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Abstract: We analyse the temporal properties of the optical pulse wave that is obtained by 

applying a set of spectral /2 phase shifts to continuous-wave light that is phase-modulated by a 

temporal sinusoidal wave. We develop an analytical model to describe this new optical waveform 

that we name ‘besselon’. We also discuss the reduction of sidelobes in the wave intensity profile 

by means of an additional spectral  phase shift, and show that the resulting pulses can be 

efficiently time-interleaved. The various predicted properties of the besselon are confirmed by 

experiments demonstrating the generation of low-duty cycle, high-quality pulses at repetition rates 

up to 28 GHz. 
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I. Introduction 

Ultrafast optics has provided extremely efficient means to generate various pulse waveforms 

with durations of a few picoseconds and very high-repetition rates. In principle, arbitrarily complex 

optical waveforms can be synthesised at high repetition rates by careful phase-intensity spectral 

shaping of frequency comb sources [1]. It remains however of high importance to have simple 

experimental methods for optical waveform generation as well as a clear mathematical description 

of the generated pulse profiles. Sinusoidal intensity profiles can be efficiently generated by use of 

standard high-bandwidth modulators. Gaussian and hyperbolic secant pulses are routinely 

delivered from fibre lasers. Within the toolbox of optical signal processing, triangular, parabolic 

and rectangular shapes can be achieved by linear [2] or nonlinear [3, 4] sculpturing. In the context 

of linear shaping or nonlinear fibre propagation, the properties of other pulse waveforms have also 

been the subject of recent discussion, including solitons over finite background [4, 5], superregular 

breathers [6], Riemann waves [7], flaticon waves [8], Airy pulses [9], and Hermite-Gaussian 

structures [10]. Some of these waves feature very strong oscillations in their temporal profiles [8-

10]. 

An attractive method to generate high-repetition-rate and stable pulse trains relies on the 

spectral processing of periodically phase-modulated continuous-wave light [11]. Within this 

approach, the use of a quadratic spectral phase profile has indeed enabled the generation of ultra-

short pulses at high repetition rates [12, 13] as well as of flat-top profiles [14]. We have recently 

introduced the line-by-line application of /2 spectral phase shifts to a periodically phase-

modulated continuous wave as an enhanced technique to obtain high-quality ultra-short pulse 

trains [15]. This pulse generation method can sustain multi-wavelength modulation and temporal 

multiplexing [16], as well as operation with a dual-tone signal [17]. Furthermore, compared to the 

original approach, the extinction ratio of the pulses and the suppression of sidelobes in their 

temporal intensity profiles are remarkably enhanced [15]. However, to date, no clear analytical 

description and explanation of the generated pulses have been reported. The discussion has 

essentially relied on numerical simulations with the amplitude of the initial phase modulation 

restricted to 2 radians. 

In this paper, we fill this gap by providing an insight into the new type of an optical wave 

structure generated with this method, which we name ‘besselon’. We unveil its properties for a 

broad range of phase-modulation amplitudes, and we derive simple analytical guidelines to predict 
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the main pulse features. An approximate model is also introduced to help explain the evolution of 

the wave profile. Further, we theoretically discuss the possibility of doubling the pulse repetition 

rate, and identify optimum operating conditions to realise this. Our analytical predictions are 

validated by the experimental demonstration of the generation of besselon pulse patterns at 

repetition rates of 14 GHz and 28 GHz. 

II. Theoretical model for besselon waves  

A Pulse generation and properties 

We consider a continuous optical wave with amplitude 0 and carrier angular frequency c, 

0( ) ( ) ci t
t t e

    whose phase is temporally modulated by a sinusoidal wave: 

 
 cos

( ) m mi A t
t e


   

where Am is the amplitude of the phase modulation and m is its frequency. As a result of this phase 

modulation, the spectrum of frequency components of the wave envelope will consist of a series 

of discrete lines evenly spaced by m, which can be obtained from the Jacobi-Anger expansion 

[18-20] of ψ(t): 

 ( ) ( ) mi n tn
n m

n

t i J A e






   

Therefore, the nth spectral component will have an intensity proportional to (Am), where Jn(x) 

is the Bessel function of the first kind and order n. An important characteristic of this spectrum is 

the existence of a /2 phase shift between successive frequency components. The application of a 

quadratic spectral phase profile - such as produced by propagation through a purely dispersive 

element - to ψ(t), with a curvature chosen so as to optimise the peak power of the resulting pulses, 

will enable partial compensation of the initial sinusoidal phase. This will in turn lead to the 

emergence of temporally localised, periodic pulse structures with a period T0 = 2 / m  [12, 13], 

as shown in Fig. 1(b). We can see in Fig. 1(b) that increasing the amplitude Am of the initial 

modulation causes shortening of the central part of the pulses accompanied by a concomitant 

increase of the pulse peak power. However, since the initial spectral phase is not perfectly 

2
nJ
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cancelled, the presence of a residual background impairs the resulting pulse intensity profiles [14]. 

On the other hand, the recent advances in linear pulse shaping technology make it now possible to 

manipulate optical frequency combs line by line. With our pulse-shaping approach, imprinting a 

/2 phase shift to each individual spectral component of the phase-modulated continuous wave 

enables the synthesis of a new optical pulse field, which we call ‘besselon’ because of the 

important role played by Bessel functions in the description of the waveform features. The 

besselon wave envelope, B, can be represented as:  

  0

1

( ) ( ) cos( ) 2 ( )mi n t
B n m m n m m

n n

t J A e J A J A n t
 

 

 

    (1) 

In Ref. [15], we have emphasised that this pulse structure exhibits an excellent extinction ratio 

(defined as the ratio of the power at t = T0/2 to the power at t = 0) combined with the absence of 

spurious pedestals for values of the initial phase-modulation amplitude Am around 1.1 rad. Figure 

1(a) shows the evolution of the wave intensity profile |B|2 with Am across a wide range of 

modulation amplitude values, and features distinctly different from that of the pulse pattern 

resulting from spectral manipulation with a quadratic spectral phase. The besselon pulses do not 

experience a decrease of their temporal duration with increasing modulation amplitude, and their 

extinction ratio may also vary significantly with varying amplitude. The central part of the pulses 

also evolves in a different manner: sidelobes develop and tend to merge with the central part that 

displays an increasingly large number of strong oscillations. 
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Figure 1: Evolution of the wave intensity profile with the amplitude of the initial sinusoidal phase modulation. (a) 

Besselon intensity profile |B|2 as given by Eq. (1), and (b) profile synthesised by use of an optimal quadratic spectral 

phase profile as obtained from numerical simulations. The wave profiles are displayed using a logarithmic scale color 

map. The red vertical dashed lines in panel (a) represent the values of Am satisfying the condition for maximal 

extinction ratio, IJ0(Am) = 1. The blue vertical dashed lines represent the zeros Am,p of J0 (Am), corresponding to the 

locations of the maxima of the peak power of the besselon. 

 

To gain better insight into the besselon pulse wave, we have plotted on Fig. 2 the evolution of the 

pulse peak power at t = 0, the minimum power at t = T0/2 and the extinction ratio of the pulse train 

with the phase-modulation amplitude. The Fourier-transform limited nature of the besselon wave 

for Am ≤ 2.40 rad brings about a continuous increase of the peak power with Am, which reaches 

higher values than the peak power of the pulse wave obtained after a dispersive element. For 

further increase of the modulation amplitude, however, the peak power of the besselon wave 

oscillates and remains below the value of 6.10 obtained at Am = 2.40 rad. From Eq. (1), one may 

derive analytically the value of the maximum of the field (i.e. at t = 0) :  

 0

1

( 0) ( ) 2 ( )B m n m

n

t J A J A




      

and using the relations [18, 21] 
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2 0

1

2 1 0

0 0

2 ( ) 1 ( )

2 ( ) ( )
m

n m m

n

A

n m

n

J A J A

J A J x dx











 





 

  

we can obtain the peak amplitude of the besselon:  

 0( 0) 1 ( )B J mt I A     (2) 

with IJ0 being plotted on Fig. 2(d) (red line) and defined as  

 
0 0

0

( ) ( )
mA

J mI A J x dx   (3) 

We can see in Fig. 2(a) that the peak-power predictions from Eq. (2) are in perfect agreement with 

the results of numerical simulations. The amplitude values Am,p of the phase modulation at which 

the peak power of the besselon is maximal are given by dIJ0/dAm|Am,p = 0, that is J0(Am,p) = 0. In 

other words, the maxima of the peak power occur at the zeros of the Bessel function of zero order. 

For these amplitudes (Am,p = 2.4048, 5.5201, 8.6537, …), the central frequency component of the 

spectrum vanishes and the pulse train becomes carrier-suppressed. Using the following asymptotic 

form of the zeroth-order Bessel function for large arguments [18] (Fig. 2(d), black circles) 

 0

2
( ) cos

4
J x x

x





 
 

 
 (4) 

we can obtain an approximate expression for the location of the pth maximum:  

 ,

3
( 1)

4
m pA p


  ,  p≥1 (5) 

Equation (5) indicates that the power at t=0 of the besselon experiences periodic growth and decay 

with a period of  rad. We also note that as IJ0(x) asymptotically tends to 1 for large values of x 

[21], the amplitude of the oscillations decreases with increasing values of Am.  
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Figure 2: (a-c) Evolution of the (a) peak power, (b) minimum power, and (c) extinction ratio of the besselon pulse 

wave with the amplitude of the initial sinusoidal phase modulation. The predictions provided by (2), (6) and (7) (blue 

circles) are compared with the results of numerical simulations (blue curves). Also shown are the numerical simulation 

results for the pulse wave synthesised by use of an optimal quadratic spectral phase profile (black curves). (d) Bessel 

function of the first kind and order 0, J0(Am), (blue curve) and its integral IJ0(Am) as defined by Eq. (3) (red curve). The 

filled black circles represent the asymptotic form of J0(Am) for large argument (Eq. (4)). The red vertical dashed lines 

represent the values of Am satisfying the condition for maximal extinction ratio, IJ0(Am) = 1. The blue vertical dashed 

lines represent the zeros Am,p of J0 (Am), corresponding to the locations of the maxima of the peak power. The purple 

curve in panel (d) represents the function 1 – 2 J0(Am)  (Eq. (19) in section D) .  

 

The minimum power of the besselon pulse wave (Fig. 2(b)) also displays strong variations with 

varying amplitude of the initial phase modulation. This contrasts with the pulse wave obtained 

after a dispersive element, where the intensity level between consecutive pulses remains almost 

constant for Am above 2 rad. Similarly to the temporal maximum of the besselon, we can obtain 

the minimum amplitude of the besselon from Eq. (1): 

 0
01 ( )

2
B J m

T
t I A
 
   

 
, (6) 
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which yields the following expression for the extinction ratio of the pulses: 

 0

0

1 ( )
( )

1 ( )

J m
m

J m

I A
ER A

I A





 (7) 

We can therefore deduce that for amplitudes of the sinusoidal modulation satisfying the equation 

IJ0 (Am) = 1, the background level between pulses is zero hence the extinction ratio is maximal. 

This condition is consistent with the condition derived in [15] based on numerical simulation data. 

Similarly to the peak and minimum powers, the extinction ratio of the pulses varies strongly with 

Am, while remaining larger than the extinction ratio of the pulse wave synthesised by use of a 

quadratic spectral phase profile across the whole Am variation range. Note that, for IJ0 (Am) = 1, the 

maximum amplitude of wave is simply 2, leading to an intensity of 4. 

 

B Details of the pulse shape 

We now try to better describe the shape of the besselon at the points of maximal extinction ratio, 

i.e. when IJ0 (Am) = 1. Temporal profiles B obtained for Am = 1.1086, 4.0628, 7.15 and 10.2695 

rad are plotted on Fig. 3 (panels a). From Eq. (1), we can first note that the besselon is a waveform 

without any complex part, contrary to the waveform achieved after quadratic phase compensation. 

If the besselon does not present any negative part for Am < Am,1, this is not the case for higher 

values of Am and we can clearly see negative and positive parts that alternate, stressing that two 

successive oscillations of the wave are -shifted. We also note that for an amplitude of oscillation 

Am,p, we obtain 2p+1 peaks in the temporal intensity profile.  
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Figure 3:  Temporal (a) amplitude and (b) power of the besselon for various values of Am leading to an optimum 

extinction ratio (the condition IJ0 (Am) = 1 is fulfilled). Results obtained for Am = 1.1086, 4.0628, 7.15 and 10.2695 are 

plotted on panel 1, 2, 3 and 4 respectively. The profile of the besselon B (solid black line, Eq. (1)) is compared with 

the profile of 2D  (dashed blue line, Eq. (8)). Approximation of the besselon proposed by Eq. (12) is plotted with red 

diamonds. The vertical dashed line in panels (b) indicate the position of the peak as predicted by Eq. (9).  

 

In order to better understand the origin and the properties of these peaks, it could be interesting to 

express the besselon as: 

    0 2 2 1

1 0

( ) ( ) 2 ( ) 2 2 ( ) (2 1)cos cosB m n m m n m m

n n

t J A J A n t J A n t  
 



 

      

and to take into account that [18, 21]: 

    0 2

1

( ) 2 ( ) 2 cos sin(c s ) (o )m n m m m m D

n

J A J A n t A t t  




    (8) 



 

 10 

It is interesting to superimpose the profiles of 2 D and B  (see Fig. 3, blue dashed line and solid 

black lines respectively) and to note that the central part of the besselon is remarkably well 

described by 2 D. One may also note that the repetition rate of D is twice the repetition rate of 

the besselon and that 2 D(t)= B(t) + B(t-T0/2). Note that D can be generated directly from a 

Mach-Zehnder device driven by a sinusoidal electrical wave. From 2 D, it is possible to deduce 

several interesting features of the central part of the besselon. First the power of the various peaks 

equals 4 (amplitude of 2). Moreover, the temporal location of the maxima tM of the temporal 

intensity profiles are:  

 asin mM

m

n
t

A




 
  

 
 (9), 

with n ≤ (N-1)/2, N being the number of peaks that is given by 2 / 1mA     . We can also derive 

the full width at half maximum of the besselon: 

 
2 1

asin
2 4

B

m m

N
t

A





  
   

  
 (10), 

as well as the temporal width of the central part: 

 
2

asin
4m

C

m

t
A





 
  

 
 (11). 

Results of those analytical predictions are reported on Fig. 4 where we can make out an excellent 

agreement with the numerical simulations. The difference between the waveform resulting from a 

quadratic spectral phase compensation and the besselon is also highlighted. 
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Figure 4: Evolution of the full-width at half maximum duration of the besselon wave. Numerical simulations (blue 

solid line) are compared with the analytical predictions of Eq. (10) and (11) (blue circles). The fwhm duration of the 

pulse obtained after optimal quadratic spectral phase compensation is plotted with black dotted line, whereas the 

duration of the central part of the besselon is plotted with dotted blue line. Results obtained for B’ are plotted with 

red line. 

 

C Simplified expression for low values of Am 

In this section, we now focus on a simplified model that efficiently describes the central part of 

the pulse for low values of Am. Indeed, from Fig. 3(a1) and (b1) it appears that 2D is not accurate 

enough for low values of Am (typically below 1.5 rad). In this context, we have shown in previous 

works that for Am = 1.1 rad, the generated waveform was very close from a Gaussian profile [15]. 

We have also recently discussed the similarity between the besselon profile obtained for low Am 

and the typical profile of an Akhmediev breather [22] that may exist in nonlinear fibre optics [23]. 

Here, we propose to interpret the waveform from another viewpoint. As shown in Fig. 5(a), we 

can consider that the spectrum obtained for low Am is the result of the coherent superposition of 

three waves: a continuous wave 1 with an amplitude J0-2J2 and two sinusoidally partially 

modulated wave (a continuous background with an amplitude J1 that is modulated with an 

amplitude 2 J2 at a frequency m) that are frequency shifted by -m and m (2 and 3 respectively) 

In the temporal domain, this leads to  

 

 

  

  

0 2

1 2

1 2

( ) 2

2 cos e

2 cos e

m

m

B

i t

m

i t

m

t J J

J J t

J J t









 



   

   

, 
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which can be rewritten as 

      0 2 1 2( ) 2 2 2 cos cosB m mt J J J J t t        (12), 

 

 

Figure 5: Comparison of the besselon properties obtained for Am = .6 rad with the predictions of a simplified 3-wave 

model. (a) Optical spectrum of B, 2, 3 and 1  (panels 1,2,3,4 respectively). (b) Temporal properties: chirp profile, 

field and intensity profiles (panel 1, 2, 3, respectively). The results for waves 1, 2 and 3 are plotted with purple, 

blue and red colors respectively. Results B are plotted with solid black line and compared with the approximate 

model (black circles, Eq. (12)). 

 

The amplitude and phase profiles of the three waves are plotted in Fig. 3(b1-b2) which helps to 

understand how the waveform is formed. For t = 0, the three waves are in phase, they interfere 

constructively and the amplitude is maximum so that 

 0 1 2( 0) ( ) 2 ( ) 2 ( )B m m mt J A J A J A     (13), 

On the contrary, for t = T0/2, we note that the modulated waves are both -shifted with respect to 

the continuous wave. They will interfere destructively and the amplitude of the besselon is 

minimum as follows: 

 0 0 1 2( / 2) ( ) 2 ( ) 2 ( )B m m mt T J A J A J A     (14), 
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The besselon therefore reaches a null value at T0/2 when 

  0 1 2( ) 2 ( ) ( )m m mJ A J A J A   (15), 

that gives an optimum value of Am = 1.187 rad, which is consistent with the value found previously 

(1.109 rad). Finally, we can note that for t = T0/4, the two sinusoidal waves present a phase 

difference of . Consequently, they cancel each other and 
0 0 2( / 4) ( ) 2 ( )B m mt T J A J A   . 

Therefore, for low values of Am, 
0( / 4)B t T   continuously decreases indicating that the pulse 

gets temporally shorter and shorter. We have plotted the intensity profiles resulting from the 

approximate Eq. (12) on Fig. 5(b3) for a value of Am = .6 rad. The approximation is nearly 

undiscernible compared to the exact prediction from Eq. (1). The agreement is also rather good for 

Am = 1.10 rad as can be seen on Fig. 3(a1-b1). In Fig. 6(a-b), we compare the peak-power and 

extinction ratios predicted by this approximate model (purple circles) and once again, we find an 

excellent agreement as long as the level of the component J3 is low enough. 

 

D Reduction of the lateral temporal sidelobes 

As can be seen in Fig. 1(a) and in the magnified view provided in Fig. 6(c1), the evolution is 

marked for Am > Am,1 by the development of noticeable sidelobes in the pulse. Given the non-

negligible energy fraction contained in those sidelobes, this leads to a decrease of the peak power 

as stressed in panel (a) of Fig. 6. Recall that the value Am,1 corresponds to the amplitude of the 

initial phase modulation for which the central spectral component decreases down to zero. It then 

becomes negative up to to Am = Am,2. Consequently, from the simplified model we developed in 

the previous section, we can understand that at t = 0 and between Am,1 and Am,2, the continuous 

background becomes -shifted with respect to the sinusoidally modulated waves. Therefore, the 

interference changes from constructive interference (below Am < Am,1) to destructive interference. 

The resulting structure has a reduced peak power and is not Fourier-transform limited anymore. In 

order to overcome this effect, a solution is to imprint an additional  shift on the central component 

for Am>Am,1. In this case, the modified besselon pulse 
'
B  is provided by 

' ( ) ( )B Bt t   for Am < 

Am,1 and: 
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  '
0 0

1

cos( ) ( ) 2 ( ) ( ) 2 ( )B m n m m B m

n

t J A J A n t t J A  




      (16) 

elsewhere. The corresponding peak amplitude becomes for Am>Am,0: 

 '
0 0( 0) 1 ( ) 2 ( )B J m mt I A J A      (17) 

The maximum amplitude is therefore increased by 2 |J0(Am)| with respect to the case without  

phase shift. The condition on Am that now leads to a maximum amplitude is that J0(Am) = -2 J1(Am), 

leading to a value of the maximum for A’m,1 = 3.40 rad (cyan vertical line in Fig. 6a) for a peak-

power value that is 8.93, representing a 46% increase compared to the results obtained for B. The 

extinction ratio becomes: 

 0 0

0 0

1 ( ) 2 ( )
'( )

1 ( ) 2 ( )

J m m
m

J m m

I A J A
ER A

I A J A

 


 
, (18) 

which tends to infinity when: 

 0 0( ) 1 2 ( )J m mI A J A   (19) 

which leads to a condition Am = 2.86 rad as can been found from Fig. 1(d). This value differs quite 

significantly than the one found for the unmodified besselon. Note that an ER above 102 is obtained 

for Am in the range of 2.6-3.15 rad. The analytical results from Eq. (17), (18) are in perfect 

agreement with the numerical results as can be seen on Fig. 6(a-b). Comparison of the temporal 

profiles obtained without or with an additional  phase shift on the central component is provided 

in Fig. 6(c). It clearly highlights the decrease of the sidelobes of the pulse that are at -13 dB of the 

peak power for Am = 2.86 rad (while in the case of B the decrease is only -7.22 dB for the same 

Am). If there is an improvement in terms of peak-power, we do not observe such an improvement 

in terms of temporal duration (see Fig. 4). For Am = 2.86 rad, pulse with a fwhm temporal duration 

of 0.1 T0 is obtained, which represents a significant reduction when compared to the results 

achieved for Am = 1.1086. Finally, note that for Am > 3.83, the first lateral sidebands will experience 

a  phase shift as J1 changes of sign. Therefore, insertion of additional phase shifts could be 

required to further improve the peak-power. 
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Figure 6: (a-b) Evolution of the properties of the temporal intensity profile according to the initial amplitude of the 

sinusoidal phase modulation. (a) Peak power. (b) Extinction ratio. Results obtained after optimum quadratic phase 

compensation (black solid lines) are compared with the properties of the besselon (blue lines, Eq. (2) and (7)) and of 

the modified besselon (red lines, analytical predictions solid line, analytical predictions – Eq. (17) and (18), red 

circles). Results from the approximate model (derived from Eq. (12)) are plotted with purple circles. (c) Intensity 

profiles obtained for the besselon |B|2 (Eq. (1)) and modified besselon |'B|2 (Eq. (16)). 

 

E Time multiplexing 

In this last section, we consider the possibility to temporally interleave the besselon pulses 'B 

in order to double the repetition rate. Many solutions may exist such as the use of the fractional 

Talbot effect [24, 25], temporal delay lines [26], or spectrum manipulation such as intensity 



 

 16 

modification [27] or phase only shaping [28]. Here, in order to double the repetition rate, we 

suppress all odd spectral components. In this context, the resulting field is restricted to: 
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That, given Eq. (8), can be rigorously expressed as : 
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 (20) 

Results of the repetition doubled pulse train are shown on Fig. 7(a). One can make out that the 

optimal condition in terms of extinction ratio is obtained for Am = 1.57 and Am = 3.78 and not for 

Am = 1.10 and Am = 2.86 rad as one could have initially anticipated from sections IIA,D  (Eq. (7) 

and Eq. (19)). Indeed, the value at t = T0/4 is given by: 
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and vanishes when  
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In Fig. 7(b), we compare the profiles obtained before repetition rate doubling (panel 1) with the 

results achieved after processing (panel 2). We can make out that suppressing the odd components 

enables to get rid of the residual component observed between two pulses [26]. Nice pulse shapes 

are achieved especially for Am = 3.78 rad (optimum operating point for Am>Am,1) where the 

spurious sidelobes are decreased down to a level of nearly -20dB the peak power. Temporal 

duration of 0.092 T0 leads to a duty cycle of 0.18. The cost of the approach is mainly in the drop 

of the peak power, which decreases by a factor more than two. 
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Figure 7 : (a) Evolution of the intensity profile obtained for modified besselon |'B|2 at the doubled repetition rate 

(Eq. Erreur ! Source du renvoi introuvable.). (b) Detail of the temporal intensity profile obtained before and after 

repetition rate doubling 'B|2 and |'B|2 (panels 1 and 2 respectively), for Am = /2 and 2.78 rad respectively (blue and 

red curves). 

 

III. Experimental validation 

A. Experimental setup 

The experimental setup is sketched in Fig. 8(a) and is based on devices that are commercially 

available and typical of the telecommunication industry. A continuous wave laser at 1550 nm is 

first temporally phase modulated using a Lithium Niobate electro-optic device driven by a 

sinusoidal electrical signal at a frequency fm = 14 GHz. The use of a low V modulator enables us 

to investigate modulation amplitudes Am up to 3.75 rad. Note that amplitudes of modulations 

exceeding 10 rad have already been demonstrated in the past using a resonant microwave 

modulator [29, 30] or cross-phase modulation in a highly non-linear fiber [8]. 

A linear spectral shaper (Finisar Waveshaper) based on liquid crystal on silicon technology [31] 

is then used to apply the suitable spectral phase profiles made of simple discrete spectral phase 
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shifts of /2 applied between two successive components for the experimental demonstration of 

the waves B and 'B (see panels 8(b1) and 8(b2) respectively). For the doubling of the repetition 

rates, we have inserted  phase shifts at frequencies (2p+1) fm, with 0p   for the wave '2B 

(AmAm,1) and with 1p   for (Am>Am,1) (see panels 8(b3) and 8(b4), red curves). Indeed, the 

discrete spectral -phase shifts create a notch filter [32] that dramatically attenuates the spectral 

harmonics to be suppressed. Attenuation curves recorded using an amplified spontaneous emission 

source (ASE) as an input signal are shown with black solid lines and confirm that we can 

simultaneously achieve the spectral amplitude and phase targets using a simple phase-only spectral 

shaping. Let us mention that for operation at a fixed wavelength and a fixed repetition rate, the 

linear shaping stage can also be fully realized by a cascaded uniform fibre Bragg grating [33]. Note 

also that in order to increase the repetition rate by suppression one spectral component of two, 

other approaches can be implemented such as the use of a birefringent fibre [34] or Fabry-Perot 

interferometers [35]. 

The resulting signal is directly recorded by means of a high-speed optical sampling oscilloscope 

(1 ps resolution) and with a high-resolution optical spectrum analyzer. A low noise erbium-doped 

amplifier has been inserted in order to reach the optimum power level on the temporal detection 

device. 
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Figure 8: (a) Experimental setup : CW : Continuous Wave ; PM : Phase Modulator ; RF : Radio-Frequency ; ASE : 

Amplified Spontaneous Emission ; EDFA : Erbium Doped Fiber Amplifier ; HR OSA : High Resolution Optical 

Spectrum Analyzer. (b) Spectral phase profile (red line) applied on the programmable phase shaper for the generation 

of B, for 'B and for the simultaneous phase shaping and repetition rate doubling of B and 'B (panels 1,2, 3 and 4 

respectively). The optical attenuation induced by the phase attenuation is plotted with black line. 

 

B. Pulse waveform 

A set of experimental temporal and spectral power profiles recorded for different levels of initial 

phase modulation Am is summarized on Fig. 9. The agreement between the experimental results 

and the theoretical predictions is excellent, both in the temporal and spectral domains. We can 

recognize all the various features that have been discussed in the preceding sections. For low values 

of Am (typically below 0.8), the wave is only partially modulated and a continuous background 

remains (panel a). For values around 1.1 rad (panel b), the extinction ratio becomes very high and 

a Gaussian-like waveform is obtained. For increasing values of Am (2.47 rad, panel c) the 



 

 20 

background impairs significantly the pulse train. Significant sidelobes then develop (panel d1). 

Those pedestals can be suppressed by inserting an additional  phase shift on the central spectral 

component (panel d3).  

 

 

Figure 9: Temporal and spectral intensity profiles (panels 1 and 2, respectively) B obtained for levels of amplitude 

modulation Am of 0.64 rad, 1.08 rad, 2.47 rad and 3.48 rad (panels a, b, c and d respectively). For 3.48 rad, the panel 

(d3) corresponds to the modified besselon 'B. Experimental results (black lines) are compared with the theoretical 

predictions (red dashed lines and red circles, Eq. (1) or (16) for panel (d3)) as well as the predictions of the approximate 

model (blue dashed line, Eq. (12). All the profiles are normalized to their maximum. 

 

The results of a more systematic experimental study are reported in Fig. 10 for both structure type 

B and 'B. These results are to be compared with the results obtained in Fig. 6(c) and we note 

once again a remarkable agreement, both in terms of central shape and also in terms of the 

evolution of the sidelobes. We have also put the details of the time profiles recorded at the 

compression point corresponding to the best extinction ratio (2.83 rad), which further stresses the 

beneficial impact of the  phase shift on the central spectral component. 
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Figure 10: (a) Experimental evolution of the temporal intensity profile according to the initial amplitude of the 

sinusoidal phase modulation. Results for B and ’B are plotted on panels (a1) and (a2) respectively. White dotted 

line corresponds to Am = 2.83 rad whereas the black dotted line is for Am = Am,1. (b) Details of the intensity profile for 

Am = 2.83 rad 

 

The excellent agreement between theory and experiment is also visible in Fig. 11 where we have 

summarized the evolution of the peak-power and the fwhm duration. All the various features we 

previously predicted are reproduced, thus confirming our modelling.  
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Figure 11: Evolution of (a) the peak-power and (b) the fwhm duration of the pulse train according to the amplitude 

of modulation Am. The experimental results (circles) are compared with the results of Eq. (2) and (17) or with numerical 

simulations (dashed lines). Results obtained with the besselon B and the modified besselon ’B are plotted with blue 

and red colors, respectively. 

 

C. Doubling of the repetition rate 

We finally experimentally investigate the doubling of the repetition rate. Resulting pulse trains 

obtained at 28 GHz are reported in Fig. 12 for Am = /2 and Am = 3.72 rad. The optical spectra are 

displayed in panels (2) where we can note the significant decrease of the odd spectral components. 

The  phase shifts applied on those harmonics induces a reduction by more than 20 dB of their 

power. The odd spectral components are not fully suppressed but their very low level no longer 

influences the overall stability of the resulting train as it is confirmed by the eye diagrams. In both 

cases, the experimental results are in excellent agreement with the theoretical predictions form Eq. 

(20). The extinction ratio is excellent. The level of the pedestals is very low and for Am = 3.72 rad, 

a fwhm duration of 6.9 ps is achieved, leading to a duty-cycle of 0.19. 
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Figure 12: Pulse trains generated at a repetition rate of 28 GHz obtained for (a) Am = /2  rad and (b) Am = 3.72 rad. 

(panel 1) Temporal power profile. (panel 2) Optical power spectrum. (panel 3) Temporal profile recorded in persistent 

mode. Experimental results (black line) are compared with theoretical results (red line, Eq. (20); circles). The 

horizontal white dashed lines indicate the zero-level. 
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IV. Conclusions 

In conclusion, we have theoretically introduced a new waveform we have named besselon for 

which we have provided accurate and simple analytical predictions of the main features. We have 

stressed the significant differences between the besselon and the waveform that arises from 

quadratic phase compensation of a sinusoidally phase modulated wave. For a low level of initial 

phase modulation, an approximate model has been proposed to interpret the besselon shape as the 

result of an interference between three waves. For high levels of initial phase modulation, the 

single pulse structure then splits into several peaks. By inserting an additional -phase shift on the 

spectral component, the peak power can be further increased and the temporal duration reduced, 

making it attractive for high-repetition sources as well as for temporal multiplexing. Duty cycles 

as low as 0.1 without residual background are demonstrated without involving another complex 

stage of fiber-based nonlinear compression [36, 37]. By carefully choosing the level of initial 

modulation, we have shown that efficient repetition-rate doubling can be achieved with nice 

temporal profiles free from residual background. Compared to existing solutions that have relied 

on the use of an additional intensity modulator tightly synchronized with the phase modulation 

[38, 39] or on the use of a nonlinear optical loop mirror [40], our proposed method only implies a 

single phase modulator. Our approach could also be of interest for noise-free amplification [41] as 

well as for optical sampling [42]. In the present contribution, we have mainly focused on the 

generation of the pulse waveform. Further studies will explore the propagation in linear media 

(where it will be subject to Talbot self-imaging [24]) or in nonlinear media such as anomalous 

dispersive fibers where the spectrum with many components could be of extreme interest to seed 

new nonlinear regimes. 
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