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Introduction

These lectures have been delivered by the first author in the Summer School "Differential Geometry, Differential Equations, and Mathematical Physics" at Wisła, Poland from the 19 th to the 29 th of August 2019. The second author took the notes of these lectures.

As the title suggests, the material covered here includes the Poisson and symplectic structures (Poisson manifolds, Poisson bi-vectors and Poisson brackets), group actions and orbits (infinitesimal action, stabilizers and adjoint representations), moment maps, Poisson and Hamiltonian actions. Finally, the phase space reduction is also discussed. The Poisson structures are a particular instance of Jacobi structures introduced by A. Lichnerowicz back in 1977 [7]. Several capital contributions to this field were made by A. Weinstein, see e.g. [13].

The text below does not pretend to provide any new scientific results. However, we believe that this point of view and exposition will be of some interest to our readers. As other general (and excellent) references on this topic include:

• R. Abraham and J.E. Marsden. Foundations of Mechanics, 2 nd ed., Addison-Wesley Publishing Company, Redwood City, CA, 1987 [START_REF] Abraham | Foundations of Mechanics[END_REF] • V.I. Arnold. Mathematical methods of classical mechanics. 2 nd ed., Springer, New York, 1997 [2]

• A.M. Vinogradov and B.A. Kupershmidt. The structures of Hamiltonian mechanics, Russ. Math. Surv., 32(4), 177-243, 1977 [START_REF] Vinogradov | The structures of Hamiltonian mechanics[END_REF] We can mention also another set of recent lecture notes on the symplectic and contact geometries [11]. We mention also the classical review of this topic [14].

Our presentation remains at quite elementary level of exposition. We restricted deliberately our-selves to the presentation of basic notions and the state-of-the-art as it was in 1990 -2000. Nevertheless, we hope that motivated students will be inspired to find more advanced and modern material which is inevitably based on these elementary notes.

In the following text each Section corresponds to a separate lecture. This text is organized as follows. The Poisson and symplectic structures are presented in Section 2. The group actions and orbits are introduced in Section 3. The moment map, Poisson and Hamiltonian actions are described in Section 4. Finally, the manuscript is ended with the description of the phase space reduction in Section 5. The very last Section 6 is a brief (and essentially incomplete) introduction to Poisson-Lie structures and some related notions. An excellent account of the last topic can be found in the survey paper by Y. Kossmann-Schwarzbach (1997) [6].

Poisson and symplectic structures

Hamiltonian systems are usually introduced in the context of the symplectic geometry [5,[START_REF] Souriau | Structure of Dynamical Systems: a Symplectic View of Physics[END_REF]. However, the use of Poisson geometry emphasizes the Lie algebra structure, which underlies the Hamiltonian mechanics.

Poisson manifolds

Let M be a smooth manifold with a bracket

{ -, -} : C ∞ ( M ) × C ∞ ( M ) -→ C ∞ ( M ) ,
which verifies the following properties:

• Bi-linearity: { -, -} is real-bilinear.

• Anti-symmetry: { F , G } = -{ G , F } .

• Jacobi identity:

{ { F , G } , H } + { { G , H } , F } + { { H , F } , G } = 0 . • Leibniz identity: { F G , H } = F { G , H } + { F , H } G .
Then, the bracket { -, -} is a Poisson bracket and the pair M; { -, -} will be called a Poisson manifold. A Poisson algebra is defined as the following pair C ∞ ( M; R ); { -, -} . Thanks to the first three properties of the Poisson bracket, it is not difficult to see that C ∞ ( M; R ); { -, -} is also a Lie algebra. The last property of the Poisson bracket (i.e. the Leibniz identity) implies that it is also a derivative in each of its arguments.

Let M; { -, -} be a Poisson manifold and H ∈ C ∞ ( M; R ) , then there exists a unique vector field X H such that

X H (G) = { G , H } , ∀G ∈ C ∞ ( M; R ) .
The vector field X H is called the Hamiltonian vector field with respect to the Poisson structure with H being the Hamiltonian function. Let X ( M ) denote the space of all vector fields on M . Then, the just constructed mapping

C ∞ ( M; R ) -→ X ( M ) is a Lie algebra morphism, i.e. X { F , G } = [ X F , X G ] . Definition 2.1. A Casimir function on a Poisson manifold M; { -, -} is a func- tion F ∈ C ∞ ( M; R ) such that for all G ∈ C ∞ ( M; R ) one has { F , G } = 0 , ∀G ∈ C ∞ ( M; R ) .

Poisson bi-vector

If M; { -, -} is a Poisson manifold, then there exists a contravariant antisymmetric two-tensor π ∈ Λ 2 (TM) or equivalently

π : T * M × T * M -→ R such that π , dF ∧ dG ( z ) = π ( z ) dF ( z ); dG ( z ) = { F , G } ( z ) .
In local coordinates ( z 1 , z 2 , . . . , z n ) we have the following expression for the Poisson bracket:

{ F , G } = i, j π ij ∂ F ∂z i ∂ G ∂z j ,
where π ij def :-{ z i , z j } are called the elements of the structure matrix or the Poisson bivector of the underlying Poisson structure. For the vector field we have the corresponding expression in coordinates:

X H = i, j π ij ∂ H ∂z i ∂ ∂z j , or X j H = i π ij ∂ H ∂z i .

Hamilton map and Jacobi identity

Let π = ( π ij ) be a Poisson bi-vector on M , then there exists a C ∞ ( M; R )-linear map π : T * M -→ TM given by

π ( α ) ⌟ β = { π , α ∧ β } ( z ) = π ( z ) α( z ), β( z ) ,
where ⌟ denotes the usual interior product or the substitution of a vector field into a form.

If α = df for some f ∈ C ∞ ( M; R ) , then π ( dH ) = X H . It is not difficult to see how the map π acts on the basis elements of co-vectors:

π ( dz i ) = { z i , z j } ∂ ∂z j .
Finally, we also have the following Jacobi identity:

π il ∂ π jk ∂z l + π jl ∂ π ki ∂z l + π kl ∂ π ij ∂z l = 0 . (2.1)

Symplectic structures on manifolds

Definition 2.2. A symplectic form on a real manifold M is a non-degenerate closed

2-form ω ∈ Ω 2 ( M ) def :-Λ 2 ( T * M )
. Such a manifold is called a symplectic manifold and it is denoted by a couple ( M; ω ) .

Let M; { -, -} be a Poisson manifold with non-degenerate Poisson structure bi-vector ( π ij ) and the Hamiltonian isomorphism π such that π ( α ) = X . Then, there is the inverse map ( π ) -1 : TM -→ T * M is defined by the following relation:

Y ⌟ ( π ) -1 ( X ) = α ( Y ) .
Moreover, the inverse operator ( π ) -1 defines a 2-form ω π as follows:

ω π ( X , Y ) = ( π ) -1 ( X ) , Y .

Darboux theorem and Hamiltonian vector fields

The following Lemma describes some important properties of the just defined form ω π along with the underlying manifold M : Lemma 2.1. The real manifold M always has an even dimension. The form ω π is a symplectic 2-form on M . The Jacobi identity (2.1) is equivalent to d ω π = 0 .

Proof. Left to the reader as an exercise.

J

Theorem 2.1 (G. Darboux). Let ( M; ω ) be a symplectic manifold. There exists a local coordinate system (q 1 , q 2 , . . . , q n , p 1 , p 2 , . . . , p n ) def -: ( q, p) such that ω = n i = 1 d q i ∧ dp i . Such coordinates are called canonical or Darboux coordinates. Lemma 2.2. Let ( M; ω ) be a symplectic manifold and H ∈ C ∞ (M; R) the Hamiltonian function. Then, there is a unique vector field X H ( i.e. the Hamiltonian vector field associated to the Hamiltonian H) on M such that

X H ⌟ ω = dH .
The Hamiltonian vector field X H can be written in the canonical coordinates ( q, p ) on M as

X H = i ∂ H ∂p i ∂ ∂q i - ∂ H ∂q i ∂ ∂p i .
The Poisson bracket in these coordinates looks like

{ F , G } = X F (G) = i, j ∂ F ∂p i ∂ G ∂q i - ∂ F ∂q i ∂ G ∂p i .
Proof. Left to the reader as an exercise.

J

Example

Let S 2 def :-{ (x, y, z) ∈ R 3 | x 2 + y 2 + z 2 = 1 } be the 2-sphere, which can be naturally injected in R 3 : ı : S 2 -→ R 3 . The 2-form ω ∈ Λ 2 ( R 3 ) is given by ω = x dy ∧ dz + y dz ∧ dx + z dx ∧ dy and ω ∈ Λ 2 ( S 2 ) is defined as ω = ı * ( ω ) .

Lemma 2.3. The form ω gives a symplectic structure on S 2 , i.e. d ω = 0 and this 2-form is non-degenerate on S 2 .

Proof. First of all, we observe that the closedness of the 2-form ω is a straightforward conclusion in view of

d ω = d ı * ( ω ) = ı * d ω = 0 , since Λ 3 ( S 2 ) = 0 .
To check that it is non-degenerate, we make a choice of the following charts:

φ N : S 2 \ { N } -→ R 2 , (x, y, z) -→ x 1 -z , y 1 -z , φ S : S 2 \ { S } -→ R 2 , (x, y, z) -→ x 1 + z , y 1 + z .
It is not difficult to see that their inverses are given by the following maps:

φ -1 N : (u, v) -→ 2 u 1 + u 2 + v 2 , 2 v 1 + u 2 + v 2 , u 2 + v 2 -1 1 + u 2 + v 2 , φ -1 S : (u, v) -→ 2 u 1 + u 2 + v 2 , 2 v 1 + u 2 + v 2 , - u 2 + v 2 -1 1 + u 2 + v 2 ,
In both coordinate charts (u, v) induced by φ N, S we obtain:

ı * ( ω ) = (x • ı) d (y • ı) ∧ d (z • ı) + (y • ı) d (z • ı) ∧ d (x • ı) + (z • ı) d (x • ı) ∧ d (y • ı) = - 4 1 + u 2 + v 2 d u ∧ d v = 0 . J

Co-tangent bundle. Liouville form

Let M be a smooth n-dimensional manifold and : T * M -→ M is the projection map whose differential map is T :

TT * M -→ T M . Definition 2.3. A differential 1-form ρ on T * M , which is defined by σ ρ : T * M -→ T * T * M as follows σ ρ , X = ρ , T ρ ( X ) , X ∈ T ρ ( T * M )
is called the Liouville (or action) form.

If ( q, p) is a local coordinate system on T * M , then the form ρ can be written as

ρ = p d q = n i=1 p i d q i . The 2-form ω ∈ Ω 2 ( T * M ) , ω = dρ = d p ∧ d q = n i=1 dp i ∧ d q i is the canonical symplectic form.

Non-symplectic Poisson structures

Let g be a real finite-dimensional Lie algebra and g * be its dual (as a vector space). If we suppose that dim g = n , then g * is isomorphic as a real smooth manifold to R n . Theorem 2.2. There exists a (non-symplectic) Poisson structure on g * .

Poisson brackets on dual of a Lie algebra

A bracket can be defined on C ∞ ( g * ) by the identification:

g g * * ≡ C ∞ lin ( g * ) ⊂ C ∞ ( g * ) , X -→ F X F X (ξ) = ξ , X = ξ ( X ) . One has { F X , F Y } = F [ X , Y ] .
Let { e i } n i = 1 be a base of g and C k ij be structure constants of the Lie algebra g , i.e.

[ e i , e j ] =

n k = 1 C k ij e k .
Let { F i } n i = 1 be a dual basis of g * and { X i } n i = 1 be the coordinate system of g * , i.e.

ξ = X i ( ξ )F i , X i ( F j ) = δ ij , X i = F e i .
Now, it is not difficult to see that

{ X i , X j } = F [ e i , e j ] = k C k ij F e k = k C k ij X k .
Finally, we can write the coordinate expression of the Poisson bracket on the dual of a Lie algebra:

{ F , G } = i, j, k C k ij ∂ F ∂X i ∂ G ∂X j X k .

Definition via gradient operator

We define the gradient operator

∇ : C ∞ ( g * ) -→ C ∞ ( g * )
as follows:

η , ∇F ( ξ ) def :- d dt F ( ξ + t η ) t = 0 , ∀F ∈ C ∞ ( g * ) .
In coordinates one simply has:

∇F = ∂ F ∂X i e i .
Using the gradient operator, the bracket is defined as

{ F , G } ( ξ ) def :-ξ , [ ∇ F ( ξ ) , ∇ G ( ξ ) ]
and in coordinates we obtain:

{ X i , X j } (F k ) = F k , [ ∇ X i (F k ) , ∇ X j (F k ) ] = F k , [ e i , e j ] = C k ij .

Definition via canonical structure on T * (G)

Let g be a Lie algebra, then there exists a unique (connected and simply connected up to an isomorphism) Lie group G such that T e G g . Let L g ∈ Aut (G) be the translation by g , i.e. ∀ h ∈ G :

L g : G -→ G h -→ g h .
Then, we define

λ g (h) def :-TL g (h) * : T * gh (G) -→ T * h (G) ,
which gives rise to the isomorphism λ g :

T * (G) -→ T * (G) with the inverse λ -1 g . Define a map λ : G × g * -→ T * G (g, ξ) -→ λ -1 g (g) (ξ) , which is a diffeomorphism in the following commutative diagram: G × g * T * G G λ pr 1 π
The co-tangent bundle T * G G × g * is a trivial vector bundle with the fiber g * . The Liouville form ρ ∈ Ω 1 (T * G) defines by the section σ ρ : T * G -→ T * T * G similar to Section 2.4:

σ ρ ( ξ ) , X = ρ , T π ξ ( X ) , X ∈ T π ξ ( T * G ) , ξ ∈ T * h G . Let g ∈ G , ξ ∈ T * gh G , X ∈ T π λg ( ξ ) ( T * G ) , then we have σ ρ • λ g ( ξ ) , X = λ g ( ξ ) , T π λg ( ξ ) = (T h L g ) * ξ , T λ g( ξ ) = ξ , (T h L g )T λg( ξ ) X = ξ , T λg( ξ ) (L g • π)X .
We can make two observations:

• (L g • π) (h, ξ) = gh , • π • λ g -1 = gh . Henceforth, L g • π ≡ π • λ g -1 .
The Liouville form becomes:

σ ρ • λ g ( ξ ) , X = ξ , T λg( ξ ) ( π • λ g -1 )X = ξ , T ξ π • T λg( ξ )λ g -1 ( X ) = ρ( ξ ) , T λg( ξ ) λ g -1 ( ξ )X = λ * g -1 • ρ( ξ ) , X .
We have ω = d ρ as the canonical symplectic form on T * G . We observe also that

• σ ρ • λ g = λ * g -1 ( σ ρ ) , • ω • λ g = λ * g -1 ( ω ) . We recall that a Poisson bracket { F , G } for F , G ∈ C ∞ ( T * G ) can be defined via { F , G } def :-X F ( G ) , where X F is the unique vector field on T * G such that X F ⌟ω = dF . Lemma 2.4. Let g ∈ G and F , G ∈ C ∞ ( T * G ) , then { F • λ g , G • λ g } = { F , G } • λ g .
Proof. Left to the reader as an exercise.
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Let C ∞ ( T * G ) G denote a subspace of stable or invariant functions with respect to the mapping λ g , i.e.

C ∞ ( T * G ) G def :-{ F ∈ C ∞ ( T * G ) | F • λ g = F } , g ∈ G .
Lemma 2.4 shows that the set C ∞ ( T * G ) G is closed with respect to the Poisson bracket.

Let the linear mapping Φ be defined as

Φ : C ∞ ( g * ) -→ C ∞ ( T * G ) F -→ F • pr 2 ,
where pr 2 : T * G ≡ G × g * -→ g * is the canonical projection on the second argument.

Let ı : g * -→ T * G be the canonical embedding. Then,

Ψ : C ∞ ( T * G ) G -→ g * F -→ F • ı is linear and inverse to Φ , i.e. Ψ ≡ Φ -1 . Lemma 2.5. The bracket { F , G } def :-Φ -1 { Φ(F ) , Φ(G) } is a Poisson bracket on C ∞ ( g * ) coinciding with two previous definitions.
Proof. Left to the reader as an exercise.

J

Group actions and orbits

Let G be a Lie group and M is a smooth manifold.

Definition 3.1. A left action of G on M is a smooth map µ : G × M -→ M such that • µ ( e, m ) = m , ∀ m ∈ M , • µ g, µ ( h, m ) = µ ( gh, m ) , ∀ g, h ∈ G and ∀ m ∈ M . Definition 3.2. A right action of G on M is a smooth map ρ : M × G -→ M such that • ρ ( m, e ) = m , ∀ m ∈ M , • ρ ρ ( m, h ), g = ρ ( hg, m ) , ∀ g, h ∈ G and ∀ m ∈ M .
Left and right actions of G and M are in one-to-one correspondence by the following relation:

ρ ( m, g -1 ) = µ ( g, m ) . From now on we shall denote the left Lie group action µ ( g, m ) simply by g • m . We can define several important action types:

Effective or faithful: ∀ g ∈ G , g = e =⇒ ∃ m ∈ M such that g • m = m . Free: If g is a group element and ∃ m ∈ M such that g • m = m (that is, if g has at least one fixed point), =⇒ g = e.
Note that a free action on a non-empty M is faithful. 

Transitive: If ∀ m, n ∈ M , ∃ g ∈ G such that g • m = n .
G × G -→ G (g, h) -→ gh .
This action is effective and transitive. Indeed, g

• h = h =⇒ g = e and if g • m = n =⇒ g = n • m -1 .
Example 3.2. G acts on itself by conjugation:

G × G -→ G (g, h) -→ g • h • g -1 .
Generally, this action is not free, transitive or effective.

Example 3.3. GL n ( R ) acts on R n \ { 0 } by matrix multiplication on the left:

GL n ( R ) × R n \ { 0 } -→ R n \ { 0 } (A, x) -→ A x .
This is an example of an effective and transitive action.

Stabilizers and orbits

Let G be a Lie group which acts on a smooth manifold

M . The orbit of a point m ∈ M is G • m def :-{ g ∈ G | g • m } ⊆ M . A stabilizer of a point m ∈ M is G m def :-{ g ∈ G | g • m = m } ⊆ G . Proposition 3.1. The stabilizer G m is a closed subgroup of G and G g•m = g • G m • g -1 , ∀ g ∈ G .
Proof. Left to the reader as an exercise.
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We mention here two technical theorems regarding the orbits and stabilizers: Theorem 3.1. Let G be a Lie group which acts on a smooth manifold M and m ∈ M . There is a manifold structure on the orbit G • m such that the map 

G -→ G • m g -→ g • m
Φ : G -→ M g -→ g • m .

Infinitesimal action

Let µ : G × M -→ M be a Lie group action on M and g = Lie (G) be its Lie algebra. Definition 3.3. Let X ∈ g and φ : R -→ G its exponential flow, i.e. φ (t) = exp( t X ) . Then, there exists the unique vector field X M ∈ X ( M ) with the flow φ m : R -→ M defined by φ m (t) = φ (t) • m . The vector field X M is defined by

X M ( m ) ( f ) def :- d dt f • φ( t ) • m t = 0 .
The mapping µ * : g -→ X ( M ) is called the infinitesimal action of g on M .

Proposition 3.2. The mapping µ * : g -→ X ( M ) is a Lie algebra (anti-)homomorphism (and it is in particular a linear mapping):

µ * [ X , Y ] = -[ µ * ( X ) , µ * ( Y ) ] .
Proof. Left to the reader as an exercise.

J Remark 3.1. One can see that µ * ( X ) m ( f ) = X (f • Φ m ) . In other words, µ * ( X ) m = T e Φ m ( X ) . Proposition 3.3. Let m ∈ M , then T m G • m = { X ∈ g | µ * ( X ) m } .
Proof. Left to the reader as an exercise.

J

The following difficult result is left without the proof: 

Lie group and Lie algebra representations

Let G be a Lie group, g = Lie (G) be its Lie algebra and V be a real vector space.

Definition 3.4.

A representation of the Lie group G in the vector space V is a homomorphism of Lie groups (i.e. a smooth group morphism) ϕ : G -→ GL (V ) .

Definition 3.5. A representation of the Lie algebra g in the vector space V is a Lie algebra homomorphism φ : g -→ End (V ) .

Here End (V ) is enabled with the Lie algebra structure given by the endomorphisms commutator:

∀ A, B ∈ End (V ) [ A , B ] def :-A • B -B • A . If ϕ : G -→ GL (V ) is a Lie group representation, then φ def :-T e ϕ : T e G = g -→ T id GL (V ) = End (V )
is a representation of the Lie algebra g .

Adjoint representations

Let g ∈ G , V = g , then the composition L g • R g -1 : G -→ G induces a linear mapping T e ( L g • R g -1 )
def :-Ad ( g ) : g -→ g and, hence, a group morphism Ad : G -→ GL ( g ) . Then, the following Lemma holds: Lemma 3.1. The group morphism Ad is a smooth map which gives a representation of G in g , which is called the adjoint Lie group representation.

Proof. Left to the reader as an exercise.

J

Let ad def :-T e ( Ad ) : g -→ End( g ) . Then, ad is also called the adjoint Lie group representation.

Lemma 3.2. ad ( X ) ( Y ) = [ X , Y ] , ∀X , Y ∈ g .
Proof. Left to the reader as an exercise.

J

Co-adjoint representations

Let g ∈ G , V ∈ g * and f * ∈ End ( g * ) is defined by f * (ξ) def :-ξ • f for any element f ∈ End ( g ) .
Then, we can write down the following Definition 3.6. The following smooth map

Ad * : G -→ GL ( g * ) , g -→ Ad ( g -1 ) * ,
which gives a representation of G in g * is called the co-adjoint Lie group representation.

The last definition makes sense because Ad * = F • Ad and F (f ) = f * , where the map F : End ( V ) -→ End ( V * ) . Similarly, we can also define

ad * : g -→ End ( g * ) , X -→ -ad * ( X ) , where ad * ( X ) ( ξ ) ( Y ) = -ξ , [ X , Y ] .
Then, ad * is also called the co-adjoint Lie algebra representation in g * . Lemma 3.3.

[ ad * ( X ) , ad * ( Y ) ] = ad * ( [ X , Y ] ) , ∀X , Y ∈ g , ∀ξ ∈ g * .
Proof. Left to the reader as an exercise.

J

Proposition 3.5. The co-adjoint representation Ad * of a Lie group G gives rise to a co-adjoint left action of G on g * :

G × g * -→ g * , (g, ξ) -→ Ad * ( ξ ) .
Let X ∈ g and F X ∈ C ∞ ( g * ) be the evaluation function defined by

F X ( ξ ) def :-ξ ( X ) .
Then, the following Propositions hold: 

Proposition 3.6. d dt F Ad * exp ( t X ) ( ξ ) t = 0 = { F , F X } ( ξ ) .
{ F , F X } = 0 , ∀X ∈ g .
Finally, we can state without the proof the following important Theorem 3.4 (Lie-Berezin-Kirillov-Kostant-Souriau).

Cas C ∞ ( g * ) = C ∞ ( g * ) Ad * G , where C ∞ ( g * ) Ad * G def :-F ∈ C ∞ ( g * ) F • Ad * g = F , ∀g ∈ G . Denote by O ξ def :-G • ξ ⊆ g * a co-adjoint orbit of a co-vector ξ ∈ g * .
Recall that these orbits are manifolds such that O ξ admits a submersion φ : G -→ O ξ and an immersion ı : O ξ → g * . Define a g-valued 1-form ω on G as

ω g ( X ) = T g L g -1 ( X ) ∈ g . Then, L * h ( ω ) = ω .
In other words, the 1-form ω is G-invariant. Here we take g, h ∈ G and X ∈ g . By Maurer-Cartan formula we have that

dω = - 1 2 [ ω , ω ] .
Let us define also the 1-form ω ξ ∈ Λ 1 ( G ) by

ω ξ ( g ) ( X ) def :-ξ , ω g ( X ) .
Then, the following result can be shown: Theorem 3.5 (Kirillov-Kostant-Souriau). There exists a unique 2-form Ω ξ ∈ Λ 2 ( O ξ ) such that φ * ( Ω ξ ) = dω ξ . This form is symplectic on the co-adjoint orbit O ξ .

Moment map, Poisson and Hamiltonian actions 4.1. Introductory motivation

Let R 3 be a basic configuration space with coordinate or position vectors r = ( q 1 , q 2 , q 3 ) and velocity vectors:

ṙ = ( q1 , q2 , q3 ) def -: p def :-( p 1 , p 2 , p 3 ) .
We remind that here by the (-) we denote the classical time derivative operator. The angular momentum L is defined by their vector product as L def :r × ṙ . The total energy of a mechanical system is given by

E T def :- ṙ , ṙ 2 + U ( r )
and the equation of motion is r = -∇ r U ( r ) . The total mechanical energy is conserved, i.e. dE T dt ≡ 0 . The angular momentum is also constant along a trajectory. It implies that dL dt = ṙ × ṙ + r × r =r × ∇ r U = 0 , which is equivalent to say that r = λ ∇ r U for some λ ∈ R .

Let so ( 3 ) be the Lie algebra of skew-symmetric 3 × 3 matrices with real entries. This is a three-dimensional vector space with the basis { X 1 , X 2 , X 3 } given by three following matrices:

X 1 =     0 1 0 -1 0 0 0 0 0     , X 2 =     0 0 -1 0 0 0 1 0 0     , X 3 =     0 0 0 0 0 1 0 -1 0     .
The Lie brackets in the Lie algebra so ( 3 ) are given by

[ X i , X j ] = X k , ( i, j, k ) = ( 1, 2, 3 ) ,
with all circular permutations. The Killing form κ (-, -) defined as

κ : so ( 3 ) × so ( 3 ) -→ R ( X, Y ) -→ tr ( X Y )
is symmetric, bi-linear and non-degenerate. Here tr ( -) is the trace form of a square matrix. This form identifies so ( 3 ) and so ( 3 ) * by the interior product rule X ⌟ κ .

The Lie-Poisson structure on so ( 3 ) * in the coordinates ( x 1 , x 2 , x 3 ) on so ( 3 ) can be expressed as

{ F , G } ( x 1 , x 2 , x 3 ) = 3 i, j, k = 1 c k ij ∂ F ∂x i ∂ G ∂x j - ∂ F ∂x j ∂ G ∂x i x k .
Here c k ij is the structure constant tensor of the Lie algebra so ( 3 ). The angular momentum L s defined as a map

T * R 3 R 6 -→ so ( 3 ) * ( q, p ) -→ q × p = i, j, k ( q i p j -p i q j ) X k .
The angular momentum map L : 

T * R 3 -→ so ( 3 ) * is a Poisson morphism.
µ * g : C ∞ ( M, R ) -→ C ∞ ( M, R ) defined by µ * g ( F ) ( m ) def :-F µ g ( m )
satisfies the following condition:

µ * g { F , G } ( m ) = µ * g ( F ) , µ * g ( G ) ( m ) , ∀F, G ∈ C ∞ ( M, R ) .
Let a Poisson structure ( M, π ) be symplectic * . In this case this Poisson action can be called the Hamiltonian action.

Momentum map

Definition 4.2. Let g be a Lie algebra and M, { -, -} be a Poisson manifold. A momentum map is a Poisson morphism µ : M -→ g * . In other words, it is a smooth map µ such that for ∀ F, G ∈ C ∞ ( g * ) :

µ * { F , G } g * = { µ * ( F ) , µ * ( G ) } M .
Let λ : g -→ C ∞ ( M, R ) be a smooth linear map. Then, there is a unique map λ : M -→ g * defined by λ : 

{ λ ( m ) , X } = λ ( X ) ( m ) , ∀ m ∈ M , ∀ X ∈ g .
μ : g -→ C ∞ ( M, R ) is a Lie algebra homomorphism: μ [ X , Y ] = { μ ( X ) , μ ( Y ) } M , ∀ X , Y ∈ g .
Recall that the map χ :

C ∞ ( M, R ) -→ X ( M ) such that χ ( F ) = X F = { F , -} Theorem 4.1.
The action Λ is Hamiltonian and the induced momentum map µ Λ :

T * M -→ g * is defined by { µ Λ ( ξ m ) , X } = { ξ m , T e λ m ( X ) } .

Examples

Example 1. Lifting of the left G-action on G to T * G :

λ : G × G -→ G , ( g, h ) -→ g • h .
Then, we obtain the required lifting:

Λ : G × T * G G × g * -→ T * G G × g * , g, ( h, ξ ) -→ ( g • h, ξ ) .
The associated momentum can be also easily computed:

µ ( ξ h ) = -( T e R h ) * ( ξ h ) , µ ( h, ξ ) = Ad * h ( ξ ) . Similarly, we can consider lifting of the right G-action on G to T * G : λ : G × G -→ G , ( g, h ) -→ h • g -1 .
Then, we obtain the required lifting:

Λ : G × T * G G × g * -→ T * G G × g * , g, ( h, ξ ) -→ ( h • g -1 , Ad * g ξ ) .
The associated momentum can be also easily computed:

µ ( ξ h ) = -( T e L h ) * ( ξ h ) , µ ( h, ξ ) = -ξ .
Example 2. Let us consider also the action of S 1 on C :

C R 2 T * R 1 , Ω = dq ∧ dp .
The action is given by

λ : S 1 × C -→ C , e i θ , z -→ e i θ z ,
for some θ ∈ [ 0, 2 π[ . Above i is the complex imaginary unit, i.e. i 2 = -1 . Then, one can easily obtain the expression for λ * : T e S 1 -→ C :

λ * d dθ (q, p) = T e ( λ q, p ) d dθ = -p ∂ ∂q + q ∂ ∂p .
The interior product with the symplectic form can be also easily obtained:

λ * d dθ ⌟ Ω = -( pdp + qdq ) = - 1 2 d( p 2 + q 2 ) .
The momentum map is given by

µ ( z ) = µ ( q + i p ) = p 2 + q 2 2 .
The last construction can be easily generalized to C n :

λ : S 1 × C n -→ C n , e i θ , ( z 1 , z 2 , . . . , z n ) -→ e i θ z 1 , e i θ z 2 , . . . , e i θ z n .
Then, the associated momentum map is given by:

µ ( z 1 , z 2 , . . . , z n ) = n i = 1 | z i | 2 .
Example 3. Let us consider the action of S 1 on S 2 . The manifold S 2 is equipped with local coordinates ( z, φ ) and Ω = dz ∧ dφ . The action of S 1 is given by rotation in z-planes:

λ : S 1 × S 2 -→ S 2 , e i θ , ( z, φ ) -→ ( z, φ + θ ) .
It is not difficult to see that

λ * d dθ ( z, φ ) = ∂ ∂φ , λ * d dθ ⌟ Ω = dz .
Finally, the momentum map is µ ( z, φ ) = z .

Example 4. We consider now the action of S 1 on the torus T 2 def :-S 1 × S 1 . The torus T 2 is equipped with local coordinates ( φ 1 , φ 2 ) and the symplectic form is Ω = dφ 1 ∧ dφ 2 . The action is defined as

λ : S 1 × T 2 -→ T 2 , e i θ , e i φ 1 , e i φ 2
-→ e i φ 1 , e i ( φ 1 + θ ) .

Then, we have

λ * d dθ ( Ω ) = dφ 1 ∧ d( θ + φ 2 ) = Ω and λ * d dθ ⌟ Ω = -dφ 1 .
Since the coordinate function φ 1 is defined only locally, the momentum map µ and the morphism μ do not exist.

Example 5. In this example we consider the action of SU ( n ) on T * su ( n ) . We remind that SU ( n ) is the Lie group of special unitary matrices with complex coefficients:

SU ( n ) def :-{ A ∈ Mat n ( C ) | AA * = I , det (A) = 1 } ,
where I is the identity matrix and A * is the conjugate (or Hermitian) transpose of A . The corresponding Lie algebra is defined as

Lie SU ( n ) = su ( n ) def :-{ A ∈ Mat n ( C ) | A * = -A , tr ( A ) = 0 } .
The Lie algebra su ( n ) is an example of a semi-simple Lie algebra with a Killing form κ ( X, Y ) = 2 n tr ( X Y ) and su ( n ) su ( n ) * . The action is defined as

λ : SU ( n ) × T * su ( n ) -→ T * su ( n ) , g, ( X, L ) -→ g X g -1 , g L g -1 .
Then, Ω = tr ( dX ∧ dL) and the momentum map is given by

µ ( X, L ) = [ X , L ] .

Reduction of the phase space

Let ( M, ω ) be a symplectic manifold and λ :

G × M -→ M is a Hamiltonian action, i.e. λ * g ( ω ) = ω , ∀ g ∈ G .
We justify the terminology by the following observation: Lemma 5.1. Assume that there exists a momentum map µ : M -→ g * , one necessarily obtains that

λ * ( Y ) = -X μ ( Y ) , ∀ Y ∈ g . Definition 5.1. An element c ∈ g * is called a regular if M c def :-µ -1 ( c ) is a sub- manifold in M and if ker ( T m µ ) = T m M c , ∀ c ∈ M c . Lemma 5.2. Let G c def :-g ∈ G Ad * g ( c ) = c . If G is connected and simply con- nected, then ∀ m ∈ M c and ∀ g ∈ G c : g • m ∈ M c .
Proof. Left to the reader as an exercise.

J

Remark 5.1. In the case when c is a regular element and G is connected and simply connected, the action of G on M induces an action of the Lie sub-group G c ⊆ G on the sub-manifold M c ⊆ M .

The main results

Theorem 5.1. If G is connected and simply connected and, in addition:

• c is a regular element; • G c is compact;
• G c acts on M c by free and transitive action.

Then, there exists a natural smooth structure on M c /G c such that the mapping π c :

M c -→ M c /G c is a submersion.
Remark 5.2. The quotient space M c /G c is called in this case the reduced phase space.

Theorem 5.2 (Marsden-Weinstein). If G is connected and simply connected and, in addition:

• c is a regular element;

• G c is compact;
• G c acts on M c by free and transitive action.

Then, there exists a unique symplectic 2-form ω c on M c /G c such that

π * c ( ω c ) = ı * c ( ω ) , where π c : M c -→ M c /G c is the canonical submersion and ı c : M c -→ M is the canonical embedding.
The proof of this Theorem is based on the following

Lemma 5.3. Let m ∈ M c . Then, T m M c = (T m G • m) ⊥ . In other words, T m M c = { X ∈ T m M | ω m ( X , Y ) = 0 , ∀ Y ∈ T m G • m } .
Proof. Left to the reader as an exercise.

J Remark 5.3. Observe that T m M c T m G•m = ∅ . More precisely, T m M c T m G•m = T m G c • m . Corollary 5.1. Let X 1 , X 2 , Y 1 , Y 2 ∈ T m M c ⊆ T m M such that T m π c ( X 1 ) = T m π c ( X 2 ) , T m π c ( Y 1 ) = T m π c ( Y 2 ) , then, ω m ( X 1 , Y 1 ) = ω m ( X 2 , Y 2 ) . Lemma 5.4. Let m, n ∈ M c such that π c ( m ) = π c ( n ) and X 1 , X 2 , Y 1 , Y 2 ∈ T m M c ⊆ T n M c ⊆ T n M such that T m π c ( X 1 ) = T n π c ( X 2 ) , T m π c ( Y 1 ) = T n π c ( Y 2 ) , then, ω m ( X 1 , Y 1 ) = ω n ( X 2 , Y 2 ) .
Proof. Left to the reader as an exercise.

J Lemma 5.5. Let c be a regular element and O

c def :-G • c be its co-adjoint orbit. Then, µ -1 ( O c ) is a sub-manifold in M .
Proof. Left to the reader as an exercise.

J

Theorem 5.3. The mapping

φ : O c -→ M c /G c , m -→ π c ( g -1 m ) , where µ ( m ) = Ad * g ( c ) is correctly defined, induces a diffeomorphism: Φ : π µ -1 ( O c ) -→ M c /G c .

Example

In this Section we consider again the action of S 1 on C n , which is defined as

λ : S 1 × C n -→ C n , e i θ , q + i p -→ e i θ q + i e i θ p ,
where p, q ∈ R n . The momentum map is

µ : C n -→ Lie ( S 1 ) , q + i p -→ - n i = 1 q 2 i + p 2 i 2 .
Then,

M c = z ∈ C n n i = 1 | z i | 2 = 2 c S n , c > 0 . It is also clear that G c
S 1 and S 1 is an Abelian group. Thus, we have:

L g R g -1 = I =⇒ Ad g = Ad * g = I . Henceforth, M c /G c = S n / S 1 P n -1 .

Poisson-Lie groups

A Lie group G is called Poisson-Lie group if it is a Poisson manifold such that the multiplication m : G × G -→ G is a morphism of Poisson manifolds. Let g be Lie algebra, g * be dual vector space to g . Definition 6.1. We say that g is a Lie bi-algebra if there is a Lie algebra structure [ -, -] * on g * such that the map δ : g -→ Λ 2 g (called the co-bracket), dual to the bracket [ -, -] * : Λ 2 g * -→ g * is a 1-cocycle with respect to the adjoint action of g on Λ 2 g .

Modified Classical Yang-Baxter equation

Let G be connected and a simply connected Lie group, and let g be its Lie algebra. Then there is one-to-one correspondence between Poisson-Lie group structures on G and Lie bi-algebra structures on g . As V. Drinfel'd showed [START_REF] Drinfel'd | Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations[END_REF], every structure on a semi-simple connected G has the following form: where the right hand side is invariant under the adjoint action of g . The condition (6.2) is called a modified Yang-Baxter equation and the bracket -, -: Λ 2 g ⊗ Λ 2 g -→ Λ 3 g is a so-called Schouten-Nijenhuis bracket. This is the natural graded (or super-) Lie algebra structure on the exterior algebra

π ( g ) = Λ 2 ( L g ) * ( r ) -Λ 2 ( R g ) * ( r ) , ( 6 
Λ • g = k Λ k g
Here r 12 , to give an example, denotes an element r 12 = r ⊗ I 3 ∈ ( g ⊗ k ) ⊗ 3 ; k ∈ { R, C } and r being usually called a classical r-matrix.

The condition (6.2) ensures that the bracket { -, -} * on g * satisfies the Jacobi identity. The corresponding Lie bi-algebra structure is calculated in the obvious way. Namely, the co-bracket δ is given by

δ ( x ) = d e π ( x ) = L x π ( e ) = d dt r ( e -t x ) * π ( e t x ) t = 0 = ad x ( r ) ,
where d e π is the intrinsic derivative of a poly-vector field on G with π ( e ) = 0 , x is any vector field on G with x ( e ) = x and L x denotes the Lie derivative [8].

The Poisson structures of the form (6.1) are called co-boundary or r-matrix structures. Since for a connected semi-simple or a compact Lie group G every 1-cocycle is a coboundary, one has the following Proposition 6.1. . The Poisson-Lie structures on a connected semi-simple or a compact Lie group G are in one-to-one correspondence with the solutions r ∈ Λ 2 g of the modified Yang-Baxter equation.

Manin triples

Let g be a Lie bi-algebra. There is a unique Lie algebra structure on the vector space g ⊕ g * such that (1) g and g * are Lie sub-algebras.

(2) The symmetric bi-linear form on g ⊕ g * given by the relation

X + ξ , Y + ηY = X , η + Y , ξ , ∀ X , Y ∈ g , ∀ ξ, η ∈ g * is invariant.
This structure is given by { X , ξ } = -ad * X ( ξ ) + ad * ξ ( X ) , for X ∈ g and ξ ∈ g * , where ad * is the co-adjoint action. This Lie algebra is denoted by g g * and ( g g * , g, g * ) is an example of a Manin triple. In general, a Manin triple is a decomposition of a Lie algebra g with a non-degenerate invariant scalar product , into direct sum of isotropic with respect to , vector spaces, g = g + ⊕ g -such that g ± are Lie sub-algebras of g . It is well-known that there is one-to-one correspondence between Lie bi-algebras and Manin triples. These triples were introduced by V. Drinfel'd [START_REF] Drinfel'd | Quantum groups[END_REF] and named after Yu. I. Manin.

Poisson-Lie duality

Let G be a connected and simply connected Poisson-Lie group, g = Lie ( G ) its Lie algebra and g g * , g, g * the Manin triple. By duality, g * g, g * , g is also a Manin triple. Then g * is a Lie bi-algebra. This enables us to consider a connected and simply connected Lie group G * with a Poisson-Lie structure π * and with the tangent Lie bi-algebra g * . The Poisson-Lie group ( G * , π * ) is called the Poisson-Lie dual to ( G, π ) .

Example of non-Hamiltonian action

Let G be a Poisson-Lie group with a multiplicative Poisson tensor π g and M be a smooth Poisson manifold with a Poisson structure given by π M . Then, the product G × M can be considered as a Poisson manifold with the direct sum structure π .

Proposition 6.2. An action

σ : G × M -→ M of a Poisson-Lie group G on a Poisson manifold M is a Poisson-Lie action if and only if π M ( g • m ) = Λ 2 ( σ g ) * π M ( m ) + Λ 2 (σ m ) * π G ( g ) .
Remark 6. 

( g • m ) = ( σ g ) * π M ( m ) . Definition 6.2. The action σ : G × M -→ M is called a Poisson-Lie action if π * : C ∞ ( M ) -→ C ∞ ( G × M ) is a Poisson morphism: π * { F , H } π M = { π * ( F ) , π * ( H ) } π .
Infinitesimally, a Poisson-Lie action of a Lie bi-algebra g on a Poisson manifold ( M, { -, -} ) is given by an action ρ 

: g -→ X ( M ) , X -→ V X , with X ∈ g such that V X { f , g } ( m ) = { V X f , g } (m) + { f , V X g } ( m ) -{ X , [ ρ * d f ( m ) , ρ * d g ( m ) ] } , where ρ * df ( m ) ∈ g * and X , ρ * df ( m ) = V X f ( m ) . In other words, X , [ ρ ( dF ) ( m ) , ρ ( dG ) ( m ) ] * = dF , dG ρ ( X ) ( m ) .
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is a Lie algebra morphism. We take the composition Θ def :χ• μ : g -→ X ( M ) , where μ : g -→ C ∞ ( M, R ) and g = Lie ( G ) with a simply connected Lie group G . For compact manifolds M , Theorem 3.3 ensures the existence of an action λ :

Let M be a compact manifold and G is connected and simply connected. Then, the action λ is G-equivariant:

Moment and Hamiltonian actions

Let M, ω be a symplectic manifold and the corresponding Poisson brackets are defined by a pair of Hamiltonian vector fields:

Lemma 4.1. If H 1 ( M, R ) = 0 and X ∈ X ( M ) "infinitesimally" preserves the symplectic form ω , i.e. L X ( ω ) = 0 , then there exists a unique u ∈ C ∞ ( M, R ) such that X = X u .

Here we should remark that the function u is uniquely defined only modulo a locally constant function on M (which is usually identified with an element of H 0 ( M, R ).