0 consists of a disjoint union of closed intervals and of isolated points: σ(H 0 ) = ( r I r ) ∪ P, where the I r are closed intervals, and P is a discrete set. The spectrum is purely absolutely continuous in the interior of each band Ir . For λ ∈ Ir , the limit R + λ+i0,0 (v) exists for any v ∈ V and satisfies Im R + λ,0 (v) > 0. Remark 1.5. In Theorems 1.2 and 1.4, it is not excluded in principle that r I r = ∅, i.e. the spectrum consists of isolated points. We think this never happens for infinite quantum trees of finite cone type with the δ-conditions we consider, i.e. we believe these should always have some continuous spectrum. We did not find such a result in the literature however. This is why we dedicate Section 4 to prove the following: if T satisfies either:

(1) assumption (C1) and has a single data (L, α, W ) (all edges carry the same length, coupling and symmetric potential), [START_REF] Aizenman | Absolutely continuous spectrum implies ballistic transport for quantum particles in a random potential on tree graphs[END_REF] or has a general data (L e , α oe , W e ) e∈E(G) , but the finite graph G is moreover Hamiltonian, then H T always has some continuous spectrum, i.e. r Ir = ∅. Recall that a finite graph is Hamiltonian if it has a cycle that visits each vertex exactly once. Note that as a discrete tree, T may cover many different graphs. We only need one of these finite graphs to be Hamiltonian. For example, we can consider any regular tree, despite the fact that some regular graphs (like the Petersen graph) are not Hamiltonian.

In particular, the Cayley tree considered in [START_REF] Carlson | Quantum Cayley graphs for free groups[END_REF] can be realized as the universal cover of the complete bipartite graph K 2q,2q , which is Hamiltonian. For this, use the fact that K 2q,2q has a proper 2q-edge-colouring and put the same length/potential on edges of the same colour. The lift of this is then a tree which has the same data around each vertex, and we may take L q+j = L j , W q+j = W j to be in the setting [START_REF] Carlson | Quantum Cayley graphs for free groups[END_REF]. Then our theorems imply this tree has nontrivial bands of pure AC spectrum, thus enriching the results of [START_REF] Carlson | Quantum Cayley graphs for free groups[END_REF]. Again, this is just one very special application of our framework.

1.3. Random perturbations of trees of finite cone type. Fix a quantum tree T satisfying (C1). As explained in Remark 3.7, any such tree is a tree of finite cone type. We fix an edge e ∈ E(T), and see our quantum tree in the twisted view (in which all vertices are descendent of a vertex o), so as to deal with a single alphabet A and a corresponding matrix M . We denote the lengths and coupling constants of the unperturbed tree T by (L 0 v ) v∈V * and (α 0 v ) v∈V . These can also be denoted (L 0 i ) i∈A∪{o} and (α 0 i ) i∈A . We assume there are no potentials on the edges and the couplings are nonnegative: W 0 v ≡ 0 and α 0 v ≥ 0. We now want to analyze random perturbations of T. For this purpose, we introduce a probability space (Ω, F , P), a family of random variables ω ∈ Ω → (L ω v ) v∈V * representing random lengths, and a family of random variables ω ∈ Ω → (α ω v ) v∈V representing random coupling constants. In principle we could also consider random potentials ω ∈ Ω → (W ω v ) v∈V * , however here we assume there are no potentials on the edges even after perturbation. We also assume the perturbed couplings are nonnegative:

W ω v ≡ 0 and α ω v ≥ 0. We make the following assumptions on the random perturbation (see Remark 1.1 for the notation T + o ): (P0) The operator H ω ǫ is the Laplacian on the edges acting on W 2,2 (0, L ω v ), satisfying δ-conditions with coupling constants (α ω v ) v∈T , which are assumed to satisfy

L ω v ∈ L 0 v -ǫ, L 0 v + ǫ and α ω v ∈ α 0 v -ǫ, α 0 v + ǫ . (P1) For all v, w ∈ T +
o , the random variables (α ω v , L ω v ) and (α ω w , L ω w ) are independent if the forward trees of v and w do not intersect, i.e. if T + (v -,v) ∩ T + (w -,w) = ∅. (P2) For all v, w ∈ T + o that share the same label, the restrictions of the random variables (α ω , L ω ) to the isomorphic forward trees of v and w are identically distributed.

Remark 1.6. Assumptions (P1) and (P2) hold, in particular, for independent identically distributed random variables (which is the main case we have in mind).

We shall consider intervals I lying in the interior of the unperturbed AC spectrum:

(1.7) Σ = r Ir , where I r are given in Theorem 1.4. We will also need to ensure that the various sin √ λL v do not vanish. More precisely, by (P0), the perturbed lengths all lie in j∈A∪{0} [L j,min (ǫ), L j,max (ǫ)], where L j,min (ǫ) = L 0 jǫ and L j,max (ǫ) = L 0 j + ǫ. We then assume (1.8)

I ∩ D = ∅ ,
where the set D = D ǫ is a "thickening" of the Dirichlet spectrum, given by

D = j∈A∪{o} n≥0 π 2 n 2 L 2 j,max (ǫ) , π 2 n 2 L 2 j,min (ǫ) 
.

This ensures that sin √ λL ω v , sin √ λL 0 v = 0 for any λ ∈ I, v ∈ T and ω. Recall that the Weyl-Titchmarsh functions R + z (v) will be introduced in (2.2). Introduce the following condition: (Green-s) There is a non-empty open set I 1 and some s > 0 such that for all b ∈ T, sup λ∈I 1 ,η∈(0,1)

E Im R + λ+iη (o b ) -s < ∞ .
Condition (Green-s) implies in particular that the spectrum in I 1 is purely AC, as long as it stays away from the Dirichlet spectrum, see Appendix A.2. Here (Green-s) refers to "Green's function" and the moment value s. In fact, such inverse bounds on the WT function imply moments bounds on the Green's function; see Corollary 2.5.

Introduce the following assumptions: (C0) The minimal degree of T is at least 3.

(C2) For each k ∈ A, there is k ′ with M k,k ′ ≥ 1 such that for any l ∈ A: M k,l ≥ 1 implies M k ′ ,l ≥ 1.
The second assumption ensures that each vertex v ∈ T has at least one child v ′ such that each label found in N + v can also be found in N + v ′ . See [START_REF] Anantharaman | Recent results of quantum ergodicity on graphs and further investigation[END_REF] for examples of such trees. Theorem 1.7. Let T satisfy (C0), (C1), (C2) and (α, L) satisfy (P0), (P1) and (P2), and be without edge potentials. Let I ⊂ Σ be compact with I ∩ D = ∅. Then for any s > 1, we may find ǫ 0 (I, s) such that (Green-s) holds on I for any ǫ ≤ ǫ 0 . In particular, σ(H ω ǫ ) has purely absolutely continuous spectrum almost-surely in I.

The "in particular" part is due to Theorem A.6. In the above theorem, the disorder window ǫ 0 (I, s) depends on the value of the moment s. We can actually obtain a disorder window valid uniformly for all s, but at the price of assuming some regularity on the δ-potential :

(P3) For any v ∈ T, ℓ(v) = j, j ∈ A, the distribution ν j of α ω v is Hölder continuous : there exist C ν > 0 and β ∈ (0, 1] such that for any bounded I ⊂ R,

max j∈A ν j (I) ≤ C ν • |I| β .
This holds e.g. if the ν j are absolutely continuous with a bounded density (then β = 1). Theorem 1.8. Suppose in addition to the assumptions of Theorem 1.7 that (P3) is satisfied. Then there exists ǫ 0 (I) such that for any ǫ ≤ ǫ 0 and any s ≥ 1, (Green-s) holds on I.

Green's function on quantum trees

The aim of this section is to derive quantum analogs for the well-known recursive formulas of the Green's function on combinatorial trees. These identities will play a key role in the spectral analysis of the quantum tree, and may be of independent interest. In fact, we shall also need them when studying quantum ergodicity in [START_REF] Anantharaman | Quantum ergodicity for expanding quantum graphs in the regime of spectral delocalization[END_REF]. Some of these identities appeared before in [START_REF] Aizenman | Absolutely continuous spectra of quantum tree graphs with weak disorder[END_REF].

In all this section, we fix a quantum tree T, and denote by W 2,2 max (T) the set of

ψ = (ψ v ) such that ψ v ∈ W 2,2 (0, L v ), v ψ v 2 W 2,2 < ∞. If b ∈ B(T), recall the notation T ± b of § 1.1. If x = (b, x b ) ∈ T , we define a quantum tree T + x by T + x = [x b , t b ]∪T + b . More precisely, add a vertex v x at x, let V (T + x ) = V (T + b )∪{v x }, E(T + x ) = E(T + b ) ∪ {v x , t b }, L {vx,t b } = L b -x b , W (vx,t b ) = (W b )| [L b -x b ,L b ]
, α vx = 0, and the lengths, potentials and coupling constants be the same as those of T + b on the rest of the edges. In a similar fashion, we define T ), the set of ψ ∈ W 2,2 max (T ± u ) satisfying δ-conditions on inner vertices of T ± u , then for any z ∈ C + := H := {z ∈ C : Im z > 0}, there are unique z-eigenfunctions V + z;u ∈ D(H max

- x = T - b ∪ [o b , x b ]. Let u = (b, u b ) ∈ T .
T + u ), U - z;u ∈ D(H max T - u ) satisfying U - z;u (u) = V + z;u (u) = 1. Complex eigenvalues exist because H max T ± u
is not self-adjoint, as there are no domain conditions at u.

Lemma 2.1. Let z ∈ C + . The resolvent G z of H T is an integral operator with kernel G z (x, y) defined as follows. Given x, y ∈ T , fix o, v such that x, y ∈ T + o ∩ T - v . Then (2.1) G z (x, y) =    U - z;v (x)V + z;o (y) W z v,o (y) if y ∈ T + x , U - z;v (y)V + z;o (x) W z v,o (y) if y ∈ T - x , where W z v,o (x) is the Wronskian W z v,o (x) = V + z;o (x)(U - z;v ) ′ (x) -(V + z;o ) ′ (x)U - z;v (x)
. Versions of this lemma previously appeared in [START_REF] Aizenman | Absolutely continuous spectra of quantum tree graphs with weak disorder[END_REF]Lemma A.2] and [START_REF] Hislop | Anderson localization for radial tree-like random quantum graphs[END_REF]Lemma D.15]. We give the proof in Appendix A for completeness.

Since for each z ∈ C + , G z satisfies the δ-boundary conditions in each of its arguments, we deduce that, whenever

o b = o b ′ = v, we have G z ((b, 0), •) = G z ((b ′ , 0), •) and G z (•, (b, 0)) = G z (•, (b ′ , 0)
). These quantities will therefore be denoted by G z (v, •) and G z (•, v) respectively.

As in [START_REF] Aizenman | Absolutely continuous spectra of quantum tree graphs with weak disorder[END_REF], we define the Weyl-Titchmarch (WT) functions for x ∈ T by

(2.2) R + z (x) = (V + z;o ) ′ (x) V z;o (x) and R - z (x) = -(U - z;v ) ′ (x) U - z;v (x)
.

Note that we take here the coherent point of view, which is why there is a negative sign in the definition of R - z (x). Given an oriented edge b = (o b , t b ), we define 

(2.3) ζ z (b) = G z (o b , t b ) G z (o b , o b ) . Remark 2.2. If a < inf σ(H T ), then ζ z (b) is well-defined on C \ (a,
G z (o b ,t b ) G z (o b ,o b ) = G z (o b ,o b )ζ z o b (t b ) G z (o b ,o b ) = ζ z o b (t b
). In the case that T is the (q + 1)-regular tree with equilateral edges, with identical coupling constants and potentials, then ζ z (b) is the quantity µ -(z) in [START_REF] Carlson | Hill's equation for a homogeneous tree[END_REF], and is independent of b. Moreover, the limit µ -(λ) = lim η↓0 µ -(λ + iη) exists in this case, provided that λ is not in the Dirichlet spectrum, i.e., that sin(λL) = 0.

Finally, for the quantum Cayley graphs of [START_REF] Carlson | Quantum Cayley graphs for free groups[END_REF] Lemma 2.3. Let z ∈ C + . We have the following relations between ζ z and the WT functions R ± z :

(2.4) ζ z (b) = C z (L b ) + R + z (o b )S z (L b ) , ζ z ( b) = S ′ z (L b ) + R - z (t b )S z (L b ) , (2.5) R + z (t b ) = S ′ z (L b ) S z (L b ) - 1 S z (L b )ζ z (b) , R - z (o b ) = C z (L b ) S z (L b ) - 1 S z (L b )ζ z ( b) .
Moreover,

(2.6) 1 ζ z (b)S z (L b ) + b + ∈N + b ζ z (b + ) S z (L b + ) = b + ∈N + b C z (L b + ) S z (L b + ) + S ′ z (L b ) S z (L b ) + α t b , (2.7) 1 ζ z (b) -ζ z ( b) = S z (L b ) G z (t b , t b ) , ζ z ( b) ζ z (b) = G z (o b , o b ) G z (t b , t b ) , and 
(2.8) b + ∈N + b C z (L b + ) S z (L b + ) + S ′ z (L b ) S z (L b ) + α t b = t b ′ ∼t b ζ z (b ′ ) S z (L b ′ ) + 1 G z (t b , t b )
,

where b ′ = (t b , t b ′ ). Given a non-backtracking path b 1 , . . . , b k (that is to say, o b i+1 = t b i and t b i+1 = o b i for all i ∈ {1, . . . , k -1}),
we have the multiplicative property

(2.9) G z (o b 1 , t b k ) = G z (o b 1 , o b 1 )ζ z (b 1 ) • • • ζ z (b k ) = G z (t b k , t b k )ζ z ( b1 ) • • • ζ z ( bk ) .
Finally, for any path b 1 , . . . , b k , we have

(2.10) G z (o b 1 , t b k ) = G z (t b k , o b 1 ) . Proof. By (2.1), ζ z (b) = V + z;o (t b ) V + z;o (o b ) • W z v,o (o b ) W z v,o (t b )
. But the Wronskian is constant on b, as checked by differentiating it. Moreover, since

V + z;o (x b ) is a z-eigenfunction on b, we have V + z;o (t b ) = C z (L b )V + z;o (o b ) + S z (L b )(V + z;o ) ′ (o b ). Hence, ζ z (b) = C z (L b ) + R + z (o b )S z (L b ) as claimed. Next, ζ z ( b) = G z (t b ,o b ) G z (t b ,t b ) = U - z;v (o b ) U - z;v (t b ) again by constancy of W z v,o on b. Writing (1.6) in the form (2.11) ψ(o b , z) ψ ′ (o b , z) = M z (b) -1 ψ(t b ) ψ ′ (t b ) = S ′ z (L b ) -S z (L b ) -C ′ z (L b ) C z (L b ) ψ(t b ) ψ ′ (t b ) , we get U - z;v (o b ) = S ′ z (L b )U - z;v (t b ) -S z (L b )(U - z;v ) ′ (t b ), so ζ z ( b) = S ′ z (L b ) + R - z (t b )S z (L b ) as claimed. Next, V + z;o (y b ) = V + z;o (o b )C z (y b ) + (V + z;o ) ′ (o b )S z (y b ), so R + z (t b ) = R + z (o b )S ′ z (L b ) + C ′ z (L b ) R + z (o b )S z (L b ) + C z (L b ) . Using R + z (o b ) = ζ z (b)-Cz (L b ) Sz(L b )
, we get

R + z (t b ) = ζ z (b)S ′ z (L b ) -C z (L b )S ′ z (L b ) + C ′ z (L b )S z (L b ) ζ z (b)S z (L b )
.

The first part of (2.5) follows by the Wronskian identity

C z (x)S ′ z (x) -C ′ z (x)S z (x) = 1. For the second part, by (2.11), R - z (o b ) = -(U - z;v ) ′ (o b ) U - z;v (o b ) = C ′ z (L b )U - z;v (t b ) -C z (L b )(U - z;v ) ′ (t b ) S ′ z (L b )U - z;v (t b ) -S z (L b )(U - z;v ) ′ (t b ) = C z (L b )R - z (t b ) + C ′ z (L b ) S z (L b )R - z (t b ) + S ′ z (L b )
.

The claim now follows as before using (2.4). Since V + z;o satisfies the δ-conditions, we have (2.12)

b + ∈N + b R + z (o b + ) = R + z (t b ) + α t b = S ′ z (L b ) S z (L b ) - 1 S z (L b )ζ z (b) + α t b .
Recalling (2.4), this proves (2.6). By (2.1),

1 G z (t b , t b ) = W z v,o (t b ) U - z;v (t b )V + z;o (t b ) = (U - z;v ) ′ (t b ) U - z;v (t b ) - (V + z;o ) ′ (t b ) V + z;o (t b ) , so (2.13) 1 G z (t b , t b ) = -(R + z (t b ) + R - z (t b )) . We have R + z (t b ) = S ′ z (L b ) Sz(L b ) - 1 Sz(L b )ζ z (b) and R - z (t b ) = ζ z ( b)-S ′ z (L b ) Sz(L b )
by (2.4) and (2.5). Hence,

(2.14) R + z (t b ) + R - z (t b ) = -1 S z (L b )ζ z (b) + ζ z ( b) S z (L b ) ,
proving the first part of (2.7).

For the second part, we showed that

Sz(L b ) G z (t b ,t b ) = 1-ζ z (b)ζ z ( b) ζ z (b)
, so replacing b by b we

deduce that Sz(L b ) G z (o b ,o b ) = 1-ζ z ( b)ζ z (b) ζ z ( b) , so ζ z ( b) ζ z (b) = G z (o b ,o b ) G z (t b ,t b ) . It follows from (2.13) and (2.14) that 1 ζ z (b)S z (L b ) = ζ z ( b) S z (L b ) + 1 G z (t b , t b )
.

Inserting this expression in (2.6), we obtain (2.8).

As previously observed, the Wronskian is constant on each b, so

ζ z ( b) = U - z;v (o b ) U - z;v (t b ) . Hence, G z (t b k , t b k )ζ z ( b1 ) • • • ζ z ( bk ) = U - z;v (v k )V + z;o (v k ) W z v,o (v k ) U - z;v (v 0 ) U - z;v (v 1 ) • • • U - z;v (v k-1 ) U - z;v (v k ) = U - z;v (v 0 )V + z;o (v k ) W z v,o (v k ) = G z (o b 1 , t b k ). By (2.7), ζ z (b 1 ) • • • ζ z (b k ) = ζ z ( b1 ) • • • ζ z ( bk ) • G z (t b k ,t b k ) G z (o b 1 ,o b 1 )
, proving the other equality. Finally, by the first part of (2.9) we have 

G z (t b k , o b 1 ) = G z (t b k , t b k )ζ z ( bk ) • • • ζ z ( b1 ) = G z (o b 1 , t b k ) by the second part. For the following lemma, fix o, v ∈ V and consider the WT functions (2.2). Assume that o b , t b ∈ V (T + o ) ∩ V (T - v ), that is to say, that b ∈ B(T + o ) and b ∈ B(T - v ). Let T + o b ⊆ T + o and T - t b ⊆ T - v be
f (z) = Az + B + R 1 t -z - t 1 + t 2 dm(t),
where A and B are constants and m is a Borel measure satisfying R (1

+ t 2 ) -1 dm < ∞. Lemma 2.4. Let b ∈ T and z ∈ C + . Let o, v ∈ V be such that b ∈ T + o and b ∈ T - v .
Then we may express

(2.16) R + z (o b ) = -1 G z T + o b (o b , o b ) and R - z (t b ) = -1 G z T - t b (t b , t b )
,

where G z

T ± v (v, v) are defined with the Neumann condition at v. The functions F (z) = R + z (o b ), R - z (t b ) and G z (v, v) are Herglotz functions. If all W v ≥ 0 and α v ≥ 0, then F (z) = R + z (o b ) √ z , R - z (t b ) √ z
are also Herglotz. Moreover, we have the following "current" relations:

(2.17)

b + ∈N + b Im R + z (o b + ) ≤ Im R + z (o b ) |ζ z (b)| 2 and b -∈N - b Im R - z (t b -) ≤ Im R - z (t b ) |ζ z ( b)| 2 .
Equality holds in both cases if Im z = 0, whenever defined.

Most statements of this lemma appear in [START_REF] Aizenman | Absolutely continuous spectra of quantum tree graphs with weak disorder[END_REF]. We give the proof in Appendix A for completeness. We also deduce that

-S ′ z (L b ) Sz(L b ) and S z (L b )ζ z (b) ∈ C + , see Remark A.3.
The following corollary says that the inverse moments of the imaginary part of the WT functions essentially control all relevant spectral quantities on the tree :

Corollary 2.5. Let I ⊂ R be compact, I ∩ D = ∅, and z ∈ C + . Fix c 1 , c 2 , c 3 > 0 such that for all z ∈ I + i[0, 1], L b ∈ [L min , L max ], (2.18) c 1 ≤ |S z (L b )| ≤ c 2 and |C z (L b )| ≤ c 3 .
Then for any p ≥ 1, and b ∈ T,

|G z (o b , o b )| p ≤ | Im R + z (o b )| -p , |ζ z (b)| p ≤ c -p 1 b + ∈N + b | Im R + z (o b + )| -p and |R + z (o b )| p ≤ c -p 1 2 p-1    c -p 1 b + ∈N + b | Im R + z (o b + )| -p + c p 3    . Also note that R - z (t b ) = R + z (o b ) + Cz(L b )-S ′ z (L b ) Sz(L b ) using (2.4), so 3 up to choosing c 4 > 0 with |S ′ z (L b )| ≤ c 4 , a control over all R + z (o b ), b ∈ T, implies a control over all R - z (t b ). Proof. We have by (2.13), |G z (o b , o b )| p = |R + z (o b )+R - z (o b )| -p ≤ | Im R + z (o b )| -p . By (2.12), |ζ z (b)| p ≤ c -p 1 |S z (L b )ζ z (b)| p ≤ c -p 1 α t b + S ′ z (L b ) S z (L b ) - b + ∈N + b R + z (o b + ) -p ≤ c -p 1 Im α t b + S ′ z (L b ) S z (L b ) - b + ∈N + b R + z (o b + ) -p ≤ c -p 1 b + ∈N + b Im R + z (o b + ) -p ≤ c -p 1 | Im R + z (o b + )| -p ,
where we used that 

-S ′ z (L b ) Sz(L b ) and R + z (o e )
|R + z (o b )| p = ζ z (b) -C z (L b ) S z (L b ) p ≤ c -p 1 2 p-1 (|ζ z (b)| p + c p 3 ) ≤ c -p 1 2 p-1 c -p 1 | Im R + z (o b + )| -p + c p 3 .

AC spectrum for the unperturbed tree

The aim of this section is to prove Theorems 1.2 and 1.4.

Let T be a quantum tree of finite cone type, with the structure described in §

1.2. Given (v -, v) ∈ B(T + bo ), we denote ζ z (v) = G z (v -, v) G z (v -, v -) .
This notation is simply analogous to the one introduced in Section 1.1.2, and does not mean that ζ z is a function of the terminus alone. It simply means that each discrete edge in T + bo can be specified by indicating the terminus alone. We also let

ζ z (t bo ) = ζ z (b o ). Denote ζ z j = ζ z (v) if ℓ(v) = j. Then (2.6) says that for each j ∈ A + , (3.1) 1 ζ z j S z (L j ) + m k=1 M j,k ζ z k S z (L k ) = m k=1 M j,k C z (L k ) S z (L k ) + S ′ z (L j ) S z (L j ) + α j .
The matrix elements M j,k were defined in §1.2(b). The system (3.1) is reminiscent of the finite system of equations that appears in the combinatorial case [START_REF] Keller | On the spectral theory of trees with finite cone type[END_REF][START_REF] Anantharaman | Recent results of quantum ergodicity on graphs and further investigation[END_REF] for

ζ z j = ζ z v -(v).
In order to put it in a nicer form, we denote h j = S z (L j )ζ z j . Then we get the following system of polynomial equations:

(3.2) m k=1 M j,k S 2 z (L k ) h k h j -F j (z)h j + 1 = 0 , j = 1, . . . , m where F j (z) = α j + m k=1 M j,k Cz(L k ) Sz(L k ) + S ′ z (L j )
Sz(L j ) . An analogous system of equations involving the matrix N = (N i,j ) arises when considering cones in T - bo . We restrict ourselves to the above system; the other one is analyzed similarly.

We mention that a similar system of equations in a more special framework appeared recently in [13, eq. (4.8)]. In this case, one has M j,j = 1 for each j and M j,k = 2 for k = j.

Our aim in the following is to control the values of ζ λ+iη j as η ↓ 0. For the models [START_REF] Carlson | Hill's equation for a homogeneous tree[END_REF][START_REF] Carlson | Quantum Cayley graphs for free groups[END_REF], the ζ z j are uniformly bounded. The following simple criterion gives a sufficient condition for this to happen. Note the condition M j,j > 0 below implies that each vertex of label j has at least one offspring of its own type. Later we will relax that restriction.

Lemma 3.1. Suppose M j,j > 0 for some j. Then |ζ z j | < 1 for any z ∈ C \ R. In fact, |ζ z j | 2 < 1 M j,j
. This lemma parallels the combinatorial case [21, Lemma 3], see [13, Lemma 3.9] for a special case.

Proof. Let z ∈ C + and b with ℓ(t b ) = j. Then (2.17) becomes m k=1 M j,k Im R + z (k) ≤ Im R + z (j) |ζ z j | 2 , where R + z (k) := R + z (o e ) if ℓ(t e ) = k. The inequality is actually strict if Im z > 0,
as seen from the proof of (2.17). Thus,

|ζ z j | 2 < Im R + z (j) M j,j Im R + z (j) = 1
M j,j . The case Im z < 0 can be adapted without difficulty, in this case Im R + z (o e ) should be replaced by

| Im R + z (o e )| in (2.17).
The lemma implies in particular that |ζ λ+i0 j | ≤ 1 M j,j for any λ ∈ R. There are many models of interest for which the condition of Lemma 3.1 is not satistfied, so we next consider the general case. Now the limit ζ λ+i0 j may no longer exist, but we aim to show this problem can only occur on a discrete subset of R. Proposition 3.2. There is a discrete set D ⊂ R such that, for all j = 1, . . . , m, the solutions h j (λ + iη) = S λ+iη (L j )ζ λ+iη j of (3.2) have a finite limit as η ↓ 0 for all λ ∈ R \ D. The map λ → S λ (L j )ζ λ+i0 j is continuous on R \ D, and there is a discrete set D ′ such that it is analytic on R \ (D ∪ D ′ ).

Proof. We follow the strategy in [6, §4]. The aim is essentially to decouple the system (3.2) and show that each h j satisfies an algebraic equation Q j (h j ) = 0. For this, we will use an algebraic tool from [START_REF] Lang | Algebra, Revised Third Edition[END_REF].

Let λ 0 ∈ R, and let

P j (h 1 , . . . , h m ) = m k=1 M j,k S 2 z (L k ) h k h j -F j (z)h j + 1. Clearly, P j ∈ K[h 1 , . . . , h m ], where K = K λ 0 is the field of functions f (z) possessing a convergent Laurent series f (z) = ∞ j=-n 0 a j (λ 0 )(z -λ 0 ) j in some neighbourhood N λ 0 ⊂ C of λ 0 . Let K ′ = J λ 0 be
the field of functions f which are meromorphic on N λ 0 ∩ C + for some neighbourhood N λ 0 of λ 0 . Then K ′ is an extension of K, and we know that S z (L j )ζ z j belongs to K ′ (see Remark 2.2) and satisfy P j (S z ζ z 1 , . . . , S z ζ z m ) = 0. Calculating the Jacobian ∂P j ∂h k (h) , we find

∂P j ∂h k = M j,k S 2 z (L j ) h j , k = j, m ℓ=1 M ℓ,j S 2 z (L ℓ ) h ℓ + M j,j S 2 z (L j ) h j -F j (z), k = j. Let J z = det ∂P j ∂h k h=Sz(L k )ζ z k .
We will show that z → J z is not the zero element of K ′ . For this, we first study the asymptotics of J z as z → -∞. Take z = -r 2 with r > 0 large. We remark that

(3.3) lim r→∞ C -r 2 (L k ) rS -r 2 (L k ) = 1 and lim r→∞ S ′ -r 2 (L k ) rS -r 2 (L k ) = 1 .
This follows from classical estimates [28, Chapter 1]. In fact,

S -r 2 (L) ≈ sin irL ir = sinh rL r , C -r 2 (L) ≈ cos irL = cosh rL ≈ S ′ -r 2 (L). More precisely, we write C -r 2 (L) rS -r 2 (L) = cosh rL + R(r, L) sinh rL + rR ′ (r, L) , where R(r, L) = C -r 2 (L) -cosh rL and R ′ (r, L) = S -r 2 (L) -sinh rL r
. By [28, p. 13],

rR ′ (r,L) sinh rL → 0 and R(r,L) sinh rL → 0 as r → ∞. Since cosh rL sinh rL → 1, (3.3) follows. Hence, (3.4) F j (-r 2 ) ∼ α j + r + r k M j,k ∼ C j r as r → ∞.
On the other hand, since h j is Herglotz (see Remark A.3), it has a representation of the form (2.15). If t 0 = inf σ(H T ), we also know from Remark 2.2 that h j (λ) is well-defined and real-valued for λ < t 0 . By [START_REF] Teschl | Mathematical Methods in Quantum Mechanics[END_REF]Theorem 3.23], the measure m is thus supported on [t 0 , ∞). Hence, for large r (say r 2 > -t 0 + 1),

h j (-r 2 ) = -Ar 2 + B + ∞ t 0 1 -r 2 t t + r 2 dm(t) 1 + t 2 ,
where we used that h j (-r 2 ) = lim η↓0 h j (-r 2 + iη) and dominated convergence (recall that

dm(t)
1+t 2 is a finite measure). Thus,

h j (-r 2 ) -r 2 = A - B r 2 + ∞ t 0 t -1 r 2 t + r 2 dm(t) 1 + t 2 .
Using dominated convergence again, we see that h j (-r 2 )/(-r 2 ) → A as r → ∞. This implies that

h j (-r 2 ) S 2 -r 2 (L k ) = O(r 4 e -2rL k ) = O(e -rL k ).
Therefore, recalling that the C j were defined in (3.4), we find that as r → ∞,

J -r 2 = det      -C 1 r + O(e -rL 1 ) O(e -rL 2 ) • • • O(e -rLm ) O(e -rL 1 ) -C 2 r + O(e -rL 2 ) • • • O(e -rLm ) . . . . . . . . . . . . O(e -rL 1 ) O(e -rL 2 ) • • • -C m r + O(e -rLm )      Hence, J -r 2 ∼ (-1) m C 1 • • • C m r m = Cr m = 0 for r large enough. Since z → J z is holo- morphic on C \ [a 0 , ∞)
, it follows that it cannot vanish identically on any neighbourhood N λ 0 ∩ C + . Hence, J z is not the zero element of K ′ . It follows by [START_REF] Lang | Algebra, Revised Third Edition[END_REF]Proposition VIII.5.3] that each S z ζ z j is algebraic over K. By the Newton-Puiseux theorem (see e.g. [31, Theorem 3.5.2]), each h j thus has an expansion of the form

(3.5) h j (z) = n≥m a n (z -λ 0 ) n/d
in some neighbourhood N λ 0 of λ 0 . Here m ∈ Z, d ∈ N, and the entire series n≥0 a n z n has a positive radius of convergence. In particular, z → S z ζ z j is analytic near any λ ∈ N λ 0 \ {λ 0 }. The set D corresponds to those λ 0 for which m < 0 in the Newton-Puiseux expansion at λ 0 , and the set D ′ corresponds to those λ 0 for which d > 1.

Our next aim is to show that all WT functions have a positive imaginary part on most of the spectrum.

Let σ D be the union of the Dirichlet spectra:

σ D = m j=1 {λ ∈ R : S λ (L j ) = 0} .
We would like to index the WT functions by vertices, but the notation

R + z (v) is a bit ambiguous since R + z (t b ) = R + z (o b + ) even if t b = o b + = v.
So we take the convention that 

(3.6) R ± z (v) := R ± z (o b ) if b = (v -, v) ∈ T + bo , R ± z (t b ) if b = (v, v + ) ∈ T - bo . Here (t bo ) -= o bo
denote R + z (j) := R + z (o b ) if b = (v -, v) ∈ T + bo and ℓ(v) = j ∈ A + . Similarly, we denote R - z (k) = R - z (t b ) if b = (v, v + ) ∈ T - bo and ℓ(v) = k ∈ A -.
By some abuse of notation, we assume the discrete sets D, D ′ of Proposition 3.2 are the same for the system analogous to (3.2) which involves the matrix (N i,j ).

Remark 3.3. Denote R ± λ := R ± λ+i0 .
Then the limits R + λ (j) exist for λ ∈ R \ (D ∪ σ D ) and j ∈ A + . This follows from Proposition 3.2 and (2.4), which implies that R + λ (j) =

ζ λ j -C λ (L j ) S λ (L j ) . Similarly, the limits R - λ (k) exist for k ∈ A -. It follows that R ± λ (v) exist for v ∈ {o bo , t bo } and λ / ∈ D ∪ σ D . In fact, ζ λ (b o ) = h jo S λ (Lo)
for some j o ∈ A + , which exists by Proposition 3.2, so R + λ (o bo ) exists by (2.4). Similarly the result for the (N ij ) system implies the existence of ζ λ ( bo ) and R - λ (t bo ). Finally if t bo has type

j o ∈ A + , then R + λ (t bo ) = m k=1 M jo,k R + λ (k) -α t bo by (2.
12), which exists by the previous paragraph. Similarly

R - λ (o bo ) = n k=1 N j ′ o ,k R - λ (k) + α o bo exists. Proposition 3.2 tells us moreover that R ± λ+i0 (v) are analytic on R \ (D ∪ D ′ ∪ σ D ).
In particular, their zeroes do not accumulate. Hence, there is a discrete set

D ′′ such that R + λ (v) + R - λ (v) = 0 for λ ∈ R \ (D ∪ D ′ ∪ D ′′ ∪ σ D ) and v ∈ {o bo , t bo }. We therefore define D 0 := D ∪ D ′ ∪ D ′′ ∪ σ D .
We may actually generalize the result of Remark 3.3 as follows.

Lemma 3.4. (a) If λ / ∈ D ∪ σ D , then R ± λ (o b ) exists for all b = (v -, v) ∈ T + bo and R ± λ (t b ) exists for all b = (w, w + ) ∈ T - bo . (b) If moreover λ / ∈ D 0 , then G λ (v, v) exists for any v ∈ T, and G λ (v, v) = 0.
Proof. By symmetry it suffices to prove (a) for

T + bo . Consider b = (v -, v) ∈ T + bo . We already know that R + λ (o b ) = R + λ (j) exists from Remark 3.3.
Next, we show by induction that

1 ζ λ ( b)S λ (L b )
is finite. Note that we already know 

1 ζ λ ( bo)S λ (Lo)
= (v -, v) ∈ T + bo . (b) By Remark 3.3, R + λ (v) + R - λ (v) = 0 for v = o bo , t bo . Using (2.13), this implies G λ (v, v) exists. We now observe that (3.7) G z (v + , v + ) = S z (L v )ζ z (v, v + ) + ζ z (v, v + ) 2 G z (v, v) .
In fact, by (2.7),

G z (v + , v + ) = ζ z (v, v + ) ζ z (v + , v) G z (v, v) = ζ z (v, v + ) + S z (L v ) G z (v, v) ζ z (v, v + )G z (v, v)
as claimed. Using Proposition 3.2, we thus deduce the existence of G λ (w, w) for all w ∈ T + bo . Similarly the existence of w ∈ T - bo follows from the analog of Proposition 3.2 with the (N i,j ) system. Finally using (2.13) we see that (a) implies G λ (v, v) = 0.

We now observe that under (C1*), all the WT functions are related as follows:

Lemma 3.5. Suppose T satisfies (C1*) and let λ ∈ R \ (D ∪ σ D ). (i) If Im R ± λ+i0 (j) = 0 for some j ∈ A ± , then Im R ± λ+i0 (j) = 0 for all j ∈ A ± . (ii) Assume λ ∈ R \ D 0 . If Im R + λ+i0 (j) = 0 for some j ∈ A + and Im R - λ+i0 (k) = 0 for some k ∈ A -, then Im G λ+i0 (v, v) = 0 and Im R ± λ+i0 (v) = 0 for all v ∈ T.
The same conclusion holds if Im G λ+i0 (w, w) = 0 for some w ∈ T. (iii) For any v ∈ T, we have

σ(H 0 ) \ D 0 = {λ ∈ R \ D 0 : Im G λ+i0 (v, v) > 0} \ D 0 .
Proof. We first note that ζ λ j = 0, due to the relation

ζ λ j = h j S λ (L j ) = -1/S λ (L j ) m k=1 M j,k S 2 λ (L k ) h k -F j (λ)
and the fact that the h k are finite.

Denote R λ k = R + λ+i0 (k). Suppose that Im R λ k > 0 for some k ∈ A + and let l ∈ A + . Then by (C1*), (M n ) l,k ≥ 1, so if v has label l and w has label k, there is a path (u 0 , . . . , u r ) with u 1 = v and u r = w. Denote b j = (u j-1 , u j ). Then applying (2.17) repeatedly,

Im R λ l = Im R λ (o b 1 ) ≥ (e 2 ;er) |ζ λ (e 1 ) • • • ζ λ (e r-1 )| 2 Im R λ (o er ) ≥ |ζ λ (b 1 ) • • • ζ λ (b r-1 )| 2 Im R λ (o br ) > 0,
where the sum runs over all (r -1)-paths (e 2 ; e r ) outgoing from b 1 , and the last inequality holds because Im R λ (o br ) = Im R λ k > 0 and all ζ λ j = 0. So under (C1*), if Im R λ j > 0 for some j ∈ A + , then Im R λ k > 0 for all k ∈ A + . So if Im R λ j = 0 for some j ∈ A + , then it must be zero for all j ∈ A + . The proof for R - λ+i0 is the same. For (ii), say t bo has type (2.13), this implies G λ (v, v) exists, and Im G λ (v, v) = 0 for v = o bo , t bo . Since Im G λ (t bo , t bo ) = 0 and Im ζ λ (t bo , v + ) = Im ζ λ j = 0, then using (3.7), we get Im G λ (v + , v + ) = 0 for any v + ∈ N + t bo , so Im G λ (w, w) = 0 for all w ∈ T + bo by induction. Similarly, we may use Im G λ (o bo , o bo ) = 0 along with (2.7) to deduce that Im G λ (v, v) = 0 for all v ∈ T - bo . This proves claim (ii) for the Green function.

j o . Since R + λ (t bo ) = m k=1 M jo,k R + λ (k) -α t bo by (2.12), we get Im R + λ (t bo ) = 0 by (i). Using (2.5), this implies Im ζ λ (b o ) = 0, which by (2.4) implies that Im R + λ (o bo ) = 0. Similarly, if o bo has type j, then R - λ (o bo ) = n k=1 N j,k R - λ (k) + α o bo , so Im R - λ (o bo ) = 0 by (i), also implying Im R - λ (t bo ) = 0 via (2.5), (2.4). Now R + λ (v)+R - λ (v) = 0 for v = o bo , t bo . Using
Next, if v ∈ T + bo , we know that Im R + λ (v) = Im R + λ (j) = 0. By Lemma 3.4 G λ (v, v) exists, and we showed Im G λ (v, v) = 0. Using (2.13), it follows that Im R - λ (v) = 0. Hence, Im R ± λ (v) = 0 for v ∈ T + bo .
The claim for T - bo follows similarly. Now suppose that Im G λ (w, w) = 0 for some w ∈ T. By symmetry we may assume w ∈ T + bo . Recall that G λ (v, v), R ± λ (v) exist by Lemma 3.4. By (2.13), we get Im R + λ (w) = Im R - λ (w) = 0. Consider w + ∈ N + w . By Proposition 3.2, ζ λ (w, w + ) exists, so using (2.4), we get Im ζ λ (w, w + ) = 0, hence Im G λ (w + , w + ) = 0. On the other hand Im R + λ (w) = 0 implies Im R + λ (w -) = 0 by (i), so we similarly get Im ζ λ (w -, w) = 0 and Im G λ (w -, w -) = 0. This shows that Im G λ (v, v) = 0 for all v ∈ T + bo and also for v = o bo , since by definition

(3.6), Im R + λ (o bo ) =: Im R + λ (j o ) = 0 for v = t bo , if ℓ(t bo ) = j o . Now if u ∈ N - o bo , then as in (3.7) we have G λ (u, u) = S λ (L u )ζ λ (o bo , u) + ζ λ (o bo , u) 2 G λ (o bo , o bo ), but Im R - λ (o bo ) = 0 implies b -∈N - bo Im R - λ (t b -) = Im R - λ (o bo ) = 0, so Im R - λ (t b -) = 0 for each b -, so Im R - λ ( 
k) = 0 for all k ∈ A -by (i) and we deduce again that Im G λ (u, u) = 0 for u ∈ N - o bo , hence for all u ∈ T - bo by induction. Finally, to prove (iii), recall that if E H 0 is the projection-valued measure E H 0 (J) = χ J (H 0 ), then σ(H 0 ) = supp E H 0 . Moreover, E H 0 (J) = 0 if and only if µ f (J) = 0 for all f ∈ L 2 (T), where µ f (J) = f, χ J (H 0 )f . By [START_REF] Teschl | Mathematical Methods in Quantum Mechanics[END_REF]Lemma 3.13], we know that supp

µ f = {λ ∈ R : Im f, G λ f > 0}. Since D 0 is a discrete set, we deduce that supp µ f \ D 0 = {λ ∈ R \ D 0 : Im f, G λ f > 0} \ D 0 .
Let λ 0 ∈ R\D 0 and suppose there is ǫ such that Im G λ (v, v) = 0 for all I := (λ 0 -ǫ, λ 0 + ǫ). Then Im R ± λ (w) = 0 for all w by (ii), so Im f, G λ f = 0 for any f by Lemma A.2. Thus, µ f (I) = 0 for all f ∈ L 2 (T), so E H 0 (I) = 0 and thus 

λ 0 / ∈ σ(H 0 ). Conversely, fix λ ∈ R \ D 0 and v ∈ T. If Im G λ (v, v) > 0, then Im R + λ (v) > 0 or Im R - λ (v) > 0,
∈ R \ D 0 : Im G λ (v, v) > 0}\D 0 ⊆ supp µ f \D 0 ⊆ σ(H 0 )\D 0 . Lemma 3.6. If T satisfies (C1*), then: (i) For any j ∈ A + , k ∈ A -, the map σ(H) \ D 0 ∋ λ → Im R + λ+i0 (j) + Im R - λ+i0 (k) has a discrete set of zeroes. The same holds for σ(H) \ D 0 ∋ λ → Im G λ+i0 (v, v), for any v ∈ T.
(ii) σ(H) is a union of closed intervals and isolated points, r I r ∪ P. The limits G λ+i0 (v, v) exist in the interior Ir and satisfy Im G λ+i0 (v, v) > 0, for any v ∈ T. (iii) The spectrum of H T is purely absolutely continuous in any compact subset K ⊂ Ir .

Proof. We know that f (λ

) = R + λ (j) + R - λ (k) is analytic on R \ D 0 , so if Im f (λ 0 ) = 0 for some λ 0 / ∈ D 0 , we may expand Im f (λ) = n≥0 b n (λ -λ 0 ) n for λ ∈ (λ 0 -ǫ, λ 0 + ǫ), where b n = Im a n and (a n ) are the coefficients for f (λ). Suppose λ 0 ∈ σ(H) \ D 0 . If all b n = 0 then Im f is identically zero on (λ 0 -ǫ, λ 0 + ǫ). In view of Lemma 3.5 (ii)-(iii), this contradicts that λ 0 ∈ σ(H). Hence let k be the smallest index with b k = 0. Then Im f (λ) = (λ -λ 0 ) k g(λ), where g(λ) = n≥0 b n+k (λ -λ 0 ) n . Clearly g(λ 0 ) = b k =
0 and g is continuous, so we may find ǫ ′ ≤ ǫ such that both (λλ 0 ) k and g(λ) are nonzero on (λ 0ǫ ′ , λ 0 + ǫ ′ ) \ {λ 0 }. This shows that λ 0 is an isolated zero of Im f , as required.

This proves the first part of (i). For the second part, suppose Im G λ (w, w) = 0 for some w ∈ T. By Lemma 3.5, this implies Im R + λ (j) + Im R - λ (k) = 0. Hence, λ must lie in the preceding discrete set of zeroes.

For (ii), recall that σ(H 0 )

\ D 0 = {λ ∈ R \ D 0 : Im G λ (v, v) > 0} \ D 0 by Lemma 3.5. By Proposition 3.2 and (2.4), we know λ → R ± λ (v) is continuous, so R \ D 0 ∋ λ → G λ (v, v) is continuous by (2.13). Hence, {λ ∈ R \ D 0 : Im G λ (v, v) > 0} is a union of intervals
r J r which is independent of v by Lemma 3.5. We take I r as the closure of J r and

P = σ(H) ∩ D 0 .
Finally, if K is a compact subset of Ir , we know that G λ (v, v) is uniformly bounded, and the same holds for R ± λ (v). In particular, if v = o e and ψ is supported in e, we get using respresentation (A.2) along with (2.13) that sup λ∈K | ψ, G λ ψ | < ∞. The claim follows by the density of the linear span of such ψ.

This completes the proof of Theorem 1.2. We next move to Theorem 1.4. Remark 3.7. Condition (C1) implies (C1*). In fact, as remarked in [START_REF] Anantharaman | Recent results of quantum ergodicity on graphs and further investigation[END_REF], all cone types are indexed by the directed edges of the finite graph G. If we consider the universal cover T rooted at the midpoint o of some b o ∈ B(G) (here o is not viewed as an added vertex, just a reference point), this means that the type of each vertex v ∈ T is determined by a directed edge, so there are at most |B(G)| types. By [27, Lemma 3.1], we know the non-backtracking matrix of B(G) is irreducible. This implies that if T is considered in the twisted view, and if M is the single matrix over some alphabet A encoding all cone types, then M satisfies: for any k, l ∈ A, there is n(k, l) such that (M n ) k,l ≥ 1. In particular, (C1*) holds if we take the matrices M , N encoding the types in T + bo and T - bo , respectively.

Proof of Theorem 1.4. Since (C1) implies (C1*), we already know that σ(H 0 ) has the structure given in Theorem 1.2. Let λ ∈ Ir be in the interior of an AC band. Within the twisted view, all vertices are offspring of o and we deal with the single, combined alphabet A. Under the stronger assumption (C1), we know the larger matrix M is irreducible. Consequently, if we suppose that Im R + λ+i0 (j) = 0 for some j ∈ A, then the statement in Lemma 3.5 (i) now implies that Im R + λ+i0 (j) = 0 for all j ∈ A. Now let v ∈ T. We know Im G λ (v, v) > 0, so by (2.13)

, Im R + λ (v) + Im R - λ (v) > 0, so either Im R + λ (v) > 0 or Im R - λ ( 
v) > 0 by the Herglotz property. In the former case we are done. Suppose that Im R + λ (v) = 0. Say v = t b for some b ∈ B(T) and ℓ(v) = j.

Then 0 = Im R + λ (t b ) = m k=1 M j,k Im R + λ (k) implies that Im R + λ (k) = 0 for some, hence all, k ∈ A. But by (2.4), R - λ (t b ) = R + λ (o b ) + C λ (L b )-S ′ λ (L b ) S λ (L b ) , so Im R - λ (t b ) = Im R + λ (o b ).
As mentioned in Remark 3.7, under (C1), all cone types are indexed by the directed edges of G, in particular T + b is one of the finitely many nonisomorphic cones 5 . In other words, Im

R + λ (o b ) = Im R + λ (r) for some r ∈ A. Hence, Im R - λ (t b ) = 0. We thus get Im R + λ (v) + Im R - λ (v) = 0, a contradiction. Thus, Im R + λ (v) > 0.

Examples of nontrivial spectrum

For Theorem 1.4 to be interesting, we'll need to know that σ(H 0 ) is not reduced to the isolated points P. Our aim in this section is to give some examples in which this can be proved. We believe the phenomenon to be true for a wider class of examples.

4.1. Equilateral trees. Let G be a discrete graph of minimal degree ≥ 2 and T = G its universal cover. We know from [10, Section 1.6] that the spectrum of the adjacency matrix σ(A T ) has a continuous part. Actually their argument remains valid for the normalized adjacency matrix P f (x) = 1 d(x) (Af )(x) (and also if we add potentials). Consequently, using [START_REF] Brüning | Spectra of self-adjoint extensions and applications to solvable Schrödinger operators[END_REF]Theorem 3.18], the induced quantum tree with equilateral edge length, identical symmetric potentials, and identical coupling constants, will also have some continuous spectrum. Using Theorem 1.4, we can now conclude:

If G is a graph of degree ≥ 2, if T = G is its universal cover, and we endow each edge of T with the same length L and potential W , and each vertex with the same coupling constant α, then σ(H T ) consists of non-empty bands of purely absolutely continuous spectrum, and possibly some isolated eigenvalues.

This generalizes the case of regular trees previously considered in [START_REF] Carlson | Hill's equation for a homogeneous tree[END_REF][START_REF] Solomyak | On the spectrum of the Laplacian on regular metric trees[END_REF].

We may easily extend this to graphs with several lengths which are rationally dependent. More precisely, if in G, we have L j = n j L for some n j ∈ N * , add n j vertices of degree 2 to the edge e j , with Kirchhoff-Neumann conditions. Then using the previous claim, we see that T also has nontrivial AC spectrum in this case.

4.2.

An argument of Bordenave-Sen-Virág. We now consider the non-equilateral case. For this, we start by adapting an argument from [START_REF] Bordenave | Mean quantum percolation[END_REF] to quantum graphs.

We begin with some definitions, which appear in a more general framework in [START_REF] Bordenave | Mean quantum percolation[END_REF].

Let G be a discrete graph and T = G its universal cover.

A labeling (or colouring) of the vertices of T is a map η : V (T) → Z. With respect to a given labeling, we call a vertex v: (a) prodigy if it has a neighbour w with η(w) < η(v) and such that all other neighbours of w also have label less than η(v), (b) level if it is not a prodigy and if all of its neighbours have the same or lower labels, (c) bad if it is neither prodigy nor level.

The tree T = G is equipped with a natural unimodular6 measure on the space of rooted graphs, namely

P = 1 |G| x∈G δ [ G,x] .
We say the labeling η on T is invariant if there exists a unimodular probability measure on the set of coloured rooted graphs, which is concentrated on {[T, v, η]} v∈T . See e.g. [4, Appendix A] for some background on coloured rooted graphs.

Let S ⊂ ℓ 2 ( G) be a subspace and let P S be the orthogonal projection onto S. We say that S is invariant if P S (gv, gw) = P S (v, w) for any g ∈ Γ, where Γ is the group of covering transformations with G/Γ ≡ G.

Given an invariant subspace S ⊂ ℓ 2 ( G), we define its von-Neumann dimension by

dim VN S = E P [ δ o , P S δ o ] = 1 |G| x∈G P S (x, x) .
A line ensemble in T is a disjoint union of bi-infinite lines (l i ). More precisely, L :

V (T) × V (T) → {0, 1} is a line ensemble if: • L(u, v) = 0 if {u, v} / ∈ E(T), • L(u, v) = L(v, u), • for any v ∈ V (T), we have u L(u, v) ∈ {0, 2}.
Abusing notation, we then let L = {e : L(e) = 1}, which gives a subgraph consisting of disjoint lines.

We say a line ensemble L is invariant if there exists a unimodular probability measure on the space of weighted rooted graphs, which is concentrated on {[T, v, L]} v∈T .

We say that T is Hamiltonian if there exists an invariant line ensemble L that contains the root with probability 1.

Remark 4.1. Recall that a finite graph G is Hamiltonian if there is a cycle in G which visits each vertex exactly once. If G is Hamiltonian, then G is Hamiltonian in the above sense. In fact, if C = (x 0 , . . . , x m ) is a cycle in G, then its lift to G is a line ensemble L which generally consists of a disjoint union of countable lines (l i ), where l i = (. . . , x0 , . . . , xm , x0 , . . . ) (see Figure 2). Since it is a lift, this line ensemble is invariant. More precisely, if [H, v, R] denotes an equivalence class of graph H with root v and edge weight R(e) for e ∈ E(H), then [ G, v, L] = [ G, gv, L] for any covering transformation g. This by definition of the universal cover and L. So the measure P = 1

|G|

x∈G δ [ G,x,L] is well-defined and unimodularity follows from (x,y)∈B(G) f (x, y) = (x,y)∈B(G) f (y, x).

Moreover, P(o ∈ L) = 1 |G| x∈G 1 x∈L = 1 |G| x∈G 1 x∈C = |C| |G| . If C covers G, we thus get P(o ∈ L) = 1.
In particular, the (q + 1)-regular tree T q is Hamiltonian, since it covers the complete bipartite (q + 1)-regular graph on 2(q + 1) vertices, which is Hamiltonian.

We may now state our adaptation of [10, Theorem 1.5] to quantum trees. Here, if G is a finite graph, we denote by G = G(α, L, W) the quantum graph obtained by endowing each edge with a length L e , a potential W e and each vertex a coupling constant α v , so the Schrödinger operator H = -∆ + W acts with δ-conditions. We say that T = G if T = G is endowed with the lifted structure α v = α πv , L (u,v) = L (πu,πv) and W (u,v) = W (πu,πv) .

Recall definition (1.5) of S z (x b ). Proof. Suppose H T has an eigenvalue, say H T ϕ λ = λϕ λ for some ϕ λ ∈ L 2 (T ).

Suppose on the contrary that S λ (L b ) = 0 for all b. Let φ = ϕ| V . We claim that

(A λ φλ )(v) = W λ (v)φ λ (v) ,
where

(A λ ψ)(v) = u∼v ψ(u) S λ (L uv ) and W λ (v) = α v + u∼v C λ (L uv ) S λ (L uv )
and uv := (u, v). In fact,

u∼v ϕ λ (u) S λ (L vu ) = u∼v ϕ λ (t vu ) S λ (L vu ) = u∼v ϕ λ (o vu )C λ (L vu ) S λ (L vu ) + ϕ ′ λ (o vu ) = ϕ λ (v) u∼v C λ (L vu ) S λ (L vu ) + α v ϕ λ (v).
Let E λ ⊂ ℓ 2 (T) be the set of functions satisfying this eigenvalue equation, i.e. ψ ∈ E λ if and only if

(4.1) W λ (w)ψ(w) = u∼w ψ(u) S λ (L uw ) .
Note that E λ is invariant. In fact, let M λ = A λ -W λ . Then M λ is self-adjoint. This is because all weights are real-valued and symmetric. Moreover,

E λ = ker M λ . Now, if g ∈ Γ, let (U g f )(v) = f (g -1 v). Using that α gv = α v L (gu,gv) = L (u,v) , W (gu,gv) = W (u,v) , it easily follows that U -1 g M λ U g = M λ . Standard arguments imply that U -1 g P E λ U g = P E λ , so E λ is indeed invariant.
Let C be a Hamiltonian cycle in G, so its lift L is a line ensemble as in Remark 4.1. Using the line ensemble, we may use the construction of [10, Theorem 1.5] to define for any k ∈ N * an invariant labeling η k : V (T) → Z k of the vertices of T by integers which satisfies:

•

b := P(o is bad ) ≤ 1/k,
• vertices in L with η k (v) = 0 are prodigy. Vertices in L with η k (v) = 0 are bad,

• vertices outside L are level.

In our case, all vertices are in L, so there are no level vertices. We now argue as in [START_REF] Bordenave | Mean quantum percolation[END_REF]Theorem 2.3]. Here the situation is simpler as there are no level vertices. Let B be the space of vectors which vanish on the set of bad vertices. Then

dim VN B = P(o is not bad ) = 1 -b. Let E ′ = E λ ∩ B. Then using dim VN (R ∩ Q) ≥ dim VN R + dim VN Q -1, we have dim VN E λ ≤ b + dim VN E ′ .
We show E ′ is the trivial subspace by induction on the label j, showing that from low to high, any f ∈ E ′ vanishes on vertices with label j. Remember vertices v can only be prodigy or bad.

Recall that we have finitely many labels. Let j 0 be the smallest label and let v be of label j 0 . If v is a bad vertex, then f (v) = 0 since f ∈ B. Note that v cannot be a prodigy. Hence f (v) = 0 on vertices of smallest label. Now assume f ∈ E ′ vanishes on all vertices with label strictly below j. Since f ∈ B, we know f vanishes on bad vertices. If v is a prodigy vertex of label j, then v has a neighbour w such that f vanishes on w and all neighbours of w, except perhaps v. But (4.1) gives (Luv) , so if the RHS is zero, then f (v) = 0. Recalling that b ≤ 1/k, we have showed that dim E λ ≤ 1/k. As k is arbitrary, we get dim E λ = 0. It follows that E λ = {0}. Indeed, we have P E λ (v, v) = 0 for all v, so tr P E λ = 0, so P E λ op ≤ P E λ 1 = 0, implying E λ = {0}. It follows that there is no ℓ 2 function on T such that A λ ψ = W λ ψ. By [START_REF] Exner | A duality between Schrödinger operators on graphs and certain Jacobi matrices[END_REF], it follows that there is no L 2 function on T such that H T ϕ = λϕ. In other words, λ is not an eigenvalue of H T (contradiction).

f (v) S λ (Lvw) = W λ (w)f (w) -u∼w,u =v f (u) S λ

More examples.

Let T = G. We now show the spectral bottom a 0 = inf σ(H T ) is strictly below the smallest Dirichlet value. By virtue of Proposition 4.2, if G is Hamiltonian, this implies a 0 is not an eigenvalue. In particular, a 0 is not an isolated spectral value, so in view of Theorem 1.4, there is some pure AC spectrum near a 0 .

Recall that if Q j are the quadratic forms associated to operators H j , then

H 1 ≥ H 2 if D(Q 1 ) ⊆ D(Q 2 ) and Q 1 (f, f ) ≥ Q 2 (f, f ) for f ∈ D(Q 1 ). If H 1 ≥ H 2 then inf σ(H 1 ) ≥ inf σ(H 2 ).
In T there are finitely many different kinds of edges (lengths and potentials). To each oriented edge b, we associate the smallest Dirichlet: the smallest E such that S E (L b ) = 0. Denote the least of those values by E D and let (v, w) be the edge on which it is attained (choose one of them if there is more than one edge with the same lowest Dirichlet value).

Consider the quantum star graph around v, with the usual δ-condition at v, and Dirichlet conditions at the extremities w ′ ∼ v. Denote this (compact) graph by ⋆ and let E 0 be its smallest eigenvalue. We claim that

a 0 ≤ E 0 < E D .
For the first inequality, let

H ⋆ f = E 0 f . Then E 0 = Q⋆(f,f ) f 2 , where Q ⋆ is the quadratic form associated to H ⋆ . Let f be the extension of f by zero to T . Then f ∈ D(Q T ), where Q T corresponds to H T . So a 0 = inf g =0 Q T (g, g) g 2 ≤ Q T ( f , f ) f 2 = Q ⋆ (f, f ) f 2 = E 0 .
For the second inequality, note that if f ∈ D(H ⋆ ) and H ⋆ f = Ef , then on the edge b,

f (x b ) = AC E (x b ) + BS E (x b ).
Due to the Dirichlet conditions at extremities of the star, f

(L b ) = 0. If E < E D then S E (L b ) = 0 and B = -AC E (L b )/S E (L b ).
Evaluating at x b = 0, the centre of the star, reveals that A = f (v). Thus,

f (x b ) = f (v) C E (x b )S E (L b ) -C E (L b )S E (x b ) S E (L b ) . The condition at v, b∈⋆ f ′ (o b ) = α v f (v), leads to (4.2) w ′ ∼v - C E (L vw ′ ) S E (L vw ′ ) = α v .
Denote the left hand side of (4.2) as a function of E as Z(E). A solution Z(E) = α v will be an eigenvalue of the star graph.

Let us consider the behaviour of Z(E) as E increases to E D . We first show that as E approaches E D from below, S E (L vw ) → 0 from above. For this, note that:

• by [28, Theorem 6(a)], S E D (x) has exactly two zeros on [0, L vw ]. These are thus {0, L vw }. If E < E D , since S E (0) = 0 and S ′ E (0) = 1, we know that S E is positive near 0. If we show that its first zero on (0, ∞) occurs after L vw , this will imply that S E (L vw ) > 0, which is what we seek.

• We thus check that if E < E D , then the first zero of S E on (0, ∞) occurs after the first zero of S E D . For this, let

f (x) = S E (x)S ′ E D (x) -S ′ E (x)S E D (x). Then f ′ (x) = S E (x)S E D (x)(E -E D ), which is negative until the first zero of S E or S E D .
Suppose for contradiction that the first zero of S E (call it L E ) is before the first zero of S E D . Then we get that f (0

) = 0, f (L E ) > 0, but f ′ (x) < 0 on (0, L E ), which is absurd. This proves the claim. Next, S ′ E D (L vw ) < 0 because L vw is the first zero of S E D after x = 0. By the Wronskian relation C E D (L vw )S ′ E D (L vw ) = 1, so C E D (L vw ) < 0 too. Therefore
, since E D is the smallest Dirichlet eigenvalue, all the terms in Z(E) are either finite or diverge to +∞ as E ր E D , so that Z(E) diverges to +∞ as E ր E D .

On the other hand, from the proof of Proposition 3.2, we know that C E (L b )/S E (L b ) → +∞ as E → -∞, so Z(E) → -∞ in the same limit.

Together we have

Z(E) → -∞ as E → -∞ and Z(E) → +∞ as E ր E D .
Since Z is continuous, there is a solution to Z(E) = α v strictly below E D , as claimed.

AC spectrum under perturbations

We now aim to prove Theorem 1.7. For this, we adapt the approach of [START_REF] Keller | Absolutely continuous spectrum for random operators on trees of finite cone type[END_REF], see also [START_REF] Froese | Absolutely continuous spectrum for the Anderson model on a tree: a geometric proof of Klein's theorem[END_REF] for some earlier ideas.

A very sketchy outline of the argument is as follows. Our results in the previous sections tell us that we have a good control over the unperturbed operator: it has pure AC spectrum in Σ, and all relevant spectral quantities such as the Green's functions and WT functions have a limit on Σ, which has a strictly positive imaginary part. Let H z v be such a spectral quantity to be chosen later, where z ∈ C + and v ∈ V (T). The aim is now to prove an L p -continuity estimate in mean with respect to the disorder ǫ. More precisely, in some semi-metric γ on H, see (5.1), we aim to show that lim ǫ↓0 sup z∈I+i(0,1) E(γ(h z v , H z v ) p ) = 0, where h z v is the analogous spectral quantity for the perturbed operator (equal to H z v when ǫ = 0). Such a uniform stability result directly implies almost-sure pure AC spectrum in the combinatorial case, by classical results. In our case we will have to work further (Section 5.3 and Appendix A.2).

The important question now is which Herglotz function to choose for H z v . In the combinatorial case it is natural to take ζ z (b), with b = (v -, v). We considered something close in Proposition 3.2, namely S z (L b )ζ z (b). For the present continuity considerations,

H z v = R + z (o b ) √ z
seems to behave better. Still, the function √ zS z (L b )ζ z (b) will also play an important role in fixing the disorder window later on (Appendix B). Of course it can be argued that all such quantities are related in Section 2, but one needs to be careful because the aim is roughly to prove strict contraction estimates on E(γ(h z v , H z v ) p ) in terms of

w∈N + v E(γ(h z w , H z w ) p
), so adding/multiplying terms to h z w is not a very good operation, although there are partial answers (Lemma 5.1 and Lemma 5.2).

We have not discussed how the L p -continuity actually proceeds; we outline the proof in § 5.2 after giving some important expansion estimates in § 5.1. 

d(z, z ′ ) = cosh -1 (1 + δ(z, z ′ )) , where δ(z, z ′ ) = 2 |z -z ′ | 2 (1 -|z| 2 )(1 -|z ′ | 2 ) , |z|, |z ′ | < 1.
We will use the Möbius transformation C(z) = z-i z+i that sends the upper half plane model H isometrically to the disk model. Its inverse is

C -1 (u) = i 1+u 1-u . Note that if, for g, h ∈ H, we set (5.1) γ(g, h) = |g -h| 2 Im g Im h , then (5.2) γ(g, h) = 2δ(C(g), C(h)) .
In fact,

δ(Cg, Ch) = 2 |(g -i)(h + i) -(g + i)(h -i)| 2 (|g + i| 2 -|g -i| 2 )(|h + i| 2 -|h -i| 2 ) = 1 2 γ(g, h).
The following is a more adequate replacement of [22, Lemma 1] to our framework.

Lemma 5.1. Let K be a compact subset of the hyperbolic disc D. Then there exists a continuous function C K : R + -→ R + , such that C K (0) = 0, and

δ(λ 1 z, λ 2 z ′ ) ≤ |λ 1 | 2 + C K (|λ 1 -λ 2 |) δ(z, z ′ ) + C K (|λ 1 -λ 2 |)
for all z ∈ K and for all z ′ ∈ D, for all

λ i ∈ C such that |λ i | ≤ 1. More explicitly, if r K = max z∈K |z| < 1, we can take C K (t) = 8 (1-r K ) 2 • t.
Proof. First assume λ 1 = 0. Suppose z = z ′ . We have

δ(λ 1 z, λ 2 z ′ ) = |λ 1 | 2 |z -λ 2 λ -1 1 z ′ | 2 |z -z ′ | 2 • (1 -|z| 2 )(1 -|z ′ | 2 ) (1 -|λ 1 z| 2 )(1 -|λ 2 z ′ | 2 ) • δ(z, z ′ ) ≤ |λ 1 | 2 |z -λ 2 λ -1 1 z ′ | 2 |z -z ′ | 2 • δ(z, z ′ ) ≤ |λ 1 | 2 1 + |1 -λ 2 λ -1 1 | |z ′ | |z -z ′ | 2 δ(z, z ′ ) ,
where, to obtain the first inequality, we used that

|λ i | ≤ 1. Let δ K = 1-r K . If |z-z ′ | ≥ δ K 2 , we have δ(λ 1 z, λ 2 z ′ ) ≤ |λ 1 | + |λ 1 -λ 2 | 1 + |z| |z -z ′ | 2 δ(z, z ′ ) ≤ |λ 1 | + (1 + 2r K δ -1 K )|λ 1 -λ 2 | 2 δ(z, z ′ ) . (5.3) Now assume |z -z ′ | < δ K 2 . Then |z ′ | < δ K 2 + r K = 1+r K 2 , so δ(λ 1 z, λ 2 z ′ ) ≤ 2|λ 1 | 2 (|z -z ′ | + |1 -λ 2 λ -1 1 | • |z ′ |) 2 (1 -|z| 2 )(1 -|z ′ | 2 ) = |λ 1 | 2 δ(z, z ′ ) + 2 2|z -z ′ | • |λ 1 ||λ 1 -λ 2 | • |z ′ | + |λ 1 -λ 2 | 2 • |z ′ | 2 (1 -|z| 2 )(1 -|z ′ | 2 ) ≤ |λ 1 | 2 δ(z, z ′ ) + 2 δ K (1+r K ) 2 • |λ 1 -λ 2 | + ( 1+r K 2 ) 2 |λ 1 -λ 2 | 2 (1 -r 2 K )(1 -( 1+r K 2 ) 2 ) . (5.4)
The first assertion follows. For the explicit formula, we check the relevant terms in (5.3), (5.4) are bounded by

4 1+r K (1-r K ) 2 |λ 1 -λ 2 |. As r K < 1, this will complete the proof. Note that |λ 1 -λ 2 | ≤ 2, so 2(1 + 2r K δ -1 K )|λ 1 ||λ 1 -λ 2 | + (1 + 2r K δ -1 K ) 2 |λ 1 -λ 2 | 2 ≤ 2 1 + 2r K 1 -r K + 1 + 2r K 1 -r K 2 |λ 1 -λ 2 | = 4 1 + r K (1 -r K ) 2 |λ 1 -λ 2 | .
For the other term, using 1 1-

x 2 ≤ 1 1-x for x ∈ [0, 1], we have 2 δ K (1+r K ) 2 • |λ 1 -λ 2 | + ( 1+r K 2 ) 2 |λ 1 -λ 2 | 2 (1 -r 2 K )(1 -( 1+r K 2 ) 2 ) ≤ 1 -r 2 K + (1 + r K ) 2 (1 -r K )(1 -( 1+r K 2 )) • |λ 1 -λ 2 | = 4 1 + r K (1 -r K ) 2 |λ 1 -λ 2 | . Finally, if λ 1 = 0, δ(λ 1 z, λ 2 z ′ ) = 2 |λ 2 z ′ | 2 1-|λ 2 z ′ | 2 ≤ 2|λ 2 | 1-|z ′ | 2 . If |z -z ′ | ≥ δ K 2 then 1 ≤ 4|z-z ′ | 2 (1-r K ) 2
and the claim follows. Otherwise

|z ′ | < 1+r K 2 , so 1 1-|z ′ | 2 ≤ 2 1-r K , proving the claim.
We will also need [START_REF] Keller | On the spectral theory of operators on trees[END_REF]Lemma 2.16], which we recall below:

Lemma 5.2. For any g, h, z ∈ H,

max {γ(g, h + z), γ(g + z, h)} ≤ (1 + c g (z))γ(g, h) + c g (z)
,

where c g (z) = 4|z| Im g + 4|z| 2 (Im g) 2 .
We now consider T in the twisted view. If T is a tree with parameters ({α 0 v }, {L 0 v }) before perturbation and ({α ω v }, {L ω v }) after perturbation, and

if b = (v -, v) ∈ B(T) = B(T + o ), we set h z v = R + z,ω (o b ) √ z and H z v = R + z,0 (o b ) √ z , where R + z,ω (o b ) is the WT function of (T, {L ω v }, {α ω v }) and R + z,0 (o b ) the WT function of (T, {L 0 v }, {α 0 v }).
The notation may seem a bit confusing since the WT function is evaluated at v -instead of v. However, this is in accordance with the notations of § 1.1, where the oriented edges are indexed by their endpoint, and where we write

φ v instead of φ b if v = t b .
We also define for b = (v -, v),

g z v = R + z,ω (L ω b ) √ z and Γ z v = R + z,0 (L 0 b ) √ z .
Then the δ-conditions (1.3) applied to V + z;o (x) give (5.5)

v + ∈N + v h z v + = g z v + α ω v √ z and v + ∈N + v H z v + = Γ z v + α 0 v √ z .
We shall assume the coupling constants α v ≥ 0 and potentials W ≥ 0. In this case we can ensure that h z v and H z v are Herglotz functions (Lemma 2.4), so their Cayley transform lies in D. In this case, g z v and Γ z v are also Herglotz by (5.5).

Remark 5.3. Assume there is no potential on the edges: W v ≡ 0. Then the functions h z v and g z v are also connected by the following relations: if b = (v -, v) and we expand

V + z;o (x v ) in the basis C z (x v ) = cos √ zx v and S z (x v ) = sin √ zxv √ z , we get R + z (t b ) = R + z (o b )S ′ z (L b ) + C ′ z (L b ) R + z (o b )S z (L b ) + C z (L b ) = R + z (o b ) cos √ zL b - √ z sin √ zL b R + z (o b ) sin √ zL b √ z + cos √ zL b , so g z v = h z v cos √ zLv-sin √ zLv h z v sin √ zLv+cos √ zLv .
From this, we find

C(g z v ) = g z v -i g z v + i = C(h z v ) • cos √ zL v -i sin √ zL v cos √ zL v + i sin √ zL v = e -2i √ zLv C(h z v )
as previously observed in [START_REF] Aizenman | Absolutely continuous spectra of quantum tree graphs with weak disorder[END_REF]. We also remark that we can invert the Möbius identity defining g z v in terms of

h z v to get h z v = g z v cos √ zLv+sin √ zLv -g z v sin √ zLv+cos √ zLv .
We finally define

γ v (h) = γ(h z v , H z v ) .
The following plays the analog of [START_REF] Keller | Absolutely continuous spectrum for random operators on trees of finite cone type[END_REF]Lemma 2].

Lemma 5.4. Let K be a compact subset of the hyperbolic disc, and assume that z varies in a compact subset such that H z v ∈ H and C(Γ z v ) ∈ K for all v. Then (see equations (5.6), (5.7) and (5.8) below for the definition of the quantities q, α and Q)

γ v (h) ≤ (1+C K (ǫ ′ ))(1+c H (ǫ)) v ′ ∈N + v Im H z v ′ • γ v ′ (h) u∈N + v Im H z u w∈N + v q w (h)Q v ′ ,w (h) cos α v ′ ,w (h) + 2C K (ǫ ′ ) + (1 + C K (ǫ ′ ))c H (ǫ) , if sup z,v | α ω v -α 0 v √ z | ≤ ǫ and sup z,v |e 2i √ zL ω v -e 2i √ zL 0 v | ≤ ǫ ′ , where C K (t) = 8 (1-r K ) 2 • t and c H (t) = sup z,v 4t v + ∈N + v Im H z v + 1 + t v + ∈N + v Im H z v + .
We will apply this when K = v {C(Γ z v ) : z ∈ I +i[0, 1]}, where I is a compact interval on which Γ λ+i0 v exists and Im Γ λ+i0 v > 0. Note that the union here is finite as the unperturbed model is of finite cone type. For the same reason, the supremum in c H is a maximum.

The quantities q, Q, α are defined by formulas similar to those in [START_REF] Keller | Absolutely continuous spectrum for random operators on trees of finite cone type[END_REF]: for x, y ∈ N + v ,

(5.6)

q y (h) = Im h y u∈N + v Im h u (5.7) cos α x,y (h) = cos arg(h x -H z x )(h y -H z y ) (5.8) Q x,y (h) = Im h x Im h y Im H z x Im H z y γ x (h)γ y (h) 1 2 (Im h x Im H z y γ y (h) + Im h y Im H z x γ x (h))
.

assuming h x = H z x and h y = H z y , otherwise we let Q x,y (h) = cos α x,y (h) = 0.

Proof of Lemma 5.4. Using (5.2) and Remark 5.3, we have

γ v (h) = 2δ(C(H z v ), C(h z v )) = 2δ e 2i √ zL 0 v C(Γ z v ), e 2i √ zL ω v C(g z v )
.

By hypothesis, C(Γ z v ) stays in K. Applying Lemma 5.1 and (5.2), we deduce that (5.9)

γ v (h) ≤ (1 + C K (ǫ ′ ))γ(Γ z v , g z v ) + 2C K (ǫ ′ ) . Suppose α ω v ≥ α 0 v .
Using (5.5), we need to estimate (5.10)

γ   v + ∈N + v H z v + - α 0 v √ z , v + ∈N + v h z v + - α ω v √ z   ≤ γ   v + ∈N + v H z v + , v + ∈N + v h z v + - α ω v -α 0 v √ z   ,
where the inequality holds by γ(ξ

+ z, ξ ′ + z) ≤ γ(ξ, ξ ′ ) if Im z ≥ 0, as easily checked. Since we are assuming α ω v ≥ α 0 v ≥ 0, we have -α ω v -α 0 v √ z
∈ H. Using Lemma 5.2, we may drop the

term α ω v -α 0 v √ z . If α 0 v ≥ α ω v , we simply replace (5.10) by γ   v + ∈N + v H z v + - α 0 v √ z , v + ∈N + v h z v + - α ω v √ z   ≤ γ   v + ∈N + v H z v + - α 0 v -α ω v √ z , v + ∈N + v h z v +   and remove α 0 v -α ω v √ z
using Lemma 5.2. Finally, as calculated in [22, Lemma 2],

v + ∈N + v H z v + - v + ∈N + v h z v + 2 = v ′ ∈N + v Im H z v ′ • γ v ′ (h) w∈N + v Im h z w Q v ′ ,w (h) cos α v ′ ,w (h) 
.

Dividing by (Im

v + H v + )(Im v + h v + ) completes the proof.
Remark 5.5. Note that v + q v + = 1. On the other hand, Q v ′ ,w is a quotient of a geometric and arithmetic mean, so 0

≤ Q v ′ ,w ≤ 1. Since -1 ≤ cos α v ′ ,w ≤ 1, this shows that -1 ≤ w∈N + v q w Q v ′ ,w cos α v ′ ,w ≤ 1.
We now deduce a "two-step expansion". We will assume our tree satisfies (C2). In other words, for each vertex v, there is a vertex v ′ ∈ N + v such that every label found in N + v can also be found in N + v ′ . We then say that v ′ is chosen w.r.t. (C2). From now on, we denote

S v = N + v . If * = t bo and * ′ is the vertex chosen w.r.t. (C2) corresponding to * , we let S * , * ′ = N + * \ { * ′ } ∪ N + * ′ . Given x ∈ S * , let (5.11) c x (h) = y∈S * q y (h)Q x,y (h) cos α x,y (h) 
and for x ∈ S * ′ , let 

c x (h) = y∈S * q y (h)Q * ′ ,y (h) cos α * ′ ,y (h) y∈S * ′ q y (h)Q x,y (h) cos α x,y (h) (5.12) = c * ′ (h) y∈S * ′ q y (h)Q x,y (h) cos α x,y (h).
p x = Im H z * ′ Im H z x ( y∈S * Im H z y )( u∈S * ′ Im H z u ) = p * ′ • Im H z x u∈S * ′ Im H z u .
Then x∈S * , * ′ p x = 1. Note that c x (h) is a quantity that depends on the random parameters of the perturbed graph, whereas p x is non-random. Recall definition (1.7) of the set Σ. Using (5.5), we also have Im Γ λ+i0 v > 0 on Σ.

Proposition 5.6. Let I ⊂ Σ be a compact interval. There exists a continuous function

C I,H : [0, ∞) 2 → [0, ∞) with C I,H (0, 0) = 0 such that if sup z∈I+i[0,1],v | α ω v -α 0 v √ z | ≤ ǫ and sup z∈I+i[0,1],v |e 2i √ zL ω v -e 2i √ zL 0 v | ≤ ǫ ′ , then γ * (h) ≤ (1 + C I,H (ǫ, ǫ ′ )) x∈S * , * ′ p x c x (h)γ x (h) + C I,H (ǫ, ǫ ′ ) . Proof. Let K = e {C(Γ z e ) : z ∈ I + i[0, 1]}. We apply Lemma 5.4 to v = * , then to v = * ′ . If c I,H (ǫ, ǫ ′ ) = 2C K (ǫ ′ ) + c H (ǫ) + C K (ǫ ′ )c H (ǫ), the statement follows by taking C I,H (ǫ, ǫ ′ ) = 2c I,H (ǫ, ǫ ′ ) + c I,H (ǫ, ǫ ′ ) 2 .
To use this result under assumption (P0), note that

e 2i √ zL ω v -e 2i √ zL 0 v = e i √ z(L ω v +L 0 v ) e i √ z(L ω v -L 0 v ) -e i √ z(L 0 v -L ω v ) ≤ 2 sin √ z(L ω v -L 0 v ) ≤ 2c I ǫ. Thus, |e 2i √ zL ω v -e 2i √ zL 0 v | ≤ ǫ ′ , with ǫ ′ = 2c I ǫ.
5.2. L p continuity of the WT function. The aim of this subsection is to establish the following uniform continuity result in L p -norm: Theorem 5.7. Let T satisfy (C0), (C1), (C2) and (α, L) satisfy (P0), (P1) and (P2). For all compact I ⊂ Σ, I ∩ D = ∅, and p > 1, there is ǫ 0 (I, p) > 0, η 0 (I, ε D ) > 0 and C p : [0, ǫ 0 ) → [0, ∞) with lim ǫ→0 C p (ǫ) = 0 such that for any v ∈ T, ǫ ≤ ǫ 0 , (5.15) sup

z∈I+i(0,η 0 ] E (γ(h z v , H z v ) p ) ≤ C p (ǫ) , sup z∈I+i(0,η 0 ] E(|h z v -H z v | p ) ≤ C p (ǫ) .
Given the key results of § 5.1, much of the proof of Theorem 5.7 goes as in the combinatorial case [START_REF] Keller | Absolutely continuous spectrum for random operators on trees of finite cone type[END_REF], so we only outline the main ideas. The latter part of this proof becomes nevertheless more technical in the quantum setting, due to the more complicated relations among the Green's functions (see (5.23)), so we give the necessary modifications in Appendix B.

Recall that T = T + o is defined by a cone matrix M on a set of labels A satisfying (C0), (C1) and (C2). We previously denoted * = t bo . More generally, given (v v) , we shall denote v = * j . The set S * j , * ′ j is then constructed analogously, and all results of § 5.1 apply without change (this works in particular for * j = o bo ).

-, v) ∈ B(T + o ) with ℓ(v) = j, if we consider the subtree T + (v -,
Let us now discuss the proof of Theorem 5.7 in several steps:

Step 1: The Euclidean bound follows from the hyperbolic one.

In fact, if the γ-bound is proved, then using the Cauchy-Schwarz inequality,

(5.16)

E (|h z v -H z v | p ) 2 ≤ E (γ(h z v , H z v ) p ) E ((Im h z v Im H z v ) p ) ≤ C(ǫ)E (|h z v | p ) |H z v | p . To bound the moment E(|h z v | p ), one uses the simple inequality (5.17) |ξ| ≤ 4γ(ξ, ζ) Im ζ + 2|ζ|, ξ, ζ ∈ H, applied to ξ = h z v and ζ = H z v .
Step 2: To prove the γ-bound, it suffices to show that for each j ∈ A,

(5.18) E γ(h z * j , H z * j ) p ≤ (1 + c 1 (ǫ))(1 -δ 0 ) k∈A P j,k E (γ * k (h z ) p ) + C(ǫ),
as long as P = (P j,k ) forms a nonnegative irreducible matrix (and c 1 (ǫ), C(ǫ) → 0 as ǫ → 0). Indeed, the Perron-Frobenius theorem then provides a positive eigenvector u ∈ R A such that P ⊺ u = u. If we consider the vector

E p γ := (E(γ[h z * j , H z * j ] p )) j∈A , then (5.18) implies that u, E p γ C A ≤ (1 -δ) u, P E p γ C A + C(ǫ) = (1 -δ) u, E p γ C A + C(ǫ), so u, E p γ C A ≤ C(ǫ)
δ , and the γ-bound easily follows.

Step 3: To prove (5.18), we apply the two-step expansion (Proposition 5.6) to get (5.19)

E γ(h z * j , H z * j ) p ≤ (1 + C I,H ) 2p-1 E x∈S * j , * ′ j p x c x (h z )γ x (h z ) p + (1 + C I,H ) p-1 C I,H
The idea now is that for p ≥ 1,

(5.20)

x∈S * j , * ′ j p x c x (h)γ x (h) p ≤ x∈S * j , * ′ j p x γ x (h) p ≤ max x∈S * j , * ′ j γ(H z x , h z x ) p
as follows from Jensen's inequality and the facts p x = 1 and |c x (h)| ≤ 1. However the first inequality is generally strict for p > 1, and this is what provides the (1δ 0 ) in (5.18) if we choose P = P (z) to be the matrix

P j,k := x∈S * j , * ′ j , ℓ(x)=k p x
for j, k ∈ A, which satisfies the requirements of Step 2.

To derive the strict contraction for (5.20) more precisely, the authors in [START_REF] Keller | Absolutely continuous spectrum for random operators on trees of finite cone type[END_REF] introduce an additional averaging over the permutations of S * j , * ′ j preserving the labels. Let Π j := {π : S * j , * ′ j → S * j , * ′ j | π is bijective and ℓ(π(x)) = ℓ(x) for all x ∈ S * j , * ′ j }. (2.16) and the symmetry of the tree, we get for the unperturbed WT function (5.21)

Fix * = * j . Recall we denote functions φ b on [0, L b ] by φ v if b = (v -, v). If v ∈ S * , * ′ and π ∈ Π, then φ πv := φ ( * ,πv) if πv ∈ S * , and φ πv := φ ( * ′ ,πv) if πv ∈ S * ′ . Denote H z = (H z x ) x∈S * , * ′ ∈ C S * , * ′ . Given g ∈ H S * , * ′ , π ∈ Π, denote g•π = (g π(x) ) x∈S * , * ′ . By
H z = H z • π
for all π ∈ Π. By (P1), (P2) and (2.16), h z x and h z y are independent and identically distributed for x, y ∈ S * , * ′ that carry the same label. Hence,

(5.22) E f (h z ) = E f (h z • π)
for any integrable function f and all π ∈ Π.

Recall from Remark 5.3 that

h z v = g z v cos √ zL v + sin √ zL v -g z v sin √ zL v + cos √ zL v .
On the other hand,

g z v = v + h z v + -αv √ z . Given g ∈ H S * , * ′ , it is therefore natural to define g * ′ = g * ′ (z, α, L) by (5.23) g * ′ = φ * ′ (g) cos √ zL + sin √ zL -φ * ′ (g) sin √ zL + cos √ zL , φ * ′ (g) = - α √ z + x∈S * ′ g x .
In particular, for g = H z = (H z x ), we get (H z ) * ′ (z, α 0 , L 0 ) = H z * ′ . Introduce the notation g (π)

x = g π(x) for x ∈ S * , * ′ . We also define (5.24) g

(π) * ′ = (g π ) * ′ = φ * ′ (g (π) ) cos √ zL + sin √ zL -φ * ′ (g (π) ) sin √ zL + cos √ zL .
Note that g (π) * ′ = g π * ′ , in fact π * ′ is not even defined. On the other hand, (5.21).

H (π) * ′ (z, α 0 * ′ , L 0 * ′ ) = H * ′ by
Given g ∈ H S * , * ′ , π ∈ Π and g * ′ (z, α, L) as in (5.23)-(5.24), we denote

γ (π) x (g) = γ x (g (π) ) = γ(g π(x) , H z x ) : x ∈ S * , * ′ , γ(g (π) * ′ , H z * ′ ) : x = * ′ .
Then in view of (5.22), the mean in the RHS of (5.19) becomes (5.25)

E x∈S * j , * ′ j p x c x (h)γ x (h) p = 1 |Π j | E π∈Π j x∈S * j , * ′ j p x c (π) x (h)γ (π) x (h) p .
To implement the strict inequality in (5.20), given p ≥ 1, z ∈ H, α, L > 0, one defines κ

(p) * := κ (p) * (z, α, L, •) : H S * , * ′ → R, by (5.26) κ (p) * (g) := π∈Π ( x∈S * , * ′ p x c (π) 
x (g)γ

(π) x (g)) p π∈Π x∈S * , * ′ p x γ (π) x (g) p . 
Here, κ

(p) * depends on α, L via c (π) x (g) := c x (g (π)
). Indeed 7 , recall that c y (g) involves c * ′ (g) for y ∈ S * ′ , and c * ′ (g) involves g * ′ , which in turns depends on α, L.

The RHS of (5.25) now becomes

(5.27) 1 |Π j | E κ (p) * j z, α ω * ′ j , L ω * ′ j , h π∈Π j x∈S * j , * ′ j p x γ (π) x (h) p .

If all γ (π)

x (h) ≈ 0 then we are done, so the nontrivial work is when h / ∈ B r (H), where

B r (H) := {g ∈ H S * j , * ′ j : γ(g x , H z x ) ≤ r ∀x ∈ S * j , * ′ j }.
This case is controlled by Proposition 5.8 below. To state it, recall that we assume I is away from the Dirichlet spectrum in (1.8). This implies, for the L in κ (p) * , (5.28) min Proposition 5.8 is remarkable as it gives a uniform contraction estimate on the random variable. Using it in (5.27), we get the (1δ 0 ) we were seeking in (5.18) (take δ 0 = min j∈A δ * j ), thus completing the proof of Theorem 5.7.

z∈I+i[0,1] | sin √ zL sin √ zL 0 * ′ | ≥ ε D > 0 .
The proof of Proposition 5.8 is given in Appendix B. 7 Note that c (π)

x (g) = cπx(g) in general. For example, if x ∈ S * and πx ∈ S * ′ , then c

(π)
x (g) is defined by a single sum while cπx(g) is a product of two sums, as in (5.11)-(5.12).

5.3.

Proof of pure AC spectrum. We may finally conclude with the proof of Theorem 1.7, which we recall: Theorem 5.9. Let T satisfy (C0), (C1), (C2). For all compact I ⊂ Σ, I ∩ D = ∅, and p > 1, there is ǫ 0 (I, p) > 0, η 0 (I, ε D ) > 0, C ′ p (I, ε D ) > 0 such that for any v ∈ T, (5.29) sup

z∈I+i(0,η 0 ] E(| Im R ± z (v)| -p ) ≤ C ′ p and sup z∈I+i(0,η 0 ] E(|R ± z (v)| ±p ) ≤ C ′ p
for all ǫ ∈ [0, ǫ 0 ) and all (α ω , L ω ) satisfying (P0), (P1) and (P2).

In particular, H ω ǫ has pure AC spectrum almost surely in I. Proof. We showed after (5.16) that sup z∈I+i(0,η 0 ] E (|h

z x | p ) < ∞. So for b = (v -, v), E |R + z,ω (v)| p = |z| p/2 E (|h z v | p ) ≤ C p for any z ∈ I + i(0, η 0 ]. On the other hand, observe that γ -1 i Im h z v , -1 i Im H z v = γ (i Im h z v , i Im H z v ) ≤ γ (h z v , H z v ) .
In particular, using (5.17

) with ξ = i/ Im h z v and ζ = i/ Im H z v , we get 1 Im h z v p ≤ 2 p-1 4 p γ(h z v , H z v ) p (Im H z v ) p + 2 p 1 Im H z v p . Hence, E | Im h z v | -p ≤ C ′ p
for any z ∈ I + i(0, η 0 ], by (5.15). In particular, (recall we are assuming (C1)). So we also have

E |R + z,ω (v)| -p = |z| -p/2 E |h z v | -p ≤ C ′′
E |R - z,ω (v)| p < ∞ for any p ∈ Z.
Finally, for (Im R + z (v)) -p , denote √ z = a + ib. Then

Im h z v = a Im R + z (v) -b Re R + z (v) |z| =: F z |z| .
Hence,

E 1 Im R + z (v) p = a p E 1 |F z + b Re R + z (v)| p = a p E 1 |F z + b Re R + z (v)| p ½ {|Fz|>|2b Re R + z (v)|} (ω) + a p E 1 |F z + b Re R + z (v)| p ½ {|Fz|≤|2b Re R + z (v)|} (ω) .
For the first expectation, we have

|F z + b Re R + z (v)| ≥ |F z | -b| Re R + z (v)| ≥ 1 2 |F z |.
For the second expectation, we make use of the lower-bound for Im R + z (v)/ Im z proved in the Appendix (Lemma A.4) to conclude that there is some 

C > 0 with |F z + b Re R + z (v)| = a Im R + z (v) ≥ aC Im z for any z, v, ω. Summarizing, we get E Im R + z (v) -p ≤ (2a) p E |F z | -p + C -p (Im z) -p P |F z | ≤ |2b Re R + z (v)| ≤ (2a) p |z| -p E (Im h z v ) -p + C -p |z| -p (Im z) -p (2b) p E Re R + z (v) Im h z
H j z (y) = P S z (L b ) α t b + S ′ z (L b ) S z (L b ) - b + ∈N + b R + z (o b + ) ≥ y -1 ≤ P |α t b S z (L b )| + |C z (L b )| + |S z (L b )| b + ∈N + b |R + z (o b + )| ≥ y -1 ≤ P c 2 |α t b | + (4y) -1 + c 2 b + ∈N + b |R + z (o b + )| ≥ y -1 ≤ P |α t b | ≥ (4c 2 y) -1 + P b + ∈N + b |R + z (o b + )| ≥ (2c 2 y) -1 ≤ (4c 2 y) ς M ς + m k=1 M j,k P |R + z (k)| ≥ (2Qc 2 y) -1 ,
where

M ς = max v E[|α ω v | ς ] < ∞. But for t = 1 2Qc 2 y , (5.32) P |R + z (o b )| ≥ t = P |ζ z (b) -C z (L b )| |S z (L b )| ≥ t ≤ P |ζ z (b)| + (c 1 /4Qc 2 y) c 1 ≥ t ≤ P |ζ z (b)| ≥ c 1 t 2 ≤ P |ζ z (b)S z (L b )| ≥ c 2 1 t 2 
≤ P α t b + Re S ′ z (L b ) S z (L b ) - b + ∈N + b Re R + z (o b + ) ≤ 2 c 2 1 t and b + ∈N + b Im R + z (o b + ) ≤ 2 c 2 1 t ≤ P α t b lies in an interval of length 4 c 2 1 t and b + ∈N + b Im R + z (o b + ) ≤ 2 c 2 1 t ≤ C ν 4 c 2 1 t β P b + ∈N + b Im R + z (o b + ) ≤ 2 c 2 1 t ≤ C ν 4 c 2 1 t β F z 4Qc 2 y c 2 1 q .
Here we used that -S ′ z (L)

Sz(L) is Herglotz and that {R + z (o b + )} are independent of α t b , as follows from (2.16), and bounded the probability by first conditioning over the random variables different from α ω t b , so that the "interval" above is fixed.

Thus, if c I = c 1 4qc 2 c 3 , where |C z (L b )| ≤ c 3 , then for any 0 < y ≤ c I ≤ c 1 4qc 2 |Cz(L b )| , H z (y) ≤ (4c 2 ) ς M ς • y ς + C ν 8Qc 2 c 2 1 β Q • y β • F z 4Qc 2 y c 2 1 q .
Theorem 5.12. Let I ⊂ σ ǫ ac (δ) be bounded, λ ∈ I, ς ≥ 3, η ∈ (0, η 0 ) and z = λ + iη. Then F z (x) ≤ C ν,Q,δ,ς x βς/5 for all x ∈ (0, x δ ], for some C ν,Q,δ < ∞ and x δ = x(δ, ν, Q, ς, I) > 0.

Proof. The theorem is proved by gradually improving on the decay. First, take y = x 1/4 in Lemma 5.11 to get for x ∈ (0, c 4 I ],

F z (x) ≤ F z (x 1/2 ) q + C ν,Q x β/4 F z 4Qc 2 c 2 1
x 1/4 q + x ς/4 , so using the bounds

x β/2 [F z ( 4Qc 2 c 2 1
x 1/2 )] q ≤ x β/2 and x ς/2 ≤ x β/2 for small x, we get (5.33)

F z (x 2 ) ≤ F z (x) q + C ′ ν,Q x β/2 .
Since λ ∈ σ ǫ ac (δ), we have

F z (x) = max j P(Im R + z (j) ≤ δ) ≤ 1-δ for any x ∈ [0, δ]. Choose x 0 ≤ min(δ, c 4 I , ( δ 4C ′ ν,Q
) 8/β ). For α small enough, we have (1δ) ≤ (1 -δ 2 )x 2α 0 . So there is some α 0 ∈ (0, β/16] such that

F z (x 0 ) ≤ 1 - δ 2 x 2α 0 0 .
Now define recursively x n = x 2 n-1 . We show by induction that F (x n ) ≤ (1 -δ 2 )x 2α 0 n . We know this for n = 0. Next, for n ≥ 1, using (5.33), induction and q ≥ 2, we have

F z (x n ) ≤ F z (x n-1 ) 2 + Cx β/4 n ≤ 1 - δ 2 2 x 2α 0 n + x 2α 0 n • Cx β/4-2α 0 0 ≤ 1 - δ 2 2 + Cx β/8 0 x 2α 0 n ≤ 1 - δ 2 x 2α 0 n ,
where we used x n ≤ x 0 , 2α 0 ∈ (0, β/8] and x 0 ≤ ( δ 4C ) 8/β . Hence, if x ∈ (0, x 0 ], so that x ∈ (x n+1 , x n ] for some n, using that F z is monotone increasing, we get

F z (x) ≤ F z (x n ) ≤ 1 - δ 2 x α 0 n+1 ≤ 1 - δ 2 x α 0 ≤ x α 0 .
This proves a first power decay which we now improve. Suppose we have

F z (x) ≤ cx α
for some c > 0 and all x ∈ (0, x 0 ]. Taking y = x 

F z (x) ≤ F z (x 3+ς 3(1+ς) ) q + Cx β 3 ς 1+ς F z 4Qc 2 c 2 1 x 1 3 ς 1+ς q + Cx 1 3 ς 2 1+ς ≤ cx q 3 3+ς 1+ς α + Cx 1 3 ς ς+1 (β+qα) + Cx 1 3 ς 2 1+ς . If q ≥ 3, then q 3 3+ς 1+ς ≥ 3+ς 1+ς > 1. Also, if α ≤ βς 4 , then β+qα 3 ς 1+ς ≥ β+3α 3 ς 1+ς > α, since βς + 3ας > 3α + 3ας. Finally, ς 3(1+ς) ≥ 1 4 ≥ β 4 , since ς ≥ 3, so ς 2 3(1+ς) ≥ βς 4 .
We thus showed that if q ≥ 3, then the decay power is strictly increased as long as α ≤ βς 4 . Iteration thus proves the theorem 8 when q ≥ 3 (because x βς/4 ≤ x βς/5 ).

The rest of the proof is devoted to the case q = 2, where we need to improve again. Using (2.17) twice, we have

Im R + z (o b ) ≥ |ζ z (b)| 2 b + |ζ z (b + )| 2 b ++ Im R + z (o b ++ ) ≥ b + c -2 2 |ζ z (b + )| 2 (|α t b | + | S ′ z (L b ) Sz(L b ) | + b + |ζ z (b + )| |Sz(L b + )| + b + | Cz (L b + ) Sz(L b + ) |) 2 b ++ Im R + z (o b ++ ) ≥ b + c 2 1 c -2 2 |ζ z (b + )| 2 (c 1 |α t b | + |C z (L b )| + b + |ζ z (b + )| + b + |C z (L b + )|) 2 b ++ Im R + z (o b ++ ).
Define the events

E 0 = {|α t b | ≤ y -1 }, E 1 = {|ζ z (b + )| > y -1 for at least two b + }, E 2 = {|ζ z (b + 0 )| > y -1 for exactly one b + 0 }, E 3 = {|ζ z (b + )| ≤ y -1 for all b + }.
Using an estimate from (5.32), we have

P(E 1 ) ≤ Q(Q + 1) 2 P(|ζ z (b + )| > y -1 ) 2 ≤ c ν,Q 2 c 1 y -1 2β F z 1 c 1 y -1 4
. 8 The exponent of the first term is increased by 2 1+ς at each step, the second one by at least α 0 3(1+ς) , as for the last one, it already has the required decay. After finitely many steps, the exponent thus reaches βς 4 .

For E 0 ∩ E 2 , |ζ z (b + )| ≤ y -1 for all b + = b + 0 , so we have

|ζ z (b + 0 )| c 1 |α t b | + t b ′ ∼t b |C z (L b ′ )| + b + |ζ z (b + )| = 1 1 + c 1 |αt b |+ t b ′ ∼t b |Cz(L b ′ )|+ b + =b + 0 |ζ z (b + )| |ζ z (b + 0 )| ≥ 1 Q + c 1 + y(Q + 1)c 3 , since c 1 |αt b |+ t b ′ ∼t b |Cz(L b ′ )|+ b + =b + 0 |ζ z (b + )| |ζ z (b + 0 )| ≤ c 1 y -1 +(Q+1)c 3 +Qy -1 y -1
. Assuming y ≤ 1, the RHS is ≥ c. Hence, for c = c 2 1 c -2 2 c 2 we have

P {Im R + z (o b ) ≤ x} ∩ E 0 ∩ E 2 ≤ P c2 b ++ 0 ∈N b + 0 Im R + z (o b ++ 0 ) ≤ x ≤ F z (c -2 x) 2 .
Finally, for E 0 ∩ E 3 , we use (5.31) along with

|ζ z (b)| ≥ c 1 c -1 2
(Q+c 1 )y -1 +(Q+1)c 3 . If y is small, this is ≥ Cy, so we get

P {Im R + z (o b ) ≤ x} ∩ E 0 ∩ E 3 ≤ P C 2 y 2 b + Im R + z (o b + ) ≤ x ≤ F z (C -2 xy -2 ) 2 .
Estimating P(E c 0 ) ≤ y ς M ς by Chebyshev, we thus showed that

F z (x) ≤ Cy 2β F z (c -1 1 y) 4 + F z (c -2 x) 2 + F z (C -2 xy -2 ) 2 + c ′ y ς .
Assuming we showed that F z (x) ≤ c 0 x α , then choosing y = x ς 3+4ς , we get

F z (x) ≤ Cx 2βς 3+4ς x 4ας 3+4ς + cx 2α + C′ x 3+2ς 3+4ς (2α) + c ′ x ς 2 3+4ς .
To get 2βς+4ας 3+4ς > α we must have 2βς + 4ας > 3α + 4ας, i.e. α < 2βς 3 , so α ≤ βς 5 suffices. Next, 6+4ς 3+4ς > 1. Finally, ς 3+4ς ≥ 1 5 ≥ β 5 since ς ≥ 3. We thus showed the decay exponent can be strictly improved up to βς 5 .

Proof of Theorem 1.8. Given p ≥ 1, choose ς such that p < βς 5 . By Lemma 5.10, we have I ⊆ σ ǫ ac (δ) for some δ > 0 and ǫ ≤ ǫ 0 . As p ≥ 1, given λ ∈ I, we have by the layer-cake representation,

E | Im R + z (o b )| -p = p ∞ 0 t p-1 P | Im R + z (o b )| -1 ≥ t dt = p ∞ 0 t p-1 F z (t -1 ) dt .
By Theorem 5.12, denoting t

δ = x -1 δ , we know F z (t -1 ) ≤ C ν,Q t -βς/5 for all t ≥ t δ . Hence E | Im R + z (o b )| -p ≤ p t δ 0 t p-1 dt + pC ∞ t δ t p-1-βς/5 dt = t p δ + 5p βς -5p C t βς/5-p δ .
We may assume t δ ≥ 1 by taking a smaller x δ if necessary. Since this holds for any λ ∈ I and η ∈ (0, η 0 ), we get

sup λ∈I sup η∈(0,η 0 ) E | Im R + z (o b )| -p ≤ t p δ 1 + 5p βς -5p C ν,Q .
Appendix A. Proofs of some technical facts

A.1. General results. Proof of Lemma 2.1. Given f ∈ L 2 (T), define G z f := T G z (x, y)f (y) dy. We should show that G z f ∈ D(H T ) and (H T -z)G z f = f . Assume f is continuous on T and supported in a ball Λ ⊂ T. Let x = (b, x b ) ∈ T , with x b ∈ (0, L b ). Fix o, v ∈ T such that b ∈ B(T + o ) ∩ B(T - v ) and Λ ⊂ T + o ∩ T - v . By definition, (G z f )(x) = V + z;o (x) T - x U - z;v (y) W z v,o (y) 
f (y) dy + U - z;v (x)

T + x V + z;o (y) W z v,o (y) 
f (y) dy .

Hence,

(A.1) (G z f ) ′ (x) = (V + z;o ) ′ (x) T - x U - z;v (y) W z v,o (y) f (y) dy + (U - z;v ) ′ (x) T + x V + z;o (y) W z v,o (y) 
f (y) dy ,

where the term

V + z;o (x)U - z;v (x -) W z v,o (x -) f (x -) - U - z;v (x)V + z;o (x + ) W z v,o (x + )
f (x + ) from Leibniz's rule canceled, all functions being continuous. Next,

(G z f ) ′′ (x) = (V + z;o ) ′′ (x) T - x U - z;v (y) W z v,o (y) f (y) dy + (U - z;v ) ′′ (x) T + x V + z;o (y) W z v,o (y) f (y) dy -f (x) ,
where we used that

(V + z;o ) ′ (x)U - z;v (x -) W z v,o (x -) f (x -) - (U - z;v ) ′ (x)V + z;o (x + ) W z v,o (x + ) f (x + ) = -f (x). Recalling that ψ ′′ = (W -z)ψ for ψ = V + z;o , U - z;v , we get (G z f ) ′′ = (W -z)G z f -f , so (H T -z)G z f = f . For the boundary conditions, note that G z f (x) = T G z (x, y)f (y) dy and (G z f ) ′ (x) = T ∂ x G z (x, y)f (y) dy by (A.1). So it suffices to check that x → G z (x, y) satisfies the δ-conditions. But this follows immediately since V + z;o ∈ D(H max T + o ) and U - z;v ∈ D(H max T - v ).
Finally, as H T is self-adjoint, we have by the spectral theorem

f 2 = (H T -z)G z f 2 = T |λ -z| 2 dµ G z f ≥ | Im z| 2 T dµ G z f = | Im z| 2 G z f 2 , i.e. G z f ≤ 1
Im z f . This holds on the subspace of continuous f of compact support. By the density of such functions, G z extends to a bounded operator on L 2 (T) satisfying G z ≤ 1 Im z . We proved that G z f ∈ D(H T ) and (H Tz)G z f = f assuming f is continuous of compact support. For general f ∈ L 2 (T), take a sequence (f j ) of such functions with f j → L 2 f . We showed G z f j ∈ W 2,2 max (T) for each j; this space being complete, we obtain a subsequence (G z f j k ) converging in W 2,2 max (T). The limit must be G z f since G z f is the L 2 limit of G z f j . It follows that (H Tz)G z f = f a.e., and for each x, we have

G z f (x) = lim k G z f j k (x) and (G z f ) ′ (x) = lim k (G z f j k ) ′ (x)
, so we deduce that G z f satisfies the boundary conditions. 

∈ B(T + o ) ∩ B(T - v ). Then for x = (b, x b ), y = (b, y b ) ∈ T , we can also express (A.2) G z T (x, y) =      - φ - z;b (x)φ + z;b (y) R + z (o b )+R - z (o b ) if y ∈ T + x , - φ - z;b (y)φ + z;b (x) R + z (o b )+R - z (o b ) if y ∈ T - x , where φ - z;b (x) = U - z;v (x) U - z;v (o b ) and φ + z;b (x) = V + z;o (x) V + z;o (o b ) . This follows immediately from (2.1), (2.2), since the Wronskian W z v,o (y) = W z v,o (b, y b ) is constant for y b ∈ [0, L b ]. Note that (A.3) φ ± z;b (x) = C z (x b ) ± R ± z (o b )S z (x b ) for x = (b, x b ) ∈ T . On the other hand, G z T (y, x) = G z T (x, y) for x = (b, x b ), y = (b, y b ) ∈ T , since x ∈ T ± y ⇐⇒ y ∈ T ∓ x . This implies f 1 , G z f 2 = f 2 , G z f 1
for any real-valued f j supported on e(b). Hence, for any

f = f 1 + if 2 supported in e, (A.4) f, G z f = f 1 , G z f 1 + f 2 , G z f 2 . Lemma A.2. Fix b ∈ B(T) and suppose R ± λ (o b ) := R ± λ+i0 (o b
) exist and are not both zero. Then for any f supported in e(b),

(A.5) Im f, G λ f = Im R + λ (o b )g - f (λ) + Im R - λ (o b )g + f (λ) |R + λ (o b ) + R - λ (o b )| 2
, where

g ± f (λ) = f, Re φ ± λ;b L 2 [0,L b ] 2 + f, Im φ ± λ;b L 2 [0,L b ] 2 . In particular, if Im R ± λ (o b ) = 0 for all b ∈ B, then Im f, G λ f = 0 for all f ∈ L 2 ( 
T). This lemma was stated without proof in [1, eq (A.15)].

Proof. First note that it suffices to prove this for real-valued f . In fact, for f = f 1 + if 2 , we then use (A.4) and deduce the result, since g We have by (A.2),

+ f 1 (λ) + g + f 2 (λ) = g + f ( 
f, G λ f = -1 R + + R - L b 0 f (x) x 0 φ + (x)φ -(y)f (y) dy + L b x φ -(x)φ + (y)f (y) dy dx . But by (A.3), φ + (x)φ -(y) = C(x)C(y) -R -C(x)S(y) + R + S(x)C(y) -R + R -S(x)S(y), φ -(x)φ + (y) = C(x)C(y) + R + C(x)S(y) -R -S(x)C(y) -R + R -S(x)S(y). Thus, φ -(x)φ + (y) = φ + (x)φ -(y) + (R + + R -)(C(x)S(y) -S(x)C(y)). Hence, f, G λ f = -1 R + + R -[0,L b ] 2 f (x)f (y)φ + (x)φ -(y) dy dx - L b 0 L b x f (x)f (y) (C(x)S(y) -S(x)C(y)) dy dx . Since f is real-valued, we get Im f, G λ f = Im(R + + R -) |R + + R -| 2 [0,L b ] 2 f (x)f (y) Re[φ + (x)φ -(y)] dy dx - Re(R + + R -) |R + + R -| 2 [0,L b ] 2 f (x)f (y) Im[φ + (x)φ -(y)] dy dx = 1 |R + + R -| 2 Im(R + + R -)[ f, Re φ + f, Re φ --f, Im φ + f, Im φ -] (A.6) -Re(R + + R -)[ f, Im φ + f, Re φ -+ f, Re φ + f, Im φ -] . Proof. Consider d dx S ′ z (x)S z (x) √ z - S ′ z (x)S z (x) √ z = S ′′ z (x)S z (x) √ z + |S ′ z (x)| 2 √ z - |S ′ z (x)| 2 √ z - S ′′ z (x)S z (x) √ z = (W (x) -z)|S z (x)| 2 √ z -2i|S ′ z (x)| 2 Im 1 √ z - (W (x) -z)|S z (x)| 2 √ z = -2iW (x)|S z (x)| 2 Im 1 √ z -2i|S ′ z (x)| 2 Im 1 √ z -( √ z - √ z)|S z (x)| 2 .
Integrating this from 0 to L we get

2i Im √ z L 0 |S z (x)| 2 dx -2i Im 1 √ z L 0 W (x)|S z (x)| 2 + |S ′ z (x)| 2 dx = S ′ z (L)S z (L) √ z - S ′ z (L)S z (L) √ z - S ′ z (0)S z (0) √ z + S ′ z (0)S z (0) √ z = -2i Im S ′ z (L)S z (L) √ z = 2i|S z (L)| 2 Im -S ′ z (L) √ zS z (L)
.

As W ≥ 0, we deduce that -S ′ z (L) √ zSz(L) ∈ C + . A.2. A criterion for AC spectrum. We recall the following fact [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF]Theorem XIII.20].

Suppose H is a self-adjoint operator on a Hilbert space H , with resolvent G z . Suppose there exists p > 1 such that for any ϕ in a dense subset of H , we have

(A.8) lim inf η↓0 b a | Im ϕ, G λ+iη ϕ | p dλ < ∞ .
Then H has purely absolutely continuous spectrum in (a, b).

This criterion also appeared later in [START_REF] Klein | Extended states in the Anderson model on the Bethe lattice[END_REF] for p = 2. In [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF], lim inf η↓0 is replaced by sup 0<η<1 , but one sees from the proof that the above statement holds.

Theorem A.6. Suppose a Schrödinger operator H T on a quantum tree satisfies the following: there exists p > 1 such that for any b ∈ T, (A.9) lim inf

η↓0 I 1 Im R + λ+iη (o b ) |S λ+iη (L b )| 2 p dλ < ∞ .
Then H T has purely absolutely continuous spectrum in I.

In particular, if conditions (1.8) and (Green-p) hold, then P-a.e. operator H T has pure AC spectrum in I 1 .

Proof. Let ϕ ∈ L 2 (T ) be continuous, compactly supported in a ball Λ ⊂ T .

E 1 E 0 | Im ϕ, G λ+iη ϕ | p dλ = E 1 E 0 Im Λ×Λ ϕ(x)G λ+iη (x, y)ϕ(y) dx dy p dλ ≤ ϕ 2p ∞ • |Λ| 2(p-1) E 1 E 0 Λ×Λ |G λ+iη (x, y)| p dx dy dλ . (A.10) Now Λ×Λ |G z (x, y)| p dx dy = 1 4 b,b ′ ∈B(Λ) L b 0 L b ′ 0 |G z (x b , y b ′ )| p dx b dy b ′ . Fix b, b ′ ∈ B(Λ). Since for any v ∈ V , y b ′ → G z (v, y b ′ ) is an eigenfunction with eigenvalue z, we have 10 G z (v, y b ′ ) = S z (L b ′ -y b ′ )G z (v, o b ′ ) + S z (y b ′ )G z (v, t b ′ ) S z (L b ′ ) ,
similarly for the first argument, so we deduce that for (b, where we used (2.17) repeatedly in the last step. On the other hand, by (2.13),

x b ), (b ′ , y b ′ ) ∈ T , b = b ′ , G z (x b , y b ′ ) = S z (L b -x b )G z (o b , y b ′ ) + S z (x b )G z (t b , y b ′ ) S z (L b ) (A.11) = S z (L b -x b )S z (L b ′ -y b ′ )G z (o b , o b ′ ) + S z (L b -x b )S z (y b ′ )G z (o b , t b ′ ) S z (L b )S z (L b ′ ) + S z (x b )S z (L b ′ -y b ′ )G z (t b , o b ′ ) + S z (x b )S z (y b ′ )G z (t b , t b ′ ) S z (L b )S z (L b ′ ) . Let b 1 , . . . , b k be a path with b 1 = b and b k = b ′ . We observe that for any b k+1 ∈ N + b k , |ζ z (b 1 ) • • • ζ z (b k )| ≤   (b ′ 2 ;b ′ k+1 ) |ζ z (b 1 ) • • • ζ z (b ′ k )| 2 Im R + z (o b ′ k+1 )   1/2 1 | Im R + z (o b k+1 )| 1/2 ≤ | Im R + z (o b 1 )| | Im R + z (o b k+1 )| 1 
|G z (o b 1 , o b 1 )| = 1 |R + z (o b 1 ) + R - z (o b 1 )| ≤ 1 Im R + z (o b 1 )
, where we used the fact that R ± z (v) is Herglotz. Hence,

|G z (o b 1 ; t b k )| ≤ 1 | Im R + z (o b 1 ) Im R + z (o b k+1 )| 1/2 .
The other G z (v 0 ; v r ) appearing in (A.11) are bounded similarly. For b = b ′ , the first equality in (A.11) should be modified as we don't have an eigenfunction at the point x b = y b . In fact, assuming without loss that x b ≤ y b , we have

(A.12) G z (x b , y b ) = 1 S z (L b ) [S z (L b )C z (x b ) -C z (L b )S z (x b )]G z (o b , y b ) + S z (x b )[G z (t b , y b ) + S z (L b )C z (y b ) -C z (L b )S z (y b )] .
This can be checked by explicit calculation from (A.2) and (2.13): these tell us that where we applied (Green-p) in the last step. It follows that the lim inf on the left-hand side is finite for P-a.e. operator H T . Hence, P-a.e. H T has pure AC spectrum in I 1 .

G z (o b , y b ) = G z (o b , o b )φ -(o b )φ + (y b ) = G z (

Appendix B. The uniform contraction estimate

The proof of Proposition 5.8 goes by analyzing different cases. Following [START_REF] Keller | Absolutely continuous spectrum for random operators on trees of finite cone type[END_REF] we introduce "visible sets of vertices" Vis γ (g, ε) and Vis i Im (g, ε). The idea is that we seek a strict contraction for κ (π) * by estimating some terms in the weighted sum (5.26). By controlling the visibility we ensure that estimates on Q (π)

x,y (g) cos α (π)

x,y (g) do not become "invisible", for example by the weightings q y (g) or γ x (g) becoming too small (which would jeopardize an implied control over c (π)

x and κ (p) * , respectively (recall (5.11)-(5.12)). One sees that Lemmas 4 and 5 in [START_REF] Keller | Absolutely continuous spectrum for random operators on trees of finite cone type[END_REF] hold verbatim for quantum graphs. We then study three cases to prove Proposition 5.8. In the first case, certain γ (π)

x (g) is very small. This implies the terms in the sum defining κ (p) * (g) have different magnitudes, and the result follows from (an improved) Jensen inequality. In the second case it is assumed that all γ (π)

x (x) have essentially the same size, but certain Im g (π) y , y ∈ S * ′ is very small. In this case one proves that certain c (π)

x (g) must be small, so the result follows from [START_REF] Keller | Absolutely continuous spectrum for random operators on trees of finite cone type[END_REF]Lemma 5]. Finally in the third case, it is proved that if g / ∈ B r (H), then there are always π, x, y such that Q (π)

x,y (g) cos α (π)

x,y (g) is uniformly smaller than one. Assuming we are neither in the first nor the second case, one deduces that some c (π)

x (g) is small, concluding the proof again using [START_REF] Keller | Absolutely continuous spectrum for random operators on trees of finite cone type[END_REF]Lemma 5]. See [START_REF] Keller | Absolutely continuous spectrum for random operators on trees of finite cone type[END_REF]Section 4.7] for more details as to how these cases are put together to prove Proposition 5.8.

For quantum graphs, the first and second cases are the same as in [START_REF] Keller | Absolutely continuous spectrum for random operators on trees of finite cone type[END_REF]. Up to this point we are only using calculus and the definition of κ (p) * (g) and c x (g). So more precisely, Propositions 4 and 5 from [START_REF] Keller | Absolutely continuous spectrum for random operators on trees of finite cone type[END_REF] hold without change to quantum graphs.

For the third case however, we need some effort to carry out the adaptation. We start with the following lemma. We may now state the main result of this appendix (corresponding to case 3 in the above discussion). 

Q (π)
x,y (g) ≤ c or cos α (π)

x,y (g) ≤ c, either for some x, y ∈ S * ′ or for x = * ′ and all y ∈ S * \ { * ′ }. is well-defined, since ς 0θ ǫ > 0 by the choice of ǫ * . Take g ∈ H S * , * ′ \ B R(ǫ) and ǫ ∈ [0, ǫ * ). If there is x ∈ S * , * ′ such that g x = H z x , then Q x,y (g) = 0 by definition for all y ∈ S * , * ′ and we are done. So assume that g x = H z x for all x ∈ S * , * ′ . We also assume (B.12) d S 1 (α (π)

x,y (g), 0) ≤ θ 0 for all π ∈ Π and x, y ∈ S * ′ since otherwise we are done. Our aim is to show d S 1 (α (π) * ′ ,y (g), 0) > θ 0 for some π ∈ Π and all y ∈ S * \ { * ′ }.

Recall that H z π(x) = H z x for π ∈ Π and x ∈ S * , * ′ . We set x -H z x ) ≤ 2θ 0 for all π ∈ Π and x ∈ S * , * ′ . See [START_REF] Keller | Absolutely continuous spectrum for random operators on trees of finite cone type[END_REF]Lemma 9] or [START_REF] Keller | On the spectral theory of operators on trees[END_REF]Lemma 4.19] for a proof.

We now proceed with two claims. 

Figure 1 .

 1 Figure 1. The two views of a tree.

1. 2 .

 2 Trees of finite cone type. We define a cone in T to be a subtree of the form T + b or T - b , for some b ∈ B(T). Each cone T + b has an origin t b , and each cone T - b has an end o b .

  the lengths, potentials and coupling constants, respectively. More precisely, b o is endowed a special length L o and potential

  , the ζ z (b) coincide with the multipliers µ m (z). Hence, there are finitely many distinct ζ z (b). Moreover, in this setting, ζ z ( b) = ζ z (b), and ζ z (gb) = ζ z (b), where g is an element of the group acting on the graph. Given an oriented edge b, we will denote by N + b the set of outgoing edges from b, i.e. the set of b ′ with o b ′ = t b and b ′ = b.

  the subtrees starting at o b and t b , respectively. Let G T + o b (x, y) be the Green kernel of the δ-problem on T + o b . This means the usual δ-conditions at v ∈ V (T + o b ), with α o b = 0. Similarly, G T - t b (x, y) is the Green kernel of the δ-problem on T - t b . We will need the notion of Herglotz functions [14] throughout the paper. A Herglotz function (a.k.a. Nevanlinna function or Pick function) is an analytic function from C + to C + . Herglotz functions form a positive cone: if f 1 , f 2 are Herglotz and a 1 , a 2 are positive constants, then a 1 f 1 + a 2 f 2 is Herglotz. Composition of two Herglotz functions is again a Herglotz function. The functions z → √ z and z → -1/z for example are Herglotz. Every Herglotz function f has a canonical representation [14, Theorem II.I] of the form (2.15)

  are Herglotz in the last line, with b + ∈ N + b arbitrary. Hence,

  and (o bo ) + = t bo . This keeps with the convention of § 1.1.2 of indexing functions ψ(b) by their terminus 4 on T + bo and their origin on T - bo . As there are finitely many types of ζ z (b) for b = (v -, v) ∈ B(T + bo ), we see by (2.4) there are finitely many types of R + z (o b ) (this may not be true for R - z (o b ) for such b). We

  is finite by(2.5). So consider any oriented edge b = (t bo , v). Applying (2.6) to b instead of b, we may express 1 ζ z ( b)Sz(L b ) in terms of some C z , S z functions, plus ζ z (b ′ ) for b ′ ∈ N + b . One of them is ζ z ( b o ), whose limit on the real axis exists from Remark 3.3. The rest are precisely those with b ′ ∈ N + bo \ {b}, which also exist by Proposition 3.2. Thus, 1 ζ λ ( b)S λ (L b ) exists for any b = (t bo , v). By induction we get existence for any (v -, v) ∈ T + bo . It follows from (2.5) that R - λ (o b ) exists for all such b

4 >

 4 say the former holds and let v = o e . Then by Lemma A.2, Im f, G λ f > 0 for f = φ - λ;e , since g - 0. In fact, φ - λ;e = 0 would imply C λ (x) = R - λ (o e )S λ (x) for all x ∈ e, contradicting the fact that C λ and S λ are linearly independent. We thus showed that {λ

Proposition 4 . 2 .

 42 Suppose G is a finite Hamiltonian graph. Endow G with a quantum structure G with δ-conditions and let T = G. If λ is an eigenvalue of H T , then λ must be a Dirichlet value, i.e. S λ (L b ) = 0 for some b.

Figure 2 .

 2 Figure 2. The lift of a Hamiltonian cycle is a line ensemble covering all vertices of T. (Each coloured bold line is infinite.)

5. 1 .

 1 The two step expansion estimate. Consider the hyperbolic disc D = {z ∈ C : |z| < 1} equipped with the usual hyperbolic distance metric

  It follows from Remark 5.5 that c x (h) ∈ [-1, 1]. We next define for x ∈ S * , (5.13) p x = Im H z x y∈S * Im H z y , and for x ∈ S * ′ , (5.14)

Proposition 5 . 8 .

 58 Let I ⊂ Σ be compact and satisfy (1.8) and let p > 1. For any * = * j , there exist δ* (I, p) > 0, ǫ * (I, ε D ) > 0, η * (I, ε D ) > 0 and R * : [0, ǫ * ] → [0, ∞) with lim ǫ→0 R * (ǫ) = 0 such that for all ǫ ∈ [0, ǫ * ]* ′ \B R * (ǫ) (H) κ (p) * (z, α, L, g) ≤ 1δ * .

  p . On the other hand, for any b, R - z (t b ) = R + z (o b ), and we know all results hold true for the tree T - t b = T + o b

,

  using Markov's inequality. The right-hand side is bounded uniformly in z ∈ I + i(0,η 0 ], since 2b Im z = 2 Im √ z Im z = 1 Re √ z .This completes the proof of (5.29). The consequence on pure AC spectrum follows from Theorem A.6.Now, assuming c1 ≤ |S z (L b )| ≤ c 2 and |C z (L b )| ≤ c 1 4Qc 2 y ≤ 1 4ywe have by(2.6) 

1 3 ς

 13 1+ς in Lemma 5.11, we get

Remark A. 1 .

 1 Fix an edge b ∈ B(T) and choose o, v with b

  λ) as easily checked and similarly for g - f (λ). So assume f is real. Since b and λ are fixed, we shall denote R ± := R ± λ (o b ) and φ ± := φ ± λ;b , and drop b indices in x b and f b for simplicity.

/ 2 , 10

 210 This holds if the potentials W are symmetric, otherwise one should replace Sz(L bx b ) by Sz(L b )Cz(x b ) -Cz(L b )Sz(x b ). This does not affect the argument.

1 E 0 | 1 E 0 dλ|t b ∼o b 1 

 10101 o b , o b )φ + (y b ), G z (t b , y b ) = G z (o b , o b )φ -(y b )φ + (L b ) = G z (o b , o b )[φ + (y b )φ -(L b ) -(R + + R -)(C z (L b )S z (y b ) -S z (L b )C z (y b ))] = G z (o b , o b )[C z (L b ) -R -S z (L b )]φ + (y b ) + C z (L b )S z (y b ) -S z (L b )C z (y b ).Here we passed from φ-(y b )φ + (L b ) to φ + (y b )φ -(L b ) as in Lemma A.2. Inserting this into the RHS of (A.12) gives G z (o b , o b )φ -(x b )φ + (y b ) = G z (x b , y b ) as asserted.In any case, for any b ∈ B,L b 0 |S z (x b )| p dx b ≤ c, uniformly in λ + iη ∈ (E 0 , E 1 ) + i(0, 1) (in fact, λ → S λ (x) is analytic). Recalling (A.10), (A.11), we have proved thatE Im ϕ, G λ+iη ϕ | p dλ ≤ c ϕ 2p ∞ • |Λ| 2(p-1) b,b ′ ∈B(Λ) E Im R + z (o b ) Im R + z (o b ′′ )| p/2 |S z (L b )S z (L b ′ )| p ,where b ′′ is any edge with o b ′′ = t b ′ . Applying Cauchy-Schwarz and (A.9), we see that (A.8) is satisfied for any continuous ϕ of compact support. Hence, H T has pure AC spectrum in (E 0 , E 1 ).In particular, if (Green-p) holds for a random tree, then by Fatou's lemma and Fubini, Im R + λ+iη (o b ) |S λ+iη (L b )| 2 λ+iη (o b ) |S λ+iη (L b )| 2 p dλ < ∞ ,

Lemma B. 1 . 1 √ 1 = ε 1 (

 1111 Given z ∈ H, we havecot ( √ zL) ∈ H. In particular, assuming W ≡ 0, we have ζ z (b) sin ( √ zL b ) ∈ H.Proof. In Lemma A.5 the more general fact that -S ′ z (L)√ zSz(L) is Herglotz is proved. Specialising to W ≡ 0 we get thatcot √ zL is Herglotz.For the second claim, from (2.5) it follows that-1 √ zS z (L b )ζ z (b) = R + z (t b ) √ z -S ′ z (L b ) √ zS z (L b ) ,so by the previous part and the fact thatR + z (t b ) √ z ∈ H, we get that -zSz(L b )ζ z (b) ∈ H. Again, specialising to W ≡ 0 completes the proof.In analogy to(2.4), saying that ζ z (b) = C z (L b ) + S z (L b )R + z (o b ), given g ∈ H S o,o ′ , we define ζ z g ( * ′ ) = ζ z g ( * ′ , α, L) by (B.1) ζ z g ( * ′ ) = cos √ zL + g * ′ sin √ zL . Then ζ z H ( * ′ , α * ′ , L * ′ ) = ζ z 0 ( * , * ′ ) as expected. Moreover, from (5.23), one easily checks that ζ z g ( * ′ ) = 1 -φ * ′ (g) sin √ zL+cos √ zL , so that -1 sin( √ zL)ζ z g ( * ′ ) = φ * ′ (g)-cot √ zL, which implies that sin( √ zL)ζ z g ( * ′) ∈ H by Lemma B.1. We consider the argument of vectors related to the operator's Green function. The convention is that arg z ∈ (-π, π]. Moreover, we denote byd S 1 (•, •) the translation invariant metric in S 1 which is normalized by d S 1 (0, π) = π. Denote Z z v = ζ z 0 (v -, v) sin √ zL 0 v , the unperturbed ζ z sin √ zL of the edge (v -, v).We define a quantity, related to the 'minimal angle' of this with the real axis, by (B.2)θ 0 := 1 10 min {d S 1 (arg Z z k , β) | β ∈ {0, π}, z ∈ I + i[0, 1], k ∈ A} ,where we denoted Z z k = Z z v if v has label k. In view of Lemma B.1, since I ⊂ Σ is chosen compact, the minimum exists and we have θ 0 > 0. We also letς 0 = min {Im H z k : z ∈ I + i[0, 1], k ∈ A} ,(B.3) ς 1 = max {|Γ z k | : z ∈ I + i[0, 1], k ∈ A} , where we denoted H z k = H z v for v of label k and similarly for Γ. Again ς 0 > 0. We shall also need the function (B.4) ε

Proposition B. 2 .

 2 Let I ⊂ Σ be compact and satisfy(5.28).There is c = c(θ 0 ) < 1, ǫ * (θ 0 , ς 0 , I, ε D ) > 0 and R : [0, ǫ * ) → [0, ∞) with lim ǫ→0 R(ǫ) = 0 such that for all ǫ ∈ [0, ǫ * ), if • g ∈ H S * , * ′ \ B R(ǫ) (H) and g * ′ = g * ′ (z, α, L) is defined by (5.23)-(5.24), • |αα 0 * ′ | ≤ ǫ and |L -L 0 * ′ | ≤ ǫ, • Im z ∈ [0, η * ] for some η * (θ 0 , ε D ), then there is π ∈ Π with

Proof. 2 ǫ ς 0

 20 First recall that for ξ i ∈ C (B.5) d S 1 (arg(ξ 1 ), arg(ξ 2 )) = d S 1 arg(ξ 1 ξ2 ), 0 = d S 1 arg ξ 1 ξ 2 , 0 .Also, for α, β, γ ∈ S 1 , we have by the triangle inequality and translation invariance,(B.6) d S 1 (α + β, γ) ≥ d S 1 (α, 0)d S 1 (β, γ).Moreover, as α x,y (g) = arg((g x -H z x )(g y -H z y )), we have by (B.5), (B.7) d S 1 (α x,y (g), 0) = d S 1 (arg(g x -H z x ), arg(g y -H z y )). By Lipschitz continuity, we may find c I such that for all z ∈ I +i[0, 1] andL ∈ i∈A [L 0 i -1, L 0 i + 1], we have (B.8) sin √ z(L -L 0 i ) ≤ c I • |L -L 0 i | . We also take c ′ define R : [0, ǫ * ) → [0, ∞) by R(ǫ) = ε -1 1 (θ ǫ ), with θ ǫ = (1 + θ 0 ) θ 0 M I,D ǫ ,where ε 1 (r) is defined in (B.4). By[START_REF] Keller | Absolutely continuous spectrum for random operators on trees of finite cone type[END_REF] Lemma 10] or[START_REF] Keller | On the spectral theory of operators on trees[END_REF] Lemma 2.18], R(ǫ) = θ (ς 0 -θǫ)

  π ∈ Π and x ∈ S * ′ , and (B.14) d S 1 arg(τ (π) * ′ ), arg(g (π)

Claim 1 :

 1 There exists π ∈ Π such that |τ(π) * ′ | ≥ (1+θ 0 ) θ 0 M I,D ǫ. Proof of Claim 1. We assumed that g / ∈ B R(ǫ) , so there is x ∈ S * , * ′ such that γ x(g) > R(ǫ). By the choice of * ′ w.r.t. (C2) there is π such that π(x) ∈ S * ′ . By (B.[START_REF] Carlson | Quantum Cayley graphs for free groups[END_REF]) and the definitions (B.4) of ε 1 and R above, we obtain|τ (π -1 ) * ′ | ≥ |g (π -1 ) π(x) -H z π(x) | = |g x -H z x | ≥ ε 1 (R(ǫ)) = θ ǫ = (1 + θ 0 ) θ 0 M I,D ǫ .Claim 2: Denote Z z (v) = ζ z (v -, v) sin √ zL v and w = α-α 0 * ′ √ z . Then we have g (π) * ′ -H z * ′ = Z z g (π) ( * ′ )Z z 0 ( * ′ ) τ (π) * ′w 1

  By [1, Theorem 2.1], which remains true in our context, if we define H max

	T ± u	on T ± u to be the Schrödinger operator -∆ + W with domain D(H max T ± u

If W b is symmetric, i.e. W b (L bx b ) = W b (x b ), then S ′ z (L b ) = Cz(L b ), so R - z (t b ) = R + z (o b ).

The notation is probably a bit awkward since forv ∈ T + bo , v is the terminus of b yet R ± z (v) := R ± z (o b). We stress however that R ± z is not a function of the vertex o b alone but depends on the whole directed edge b, so it should really be read as a function ψ(b), which we index by the terminus.

This property is why we need (C1); it is not necessarily true under (C1*). cf. footnote in § 1.2.

A measure is unimodular if it invariant under the moving of the root. More precisely, it should satisfyo ′ ∼o f ([G, o, o ′ ]) dP([G, o]) = o ′ ∼o f ([G, o ′ , o]) dP([G, o]). See [10, §1.4] for details.
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5.4. Uniform inverse moments. We now aim to prove Theorem 1.8. The arguments of this section are inspired from their analogs [START_REF] Aizenman | Absolutely continuous spectrum implies ballistic transport for quantum particles in a random potential on tree graphs[END_REF][START_REF] Anantharaman | Quantum ergodicity for the Anderson model on regular graphs[END_REF] in case of regular combinatorial graphs.

Note that (P0) implies that the distributions ν j of α ω v have compact support supp ν j ⊆ [α minǫ, α max + ǫ]. In particular, all moments

Note that here R + z (o b ) is random; even if ℓ(t b ) = ℓ(t b ′ ) this doesn't imply that R + z (o b ) and R + z (o b ′ ) are equal. However their distribution are the same, which justifies the notation for the purposes of this section. We also let Q = max v∈T deg(v) -1 and q = min v∈T deg(v) -1.

Let I ⊂ Σ be compact with I ∩ D = ∅. Fix η 0 (I, ε D ) as in Theorem 5.9. Given δ ∈ (0, 1) and ǫ > 0, we introduce (5.30) σ ǫ ac (δ) = {λ ∈ R : P(Im R + λ+iη (j) > δ) > δ ∀j ∈ A, ∀η ∈ (0, η 0 )} .

Lemma 5.10. There exist ǫ 0 , δ > 0 such that I ⊆ σ ǫ ac (δ) for ǫ ≤ ǫ 0 .

Proof. By Theorem 5.9, fixing p = 2 we may find ǫ 0 (I) and

if δ > 0 is small enough, yielding a contradiction. Here, we used Cauchy-Schwarz and the bound

Hence, I ⊆ σ ǫ ac (δ) for some δ > 0 as claimed.

Given z ∈ C + and j ∈ A, let

Proof. By (2.17) we have (5.31) Im

Recalling the matrix M = (M i,j ) we thus have by independence,

Now Re φ ± = C(x) ± (Re R ± )S(x) and Im φ ± = (± Im R ± )S(x). Hence, the term in curly brackets is

On the other hand,

which is exactly the expression at the end of (A.7). This completes the proof of (A.5).

In fact, we don't need to go through all the above calculations, just note that in (A.6), we get Im

Proof of Lemma 2.4. We may find an L 2 solution U - z;v on T - v satisfying the δ-conditions at vertices w / ∈ {o b , v}, the Neumann condition at o b and U - z;v (v) = 1. As in (2.1), we get

Similarly, we find

To see the Herglotz property [START_REF] Hislop | Anderson localization for radial tree-like random quantum graphs[END_REF], note that if H max

. On the other hand, the left-hand side can also be computed by integration by parts on every edge. All the boundary terms except the one at u cancel thanks to the self-adjoint conditions. We thus obtain

, implying the result by taking u = o b . The claim for R - z is similar: the preceding proof shows that in the twisted view,

is Herglotz, and the negative sign is there to pass to the coherent view. These claims in turn show by (2.13)

is Herglotz, we use the same approach. First,

. On the other hand, the left-hand side is 2 Re V + z;u , H max

Integrating by parts yields

As before,

Since Im(z √ z) = |z| Im √ z, the RHS is clearly positive if W ≥ 0 and α v ≥ 0 for all v.

We next prove the current relations. Since V + z;o satisfies the δ-conditions, we have

, the claim for R - z follows similarly. Finally, if the terms are defined for Im z = 0, then equality follows from J ′ z (x b ) = 0.

Remark A.3. The method above also shows that z → -S ′ z (L)

If the potentials are symmetric, so that S ′ z (L) = C z (L), we also get Im( Cz(L) Sz(L) ) ≤ 0.

9 Though it is known that z → ψ, G z ψ is Herglotz for any ψ ∈ L 2 (T) by the spectral theorem, we followed this somehow roundabout argument to deduce the same holds for z → G z (v, v). See the appendix of [START_REF] Anantharaman | Empirical spectral measures of quantum graphs in the Benjamini-Schramm limit[END_REF] for a more general result.

Recall that

Sz(L b ) ≥ 0. Thus, we also get Im(S z (L b )ζ z (b)) ≥ 0 for any b.

Above we have shown that

. We would like to replace the L 2 norm by a lower bound that does not depend on z, v or any of the potentials. This is proved in the following lemma:

and let K ⊂ C + be a compact set. Then there exists C = C(K, W ∞ ) > 0 such that for all z ∈ K and all v ∈ V (T), we have Im R + z (v) ≥ C Im z.

Proof. We begin with the following general fact: let M, ℓ > 0. There exists c > 0 such that for any potential Q on [0, ℓ] with Q ∞ ≤ M , and any solution of

Indeed, suppose to the contrary there are

Sz(L) is Herglotz. We also have:

by definition (B.1). Thus, 

We thus get for the permutation π ∈ Π taken from Claim 1 and all y ∈ S * \ { * ′ }

where we used (B. The first distance is controlled again by (B.15) with ξ = 0. For the second distance, we observe that Re z is not a Dirichlet value for L 0 * ′ , L by assumption (5.28), so the argument tends to 0 as Im z ↓ 0. So for Im z small enough, the last distance is ≤ θ 0 . This yields d S 1 α (π) * ′ ,y (g), 0 > 5θ 0θ 0θ 0 > θ 0 . The assertion follows by letting c := cos θ 0 .