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ABSTRACT

Context. The large quantity of high-quality asteroseismic data that have been obtained from space-based photometric missions and the
accuracy of the resulting frequencies motivate a careful consideration of the accuracy of computed oscillation frequencies of stellar
models, when applied as diagnostics of the model properties.
Aims. Based on models of red-giant stars that have been independently calculated using different stellar evolution codes, we inves-
tigate the extent to which the differences in the model calculation affect the model oscillation frequencies and other asteroseismic
diagnostics.
Methods. For each of the models, which cover four different masses and different evolution stages on the red-giant branch, we com-
puted full sets of low-degree oscillation frequencies using a single pulsation code and, from these frequencies, typical asteroseismic
diagnostics. In addition, we carried out preliminary analyses to relate differences in the oscillation properties to the corresponding
model differences.
Results. In general, the differences in asteroseismic properties between the different models greatly exceed the observational preci-
sion of these properties. This is particularly true for the nonradial modes whose mixed acoustic and gravity-wave character makes
them sensitive to the structure of the deep stellar interior and, hence, to details of their evolution. In some cases, identifying these
differences led to improvements in the final models presented here and in Paper I; here we illustrate particular examples of this.
Conclusions. Further improvements in stellar modelling are required in order fully to utilise the observational accuracy to probe in-
trinsic limitations in the modelling and improve our understanding of stellar internal physics. However, our analysis of the frequency
differences and their relation to stellar internal properties provides a striking illustration of the potential, in particular, of the mixed
modes of red-giant stars for the diagnostics of stellar interiors.
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1. Introduction

Space-based photometric observations of oscillations in red-
giant stars with the CoRoT (Baglin et al. 2013), Kepler (Borucki
2016) and, since 2018, the TESS (Ricker et al. 2014) missions
have provided a huge set of accurate oscillation frequencies and
other properties for these stars. These data provide the basis for
detailed investigations of stellar structure and evolution, as well
as the application of stellar properties in other areas of astro-
physics, including the study of extra-solar planetary systems and
the structure and evolution of the Galaxy. A necessary compo-
nent of almost any analysis of such asteroseismic data is the use
of modelling of stellar structure and evolution and the compu-
tation of oscillation frequencies for the resulting models. Given
the complexity of stellar modelling, it is a non-trivial task to se-
cure the required numerical and physical accuracy. Specifically,
a full utilisation of the analysis of the observations requires that
the numerical errors in the computed properties are substantially
smaller than the uncertainties in the observations. Although ad-
equate convergence of the computations can, to some extent, be
tested by comparing results obtained with different numbers of
meshpoints or timesteps in the models, more subtle errors in the
calculations can probably only be uncovered through compar-
isons of the results of independent codes under carefully con-
trolled conditions.

Extensive comparisons of this nature were organised for
main-sequence stars in connection with the CoRoT project
(Lebreton et al. 2008). Detailed comparisons between stellar
models for the Red Giant Branch stage available in the litera-
ture have been discussed by Cassisi et al. (1998), Salaris et al.
(2002), and Cassisi (2017). In the Aarhus Red Giant Challenge,
we have so far concentrated on the numerical properties of the
computation of the stellar models. Thus, the models are com-
puted using, to the extent possible, the same input physics and
basic parameters, and the comparisons are carried out at care-
fully specified stages in the evolution along the red-giant branch.
Differences between the model properties, including their os-
cillation frequencies, should therefore reflect differences (and
errors) in the numerical implementation of the solution of the
equations of stellar evolution, or in the implementation of the
physics. Also, we considered the effects of the resulting model
differences on the computed oscillation frequencies, hence pro-
viding a link to the asteroseismic observations, with the goal of
strengthening the basis for the analysis of the results of space-
based photometry.

The initial analysis has focused on models up to and includ-
ing the red-giant branch, emphasising the latter stage where en-
ergy production takes place in a hydrogen-burning shell around
an inert helium core. Silva Aguirre et al. (2020, Paper I) pre-
sented model calculations for selected models with masses of
1, 1.5, 2, and 2.5 M⊙ on the main sequence and the red-giant
branch; the models analysed in detail were characterised in terms
of radii chosen such that the models are of interest in connec-
tion with the asteroseismic investigations. The calculations used
nine different stellar-evolution codes; Paper I discusses the dif-
ferences between the results in terms of the overall properties
of the models. The present paper considers oscillation calcula-
tions, using a single oscillation code, for the models presented
in Paper I; this includes some discussion of the relation between
the stellar structure and oscillation properties. A striking result
is that the oscillation properties, in accordance with the poten-
tial for asteroseismic analyses, serve as a ‘magnifying glass’ on
the differences in the stellar models, highlighting aspects where

different codes yield results that are significantly different at the
accuracy of the asteroseismic observations.

Further papers in this series will extend the analysis to the
so-called clump (or horizontal-branch) stars where, in addition
to the hydrogen-burning shell, there is helium fusion in the core;
this leads to a rather complex structure and pulsation proper-
ties of the stars, with interesting consequences for the compar-
ison between models and observed oscillations. In addition, we
shall consider comparisons between models computed with ‘free
physics’, where each modeller chooses the parameters and phys-
ical properties that would typically be used in the analysis of,
for example, Kepler data. Finally, since the computation of stel-
lar oscillations for these evolved models involves a number of
challenges, an additional consideration of the comparisons be-
tween independent pulsation codes, for a number of representa-
tive models, is also planned.

2. Properties of red-giant oscillations

2.1. General properties

We consider oscillations of small amplitude and neglect effects
of rotation and other departures from spherical symmetry. Then
the modes depend on colatitude θ and longitude φ as spheri-
cal harmonics, Ym

l
(θ, φ). Here the degree l measures the total

number of nodes on the stellar surface and the azimuthal or-
der m defines the number of nodal lines crossing the equator.
Frequencies of spherically symmetric stars are independent of
m. In addition, a mode is characterised by the number and prop-
erties of the nodes in the radial direction, which define the ra-
dial order n. For reviews of the properties of stellar oscillations
see, for example, Aerts et al. (2010); Chaplin & Miglio (2013);
Hekker & Christensen-Dalsgaard (2017); we discuss problems
with the definition of the radial order in Section A.4.

Fig. 1. Characteristic frequencies S l/2π for l = 1 and 2 (dashed
and dot-dashed; cf. Eq. 1) and N/2π (solid; cf. Eq. 2) in the
ASTEC 1 M⊙, 7 R⊙ model. The horizontal red band marks the re-
gion around νmax, the estimated frequency of maximum oscilla-
tion power (cf. Eq. 8), where observed modes are expected. The
blue and orange areas indicate the corresponding regions of g-
and p-mode behaviour, for l = 1. The glitch in the buoyancy fre-
quency is caused by the near-discontinuity in the hydrogen abun-
dance resulting from the penetration, during the first dredge-up,
of the convective envelope into a region where the composition
has been modified by nuclear reactions (see also Paper I).
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Radial modes, with l = 0, are purely acoustic, that is, stand-
ing sound waves. Modes with l > 0 in red giants all have a
mixed character, behaving as acoustic modes in the outer parts
of the star and as internal gravity waves in the core. This is con-
trolled by two characteristic frequencies of the star: the acoustic
(or Lamb) frequency

S l =
Lc

r
, (1)

and the buoyancy (or Brunt-Väisälä) frequency N, given by

N2 = g

(

1

Γ1

d ln p

dr
− d ln ρ

dr

)

. (2)

Here L =
√

l(l + 1), c is adiabatic sound speed, r is distance
to the centre, g is local gravitational acceleration, p is pressure,
ρ is density, and Γ1 = (∂ ln p/∂ lnρ)ad is adiabatic compress-
ibility, the derivative being at constant specific entropy. These
frequencies are illustrated in Fig. 1 for a 1 M⊙, 7 R⊙ model, to-
gether with the typical observed frequency range around the es-
timated frequency νmax at maximum oscillation power (see be-
low; also Hekker & Christensen-Dalsgaard 2017). In the outer
region, where ν > S l and ν > N (i.e. the p-mode cavity), the
mode behaves acoustically, while in the core where ν < S l and
ν < N (i.e. the g-mode cavity) the mode behaves like an inter-
nal gravity wave. In the intermediate region, the mode has an
exponential behaviour; the extent of this so-called evanescent
region controls the coupling between the acoustic and gravity-
wave behaviour in the given mode. As a result of these prop-
erties, all nonradial modes, with l > 0, have a mixed nature,
with sensitivity both to the outer layers and to the core. For
detailed discussions of such mixed modes see, for example,
Hekker & Christensen-Dalsgaard (2017); Mosser et al. (2018);
and references therein. Here we present some of the properties
of the modes which are useful for the following analysis.

Acoustic modes of low degree have the following asymptotic
behaviour (Shibahashi 1979; Tassoul 1980; Gough 1993):

νnpl ≈ ∆ν
(

np +
l

2
+ ǫp

)

+ dnpl , (3)

for the cyclic frequencies νnp l. Here the asymptotic expression
for the large frequency separation ∆ν is

∆ν = ∆νas =

(

2

∫ R∗

0

dr

c

)−1

, (4)

that is, the inverse of twice the sound travel time between
the centre and the so-called acoustic surface (Houdek & Gough
2007), at a distance R∗ from the centre, in the stellar atmo-
sphere. In the strict asymptotic analysis, ǫp is a constant and
the small higher-order effects are contained in dnpl (see also
Mosser et al. 2013). Here, however, we adopt the formalism
of Roxburgh & Vorontsov (2013) and regard ǫp as a phase
function depending on frequency but not on degree, deter-
mined by the properties of the near-surface layers (see also
Christensen-Dalsgaard & Pérez Hernández 1992); this allows us
to assume that dnpl is 0 for l = 0. For the purely acoustic radial
modes, Eq. (3) provides an approximation to the frequencies as
a function of mode order np; for the mixed nonradial modes the
acoustically dominated modes (known as p-m modes) approx-
imately satisfy the relation for an order np characterising the
acoustic behaviour.

Observed and computed acoustic-mode frequencies follow
Eq. (3) fairly closely, to leading order, although the value of

the large frequency separation obtained from Eq. (4) is not suf-
ficiently accurate to be applied to comparisons with observa-
tions. In the analysis of observed frequencies, various techniques
can be used to determine the large frequency separation (e.g.
Huber et al. 2009; Mosser & Appourchaux 2009; Hekker et al.
2010; Kallinger et al. 2010). The relation between different mea-
sures of the large frequency separation for stellar models was
discussed by Belkacem et al. (2013) and Mosser et al. (2013).
Here we follow White et al. (2011) and Mosser et al. (2013) and
consider ∆νfit obtained from a weighted least-squares fit to fre-
quencies of radial modes around the frequency νmax of maximum
power (see Eq. 8 below), with a weight reflecting an estimate of
the mode power. Some details on the fit are provided in Section
A.3. We do note, however, that this procedure does not fully rep-
resent the weighting in the analyses of observational data, which
are typically done directly from the observed power spectrum,
for example through a cross-correlation analysis, without refer-
ence to the individual mode frequencies. Even so, obtaining∆νfit

from a fit to the computed frequencies provides a convenient way
to compare the results for different codes.

Modes dominated by internal gravity waves require density
variations over spherical surfaces in the star and are therefore
only found for l > 0. For such pure g modes, the periods Πngl =

1/νngl satisfy

Πngl = ∆Πl

(

ng + ǫg
)

(5)

(e.g. Shibahashi 1979; Tassoul 1980), where

∆Πl =
Π0

L
, Π0 = 2π2

(
∫

N
dr

r

)−1

, (6)

the integral being over the gravity-wave cavity, and ǫg is a phase,
the so-called gravity offset, that may depend on l. Mixed modes
dominated by the gravity-wave behaviour (the g-m modes) ap-
proximately satisfy Eq. (5), with ng being an order characterising
the g-mode behaviour (see also Fig. 2 below), and hence provide
a measure of ∆Πl. However, additional important characteristics
are provided by the measure q of the coupling between the g-
and p-mode cavities and ǫg, which provide information about
the evanescent region and the upper part of the g-mode cav-
ity (e.g. Takata 2016; Hekker & Christensen-Dalsgaard 2017;
Pinçon et al. 2019).

2.2. Observational properties

The information available from the observed frequencies of
oscillation depends strongly on the quality of the data. The
most visible modes are the acoustically dominated (p-m) modes,
which provide information about the overall properties of the
star. They are characterised by the large frequency separation ∆ν
(cf. Eq. 4) and the frequency νmax of maximum power. It follows
from homology scaling that, approximately, ∆ν ∝ ρ̄1/2 where ρ̄
is the mean density of the star. Specifically,

∆ν ≃
(

M

M⊙

)1/2 (

R

R⊙

)−3/2

∆ν⊙ , (7)

valid for both ∆νas and ∆νfit, where ∆ν⊙ is the corresponding
value for the Sun. A characteristic observed value is ∆ν⊙ ≃
135.1 µHz. Also, observationally (Brown et al. 1991) and with
some theoretical support (Belkacem et al. 2011) νmax scales as
the acoustic cut-off frequency, such that

νmax ≃
M

M⊙

(

R

R⊙

)−2 (

Teff

Teff,⊙

)−1/2

νmax,⊙ , (8)
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where νmax,⊙ ≃ 3090 µHz is the frequency at maximum power
for the Sun. In an extensive analysis of a large sample of
Kepler red giants, Yu et al. (2018) found relative uncertainties in
the large frequency separation ∆ν below 0.1 %, in some cases,
with a median value of 0.6 %, while the median uncertainty
in νmax was 1.6 %. From the scaling relations in Eqs. (7) and
(8), stellar masses and radii can be determined (see, for exam-
ple, Kallinger et al. 2010; Yu et al. 2018). In practice, departures
from the strict scaling relations, for example caused by depar-
tures from homology, need to be taken into account (see Hekker
2019, for a review); we return to this below in connection with a
discussion of the scaling in Eq. (7).

The g-m modes, with a large component of internal grav-
ity wave, provide strong constraints on stellar properties (for an
early example, see Hjørringgaard et al. 2017). With improved
analysis, further details on the g-m mode properties are be-
coming available (Mosser et al. 2018), providing further con-
straints on the stellar internal properties. Uncertainties in in-
dividual frequencies for both acoustic and mixed modes are
as low as 0.01 µHz (Corsaro et al. 2015; de Montellano et al.
2018), corresponding to relative uncertainties of order 10−4.
Analysis of observed data on mixed modes in red giants has
so far mainly been carried out in terms of determinations of
the asymptotic properties characterised by ∆Πl, q and ǫg as ob-
tained from fitting a full asymptotic expression to the observed
frequencies. (e.g. Bedding et al. 2013; Mosser et al. 2014, 2017,
2018). Uncertainties in the dipolar period spacing ∆Π1 of around
0.1 s were quoted by Hekker et al. (2018); Mosser et al. (2018).
Detailed model fits to individual frequencies should also be fea-
sible but have so far apparently not seen much use.

2.3. Oscillation properties of red-giant models

To compare the oscillation properties of the models involved
in the challenge the equations of adiabatic oscillations were
solved using the code ADIPLS (Christensen-Dalsgaard 2008a).
This code was compared in detail with other pulsation codes
by Moya et al. (2008) and, more recently as part of the present
project, with the GYRE code (Townsend & Teitler 2013). Owing
to the condensed core of red-giant stars and the resulting very
high value of the buoyancy frequency, modes of very high ra-
dial order are involved, requiring some care in the preparation
of the models for the oscillation calculations; some details of
these procedures are discussed in Section A.1; in Section A.2
we estimate the numerical errors in the resulting frequencies,
both the intrinsic errors of the oscillation calculation and the ef-
fects on the frequencies from the errors in the computation of
the ASTEC models, which are used for reference in the com-
parisons. Comparisons between models should be carried out
at fixed mode order, requiring a determination of the order of
the computed modes. For dipolar modes, this gives rise to some
complications, compounded by inconsistencies in the structure
very near the centre in some models, as discussed in Section
A.4. Computed frequencies for all models, as well as the model
structure, are provided at the website of the project.1

To characterise the properties of the modes a very useful
quantity is the normalised mode inertia,

E =

∫

V
ρ|δδδr|2dV

M|δδδr|2
phot

, (9)

1 https://github.com/vsilvagui/aarhus RG challenge

Fig. 2. Top: Mode inertia (cf Eq. 9) for modes of degree l =
0 (solid line, circles), 1 (dashed line, triangles), and 2 (dot-
dashed line, squares), in the ASTEC 1 M⊙, 7 R⊙ model. Bottom:
Separation between periods of adjacent modes with l = 1 in
this model, plotted against frequency. The horizontal dashed line

shows the asymptotic period spacing ∆Π1 = Π0/
√

2 (cf. Eqs. 5
and 6). The heavy vertical dotted lines show the frequency inter-
val where power is half its maximum value, according to the fit
of Mosser et al. (2012) (see also Section A.3).

where δδδr is the displacement vector and ‘phot’ indicates the
photospheric value, defined at the location where the temper-
ature equals the effective temperature; the integral is over the
volume V of the star. In Fig. 2 the top panel shows the inertia
for a 1 M⊙, 7 R⊙ model computed with ASTEC. Predominantly
acoustic (p-m) modes have their largest amplitude in the outer
layers of the star, where ρ is small, and hence E is relatively
small, while g-m modes have large inertias. For the radial modes,
the inertia decreases strongly with increasing frequency at low
frequency, while it is almost constant at higher frequency. For
l = 1 and 2, there is evidently a very high density of modes,
most of which have inertia much higher than those of the radial
modes and hence are predominantly of g-m character. However,
there are clear acoustic resonances where the inertia approaches
the radial-mode values and the modes are predominantly of p-
m character. The frequencies of these resonances satisfy the
asymptotic relation in Eq. (3); in particular, l = 0 and 2 modes
separated by one in the acoustic order np have frequencies at a
small separation determined by the term in dnpl. It should also

4
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be noticed that the minimum inertia at the resonances is sub-
stantially lower for l = 2 than for l = 1: as shown in Fig. 1
the evanescent region is broader for l = 2, leading to a weaker
coupling and hence to a more dominant acoustic character of the
mode at a resonance.

This mixed character of the modes is also visible in the bot-
tom panel of Fig. 2, which shows the period spacing between ad-
jacent dipolar modes in the same model. For most of the modes,
particularly at low frequency, the computed period spacing is
very close to the asymptotic value, indicated by the horizon-
tal dashed line. However, at the acoustic resonances where the
modes take on a p-m character the period spacing is strongly re-
duced; we note that these resonances take place at frequencies
approximately satisfying Eq. (3).

3. Results of model comparisons

3.1. Stellar models

We computed oscillation properties of the models highlighted in
Paper I. We note in particular that two sets of models have been
considered. In one (in the following the solar-calibrated models),
the mixing-length parameter αMLT was adjusted in each code to
achieve a photospheric radius of 6.95508 × 108 m at the age of
4.57 Gyr of main-sequence evolution for the 1 M⊙ model. In the
second (in the following the RGB-calibrated models), αMLT was
fixed for each track by requiring a specific effective temperature
Teff for the 7 R⊙ models on the 1 and 1.5 M⊙ tracks and the 10 R⊙
models on the 2 and 2.5 M⊙ tracks. In the present section, we
generally focus on the solar-calibrated models; results for the
RGB-calibrated models are provided in Appendix B.

The following evolution codes were used:

– ASTEC: the Aarhus STellar Evolution Code; see
Christensen-Dalsgaard (2008b).

– BaSTI: Bag of Stellar Tracks and Isochrones; see
Pietrinferni et al. (2013).

– CESAM2k: Code d’Evolution Stellaire Adaptatif et
Modulaire, 2000 version; see Morel & Lebreton (2008).

– GARSTEC: the GARching STellar Evolution Code; see
Weiss & Schlattl (2008).

– LPCODE: the La Plata stellar evolution Code; see
Miller Bertolami (2016).

– MESA: Modules for Experiments in Stellar Astrophysics, ver-
sion 6950; see Paxton et al. (2013).

– MONSTAR: the Monash version of the Mt Stromlo evolution
code; see Constantino et al. (2015).

– YaPSI: the Yale Rotational stellar Evolution Code, as used in
the Yale-Potsdam Stellar Isochrones; see Spada et al. (2017).

– YREC: the Yale Rotating stellar Evolution Code; see
Demarque et al. (2008).

We note that in order to avoid effects of different extents of
the atmosphere in models from different codes for a given set
of parameters, the models were truncated in the atmosphere at a
height corresponding to the code with the smallest atmospheric
extent, for the given case.

Further details about the codes and the models are provided
in Paper I.

3.2. Acoustic properties

We first consider the properties of the acoustically-dominated
oscillations, as characterised by the radial modes. As an indica-
tion of the frequency differences between different codes, Fig. 3

Fig. 3. Root-mean-square relative differences, in the solar-
calibrated case, in radial-mode frequencies relative to the ASTEC
results, in the sense (model) - (ASTEC); the different codes are
identified by the symbol shape and colour and labelled by the ab-
breviated name of the code: BAS (BaSTI), CES (CESAM), GAR
(GARSTEC), LPC (LPCODE), MES (MESA), MON (MONSTAR),
YAP (YaPSI), and YRE (YREC).

shows the root-mean-square relative differences in radial-mode
frequencies between the various codes and ASTEC, including all
modes up to the acoustic cut-off frequency. We note that they are
far bigger than the observational uncertainties of the individual
frequencies (cf. Section 2.2).

Fig. 4. Relative differences for solar-calibrated models in the
large frequency separations ∆νfit obtained from fits to the radial-
mode frequencies as functions of mode order (cf. Section
A.3), compared with the ASTEC results, in the sense (model) –
(ASTEC); the different codes are identified by the symbol shape
and colour (cf. caption to Fig. 3).

The large frequency separation between acoustic modes
is an important asteroseismic diagnostics. As discussed in
Section 2.1, we characterise the observable values by the result
∆νfit of fitting the computed radial-mode frequencies to Eq. (3),
representing ǫp by a quadratic expression in mode order (cf.
Section A.3). Table 1 provides values obtained from these fits
in the solar-calibrated case, and Fig. 4 shows relative differ-
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Table 1. Large frequency separations ∆νfit in µHz obtained from fits to radial-mode frequencies as functions of mode order (cf.
Eq. 3 and Section A.3) for solar-calibrated models.

M/M⊙ R/R⊙ ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 7.087 7.093 7.100 7.089 7.090 7.077 7.084 7.100 7.090

1.0 12.0 3.130 3.133 3.137 3.131 3.130 3.124 3.128 3.137 3.131
1.5 7.0 8.780 8.783 8.799 8.774 8.789 8.768 8.762 8.778 8.785
1.5 12.0 3.876 3.879 3.884 3.876 3.875 3.869 3.873 3.882 3.876
2.0 10.0 5.949 5.952 5.958 5.949 5.951 5.940 5.938 5.938 5.948
2.5 10.0 6.739 6.746 6.744 6.735 6.737 6.726 6.736 6.744 6.738

ences for these fitted values, relative to the ASTEC models. In
most cases the relative differences are below 0.2 %, comparable
with or somewhat bigger than the observational uncertainties of
around 0.1 % (cf. Section 2.2).

Fig. 5. Correction factor f∆ν, for solar-calibrated models, in the
scaling relation for the large frequency separation ∆νfit obtained
from fits to the radial-mode frequencies (cf. Eq. 10). The dif-
ferent codes are identified by the symbol shape and colour (cf.
caption to Fig. 3), with the addition of AST (for ASTEC).

The scaling relation in Eq. (7) is fundamental in the analy-
sis of global seismic observations, but the underlying assumed
homology scaling is not exact. Thus, it is often corrected by
including a factor f∆ν on the right-hand side (e.g. White et al.
2011; Rodrigues et al. 2017); (see Sharma et al. 2016, for an ap-
plication). Within the present model analysis we replace Eq. (7)
by

∆νfit = f∆ν

(

M

M⊙

)1/2 (

R

R⊙

)−3/2

∆ν
(cal)

fit
, (10)

where ∆ν
(cal)

fit
is the large separation resulting from a fit to the ra-

dial modes of the (1 M⊙, 1 R⊙) models used to calibrate the mix-
ing length in the solar-calibrated case. The resulting values of the
correction factor f∆ν are shown in Table 2 and Fig. 5 for the solar-
calibrated case. The dominant variation is that f∆ν approaches
unity for the most massive model, in accordance with the results
obtained by Guggenberger et al. (2017); Rodrigues et al. (2017).
Differences in f∆ν between the different codes relative to ASTEC
are shown in Fig. 6. We note that for any given model case there
is a spread of around ±0.002 between the values of f∆ν obtained
by the different evolution codes. As pointed out by, for exam-
ple, Sharma et al. (2016) the radius and mass obtained from di-
rect scaling analysis of global asteroseismic observables scale

Fig. 6. Differences relative to the ASTEC model in the solar-
calibrated case, in the sense (model) – (ASTEC), in the correc-
tion factors f∆ν (cf. Eq. 10) relating the large frequency separa-
tion ∆νfit obtained from a fit to radial-mode frequencies and the
value obtained from homology scaling. The different codes are
identified by the symbol shape and colour (cf. caption to Fig. 3).

as, respectively, f −2
∆ν

and f −4
∆ν

. Thus, the spread between the codes
would correspond to variations of around 0.4 and 0.8 % in the in-
ferred radii and masses, when using Eq. (10) to analyse observed
data.

The frequency νmax of maximum power plays an important
role for asteroseismic inference. In view of this, we include a
brief analysis of the differences in νmax between the models,
even though these differences essentially reflect the differences
in Teff, already discussed in Paper I, given that the compari-
son is carried out at fixed target model radius, and with a con-
straint on GM/R3. Table 3 shows values of νmax, estimated from
Eq. (8), for solar-calibrated models, while Fig. 7 shows relative
differences in νmax, compared with the ASTEC values for both
solar- and RGB-calibrated models. For the solar-calibrated mod-
els, there is a spread of order 50 K between different codes for
any given model, corresponding to roughly 1 % (cf. Figs. 2 and
7, and Tables C.2 – C.4, of Paper I; see also Fig. 12 below).
For the RGB-calibrated models, where Teff was explicitly con-
strained on the RGB, the spread is less than 4 K, or 0.1 %. Thus,
the differences are smaller by about an order of magnitude for the
RGB-calibrated models. We note, however, that in either case the
differences in νmax are far smaller than the typical observational
uncertainty of 1.6 % (Yu et al. 2018) in this quantity.

Although the asymptotic value, ∆νas, of the large frequency
separation (cf. Eq. 4) does not provide sufficient accuracy for
comparison with observed frequencies, it is still an interesting
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Table 2. Correction factors f∆ν (cf. Eq. 10) between the large frequency separation ∆νfit obtained from a fit to radial-mode frequen-
cies and the value obtained from homology scaling for solar-calibrated models.

M/M⊙ R/R⊙ ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 0.9655 0.9661 0.9667 0.9658 0.9660 0.9656 0.9656 0.9682 0.9658

1.0 12.0 0.9572 0.9578 0.9588 0.9575 0.9573 0.9568 0.9571 0.9601 0.9573
1.5 7.0 0.9767 0.9769 0.9782 0.9761 0.9777 0.9768 0.9752 0.9774 0.9771
1.5 12.0 0.9677 0.9682 0.9691 0.9679 0.9677 0.9676 0.9676 0.9702 0.9677
2.0 10.0 0.9786 0.9789 0.9795 0.9787 0.9789 0.9786 0.9773 0.9777 0.9783
2.5 10.0 0.9915 0.9923 0.9917 0.9909 0.9912 0.9911 0.9915 0.9932 0.9911

Table 3. Frequency νmax, in µHz, of maximum oscillation power estimated from Eq. (8) for solar-calibrated models.

M/M⊙ R/R⊙ ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 69.76 69.97 70.03 69.93 69.74 69.61 69.90 69.87 69.78

1.0 12.0 24.29 24.36 24.38 24.36 24.29 24.24 24.34 24.33 24.30
1.5 7.0 102.57 102.85 102.91 102.82 102.55 102.35 102.80 102.73 102.61
1.5 12.0 35.76 35.86 35.88 35.85 35.75 35.69 35.83 35.82 35.77
2.0 10.0 67.05 67.24 67.27 67.24 67.06 66.93 67.21 67.17 67.06
2.5 10.0 82.64 82.85 82.92 82.88 82.65 82.49 82.82 82.79 82.65

Fig. 7. Relative differences in the estimated frequency νmax of maximum power, compared with the ASTEC results, in the sense
(model) - (ASTEC); the different codes are identified by the symbol shape and colour (cf. caption to Fig. 3). The left panel shows
results for the solar-calibrated models, and the right panel for the RGB-calibrated models (note the different scales on the abscissas).

diagnostics of the acoustic properties of the models. We analyse
it in Appendix C.

3.3. Mixed modes

The asymptotic dipolar g-mode period spacing ∆Π1 = Π0/
√

2
(cf. Eqs. 5 and 6) are provided in Table 4 for solar-calibrated
models, while the variations relative to the ASTEC models are
shown in Fig. 8. Here relative differences of up to 2 – 4 % are
found, corresponding to differences in ∆Π1 of several seconds,
greatly exceeding the observational uncertainty of around 0.1 s
(see Section 2.2). This reflects the sensitivity of the buoyancy
frequency to the details of the core structure of the star, including
the composition profile; we consider one example in some detail
in Appendix F. The differences between the models illustrated in
Fig. 8 generally arise from qualitatively similar, although gener-
ally smaller, model differences.

As an example of the differences in individual frequencies,
Fig. 9 compares frequencies of given radial order in the MESA
model for 1.5 M⊙, 7 R⊙ with ASTEC. The difference in the asymp-
totic frequency spacing is shown as a dashed line, and the dotted

line shows the difference in the asymptotic period spacing, with
inverted sign to convert relative period differences to frequency
differences. In this case, the purely acoustic radial modes gen-
erally agree well between the two models, as does the asymp-
totic frequency spacing (see also Fig. C.1). However, we note
the increasing magnitude of the differences at the highest fre-
quency that reflects issues with the modelling of the atmosphere
in the MESA model (see Appendix D). The g-dominated nonra-
dial modes have differences very close to the asymptotic value,
while the more acoustically dominated modes have intermedi-
ate differences. Indeed, one would naively expect that the p-
dominated nonradial modes would have frequency differences
similar to the radial modes; instead, they are substantially higher
in absolute value, with a clear nearly linear envelope for the most
p-dominated cases.

The origin of this behaviour lies in the formally reasonable
choice of comparing the modes at fixed radial order, regardless
of the physical nature of the modes. In fact, modes with same
order may have rather different physical nature. To analyse this,
we consider the rescaled inertia Qnl = Enl/Ē0(νnl) where E was
defined in Eq. (9) and Ē0(νnl) is the radial-mode inertia inter-
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Table 4. Asymptotic dipolar g-mode period spacings ∆Π1 in s (cf. Eq. 6) for solar-calibrated models.

M/M⊙ R/R⊙ ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 72.12 72.07 72.58 72.41 72.64 72.69 73.23 76.64 73.14

1.0 12.0 58.36 58.00 58.39 58.44 58.47 58.61 59.02 60.86 58.97
1.5 7.0 69.90 69.86 70.34 70.20 70.48 70.75 71.13 74.48 71.05
1.5 12.0 57.29 56.94 57.43 57.35 57.30 57.48 57.87 59.47 57.90
2.0 10.0 78.72 79.02 78.36 77.18 78.14 76.99 79.57 82.26 79.02
2.5 10.0 123.62 124.10 121.54 121.50 122.32 121.83 124.91 125.52 123.33

Fig. 8. Relative differences for solar-calibrated models in the
asymptotic period spacing ∆Π1, compared with the ASTEC re-
sults, in the sense (model) - (ASTEC); the different codes are
identified by the symbol shape and colour (cf. caption to Fig. 3).

Fig. 9. Relative differences in computed frequencies for the
MESA solar-calibrated 1.5 M⊙, 7 R⊙ model, compared with the
ASTEC results, in the sense (MESA) - (ASTEC), for l = 0 (open
circles), l = 1 (open triangles) and l = 2 (filled squares). The
differences are evaluated at fixed radial order.

polated to the frequency of the given mode. Figure 10 shows
Qnl for l = 1 against mode order for the two models. Here the
p-dominated modes correspond to the dips in the curves, result-
ing from acoustic resonances. The resonances are largely fixed
at the same frequency by the very similar acoustic behaviour of
the MESA and ASTEC models, reflected in the close agreement
in the radial-mode frequencies; however, it is obvious that they

Fig. 10. Scaled mode inertias for dipolar modes (with l =
1) in the solar-calibrated ASTEC (solid) and MESA (dashed)
1.5 M⊙, 7 R⊙ models, against mode order. The red circles show
the MESA results, but shifted in order (see text).

are shifted in mode order, as a result of the difference between
the models in the period spacing and hence the relation between
order and frequency. In other words, although the two models
agree on the shape of the Qnl curve (including the location in fre-
quency of the resonant dips), the mixed modes of the two models
do not sample that curve at the same mode orders. As a result, a
comparison at fixed order is between physically different modes,
with a different weight to the p- and g-mode behaviour, in the
vicinity of the acoustic resonances.

From the point of view of comparing models and obser-
vations, the (formal) order is a somewhat inconvenient quan-
tity since it is difficult to derive it directly from the observa-
tions, except with data of exceptionally high quality. Here the
p-dominated modes are the natural starting points, anchoring the
mode orders in the vicinity of an acoustic resonance. In the com-
parison of the model frequencies, this corresponds to shifting
the mode orders of, say, the MESA model to obtain a new order
n′ such as to make the acoustic resonances occur at the same
values of the order. As indicated by Fig. 10, the required shift
decreases with increasing order. Thus, in the complete set {n′}
of shifted orders there may be gaps or overlapping modes, but
these can be arranged to occur near the maxima in Qnl where the
modes are unlikely to be observed. As shown by the red circles
in Fig. 10, with such a shift the behaviour of Qnl as a function of
mode order is nearly indistinguishable between the models.

The effect of using the shifted orders in the frequency com-
parison at fixed order is illustrated in Fig. 11. Now the p-
dominated modes, marked by larger pluses superposed on the
symbols, do indeed have small frequency differences. This is
particularly clear for the l = 2 modes, where the coupling be-
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Fig. 11. Relative differences in computed frequencies for the
solar-calibrated MESA 1.5 M⊙, 7 R⊙ model with suitable shifts in
mode order (see text), compared with the ASTEC results, in the
sense (MESA) - (ASTEC), for l = 0 (black open circles), l = 1
(red open triangles) and l = 2 (blue filled squares). The larger
pluses mark the p-dominated modes. The horizontal dotted line
indicates zero difference.

tween the acoustic and gravity-wave regions is weaker and the
p-dominated modes therefore have a cleaner acoustic nature.

To understand the behaviour shown in Fig. 11, we consider
two models, Model 1 (the ASTECmodel) and Model 2 (the MESA
model), with period spacings ∆Πl and ∆Π′

l
. For simplicity, we

assume that the g-mode phase shift ǫg (cf. Eq. 5) is the same for
the two models. We identify an acoustic resonance in Model 1,
corresponding to the order n0, and consider modes of order n
in Model 1 in the vicinity of n0. To identify modes in Model 2
similarly close to the acoustic resonance, we choose a shift k in
order such that ∆Πl(n0 + ǫg) ≃ ∆Π′

l
(n0 + k + ǫg), or

k ≃ −δ∆Πl

∆Π′
l

n0 , (11)

where δ∆Πl = ∆Π
′
l
−∆Πl, and compare modes with shifted mode

order n′ = n + k in Model 2 with modes of order n in Model 1.
From Eq. (11) it follows that the relative difference between the
frequencies ν′

n′l and νnl of modes (n′, l) and (n, l) in Models 2
and 1 is

ν′
n′l − νnl

νnl

= −
Π′

n′l − Πnl

Πnl

≃ −δ∆Πl

n − n0

Πnl

(12)

≃ −δ∆Πl

∆Πl

Πnl − Πn0l

Πnl

≃ δ∆Πl

∆Πl

(

νnl

νn0l

− 1

)

,

where we neglected the difference between ∆Π′
l

and ∆Πl in the
denominator. Equation (6) shows that δ∆Πl/∆Πl is independent
of l. Thus, according to Eq. (12) the frequency differences in-
cluding the shift in mode order are linear functions of frequency
with a slope depending on δ∆Πl/∆Πl and νn0l but not on the de-
gree, as is indeed found in Fig. 11.

The detailed frequency differences for other models or evo-
lution codes are qualitatively similar, although reflecting the dif-
ferences in global asteroseismic properties, in particular ∆νas

and ∆Π1, as illustrated in Figs. C.1 and 8. However, we note
that these models to some extent reflect modifications to the
modelling codes resulting from the analysis of earlier models.
Earlier models, showing substantially larger deviations, provide

interesting insight into the relation between the model structure
and the resulting frequencies. We discuss examples of this in
Appendices E and F.

Fig. 12. Relative differences in effective temperature Teff be-
tween the RGB- and solar-calibrated models, in the sense (RGB-
calibrated) – (solar-calibrated). The different codes are identified
by the symbol shape and colour (cf. caption to Fig. 3).

3.4. The RGB-calibrated models

In Paper I, we showed that the effective temperature on the red-
giant branch varied within a range of around 50 K between the
solar-calibrated models. This variation is summarised in Fig. 12,
which shows the differences between the effective temperatures
in the RGB- and solar-calibrated models. (The differences are
small for the ASTECmodels, earlier versions of which were used
to set the target values for the RGB calibration.) As discussed
in Section 3.2, Teff directly enters νmax and hence shows a much
better agreement in the RGB- than in the solar-calibrated case
(cf. Fig. 7); in particular, the differences in the latter case closely
reflect the differences in Teff, shown in Fig. 12.

Other results for the RGB-calibrated modes are provided as
tables and figures in Appendix B. A comparison between the
various asteroseismic quantities between the RGB- and solar-
calibrated cases (not illustrated) shows differences that are to
some extent, but not completely, related to the differences in Teff

and are somewhat smaller than the differences between the dif-
ferent model calculations. Consequently, the variations between
the codes in the RGB-calibrated case are qualitatively very sim-
ilar to the variations discussed in the previous sections.

4. Discussion

The goal of the present project is to provide a secure basis for the
analysis of observed frequencies of red-giant stars by identifying
and eliminating errors and other uncertainties in the computation
of stellar models and their frequencies. Paper I considered differ-
ences between different stellar evolution codes in the basic prop-
erties of stellar models, computed with tightly constrained pa-
rameters and physics. Here we address the corresponding prop-
erties of the oscillations of these models.

The errors in the computed frequencies include intrinsic er-
rors in the frequency calculation, for a given stellar model. These
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are relatively easy to control, at least for the cases considered in
the present investigation. The example illustrated in Fig. A.2 in-
dicates that the intrinsic numerical errors are well below the re-
quirements imposed by current observations in the relevant fre-
quency range for the oscillation code used here. Even so, there
is a definite need for comparisons, planned in a future publica-
tion, between the results of independent oscillation calculations
to detect possible systematic errors in the implementation of the
oscillation equations in the codes.

A more important contribution to the errors in the computed
frequencies is likely the error in the implementation and solu-
tion of the equations of stellar structure and evolution. The goal
of the present investigation is to estimate these errors, by com-
paring results of stellar evolution calculations with independent
codes using, as far as possible, the same physical assumptions
(see Paper I). In fact, the analysis in the present project has iden-
tified, and led to the elimination of, a number of issues that have
in some cases been present for many years in the codes that have
taken part. Even so, following these corrections the results in
Section 3 show that the model differences, reflecting potential
errors in the modelling, in many cases do not yet match the con-
straints of the observational uncertainties. The estimates of νmax

(cf. Table 3 and Fig. 7) agree substantially better than the rela-
tively large observational uncertainty in this quantity. The differ-
ences in the large frequency separation ∆νfit obtained from fits
to the radial-mode frequencies (cf. Table 1 and Fig. 4) are close
to matching, or somewhat exceed, the accuracy of the observa-
tions. Finally, the root-mean-square differences of radial-mode
frequencies (Fig. 3) are substantially bigger than the observa-
tional uncertainties in individual frequencies.

For the use of scaling relations based on acoustic modes, the
correction factor f∆ν (cf. Eq. 10) is particularly important. The
spread in f∆ν of ±0.2 % between the different evolution codes
(see Eq. 6) translate into variations of around 0.4 and 0.8 % in
determinations of radius and mass from asteroseismic scaling
relations, which are hardly insignificant.

Analyses of the properties of mixed modes provide detailed
diagnostics of the deep interior of the star, owing to the sensitiv-
ity of the details of the acoustic resonances and the g-dominated
modes. The analysis is often carried out in terms of fits of the fre-
quencies to the asymptotic expression (e.g. Mosser et al. 2018),
resulting in estimates of the g-mode period spacing ∆Π1, the
quantity q characterising the coupling between the g- and p-
mode cavities and the gravity offset ǫg. Here we represented the
effects of the model differences in terms of the asymptotic pe-
riod spacing (cf. Eq. 6). A more detailed analysis in terms of a
fit to the computed frequencies would have been interesting but
is beyond the scope of this paper. However, a sample check for
a single model case showed that the asymptotic period spacings
are fully representative of the results based on period spacings
obtained from such a fit. We note, on the other hand, that very in-
teresting analyses of the information about stellar structure pro-
vided by q and ǫg were provided by Takata (2016); Pinçon et al.
(2019).

The sensitivity of the computed asymptotic dipolar period
spacings (cf. Table 4 and Fig. 8) to the detailed structure of the
deep interior of the models is reflected in a substantial spread
between the models, far bigger than the observational errors. In
most cases, the relative differences are between ±2 %, with the
YaPSImodels showing somewhat bigger deviations. As a rough
estimate we note from Table 4 that over the range 1 − 1.5 M⊙ in
stellar mass, keeping the radius fixed at 7 R⊙, a change of one
per cent in ∆Π1 corresponds on average to a change of more
than 0.1 M⊙ in mass or a change in the inferred age of more than

30 %. Even though a model fit based solely on ∆Π1 is probably
unrealistic, this estimate provides some indication of the effects
of the uncertainties in stellar modelling on the asteroseismic in-
ferences.

These differences in oscillation properties must reflect dif-
ferences in the model structure, discussed in detail in Paper I,
which arise despite the attempt to compute the models under
identical assumptions; however, the connection is in most cases
not immediately obvious. We analysed two examples in some
detail. Appendix E considers differences in the acoustic-mode
frequencies in the original GARSTECmodels (cf. Fig. E.1), which
were found to be caused by differences in the implementation of
the OPAL equation of state, illustrated in Fig. E.2. Appendix F
analyses the fairly substantial differences found in the asymp-
totic ∆Π1 and the g-m mode frequencies for the original LPCODE
model with 2.5 M⊙, 10 R⊙. As discussed in detail in the ap-
pendix, this is related to differences in the hydrogen profile
arising from a smaller main-sequence convective core in the
LPCODE model, caused by inadequacies in the opacities. This
deficiency has been corrected in the LPCODE results shown in
Section 3, as perhaps the most dramatic of the many correc-
tions to the modelling resulting from this challenge. It should be
noted that the oscillation calculations act as a strong ‘magnifying
glass’ on irregularities in the model structure, further motivating
such improvements to the modelling; an example is discussed in
Section A.4.

In the analysis of the results, we chose to emphasise the case
of models where the mixing-length parameter was chosen based
on the calibration of a 1 M⊙, 1 R⊙ model (the so-called solar-
calibrated case). This procedure matches the common practice
of using such a calibration in general calculations of stellar mod-
els, including those that are used for asteroseismic fitting. From a
physical point of view one might argue that the RGB-calibration,
based on fixing the effective temperature on the red-giant branch,
is more interesting since by doing this (at the assumed fixed
radii) one also fixes the luminosity and hence important aspects
of the internal structure of the stars. In fact, the results for the
two different calibrations are quite similar, and hence the choice
does not affect the overall conclusions of this study.

5. Conclusions

The huge amount of high-accuracy oscillation data resulting
from the Kepler mission, which is currently being augmented
by the ongoing TESS mission, provides an opportunity to in-
vestigate stellar properties in considerable detail, thereby help-
ing to improve our understanding of stellar structure and evolu-
tion. The use of observed oscillation frequencies as diagnostics
of stellar global and internal properties in most cases relies on
the comparison with frequencies of stellar models. For this to be
meaningful and hence ideally to utilise fully the accuracy pro-
vided by the observed frequencies, the numerical errors in the
computed frequencies should be constrained, in principle to be
well below the observational uncertainties. With data of the qual-
ity obtained from the Kepler mission, this is an ambitious goal.

The analyses presented in this paper and Paper I represent
a significant step towards a coordinated and coherent modelling
of stars and their oscillation frequencies. Compared with other
common uses of stellar modelling, such as diagnostics based on
observed properties of colour-magnitude diagrams or isochrone
fitting, the results obtained here already demonstrate a reason-
able convergence towards consistent stellar models for given
physics, with differences at the level of a few tenths of and up to
a few per cent. However, continuing efforts will be required to in-
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vestigate the remaining differences in the individual cases, start-
ing with the differences in the results of the evolution modelling,
and the possible required further improvements to the codes. We
hope that by presenting the results in some detail in the present
paper and as an on-line resource, they can also serve as useful
references in comparisons with other codes that have not been
involved in the present project or in the development of tech-
niques for the analysis of observational data.

The sensitivity of the frequencies to even quite small details
in the models demonstrates the potential of the oscillation data
for probing subtle features of the stellar interiors. This will be
further explored in a future publication, where the modellers will
consider individually selected physical properties of the models,
moving closer to the realistic modelling to be used in fits of the
observed data. Based on these efforts, we expect to be in a better
position to interpret the results of such fits in terms of the physics
of stellar interiors, which, after all, is an important goal of astero-
seismic investigations. Also, we hope that the investigations will
help in improving the understanding of and reducing the system-
atic errors in the resulting global stellar properties inferred from
asteroseismology, in particular the age. This is an important part
of the analysis of existing data and, in particular, the preparation
for the upcoming ESA PLATO mission (e.g. Rauer et al. 2014),
where asteroseismic stellar characterisation is a key part of the
data analysis.
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Appendix A: Frequency calculations

A.1. Computational procedures

The models were provided by the participants in the so-called
fgong format, which includes a substantial number of model
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variables at all meshpoints in the evolution computation, to-
gether with global parameters. The model is transferred to the
amdl format required for the calculation of adiabatic frequen-
cies. Subsequently, the model is moved to a new mesh opti-
mised for the frequency calculation, which is then carried out by
the ADIPLS code (cf. Christensen-Dalsgaard 2008a), with output
both in binary form and in the form of an ASCII fobs file. In the
following, we describe each of these steps in a little more detail.

Models computed with general stellar evolution codes some-
times contain features of little importance to general stellar evo-
lution but harmful for oscillation calculations. Such problems in
particular concern the Ledoux discriminant

A =
1

Γ1

d ln p

d ln r
− d ln ρ

d ln r
, (A.1)

related to the buoyancy frequency by N2 = gA/r, which is highly
sensitive to irregularities in the composition profile. Particularly
harmful are negative spikes in A in the stellar core, where g is
large, which leads to (unrealistically) strong convective instabil-
ity. In the transfer to the amdl format, such spikes are simply re-
placed by interpolation from neighbouring points, setting A = 0
if the result is negative. We note that such resetting of A with-
out corresponding changes to other variables formally leads to
inconsistency in the model, a point that deserves further atten-
tion. The models are tested for double points, with identical r at
the accuracy of the model format, and such points are removed,
except if they are associated with discontinuities in the model
structure (see below). Finally, the oscillation calculation requires
second derivatives of p and ρ at r = 0; if these are not available
in the original model they are estimated from the behaviour of
these quantities near the central meshpoint.

In the relevant frequency range in red giants, the num-
ber of radial nodes in the g-mode region may exceed 1000,
requiring a very dense radial mesh to resolve the eigenfunc-
tions. This is, in general, not satisfied by the mesh in the evo-
lution calculation, requiring for the model to be transferred
to a new mesh with a higher number of points and an ap-
propriate distribution. Guidance for the mesh distribution fol-
lows from the asymptotic behaviour of the modes (see also
Hekker & Christensen-Dalsgaard 2017). In the g-mode region,
where the modes behave as internal gravity waves, the eigen-
function varies approximately as

Ag(r) sin

(

L

ω
υ

)

, (A.2)

where L =
√

l(l + 1) and

υ =

∫ r

0

N
dr

r
(A.3)

is the buoyancy radius. The predominantly acoustic behaviour in
the p-mode region has the form

Ap(r) sin(ωτ) , (A.4)

where

τ =

∫ R

r

dr

c
(A.5)

is the acoustic depth. In Eqs. (A.2) and (A.4) Ag and Ap are
slowly varying amplitude functions. Thus, a reasonable distribu-
tion of the mesh involves approximately uniform spacing in υ
and τ in the g- and p-mode regions, respectively, with a suitable
distribution in the intermediate region. The appropriate balance

Fig. A.1. Properties of the mesh used for the oscillation calcu-
lation in the 1.0 M⊙, 12 R⊙ case. The solid black line shows the
logarithm of the fractional radius, against the mesh-point num-
ber (left ordinate scale). The red crosses show the nodes in the
horizontal-displacement eigenfunction in a dipolar mode with
frequency 20.0 µHz (right ordinate scale).

between the relative number of points assigned to the g- and p-
mode regions can be determined from the asymptotic analysis,
given the frequency range to be considered.

In the present calculations, a mesh with 19 200 points was
used. The properties of the mesh are illustrated in Fig. A.1,
which shows the fractional radius against the mesh-point num-
ber. It is evident that by far the majority of the points are in
the core, within 3 × 10−3R, to match the g-mode-like behaviour
in this region. Also shown are the locations of the nodes in
the horizontal-displacement eigenfunction. In the g-mode region
these are almost uniformly spaced, with approximately 20 mesh-
points between adjacent nodes. The comparatively few nodes in
the p-mode region have a wider spacing, the mesh satisfying also
the requirement of adequately resolving the variation in the over-
all amplitude of the eigenfunctions.

Adiabatic oscillations satisfy a fourth-order system of equa-
tions. Boundary conditions at r = 0 are defined by regularity
conditions. At the outermost meshpoint, one boundary condition
is obtained from the continuity of the perturbation to the grav-
itational potential and its gradient and a second from requiring
that the solution transits continuously to the analytical solution
of the adiabatic oscillation equations in an assumed isothermal
atmosphere continuously matched to the model at the outermost
point. The oscillation equations were solved using a fourth-order
numerical scheme (Cash & Moore 1980). The eigenfrequencies
were obtained from the condition of continuous matching of so-
lutions integrated from the surface and the centre, at a suitable
point in the core. This was achieved through a careful scan in
frequency, reflecting the asymptotic distribution of frequencies,
to ensure that no modes were missed. A test of the completeness
was carried out on the basis of the mode orders, determined as
discussed in Section A.4.

A special problem concerns discontinuities in composition
and hence density, which give rise to a delta-function behaviour
of A (cf. Eq. A.1) and, hence, in the buoyancy frequency. This
occurs, for example, at the edge of the dredge-up region caused
by the convective envelope, given that these models do not in-
clude diffusion and settling. A proper treatment in the model of a
discontinuity would be to include it as a double point, at the same
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Fig. A.2. Absolute value of relative frequency differences, at
fixed radial order, between computations with 38 400 and 19 200
points for the 1.0 M⊙, 12 R⊙ case.

values of the continuous variables, but more typically it appears
as a rapid variation in composition and density between adjacent
meshpoints. A discontinuity in the model gives rise to discon-
tinuities in the eigenfunctions, and these should ideally be dealt
with by solving the equations separately on the regions separated
by the discontinuities, applying jump conditions on the solution
at these points. In the present calculations, each density disconti-
nuity was replaced in the code resetting the mesh by a thin region
with a very steep linear density gradient, fully resolved, and the
oscillation equations were solved across this region; we ensured
that the integral over the region of A, represented as a box func-
tion, was consistent with the jump in density. We confirmed that
the relevant jump conditions on the eigenfunctions are satisfied
to adequate accuracy at these points. One remaining issue is that
the variation in composition is not adequately resolved in some
of the models included in the comparison. In these cases, further
resetting of the model (or, ideally, improvements to the evolution
codes) would be desirable, and the treatment of such features in
the model will also be a topic in future development and com-
parisons of oscillation codes.

A.2. Numerical precision

Given the rapid variation in the eigenfunctions, the numerical ac-
curacy is a concern, even given the precautions discussed above.
As a test of the accuracy, we computed frequencies for all ASTEC
models, doubling the number of meshpoints; the differences be-
tween the original and refined computations then give a measure
of the numerical error in the former. Figure A.2 shows the re-
sults in the worst case, the most evolved 1 M⊙ model. Except for
g-dominated modes of degree l = 2 at relatively low frequency,
the relative errors are generally below 10−4; for the radial and p-
dominated nonradial modes the errors are below 10−5, with the
effects of the p-m nature being particularly visible for l = 1. We
also note that, given that the models compared are very similar,
these numerical errors largely cancel in comparisons between
models computed with different codes. Thus, the results obtained
in the main text are unaffected by numerical errors. Even so, a
comparison between different oscillation codes is obviously of
interest and is planned for a future publication.

A perhaps more serious issue is the numerical accuracy of
the evolution calculation resulting in the ASTECmodels that have

Fig. A.3. Relative frequency differences at fixed radial order
for 1 M⊙, 12 R⊙, between an ASTECmodel using 8509 timesteps
from the ZAMS and the model used as reference with 4250
timesteps. For symbol types, see Fig. A.2.

been used as reference in the present frequency comparisons.
The models were computed with a fixed number of 1200 mesh-
points, whose distribution changes in response to the changing
structure as the models evolve. We verified that doubling the
number of mesh points in the evolution calculation has a neg-
ligible effect on the results. The same is true of the number of
timesteps in the model calculation, which is controlled by a pa-
rameter determining the maximum allowed change between two
successive timesteps in a suitable number of model variables,
throughout the stellar interior. To illustrate this, Fig. A.3 shows
relative frequency differences between a 1 M⊙ model requiring
8509 timesteps to reach the radius 12 R⊙ and the reference case
with half as many steps.

A.3. Large frequency separation from frequency fitting

To determine ∆νfit we largely follow White et al. (2011) and
carry out a weighted quadratic least-squares fit of radial-mode
frequencies νn0 as functions of radial order n by minimising

Σnw
2
n(ν

(fit)

n0
− νn0)2 , (A.6)

where

ν
(fit)

n0
= ν0 + ∆νfit[(n − nmax) + α(n − nmax)2] (A.7)

(Kjeldsen et al. 2005; Mosser et al. 2013). Here ν0 is a reference
frequency and nmax is the (generally non-integral) order corre-
sponding to νmax, obtained by linear interpolation of n as a func-
tion of νn0. Also,

w = exp

[

−(νn0 − νmax)2

2σ2

]

, (A.8)

where

σ = γ
νmax

2
√

2 ln 2
, (A.9)

such that the full width at half maximum of w is γνmax. In the fits
White et al. (2011) used γ = 0.25. However, we instead followed
Mosser et al. (2012) and evaluated γ as

γ = 0.66(νmax/1 µHz)−0.12 , (A.10)
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based on a Gaussian approximation to the envelope of power;
this value of γ changes from around 0.25 for the Sun to 0.45
for the (1 M⊙, 12 R⊙) models, which have the lowest νmax (cf.
Table 3). As an example, Fig. A.4 shows the residuals from the
fit for the 1 M⊙, 7 R⊙ ASTEC model.

Fig. A.4. Determination of ∆νfit for the solar-calibrated ASTEC
1.0 M⊙, 7 R⊙ model. The solid line shows the residual between

the radial-mode frequencies and the fitted function ν
(fit)

n0
(cf.

Eq. A.7), the diamonds indicating the location of the actual
frequencies. The dashed line shows the weight function w (cf.
Eq. A.8), using the right-hand ordinate.

Fig. A.5. Behaviour of U (cf. Eq. A.13), in three models with
M = 1 M⊙, R = 7 R⊙. The dotted curve shows the original YREC
model, the pluses marking the mesh points in the evolution cal-
culation. The solid line shows the same model, after application
of the correction procedure discussed in the text. For compar-
ison, the dashed curve shows the corresponding ASTEC model,
for which no correction had to be applied. The thin dot-dashed
line marks U = 3.

A.4. Dipolar-mode order

Although the analysis of the frequency comparison in
Section 3.3 showed the limitations in using a formal mode or-

der not directly related to the physical nature of the mode, a
reliable formal determination of the mode order is an impor-
tant feature of the frequency calculation. The order should be
defined such that it is invariant for a given mode as the star
evolves. This, for example, allows reliable interpolation between
frequencies of modes at successive time steps in the model cal-
culation. Also, it has been applied to ensure that all modes have
been found in the frequency ranges considered. Determination
of a well-defined mode order for mixed modes requires that the
different characters of the eigenfunction in the g- and p-mode
cavities is taken into account. For modes of degree l ≥ 2, this
can be achieved by considering the behaviour in a phase diagram
defined by the vertical ξr and horizontal ξh displacement ampli-
tudes (Scuflaire 1974; Osaki 1975). The eigenfunction defines a
curve in the (ξr, ξh) diagram, and a node in ξr provides a positive
(negative) contribution to the mode order if the curve crosses the
ξr = 0 axis in the counter-clockwise (clockwise) direction.

For centrally condensed stars, such as red giants, this pro-
cedure fails for dipolar modes. Following Takata (2006), we in-
stead determined the order of such modes by means of a phase
diagram based on

Y1 = (3 − U)
ξr

r
+

1

g

(

Φ′

r
− dΦ′

dr

)

, (A.11)

and

Y2 = (3 − U)
p′

ρgr
+

1

g

(

Φ′

r
− dΦ′

dr

)

. (A.12)

Here r is distance to the centre, g is the local gravitational ac-
celeration, Φ′ is the Eulerian perturbation to the gravitational
potential and p′ is the Eulerian pressure perturbation. Also,

U =
d ln m

d ln r
=

4πr3ρ

m
, (A.13)

where m is the mass internal to r. As shown by Takata, and
in general confirmed numerically, determining the mode order
based on zero crossings ofY1 and the direction of rotation in the
phase diagram provides a unique labelling of the modes.

The properties of Y1 and Y2 near r = 0 depend strongly on
the behaviour of 3 − U. Expanding ρ to O(r2) as

ρ = ρc(1 − ̺2r2 + . . .) , (A.14)

where ρc is the central density, we obtain

U = 3

(

1 − 2

5
̺2r2 + . . .

)

. (A.15)

Stability requires that ρ decreases with increasing r, and hence
̺2 > 0. Thus, 3 − U tends smoothly to 0 for r → 0 through
positive values, and the factor does not affect the topology of the
first terms in Y1 andY2.

Unfortunately, some of the models involved in the frequency
comparison do not satisfy this behaviour of U near the centre.
This is particularly serious when U, unphysically, exceeds 3,
such that 3 − U changes sign; this was the case for three codes.
An example is shown in Fig. A.5; here U exceeds 3 at the in-
nermost points of the model resulting from the evolution code,
indicating an inconsistency in the way the inner boundary con-
dition is applied. If not corrected, this behaviour causes severe
problems with the determination of the order of dipolar modes.
For comparison the corresponding ASTEC model is also shown;
here U tends smoothly to 3 as r → 0. To secure a proper de-
termination of the order, the problematic models have been cor-
rected in a manner that provides a reasonable behaviour of U
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near the centre. Specifically, in models where U exceeds 3 in
the core the outermost point rU where U ≥ 3 was located. For
r ≤ rU , U was reset to the result of the expansion, Eq. (A.15),
based on the expansion of ρ. On the interval [rU , 5rU] a gradual
transition was made to the original U, using a cubic polynomial
determined such that U and its first derivative are continuous.
The resulting corrected U is also shown in Fig. A.5. This modi-
fication was applied in the code that transfers the original model
to a mesh suitable for the oscillation calculations (see Section
A.1). To minimise the impact on the original models, the pro-
cedure was applied only in cases where the uncorrected model
was found to yield problematic dipolar mode orders. These were
identified as cases where one or more adjacent computed modes
did not correspond to mode orders differing by one.

The resetting of U was carried out without any other read-
justments of the structure, thus raising legitimate concern about
the internal consistency of the resulting model. In fact, the com-
puted frequencies for the reset and original models show relative
frequency differences of less than 10−6, and in almost all cases
less than 10−7, so that this has minimal consequences for the fre-
quency comparisons carried out in the present paper. Even so, it
must clearly be a goal to revise the relevant modelling codes to
correct this problem at its root. In general, the treatment of the
innermost points in the model causes problems in several cases,
reflected in incorrect behaviour of U, although with no direct ef-
fect on the mode order; in these cases no resetting of the model
was carried out, and the effects on the frequencies are likely in-
significant, although again revisions of the modelling codes are
desirable.

Appendix B: Results for the RGB-calibrated models

For completeness, we include a full set of results for the RGB-
calibrated models even though, as discussed in Section 3.4, they
are in most cases very similar to those for the solar-calibrated
models.

Fig. B.1. Root-mean-square relative differences for RGB-
calibrated models in radial-mode frequencies relative to the
ASTEC results, in the sense (model) - (ASTEC); the different codes
are identified by the symbol shape and colour (cf. caption to
Fig. 3).

Fig. B.2. Relative differences for RGB-calibrated models in
the large frequency separations ∆νfit obtained from fits to the
radial-mode frequencies as functions of mode order (cf. Section
A.3), compared with the ASTEC results, in the sense (model) –
(ASTEC); the different codes are identified by the symbol shape
and colour (cf. caption to Fig. 3).

Fig. B.3. Correction factor f∆ν for RGB-calibrated models in the
scaling relation for the large frequency separation ∆νfit obtained
from fits to the radial-mode frequencies (cf. Eq. 10). The dif-
ferent codes are identified by the symbol shape and colour (cf.
caption to Fig. 3), with the addition of AST (for ASTEC).
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Table B.1. Large frequency separations ∆νfit in µHz obtained from fits to radial-mode frequencies as functions of mode order (cf.
Eq. 3 and Section A.3) for RGB-calibrated models.

M/M⊙ R/R⊙ ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 7.087 7.097 7.092 7.083 7.090 7.081 7.079 7.096 7.089

1.0 12.0 3.130 3.129 3.133 3.128 3.131 3.128 3.126 3.135 3.131
1.5 7.0 8.783 8.778 8.785 8.774 8.780 8.773 8.757 8.782 8.782
1.5 12.0 3.876 3.875 3.880 3.873 3.876 3.872 3.871 3.880 3.876
2.0 10.0 5.949 5.948 5.952 5.945 5.949 5.944 5.936 5.947 5.950
2.5 10.0 6.740 6.745 6.739 6.732 6.738 6.730 6.733 6.746 6.738

Table B.2. Correction factors f∆ν (cf. Eq. 10) between the large frequency separation ∆νfit obtained from a fit to radial-mode
frequencies and the value obtained from homology scaling, for RGB-calibrated models.

M/M⊙ R/R⊙ ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 0.9656 0.9666 0.9656 0.9651 0.9660 0.9662 0.9650 0.9677 0.9657

1.0 12.0 0.9572 0.9567 0.9575 0.9566 0.9574 0.9579 0.9564 0.9594 0.9573
1.5 7.0 0.9771 0.9763 0.9766 0.9760 0.9768 0.9774 0.9747 0.9778 0.9768
1.5 12.0 0.9677 0.9674 0.9681 0.9671 0.9678 0.9683 0.9669 0.9697 0.9676
2.0 10.0 0.9786 0.9781 0.9784 0.9779 0.9786 0.9792 0.9769 0.9792 0.9785
2.5 10.0 0.9917 0.9921 0.9909 0.9905 0.9914 0.9916 0.9911 0.9934 0.9911

Table B.3. Frequency νmax, in µHz, of maximum oscillation power estimated from Eq. (8) for RGB-calibrated models.

M/M⊙ R/R⊙ ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 69.76 69.77 69.77 69.76 69.77 69.76 69.76 69.76 69.76

1.0 12.0 24.29 24.29 24.29 24.30 24.30 24.30 24.29 24.29 24.29
1.5 7.0 102.58 102.59 102.58 102.58 102.59 102.58 102.58 102.58 102.58
1.5 12.0 35.76 35.76 35.77 35.77 35.77 35.77 35.76 35.76 35.76
2.0 10.0 67.05 67.06 67.05 67.05 67.06 67.08 67.06 67.05 67.05
2.5 10.0 82.70 82.71 82.68 82.71 82.71 82.67 82.70 82.70 82.70

Fig. B.4. Differences relative to the ASTEC model in the RGB-
calibrated case, in the sense (model) – (ASTEC), in the correction
factors f∆ν (cf. Eq. 10) relating the large frequency separation
∆νfit obtained from a fit to radial-mode frequencies and the value
obtained from homology scaling. The different codes are identi-
fied by the symbol shape and colour (cf. caption to Fig. 3).

Fig. B.5. Relative differences for RGB-calibrated models in the
asymptotic period spacing ∆Π1, compared with the ASTEC re-
sults, in the sense (model) - (ASTEC); the different codes are
identified by the symbol shape and colour (cf. caption to Fig. 3).
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Table B.4. Asymptotic dipolar g-mode period spacings ∆Π1 in s (cf. Eq. 6) for RGB-calibrated models.

M/M⊙ R/R⊙ ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 72.12 71.76 72.27 72.22 72.74 72.88 73.08 76.03 73.12

1.0 12.0 58.36 57.83 58.18 58.31 58.50 58.74 58.91 60.31 58.95
1.5 7.0 69.91 69.64 70.13 70.06 70.45 70.86 70.97 74.43 71.03
1.5 12.0 57.31 56.79 57.26 57.23 57.34 57.59 57.75 59.52 57.88
2.0 10.0 78.72 78.57 77.73 76.82 78.12 77.39 79.30 81.91 79.39
2.5 10.0 123.90 123.45 120.69 120.83 122.43 122.61 124.47 125.03 123.53
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Appendix C: Properties of the asymptotic large

frequency separation

Fig. C.1. Relative differences in the asymptotic large frequency
separation ∆νas, compared with the ASTEC results, in the sense
(model) - (ASTEC); the different codes are identified by the sym-
bol shape and colour and labelled by the abbreviated name of
the code (see caption to Fig. 3). The top panel shows results
for solar-calibrated models and the bottom panel for the RGB-
calibrated models.

Although we argue in Section 2.1 that the asymptotic large
frequency separation∆νas does not provide an adequate accuracy
for comparisons with observations (see also Mosser et al. 2013),
it still represents the contribution from the bulk of the model
to the frequency separation. Thus, it is of interest to compare
∆νas between the different evolution codes. Tables C.1 and C.2
show ∆νas for the solar-calibrated and RGB-calibrated models,
computed from Eq. (4). For simplicity we replace R∗ by Rphot,
the photospheric radius, to avoid possible effects of differences
in the models of the stellar atmospheres. The dominant varia-
tion of ∆νas with stellar properties follows the homology scal-
ing, ∆ν ∝ (GM/R3)1/2 (see also Eq. 7) which, as discussed in
Paper I, is essentially fixed. Thus, the variations between codes
reflect more subtle differences in the computed structure. These
variations are illustrated in Fig. C.1, using the ASTEC results as
reference. We note that the differences are substantially smaller
than those found for ∆νfit (cf. Fig. 4). This may be caused by
differences in the structure of the near-surface layers and atmo-

spheres in the stellar models, which would affect ∆νas less than
the individual frequencies. Also, these differences would have
the strongest effect on high-frequency modes, and hence may
affect ∆νfit more strongly than reflected in the root-mean-square
frequency differences shown in Fig. 3.

Fig. C.2. Ratios ∆νfit/∆νas between the large frequency spac-
ing resulting from fit to the radial-mode frequencies and the
asymptotic values. The symbols correspond to the different mod-
elling codes, as defined in the caption to Fig. 3, with the addition
of AST (ASTEC). The upper panel shows results for the solar-
calibrated models, and the lower panel for the RGB-calibrated
models.

The relation between the asymptotic value, ∆νas, of the large
frequency separation (see Tables C.1 and C.2) and ∆νfit is of
some interest. Figure Fig. C.2 shows their ratios. It is evident
that ∆νas substantially over-estimates the actual value of ∆ν, no
doubt to a large extent owing to the choice of Rphot for the upper
limit in the integral in Eq. (4) rather than the location of the
proper acoustic surface (see the discussion below Eq. (4), and
Section 3.2). This deserves further analysis.

Appendix D: Problems with the MESA atmosphere

models

In Fig. 9 we found an increase in magnitude in the frequency
differences between the MESA and the ASTECmodels at high fre-
quency. This reflects what appears to be a general problem with
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Table C.1. Asymptotic acoustic-mode frequency separation ∆νas (cf. Eq. 4) in µHz for solar-calibrated models.

M/M⊙ R/R⊙ ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 7.792 7.794 7.799 7.790 7.793 7.794 7.789 7.801 7.796

1.0 12.0 3.507 3.509 3.512 3.505 3.507 3.507 3.506 3.512 3.509
1.5 7.0 9.504 9.505 9.512 9.500 9.504 9.505 9.497 9.513 9.507
1.5 12.0 4.263 4.264 4.267 4.260 4.263 4.263 4.260 4.268 4.264
2.0 10.0 6.432 6.434 6.435 6.430 6.432 6.433 6.427 6.435 6.433
2.5 10.0 7.227 7.229 7.228 7.221 7.226 7.224 7.221 7.229 7.228

Table C.2. Asymptotic acoustic-mode frequency separation ∆νas in µHz (cf. Eq. 4) for RGB-calibrated models.

M/M⊙ R/R⊙ ASTEC BaSTI CESAM GARSTEC LPCODE MESA MONSTAR YAP YREC

1.0 7.0 7.792 7.793 7.797 7.788 7.793 7.795 7.787 7.800 7.796

1.0 12.0 3.507 3.508 3.510 3.504 3.508 3.508 3.505 3.511 3.509
1.5 7.0 9.504 9.505 9.509 9.498 9.504 9.506 9.496 9.513 9.507
1.5 12.0 4.263 4.263 4.266 4.260 4.263 4.264 4.259 4.267 4.264
2.0 10.0 6.432 6.433 6.435 6.429 6.432 6.433 6.426 6.435 6.433
2.5 10.0 7.228 7.228 7.226 7.220 7.226 7.225 7.221 7.229 7.228

Fig. D.1. Top panel: pressure p in (1 M⊙, 1 R⊙) models com-
puted with MESA (solid line) and ASTEC (dashed line). Bottom
panel: the pressure gradient divided by density for these models.

the structure of the atmospheric models in version 6950 of MESA
used in the present comparison. We illustrate this by considering
the (1 M⊙, 1 R⊙) model in the solar-calibrated comparison track.
Very similar effects are found in the other MESA cases consid-
ered.

Fig. D.2. Relative frequency differences for the (1 M⊙, 1 R⊙)
solar-calibrated case between MESA and ASTEC, in the sense
(MESA) – (ASTEC), for l = 0 (open circles), l = 1 (open triangles)
and l = 2 (filled squares) in black. The differences are evaluated
at fixed radial order. The red circles show corresponding results
for radial modes in the LPCODE model.

Figure D.1 compares the pressure and its derivative in the
MESA and ASTEC models. The top panel shows substantial dif-
ferences between the atmospheric pressures in the two mod-
els, whereas they are essentially in agreement below the pho-
tosphere. The difference between the models is even more dra-
matic in the bottom panel: this shows −ρ−1dp/dr, which accord-
ing to the equation of hydrostatic equilibrium should be equal to
the gravitational acceleration g and hence essentially constant in
the outermost parts of the model. This is satisfied in the ASTEC
model but not in the MESA model. The effect on the computed
frequencies is shown in Fig. D.2, compared also with the results
for the corresponding LPCODE model. For the MESA model there
are clearly significant differences, particularly at high frequency,
as expected for model differences confined to the outermost lay-
ers; no such differences are found in the case of the LPCODE
(although there are differences at low frequency, which reflect
structure differences deeper in the model).
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For the present comparisons these problems with the MESA
models have a relatively minor effect, compared with the more
substantial differences found for various other aspects of the
structure. However, they would affect the comparison between
observations and the MESA models, and more generally it has
clearly been desirable to correct these problems with such a con-
venient and widely used code. We note that they have been re-
solved in MESA since revision 11877.

Appendix E: Asteroseismic effects of

thermodynamic properties

Fig. E.1. Relative differences in computed frequencies for the
GARSTEC 1.5 M⊙, 7 R⊙ solar-calibrated models, compared with
the ASTEC results, in the sense (GARSTEC) - (ASTEC). The top
panel shows results for the original GARSTECmodel, and the bot-
tom panel used the revised model, with updated treatment of the
equation of state. The differences are evaluated at fixed radial
order.

The original results for the GARSTEC models showed rather
substantial differences, relative to the ASTEC reference, in the
acoustic-mode properties. These arose from a separate treatment
in the version of GARSTEC used then of the low-temperature re-
gion in the implementation of the OPAL equation of state. This
has been updated in the results shown in the main part of this
paper. However, since the results provide insight into the sensi-

tivity of the frequencies to the model structure it is of interest to
discuss them in some detail.

Frequency differences between the original GARSTEC and
the ASTEC models for the 1.5 M⊙, 7 R⊙ solar-calibrated case are
shown in the top panel of Fig. E.1. Compared with the gen-
eral trends in the average radial-mode frequency differences
shown in Fig. 3, there are substantial differences in the radial-
mode frequencies and in the asymptotic frequency spacing and
a significant discrepancy between the differences in the asymp-
totic and actual radial-mode frequencies. The differences in the
asymptotic period spacing and consequently in the g-dominated
mode frequencies are comparatively small; they are coinciden-
tally similar to the radial-mode frequency differences.

Fig. E.2. Logarithmic differences between the original GARSTEC
and ASTEC 1.5 M⊙, 7 R⊙ solar-calibrated models, in the sense
(GARSTEC) - (ASTEC), in the outer layers of the model. The solid
line shows the difference in squared sound speed c2 and the
dashed line the difference in adiabatic exponent Γ1. For compar-
ison, the thinner red lines show the corresponding differences
between the revised GARSTEC and the ASTECmodels.

These differences in acoustic behaviour between the original
GARSTEC and ASTECmodels are directly related to differences in
the structure of the outer layers of the models. Figure E.2 shows
the logarithmic differences in squared sound speed c2 = Γ1 p/ρ
and Γ1. It is evident that much of the sound-speed difference
comes from the difference in Γ1, in the region of helium ioni-
sation. This is the result of significant differences between the
models in the treatment of the equation of state in these regions.
As shown by the red curves, these differences have been very
substantially reduced by the revision of the GARSTECmodels.

With the revised GARSTEC equation of state the differences in
acoustic behaviour between GARSTEC and ASTEC are very small,
as illustrated by the bottom panel of Fig. E.1.

Appendix F: Asteroseismic effects of the

convective-core size

The original comparisons found substantial differences in g-
mode frequencies between the 2.5 M⊙, 10 R⊙ LPCODE and ASTEC
models, as illustrated in the top panel of Fig. F.1. Here there
is excellent agreement for the radial-mode frequencies, while
the g-dominated modes, and the asymptotic period spacing,
show differences of around 5 %. The pattern of differences
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Table F.1. Asymptotic dipolar g-mode period spacings ∆Π1 in
s (cf. Eq. 6) for the solar-calibrated ASTEC and the original and
corrected LPCODEmodels.

M/M⊙ R/R⊙ ASTEC LPCODE LPCODE

(original) (corrected)

2.0 10.0 78.72 73.37 78.14

2.5 10.0 123.62 117.11 122.32

Fig. F.1. Relative differences in computed frequencies for the
LPCODE 2.5 M⊙, 10 R⊙ solar-calibrated model, compared with
the ASTEC results, ’n the sense (LPCODE) - (ASTEC). The top
panel shows the original LPCODE model, while the bottom panel
is for the revised model.

is qualitatively similar to Fig. 9, with smaller differences for
the p-dominated modes. Similar effects were found in the
2.0 M⊙, 10 R⊙ case, as illustrated by ∆Π1 in Table F.1. These dif-
ferences were caused by differences in the H profile in the region
located between the H-burning shell and the H-discontinuity left
by the first dredge-up episode (see the bottom panel in Fig. F.2).
Differences in the chemical profile can be traced back to a
smaller receding convective core during main-sequence evolu-
tion due to an underestimation of the radiative opacities in the
core. The latter was caused by the fact that the OPAL routines
(Iglesias & Rogers 1993) were using the Type II set of opac-
ity tables2 as soon as C and O were transformed into N by the
CNO cycles. As the C and O decrement was not balanced by the

2 see https://opalopacity.llnl.gov/existing.html

N-enhancement in the opacity tables, this led to a slight under-
estimation of the Rosseland opacity of the core. This has now
been corrected in LPCODE, as shown in Section 3 and the bottom
panel of Fig. F.1. However, the results provide an illustrative ex-
ample of the effect on red-giant frequencies of changes to the
main-sequence convective core and hence deserves a more de-
tailed analysis. Here we focus on the solar-calibrated case; the
RGB-calibrated case is very similar.

Fig. F.2. Top panel: variation with age in the fractional mass of
the convective core, in 2.5 M⊙ solar-calibrated models. Bottom
panel: resulting profiles of the hydrogen-abundance X in the
10 R⊙ red-giant model. The solid and dot-dashed lines show the
original and revised LPCODE models, and the dashed lines show
the corresponding ASTEC model.

Relevant properties of the evolution and structure are pre-
sented in Fig. F.2 (see also Paper I). The top panel shows the
evolution in the fractional mass of the convective core, which
defines the hydrogen profile at the end of the main sequence.
It is evident that the convective core is significantly smaller,
and the main-sequence phase correspondingly shorter, in the
original LPCODE evolution, whereas the corrected evolution is
very similar to the ASTEC case. In the 10 R⊙ model this is re-
flected in a slightly smaller helium-rich region in the original
LPCODE model. Correcting the opacity increases the size of the
convective core to close to but still slightly smaller than the
ASTEC model, resulting in the much smaller frequency differ-
ences shown in the bottom panel of Fig. F.1.
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To investigate how the differences in structure affect the
asymptotic period spacing, we express Π0 (cf. Eq. 6) as

Π0 = 2π2I(rbcz)−1 , (F.1)

where rbcz is the radius at the base of the convective envelope,
and

I(r) =

∫ r

0

N
dr

r
. (F.2)

Also, using the equation of hydrostatic support we introduce

N2 = BG , (F.3)

separating N2 in a dynamical and a thermodynamic part, with

B = g
2ρ

p
, G =

(

1

Γ
− 1

Γ1

)

, (F.4)

where

1

Γ
=

d lnρ

d ln p
. (F.5)

From Eq. (F.1) it follows that

δ lnΠ0 ≃ −
δrI(rbcz)

I(rbcz)
, (F.6)

neglecting the small contribution from the difference in rbcz be-
tween the models; here, from Eqs. (F.2), (F.3) and (F.4),

δrI(r) ≃ 1

2

∫ r

0

N(δr lnB + δr lnG)
dr

r
, (F.7)

where δr denotes the difference at fixed fractional radius. The re-
sult of the analysis is shown in Fig. F.3. It is clear that Eq. (F.7)
provides a reasonable approximation to the difference in I,
which is dominated by the contribution δrI[δrB] from δr lnB.

Fig. F.3. Differences in the partial integrals for differences in Π0

(cf. Eq. F.7) between the original LPCODE 2.5 M⊙, 10 R⊙ solar-
calibrated model and the ASTEC model, in the sense (LPCODE)
– (ASTEC). The dashed and dash-dotted lines show the contri-
butions δrI[δrB] and δrI[δrG] from δrB and δrG, respectively,
and the solid line shows their sum. For comparison, the dotted
line shows the relative difference in I.

To delve deeper into the origin of these differences, Fig. F.4
shows the hydrogen abundance in the LPCODE and ASTEC mod-
els, as well as the logarithmic differences between the models in

p, ρ, g (i.e. the mass) and B. The differences are predominantly
in and just above the core of the model, probably related to the
difference in the hydrogen profile. The change in the partial in-
tegral I(r) (cf. Fig. F.3) is dominated by the core, where the
LPCODE model has a higher central condensation and the larger
gravitational acceleration dominates the difference in B. It is in-
teresting that the asymptotic period spacing and the mixed-mode
frequencies so clearly reflect the relatively subtle difference in
the hydrogen profile.

Fig. F.4. Top: hydrogen abundance in the ASTEC (dashed) and
the original LPCODE (solid) 2.5 M⊙, 10 R⊙ solar-calibrated mod-
els. Bottom: differences δr ln p (dashed), δr ln ρ (dot-dashed),
δr ln g (long dashed) and δr lnB (solid) between the ASTEC
and the original LPCODE 2.5 M⊙, 10 R⊙ models, in the sense
(LPCODE) – (ASTEC).

22


	1 Introduction
	2 Properties of red-giant oscillations
	2.1 General properties
	2.2 Observational properties
	2.3 Oscillation properties of red-giant models

	3 Results of model comparisons
	3.1 Stellar models
	3.2 Acoustic properties
	3.3 Mixed modes
	3.4 The RGB-calibrated models

	4 Discussion
	5 Conclusions
	A Frequency calculations
	A.1 Computational procedures
	A.2 Numerical precision
	A.3 Large frequency separation from frequency fitting
	A.4 Dipolar-mode order

	B Results for the RGB-calibrated models
	C Properties of the asymptotic large frequency separation
	D Problems with the MESA atmosphere models
	E Asteroseismic effects of thermodynamic properties
	F Asteroseismic effects of the convective-core size

