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Abstract.

This manuscript is essentially a collection of lecture notes which were given by
the first author at the Summer School Wisła–2019, Poland and written down
by the second author. As the title suggests, the material covered here includes
the Poisson and symplectic structures (Poisson manifolds, Poisson bi-vectors
and Poisson brackets), group actions and orbits (infinitesimal action, stabilizers
and adjoint representations), moment maps,Poisson andHamiltonian actions.
Finally, the phase space reduction is also discussed. The very last section intro-
duces the Poisson–Lie structures along with some related notions. This text
represents a brief review of a well-known material citing standard references for
more details. The exposition is concise, but pedagogical. The Authors believe
that it will be useful as an introductory exposition for students interested in this
specific topic.
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V. Roubtsov and D. Dutykh

1. Introduction

These lectures have been delivered by the first author in the Summer School “Differ-
ential Geometry, Differential Equations, and Mathematical Physics” at Wisła, Poland
from the 19th to the 29th of August 2019. The second author took the notes of these
lectures.

As the title suggests, the material covered here includes the Poisson and symplectic
structures (Poissonmanifolds,Poisson bi-vectors andPoisson brackets), group actions
and orbits (infinitesimal action, stabilizers and adjoint representations), moment maps,
Poisson and Hamiltonian actions. Finally, the phase space reduction is also discussed.
The Poisson structures are a particular instance of Jacobi structures introduced by
A. Lichnerowicz back in 1977 [7]. Several capital contributions to this field were made
by A. Weinstein, see e.g. [13].

The text below does not pretend to provide any new scientific results. However, we
believe that this point of view and exposition will be of some interest to our readers. As
other general (and excellent) references on this topic include:

• R. Abraham and J.E. Marsden. Foundations of Mechanics, 2nd ed., Addison–
Wesley Publishing Company, Redwood City, CA, 1987 [1]
• V.I.Arnold. Mathematical methods of classical mechanics. 2nd ed., Springer, New
York, 1997 [2]
• A.M. Vinogradov and B.A. Kupershmidt. The structures of Hamiltonian me-
chanics, Russ. Math. Surv., 32(4), 177–243, 1977 [12]

We can mention also another set of recent lecture notes on the symplectic and contact
geometries [11]. We mention also the classical review of this topic [14].

Our presentation remains at quite elementary level of exposition. We restricted delib-
erately our-selves to the presentation of basic notions and the state-of-the-art as it was in
1990 – 2000. Nevertheless, we hope that motivated students will be inspired to find more
advanced and modern material which is inevitably based on these elementary notes.

In the following text each Section corresponds to a separate lecture. This text is or-
ganized as follows. The Poisson and symplectic structures are presented in Section 2.
The group actions and orbits are introduced in Section 3. The moment map, Poisson
and Hamiltonian actions are described in Section 4. Finally, the manuscript is ended
with the description of the phase space reduction in Section 5. The very last Section 6
is a brief (and essentially incomplete) introduction to Poisson–Lie structures and some
related notions. An excellent account of the last topic can be found in the survey paper
by Y. Kossmann-Schwarzbach (1997) [6].

2. Poisson and symplectic structures

Hamiltonian systems are usually introduced in the context of the symplectic geometry
[5, 10]. However, the use of Poisson geometry emphasizes the Lie algebra structure,
which underlies the Hamiltonian mechanics.
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V. Roubtsov and D. Dutykh

2.1. Poisson manifolds

Let M be a smooth manifold with a bracket
{− , −} : C∞ (M )× C∞ (M ) 7−→ C∞ (M ) ,

which verifies the following properties:

• Bi-linearity: {− , −} is real-bilinear.

• Anti-symmetry: {F , G } = −{G , F } .

• Jacobi identity: { {F , G } , H } + { {G , H } , F } + { {H , F } , G } = 0 .

• Leibniz identity: {FG , H } = F {G , H } + {F , H }G .

Then, the bracket {− , −} is a Poisson bracket and the pair
(
M; {− , −}

)
will

be called a Poisson manifold. A Poisson algebra is defined as the following pair(
C∞ (M; R ); {− , −}

)
. Thanks to the first three properties of the Poisson bracket, it

is not difficult to see that
(
C∞ (M; R ); {− , −}

)
is also a Lie algebra. The last prop-

erty of the Poisson bracket (i.e. the Leibniz identity) implies that it is also a derivative
in each of its arguments.

Let
(
M; {− , −}

)
be a Poisson manifold and H ∈ C∞ (M; R ) , then there exists

a unique vector field XH such that
XH(G) = {G , H } , ∀G ∈ C∞ (M; R ) .

The vector field XH is called the Hamiltonian vector field with respect to the Poisson
structure with H being the Hamiltonian function. Let X (M ) denote the space of all
vector fields on M . Then, the just constructed mapping C∞ (M; R ) −→ X (M ) is a
Lie algebra morphism, i.e. X {F ,G } = [XF , XG ] .

Definition 2.1. A Casimir function on a Poisson manifold
(
M; {− , −}

)
is a func-

tion F ∈ C∞ (M; R ) such that for all G ∈ C∞ (M; R ) one has
{F , G } = 0 , ∀G ∈ C∞ (M; R ) .

2.2. Poisson bi-vector

If
(
M; {− , −}

)
is a Poisson manifold, then there exists a contravariant anti-

symmetric two-tensor π ∈ Λ2 (TM) or equivalently
π : T∗M × T∗M −→ R

such that
〈 π , dF ∧ dG 〉 ( z ) = π ( z )

(
dF ( z ); dG ( z )

)
= {F , G } ( z ) .

In local coordinates ( z1, z2, . . . , zn ) we have the following expression for the Poisson
bracket:

{F , G } =
∑
i, j

πij
∂F

∂zi

∂G

∂zj
,
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where πij
def
:− { zi , zj } are called the elements of the structure matrix or the Poisson bi-

vector of the underlying Poisson structure. For the vector field we have the corresponding
expression in coordinates:

XH =
∑
i, j

πij
∂H

∂zi

∂

∂zj
, or X j

H =
∑
i

πij
∂H

∂zi
.

2.2.1. Hamilton map and Jacobi identity

Let π = ( πij ) be a Poisson bi-vector on M , then there exists a C∞ (M; R )−linear
map π] : T∗M 7−→ TM given by

π] (α ) ⌟ β = { π , α ∧ β } ( z ) = π ( z )
(
α( z ), β( z )

)
,

where ⌟ denotes the usual interior product or the substitution of a vector field into a
form.

If α = df for some f ∈ C∞ (M; R ) , then π] ( dH ) = XH . It is not difficult to see
how the map π] acts on the basis elements of co-vectors:

π] ( dzi ) = { zi , zj }
∂

∂zj
.

Finally, we also have the following Jacobi identity:

πil
∂πjk

∂zl
+ πjl

∂πki

∂zl
+ πkl

∂πij

∂zl
= 0 . (2.1)

2.3. Symplectic structures on manifolds

Definition 2.2. A symplectic form on a real manifold M is a non-degenerate closed
2−form ω ∈ Ω 2 (M )

def
:− Λ 2 (T ∗M ) . Such a manifold is called a symplectic manifold

and it is denoted by a couple (M; ω ) .

Let
(
M; {− , −}

)
be a Poisson manifold with non-degenerate Poisson structure

bi-vector ( πij ) and the Hamiltonian isomorphism π] such that π] (α ) = X . Then,
there is the inverse map ( π] )−1 : TM −→ T ∗M is defined by the following relation:

Y ⌟ ( π] )−1(X ) = α (Y ) .
Moreover, the inverse operator ( π] )−1 defines a 2−form ωπ as follows:

ωπ (X , Y ) =
〈

(π] )−1 (X ) , Y
〉
.

2.3.1. Darboux theorem and Hamiltonian vector fields

The following Lemma describes some important properties of the just defined form ωπ
along with the underlying manifold M :
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Lemma 2.1. The real manifold M always has an even dimension. The form ωπ is a
symplectic 2−form on M . The Jacobi identity (2.1) is equivalent to dωπ = 0 .

Proof. Left to the reader as an exercise. o

Theorem 2.1 (G. Darboux). Let (M; ω ) be a symplectic manifold. There exists a local
coordinate system (q1, q2, . . . , qn, p1, p2, . . . , pn)

def
−: (~q, ~p) such that ω = ∑n

i= 1 d qi ∧
dp i . Such coordinates are called canonical or Darboux coordinates.
Lemma 2.2. Let (M; ω ) be a symplectic manifold and H ∈ C∞ (M; R) the Hamil-
tonian function. Then, there is a unique vector field XH ( i.e. the Hamiltonian vector
field associated to the Hamiltonian H) on M such that

XH ⌟ ω = dH .

The Hamiltonian vector field XH can be written in the canonical coordinates ( ~q, ~p ) on
M as

XH =
∑
i

(
∂H

∂p i

∂

∂qi
− ∂H

∂qi

∂

∂p i

)
.

The Poisson bracket in these coordinates looks like

{F , G } = XF (G) =
∑
i, j

(
∂F

∂p i

∂G

∂qi
− ∂F

∂qi

∂G

∂p i

)
.

Proof. Left to the reader as an exercise. o

2.3.2. Example

Let S 2 def
:− { (x, y, z) ∈ R3 | x2 + y2 + z2 = 1 } be the 2−sphere, which can be

naturally injected in R3 : ı : S 2 ↪−→ R3 . The 2−form ω̄ ∈ Λ2 (R3 ) is given by
ω̄ = x dy ∧ dz + y dz ∧ dx + z dx ∧ dy

and ω ∈ Λ2 ( S 2 ) is defined as ω = ı∗ ( ω̄ ) .
Lemma 2.3. The form ω gives a symplectic structure on S 2 , i.e. dω = 0 and this
2−form is non-degenerate on S 2 .

Proof. First of all, we observe that the closedness of the 2−form ω is a straightforward
conclusion in view of

dω = d
(
ı∗( ω̄ )

)
= ı∗

(
d ω̄

)
= 0 ,

since Λ3( S 2 ) = 0 . To check that it is non-degenerate, we make a choice of the following
charts:

φN : S 2 \ {N } −→ R2 ,

(x, y, z) 7−→
(

x

1 − z
,

y

1 − z

)
,

φS : S 2 \ {S } −→ R2 ,

(x, y, z) 7−→
(

x

1 + z
,

y

1 + z

)
.
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It is not difficult to see that their inverses are given by the following maps:

φ−1
N : (u, v) 7−→

( 2u
1 + u 2 + v 2 ,

2 v
1 + u 2 + v 2 ,

u 2 + v 2 − 1
1 + u 2 + v 2

)
,

φ−1
S : (u, v) 7−→

( 2u
1 + u 2 + v 2 ,

2 v
1 + u 2 + v 2 , −

u 2 + v 2 − 1
1 + u 2 + v 2

)
,

In both coordinate charts (u, v) induced by φN,S we obtain:

ı∗ ( ω̄ ) = (x◦ ı) d (y◦ ı)∧d (z◦ ı) + (y◦ ı) d (z◦ ı)∧d (x◦ ı) + (z◦ ı) d (x◦ ı)∧d (y◦ ı) =

− 4
1 + u 2 + v 2 du ∧ d v 6= 0 .

o

2.4. Co-tangent bundle. Liouville form

Let M be a smooth n−dimensional manifold and $ : T∗M −→ M is the projection
map whose differential map is T$ : TT∗M −→ TM .

Definition 2.3. A differential 1−form ρ on T∗M , which is defined by σρ : T∗M −→
T∗T∗M as follows

〈σρ , X 〉 =
〈
ρ , T$ρ (X )

〉
, X ∈ T$ρ (T∗M )

is called the Liouville (or action) form.

If (~q, ~p) is a local coordinate system on T∗M , then the form ρ can be written as

ρ = ~p d ~q =
n∑
i=1

pi d qi .

The 2−form ω ∈ Ω2 (T∗M ) , ω = dρ = d~p ∧ d ~q = ∑n
i=1 dpi ∧ d qi is the canonical

symplectic form.

2.5. Non-symplectic Poisson structures

Let g be a real finite-dimensional Lie algebra and g∗ be its dual (as a vector space). If
we suppose that dim g = n , then g∗ is isomorphic as a real smooth manifold to Rn .

Theorem 2.2. There exists a (non-symplectic) Poisson structure on g∗ .

2.6. Poisson brackets on dual of a Lie algebra

A bracket can be defined on C∞ ( g∗ ) by the identification:
g ' g∗∗ ≡ C∞lin( g∗ ) ⊂ C∞ ( g∗ ) , X 7−→ FX

FX (ξ) = 〈 ξ , X 〉 = ξ (X ) .
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One has {FX , FY } = F [X ,Y ] . Let { ei }ni= 1 be a base of g and
{
C k
ij

}
be structure

constants of the Lie algebra g , i.e.

[ ei , ej ] =
n∑

k= 1
C k
ij ek .

Let {Fi }ni= 1 be a dual basis of g∗ and {Xi }ni= 1 be the coordinate system of g∗ , i.e.
ξ = Xi( ξ )Fi , Xi(Fj ) = δij , Xi = Fei .

Now, it is not difficult to see that
{Xi , Xj } = F [ ei , ej ] =

∑
k

C k
ij Fek =

∑
k

C k
ij Xk .

Finally, we can write the coordinate expression of the Poisson bracket on the dual of a
Lie algebra:

{F , G } =
∑
i, j, k

C k
ij

∂F

∂Xi
∂G

∂Xj
Xk .

2.6.1. Definition via gradient operator

We define the gradient operator
∇ : C∞ ( g∗ ) −→ C∞ ( g∗ )

as follows:

〈 η , ∇F ( ξ ) 〉
def
:− d

dt F ( ξ + t η )
∣∣∣∣
t= 0

, ∀F ∈ C∞ ( g∗ ) .

In coordinates one simply has:
∇F = ∂F

∂Xi
ei .

Using the gradient operator, the bracket is defined as

{F , G } ( ξ )
def
:− 〈 ξ , [∇F ( ξ ) , ∇G ( ξ ) ] 〉

and in coordinates we obtain:
{Xi , Xj } (Fk) = 〈Fk , [∇Xi (Fk) , ∇Xj (Fk) ] 〉 = 〈Fk , [ ei , ej ] 〉 = C k

ij .

2.6.2. Definition via canonical structure on T∗(G)

Let g be a Lie algebra, then there exists a unique (connected and simply connected
up to an isomorphism) Lie group G such that TeG ' g . Let Lg ∈ Aut (G) be the
translation by g , i.e. ∀h ∈ G :

Lg : G
'−→ G

h 7−→ g h .

Then, we define
λg (h)

def
:−

(
TLg (h)

)∗
: T∗gh (G) −→ T∗h (G) ,

11 / 31



V. Roubtsov and D. Dutykh

which gives rise to the isomorphism λg : T∗(G) −→ T∗(G) with the inverse λ−1
g . Define

a map
λ : G × g∗ −→ T∗G

(g, ξ) 7−→ λ−1
g (g) (ξ) ,

which is a diffeomorphism in the following commutative diagram:

G × g∗ T∗G

G

λ

pr1 π

The co-tangent bundle T∗G ' G × g∗ is a trivial vector bundle with the fiber g∗ . The
Liouville form ρ ∈ Ω1 (T∗G) defines by the section σρ : T∗G −→ T∗T∗G similar to
Section 2.4:

〈σρ( ξ ) , X 〉 =
〈
ρ , Tπξ (X )

〉
, X ∈ Tπξ (T∗G ) , ξ ∈ T∗hG .

Let g ∈ G , ξ ∈ T∗ghG , X ∈ Tπλg( ξ )(T∗G ) , then we have

〈σρ ◦ λg( ξ ) , X 〉 =
〈
λg( ξ ) , Tπλg( ξ )

〉
=

〈
(ThLg)∗ξ , Tλg( ξ )

〉
=〈

ξ , (ThLg)Tλg( ξ )X
〉

=
〈
ξ , Tλg( ξ )(Lg ◦ π)X

〉
.

We can make two observations:
• (Lg ◦ π) (h, ξ) = gh ,
• π ◦ λg−1 = gh .

Henceforth, Lg ◦ π ≡ π ◦ λg−1 . The Liouville form becomes:

〈σρ ◦ λg( ξ ) , X 〉 =
〈
ξ , Tλg( ξ )( π ◦ λg−1 )X

〉
=

〈
ξ , Tξπ ◦ Tλg( ξ )λg−1 (X )

〉
=〈

ρ( ξ ) , Tλg( ξ )λg−1( ξ )X
〉

=
〈
λ∗g−1 ◦ ρ( ξ ) , X

〉
.

We have ω = d ρ as the canonical symplectic form on T∗G . We observe also that
• σρ ◦ λg = λ∗g−1(σρ ) ,
• ω ◦ λg = λ∗g−1(ω ) .

We recall that a Poisson bracket {F , G } for F , G ∈ C∞ (T∗G ) can be defined via
{F , G }

def
:− XF (G ) , where XF is the unique vector field on T∗G such that XF ⌟ω = dF .

Lemma 2.4. Let g ∈ G and F , G ∈ C∞ (T∗G ) , then
{F ◦ λg , G ◦ λg } = {F , G } ◦ λg .

Proof. Left to the reader as an exercise. o

Let C∞ (T∗G )G denote a subspace of stable or invariant functions with respect to the
mapping λg , i.e.

C∞ (T∗G )G
def
:− {F ∈ C∞ (T∗G ) | F ◦ λg = F } , g ∈ G .

Lemma 2.4 shows that the set C∞ (T∗G )G is closed with respect to the Poisson bracket.
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Let the linear mapping Φ be defined as
Φ : C∞ ( g∗ ) −→ C∞ (T∗G )

F 7−→ F ◦ pr2 ,
where pr2 : T∗G ≡ G × g∗ −→ g∗ is the canonical projection on the second argument.
Let ı : g∗ −→ T∗G be the canonical embedding. Then,

Ψ : C∞ (T∗G )G −→ g∗

F 7−→ F ◦ ı

is linear and inverse to Φ , i.e. Ψ ≡ Φ−1 .

Lemma 2.5. The bracket {F , G }
def
:− Φ−1

(
{Φ(F ) , Φ(G) }

)
is a Poisson bracket on

C∞ ( g∗ ) coinciding with two previous definitions.

Proof. Left to the reader as an exercise. o

3. Group actions and orbits

Let G be a Lie group and M is a smooth manifold.

Definition 3.1. A left action of G on M is a smooth map µ : G×M −→ M such that
• µ ( e, m ) = m , ∀m ∈ M ,

• µ
(
g, µ (h, m )

)
= µ ( gh, m ) , ∀ g, h ∈ G and ∀m ∈ M .

Definition 3.2. A right action of G on M is a smooth map ρ : M × G −→ M such
that

• ρ (m, e ) = m , ∀m ∈ M ,

• ρ
(
ρ (m, h ), g

)
= ρ (hg, m ) , ∀ g, h ∈ G and ∀m ∈ M .

Left and right actions of G and M are in one-to-one correspondence by the following
relation:

ρ (m, g−1 ) = µ ( g, m ) .
From now on we shall denote the left Lie group action µ ( g, m ) simply by g ·m . We can
define several important action types:

Effective or faithful: ∀ g ∈ G , g 6= e =⇒ ∃m ∈ M such that g ·m 6= m .

Free: If g is a group element and ∃m ∈ M such that g ·m = m (that is, if g has at
least one fixed point), =⇒ g = e. Note that a free action on a non-empty M is
faithful.

Transitive: If ∀m, n ∈ M , ∃ g ∈ G such that g ·m = n . In this case the smooth
manifold M is called homogeneous.

Important examples of group actions include:
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Example 3.1. G acts on itself by left multiplication:
G×G −→ G

(g, h) 7−→ gh .

This action is effective and transitive. Indeed, g · h = h =⇒ g = e and if g ·m = n
=⇒ g = n ·m−1 .

Example 3.2. G acts on itself by conjugation:
G×G −→ G

(g, h) 7−→ g · h · g−1 .

Generally, this action is not free, transitive or effective.

Example 3.3. GLn(R ) acts on Rn \ {0 } by matrix multiplication on the left:
GLn(R )×Rn \ {0 } −→ Rn \ {0 }

(A, x) 7−→ Ax .

This is an example of an effective and transitive action.

3.1. Stabilizers and orbits

LetG be a Lie group which acts on a smooth manifoldM . The orbit of a pointm ∈ M

is
G ·m

def
:− { g ∈ G | g ·m } ⊆ M .

A stabilizer of a point m ∈ M is

Gm

def
:− { g ∈ G | g ·m = m } ⊆ G .

Proposition 3.1. The stabilizer Gm is a closed subgroup of G and Gg·m = g ·Gm · g−1 ,
∀ g ∈ G .

Proof. Left to the reader as an exercise. o

We mention here two technical theorems regarding the orbits and stabilizers:

Theorem 3.1. Let G be a Lie group which acts on a smooth manifold M and m ∈ M .
There is a manifold structure on the orbit G ·m such that the map

G −→ G ·m
g 7−→ g ·m

is a submersion and the embedding ı : G ·m ↪→ M is an immersion.

Theorem 3.2. The Lie algebra gm of the stabilizer Gm for a point m ∈ M coincides
with kerTeΦ , where the mapping Φ is defined as

Φ : G −→ M

g 7−→ g ·m.
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3.2. Infinitesimal action

Let µ : G ×M −→ M be a Lie group action on M and g = Lie (G) be its Lie
algebra.

Definition 3.3. LetX ∈ g and φ : R −→ G its exponential flow, i.e. φ (t) = exp( tX ) .
Then, there exists the unique vector field XM ∈ X (M ) with the flow φm : R −→ M

defined by φm (t) = φ (t) ·m . The vector field XM is defined by

XM(m ) ( f )
def
:− d

dt
(
f ◦ φ( t ) ·m

) ∣∣∣∣
t= 0

.

The mapping µ∗ : g −→ X (M ) is called the infinitesimal action of g on M .

Proposition 3.2. The mapping µ∗ : g −→ X (M ) is a Lie algebra (anti-
)homomorphism (and it is in particular a linear mapping):

µ∗
(

[X , Y ]
)

= −[µ∗(X ) , µ∗(Y ) ] .

Proof. Left to the reader as an exercise. o

Remark 3.1. One can see that µ∗(X )m ( f ) = X (f ◦Φm) . In other words, µ∗(X )m =
TeΦm(X ) .

Proposition 3.3. Let m ∈ M , then
TmG ·m = {X ∈ g | µ∗(X )m } .

Proof. Left to the reader as an exercise. o

The following difficult result is left without the proof:

Theorem 3.3 (R. Palais). Let G be a simply connected Lie group with the Lie algebra
g = Lie (G) andM be a smooth compact manifold such that there exists a homomorphism
of Lie algebras ρ : g −→ X (M ) . Then, there is a unique action µ : G×M −→ M

such that µ∗ = ρ .

Proposition 3.4. Let µ : G×M −→ M be an action of G on a smooth manifold M
and m ∈ M . Then, the following diagram commutes:

g X (M )

G M

µ∗

exp exp

µm

or, in other words:
∀X ∈ g : µm( e tX ) = e t µ∗(X )m .

3.3. Lie group and Lie algebra representations

Let G be a Lie group, g = Lie (G) be its Lie algebra and V be a real vector space.
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Definition 3.4. A representation of the Lie group G in the vector space V is a homo-
morphism of Lie groups (i.e. a smooth group morphism) ϕ : G −→ GL (V ) .

Definition 3.5. A representation of the Lie algebra g in the vector space V is a Lie
algebra homomorphism φ : g −→ End (V ) .

Here End (V ) is enabled with the Lie algebra structure given by the endomorphisms
commutator:

∀A, B ∈ End (V ) [A , B ]
def
:− A ·B − B · A .

If ϕ : G −→ GL (V ) is a Lie group representation, then

φ
def
:− Teϕ : TeG = g −→ Tid

(
GL (V )

)
= End (V )

is a representation of the Lie algebra g .

3.3.1. Adjoint representations

Let g ∈ G , V = g , then the composition Lg ◦ Rg−1 : G −→ G induces a
linear mapping Te (Lg ◦ Rg−1 )

def
:− Ad ( g ) : g −→ g and, hence, a group morphism

Ad : G −→ GL ( g ) . Then, the following Lemma holds:

Lemma 3.1. The group morphism Ad is a smooth map which gives a representation of
G in g , which is called the adjoint Lie group representation.

Proof. Left to the reader as an exercise. o

Let ad
def
:− Te (Ad ) : g −→ End( g ) . Then, ad is also called the adjoint Lie group

representation.

Lemma 3.2.
ad (X ) (Y ) = [X , Y ] , ∀X , Y ∈ g .

Proof. Left to the reader as an exercise. o

3.3.2. Co-adjoint representations

Let g ∈ G , V ∈ g∗ and f ∗ ∈ End ( g∗ ) is defined by f ∗ (ξ)
def
:− ξ ◦f for any element

f ∈ End ( g ) . Then, we can write down the following

Definition 3.6. The following smooth map
Ad ∗ : G −→ GL ( g ∗ ) ,

g 7−→ Ad ( g−1 ) ∗ ,
which gives a representation of G in g∗ is called the co-adjoint Lie group representation.
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The last definition makes sense because Ad ∗ = F ◦ Ad and F (f) = f ∗ , where the
map F : End (V ) −→ End (V ∗ ) . Similarly, we can also define

ad ∗ : g −→ End ( g∗ ) ,
X 7−→ − ad ∗ (X ) ,

where
ad ∗ (X ) ( ξ ) (Y ) = −〈 ξ , [X , Y ] 〉 .

Then, ad ∗ is also called the co-adjoint Lie algebra representation in g∗ .

Lemma 3.3.
[ ad ∗ (X ) , ad ∗ (Y ) ] = ad ∗ ( [X , Y ] ) , ∀X ,Y ∈ g , ∀ξ ∈ g∗ .

Proof. Left to the reader as an exercise. o

Proposition 3.5. The co-adjoint representation Ad ∗ of a Lie group G gives rise to a
co-adjoint left action of G on g∗ :

G× g∗ −→ g∗ ,

(g, ξ) 7−→ Ad ∗ ( ξ ) .

Let X ∈ g and FX ∈ C∞ ( g∗ ) be the evaluation function defined by
FX ( ξ )

def
:− ξ (X ) . Then, the following Propositions hold:

Proposition 3.6.
d
dtF

(
Ad ∗exp ( tX ) ( ξ )

) ∣∣∣∣
t= 0

= {F , FX } ( ξ ) .

Proposition 3.7. A function F ∈ C∞ ( g∗ ) is a Casimir function for the Lie–Poisson
structure on g∗ if and only if

{F , FX } = 0 , ∀X ∈ g .

Finally, we can state without the proof the following important

Theorem 3.4 (Lie–Berezin–Kirillov–Kostant–Souriau).

Cas
(
C∞ ( g∗ )

)
= C∞ ( g∗ )Ad ∗

G ,

where
C∞ ( g∗ )Ad ∗

G
def
:−

{
F ∈ C∞ ( g∗ )

∣∣∣ F ◦ Ad ∗g = F , ∀g ∈ G
}
.

Denote by O ξ

def
:− G · ξ ⊆ g∗ a co-adjoint orbit of a co-vector ξ ∈ g∗ . Recall that

these orbits are manifolds such that O ξ admits a submersion φ : G −→ O ξ and an
immersion ı : O ξ ↪→ g∗ . Define a g−valued 1−form ω on G as

ω g (X ) = Tg Lg−1 (X ) ∈ g .

Then,L ∗h (ω ) = ω . In other words, the 1−form ω isG−invariant. Here we take g, h ∈ G
and X ∈ g . By Maurer–Cartan formula we have that

dω = − 1
2 [ω , ω ] .
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Let us define also the 1−form ω ξ ∈ Λ1 (G ) by

ω ξ ( g ) (X )
def
:− 〈 ξ , ω g (X ) 〉 .

Then, the following result can be shown:

Theorem 3.5 (Kirillov–Kostant–Souriau). There exists a unique 2−form Ω ξ ∈
Λ2 (O ξ ) such that φ∗ ( Ω ξ ) = dω ξ . This form is symplectic on the co-adjoint orbit O ξ .

4. Moment map, Poisson and Hamiltonian actions

4.1. Introductory motivation

Let R3 be a basic configuration space with coordinate or position vectors r =
( q1, q2, q3 ) and velocity vectors:

ṙ = ( q̇1, q̇2, q̇3 )
def
−: ~p

def
:− ( p1, p2, p3 ) .

We remind that here by the ˙(−) we denote the classical time derivative operator. The
angular momentum L is defined by their vector product as L

def
:− r× ṙ . The total energy

of a mechanical system is given by

ET
def
:− 〈 ṙ , ṙ 〉

2 + U ( r )

and the equation of motion is r̈ = −∇r U ( r ) . The total mechanical energy is conserved,
i.e. dET

dt ≡ 0 . The angular momentum is also constant along a trajectory. It implies
that

dL
dt = ṙ× ṙ + r× r̈ = − r×∇r U = 0 ,

which is equivalent to say that r = λ∇r U for some λ ∈ R .
Let so ( 3 ) be the Lie algebra of skew-symmetric 3× 3 matrices with real entries. This

is a three-dimensional vector space with the basis {X1, X2, X3 } given by three following
matrices:

X1 =


0 1 0
−1 0 0
0 0 0

 , X2 =


0 0 −1
0 0 0
1 0 0

 , X3 =


0 0 0
0 0 1
0 −1 0

 .

The Lie brackets in the Lie algebra so ( 3 ) are given by
[Xi , Xj ] = Xk , ( i, j, k ) = ( 1, 2, 3 ) ,

with all circular permutations. The Killing form κ (−, −) defined as
κ : so ( 3 )× so ( 3 ) −→ R

(X, Y ) 7−→ tr (X Y )
is symmetric, bi-linear and non-degenerate. Here tr (− ) is the trace form of a square
matrix. This form identifies so ( 3 ) and so ( 3 )∗ by the interior product rule X ⌟ κ .
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The Lie–Poisson structure on so ( 3 )∗ in the coordinates (x1, x2, x3 ) on so ( 3 ) can
be expressed as

{F , G } (x1, x2, x3 ) =
3∑

i, j, k= 1
ckij

(
∂F

∂xi

∂G

∂xj
− ∂F

∂xj

∂G

∂xi

)
xk .

Here ckij is the structure constant tensor of the Lie algebra so ( 3 ).
The angular momentum L s defined as a map

T∗R3 ' R6 −→ so ( 3 )∗

( ~q, ~p ) 7−→ ~q× ~p =
∑
i, j, k

( q i pj − p i qj )Xk .

The angular momentum map L : T∗R3 −→ so ( 3 )∗ is a Poisson morphism.

Definition 4.1. Let µ : G×M −→ M be a Lie group action on a Poisson manifold(
M; {− , −}

)
. This action is called a Poisson action if the map

µ∗g : C∞ (M, R ) −→ C∞ (M, R )

defined by µ∗g (F ) (m )
def
:− F

(
µ g (m )

)
satisfies the following condition:

µ∗g
(
{F , G }

)
(m ) =

{
µ∗g (F ) , µ∗g (G )

}
(m ) , ∀F, G ∈ C∞ (M, R ) .

Let a Poisson structure (M, π ) be symplectic∗. In this case this Poisson action can
be called the Hamiltonian action.

4.2. Momentum map

Definition 4.2. Let g be a Lie algebra and
(
M, {− , −}

)
be a Poisson manifold. A

momentum map is a Poisson morphism µ : M −→ g∗ . In other words, it is a smooth
map µ such that for ∀F, G ∈ C∞ ( g∗ ) :

µ∗
(
{F , G } g∗

)
= {µ∗ (F ) , µ∗ (G ) }M .

Let λ̄ : g −→ C∞ (M, R ) be a smooth linear map. Then, there is a unique map
λ : M −→ g∗ defined by λ̄ :

{λ (m ) , X } = λ̄ (X ) (m ) , ∀m ∈ M , ∀X ∈ g .

Proposition 4.1. Let
(
M, {− , −}

)
be a Poisson manifold and µ : M −→ g∗ is a

smooth map. Then, µ is a momentum map if and only if the associated map µ̄ : g −→
C∞ (M, R ) is a Lie algebra homomorphism:

µ̄
(

[X , Y ]
)

= { µ̄ (X ) , µ̄ (Y ) }M , ∀X , Y ∈ g .

Recall that the map χ : C∞ (M, R ) −→ X (M ) such that
χ (F ) = XF = {F , −}

∗Here we mean that the bi-vector π is non-degenerate, i.e. π is invertible when it is seen as a banal
matrix.
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is a Lie algebra morphism. We take the composition Θ
def
:− χ◦ µ̄ : g −→ X (M ) , where

µ̄ : g −→ C∞ (M, R ) and g = Lie (G ) with a simply connected Lie group G . For
compact manifoldsM , Theorem 3.3 ensures the existence of an action λ : G×M −→ M

with λ∗ = −Θ .

Proposition 4.2. If G is connected, then λ∗ = −Θ gives a Poisson morphism λ∗g :
C∞ (M, R ) −→ C∞ (M, R ) for ∀ g ∈ G and ∀u, v ∈ C∞ (M, R ) :{

λ∗g (u ) , λ∗g ( v )
}

= λ∗g
(
{u , v }

)
.

Proposition 4.3. LetM be a compact manifold and G is connected and simply connected.
Then, the action λ is G−equivariant:

M g∗

M g∗

µ

λg Ad ∗
g

µ

4.3. Moment and Hamiltonian actions

Let
(
M, ω

)
be a symplectic manifold and the corresponding Poisson brackets are

defined by a pair of Hamiltonian vector fields:
{u , v } = Xu ( v ) = ω

(
X v, Xu

)
, Xu ⌟ ω = du .

Lemma 4.1. If H1 (M, R ) = 0 and X ∈ X (M ) “infinitesimally” preserves the
symplectic form ω , i.e. LX (ω ) = 0 , then there exists a unique u ∈ C∞ (M, R ) such
that X = Xu .

Here we should remark that the function u is uniquely defined only modulo a locally
constant function on M (which is usually identified with an element of H0 (M, R ).

Lemma 4.2. Let λ : G ×M −→ M be an action of a Lie group G on a symplectic
manifold

(
M, ω

)
. The action λ is a Poisson (more precisely, in this case we may call

it a Hamiltonian) action if and only if λ∗g = ω .

Proposition 4.4. Let λ : G ×M −→ M be a Hamiltonian action on a symplectic
manifold

(
M, ω

)
and λ∗ : g −→ X (M ) is the corresponding Lie algebra homomor-

phism. Then, ∀X ∈ g :
Lλ∗ (X ) (ω ) = 0 .

Definition 4.3. Let λ : G × M −→ M be an action of G on M and
(
T∗M, Ω

)
is the co-tangent bundle with the canonical symplectic form Ω = dρ , where ρ is the
Liouville 1−form. This action can be lifted to an action Λ : G × T∗M −→ T∗M

defined by
Λ ( g, ξm )

def
:− (Tg·m λ∗g−1 ) ( ξm ) .
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Theorem 4.1. The action Λ is Hamiltonian and the induced momentum map µΛ :
T∗M −→ g∗ is defined by

{µΛ ( ξm ) , X } = { ξm , T e λm (X ) } .

4.3.1. Examples

Example 1. Lifting of the left G−action on G to T∗G :
λ : G×G −→ G ,

( g, h ) 7−→ g · h .
Then, we obtain the required lifting:

Λ : G× T∗G ' G× g∗ −→ T∗G ' G× g∗ ,(
g, (h, ξ )

)
7−→ ( g · h, ξ ) .

The associated momentum can be also easily computed:
µ ( ξh ) = − (TeRh )∗( ξh ) , µ (h, ξ ) = Ad ∗h ( ξ ) .

Similarly, we can consider lifting of the right G−action on G to T∗G :
λ : G×G −→ G ,

( g, h ) 7−→ h · g−1 .

Then, we obtain the required lifting:
Λ : G× T∗G ' G× g∗ −→ T∗G ' G× g∗ ,(

g, (h, ξ )
)
7−→ (h · g−1, Ad ∗g ξ ) .

The associated momentum can be also easily computed:
µ ( ξh ) = − (T eLh )∗( ξh ) , µ (h, ξ ) = − ξ .

Example 2. Let us consider also the action of S1 on C :
C ' R2 ' T∗R1 , Ω = dq ∧ dp .

The action is given by
λ : S1 × C −→ C ,(

e i θ, z
)
7−→ e i θ z ,

for some θ ∈ [ 0, 2 π[ . Above i is the complex imaginary unit, i.e. i2 = − 1 . Then, one
can easily obtain the expression for λ∗ : TeS1 −→ C :

λ∗

( d
dθ

)
(q, p) = Te (λq, p )

( d
dθ

)
= − p ∂

∂q
+ q

∂

∂p
.

The interior product with the symplectic form can be also easily obtained:

λ∗

( d
dθ

)
⌟ Ω = − ( pdp + qdq ) = − 1

2 d( p2 + q2 ) .
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The momentum map is given by

µ ( z ) = µ ( q + i p ) = p2 + q2

2 .

The last construction can be easily generalized to Cn :
λ : S1 × Cn −→ Cn ,(

e i θ, ( z1, z2, . . . , zn )
)
7−→

(
e i θz1, e i θz2, . . . , e i θzn

)
.

Then, the associated momentum map is given by:

µ ( z1, z2, . . . , zn ) =
n∑

i= 1
| zi |2 .

Example 3. Let us consider the action of S1 on S2 . The manifold S2 is equipped with local
coordinates ( z, φ ) and Ω = dz ∧ dφ . The action of S1 is given by rotation in z−planes:

λ : S1 × S2 −→ S2 ,(
e i θ, ( z, φ )

)
7−→ ( z, φ + θ ) .

It is not difficult to see that

λ∗

( d
dθ

)
( z, φ ) = ∂

∂φ
, λ∗

( d
dθ

)
⌟ Ω = dz .

Finally, the momentum map is
µ ( z, φ ) = z .

Example 4. We consider now the action of S1 on the torus T2 def
:− S1 × S1 . The torus T2

is equipped with local coordinates (φ1, φ2 ) and the symplectic form is Ω = dφ1 ∧ dφ2 .
The action is defined as

λ : S1 × T2 −→ T2 ,(
e i θ,

(
e iφ1 , e iφ2

))
7−→

(
e iφ1 , e i (φ1 + θ )

)
.

Then, we have
λ∗

( d
dθ

)
( Ω ) = dφ1 ∧ d( θ + φ2 ) = Ω

and
λ∗

( d
dθ

)
⌟ Ω = − dφ1 .

Since the coordinate function φ1 is defined only locally, the momentum map µ and the
morphism µ̄ do not exist.
Example 5. In this example we consider the action of SU (n ) on T∗

(
su (n )

)
. We remind

that SU (n ) is the Lie group of special unitary matrices with complex coefficients:

SU (n )
def
:− {A ∈ Matn(C ) | AA∗ = I , det (A) = 1 } ,

where I is the identity matrix and A∗ is the conjugate (or Hermitian) transpose of A .
The corresponding Lie algebra is defined as

Lie
(

SU (n )
)

= su (n )
def
:− {A ∈ Matn(C ) | A∗ = −A , tr (A ) = 0 } .
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The Lie algebra su (n ) is an example of a semi-simple Lie algebra with a Killing form
κ (X, Y ) = 2n tr (X Y ) and su (n ) ' su (n )∗ . The action is defined as

λ : SU (n )× T∗
(
su (n )

)
−→ T∗

(
su (n )

)
,(

g, (X, L )
)
7−→

(
g X g−1, g L g−1

)
.

Then, Ω = tr ( dX ∧ dL) and the momentum map is given by
µ (X, L ) = [X , L ] .

5. Reduction of the phase space

Let (M, ω ) be a symplectic manifold and λ : G ×M −→ M is a Hamiltonian
action, i.e.

λ ∗g (ω ) = ω , ∀ g ∈ G .

We justify the terminology by the following observation:

Lemma 5.1. Assume that there exists a momentum map µ : M −→ g∗ , one necessarily
obtains that

λ∗ (Y ) = −X µ̄ (Y ) , ∀Y ∈ g .

Definition 5.1. An element c ∈ g∗ is called a regular if M c

def
:− µ−1 ( c ) is a sub-

manifold in M and if
ker (Tm µ ) = TmM c , ∀ c ∈ M c .

Lemma 5.2. Let G c

def
:−

{
g ∈ G

∣∣∣ Ad ∗g ( c ) = c
}
. If G is connected and simply con-

nected, then ∀m ∈ M c and ∀ g ∈ G c :
g ·m ∈ M c .

Proof. Left to the reader as an exercise. o

Remark 5.1. In the case when c is a regular element and G is connected and simply
connected, the action of G onM induces an action of the Lie sub-group G c ⊆ G on the
sub-manifold M c ⊆ M .

5.1. The main results

Theorem 5.1. If G is connected and simply connected and, in addition:
• c is a regular element;
• G c is compact;
• G c acts on M c by free and transitive action.

Then, there exists a natural smooth structure on M c /G c such that the mapping π c :
M c −→ M c /G c is a submersion.

Remark 5.2. The quotient space M c /G c is called in this case the reduced phase space.
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Theorem 5.2 (Marsden–Weinstein). If G is connected and simply connected and, in
addition:

• c is a regular element;
• G c is compact;
• G c acts on M c by free and transitive action.

Then, there exists a unique symplectic 2−form ω c on M c /G c such that
π ∗c (ω c ) = ı ∗c (ω ) ,

where π c : M c −→ M c /G c is the canonical submersion and ı c : M c ↪−→ M is the
canonical embedding.

The proof of this Theorem is based on the following

Lemma 5.3. Let m ∈ M c . Then, TmM c = (TmG ·m)⊥ . In other words,
TmM c = {X ∈ TmM | ωm (X , Y ) = 0 , ∀Y ∈ TmG ·m } .

Proof. Left to the reader as an exercise. o

Remark 5.3. Observe that TmM c
⋂
TmG·m 6= ∅ . More precisely,TmM c

⋂
TmG·m =

TmG c ·m .

Corollary 5.1. Let X1, X2, Y1, Y2 ∈ TmM c ⊆ TmM such that
Tmπ c (X1 ) = Tmπ c (X2 ) ,
Tmπ c (Y1 ) = Tmπ c (Y2 ) ,

then, ωm (X1, Y1 ) = ωm (X2, Y2 ) .

Lemma 5.4. Let m, n ∈ M c such that π c (m ) = π c (n ) and X1, X2, Y1, Y2 ∈
TmM c ⊆ TnM c ⊆ TnM such that

Tmπ c (X1 ) = Tnπ c (X2 ) ,
Tmπ c (Y1 ) = Tnπ c (Y2 ) ,

then, ωm (X1, Y1 ) = ωn (X2, Y2 ) .

Proof. Left to the reader as an exercise. o

Lemma 5.5. Let c be a regular element and O c

def
:− G · c be its co-adjoint orbit. Then,

µ−1 (O c ) is a sub-manifold in M .

Proof. Left to the reader as an exercise. o

Theorem 5.3. The mapping
φ : O c −→ M c /G c ,

m 7−→ π c ( g−1m ) ,
where µ (m ) = Ad ∗g ( c ) is correctly defined, induces a diffeomorphism:

Φ : π
(
µ−1 (O c )

)
−→ M c /G c .
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5.2. Example

In this Section we consider again the action of S1 on Cn , which is defined as
λ : S1 × Cn −→ Cn ,(
e i θ, ~q + i~p

)
7−→ e i θ ~q + i e i θ ~p ,

where ~p, ~q ∈ Rn . The momentum map is
µ : Cn −→ Lie ( S1 ) ,

~q + i ~p 7−→ −
n∑

i= 1

q 2
i + p 2

i

2 .

Then, M c =
{
z ∈ Cn

∣∣∣ ∑n
i= 1 | zi |

2 = 2 c
}
' Sn , c > 0 . It is also clear that

G c ' S1 and S1 is an Abelian group. Thus, we have:
LgRg−1 = I =⇒ Ad g = Ad ∗g = I .

Henceforth,
M c /G c = Sn / S1 ' Pn− 1 .

6. Poisson–Lie groups

A Lie group G is called Poisson–Lie group if it is a Poisson manifold such that the
multiplication m : G × G −→ G is a morphism of Poisson manifolds. Let g be Lie
algebra, g∗ be dual vector space to g .

Definition 6.1. We say that g is a Lie bi-algebra if there is a Lie algebra structure
[− , − ] ∗ on g∗ such that the map δ : g −→ Λ2 g (called the co-bracket), dual to the
bracket [− , − ] ∗ : Λ2 g∗ −→ g∗ is a 1−cocycle with respect to the adjoint action of g
on Λ2 g .

6.1. Modified Classical Yang–Baxter equation

Let G be connected and a simply connected Lie group, and let g be its Lie algebra.
Then there is one-to-one correspondence between Poisson–Lie group structures on G
and Lie bi-algebra structures on g .

As V. Drinfel’d showed [3], every structure on a semi-simple connected G has the
following form:

π ( g ) = Λ2
(

(L g ) ∗
)

( r ) − Λ2
(

(R g ) ∗
)

( r ) , (6.1)

where (L g ) ∗ and (R g ) ∗ denote tangent maps of left and right translations by g ∈ G .
The element r ∈ Λ2 g satisfies the following condition:

J r, r K
def
:− [ r 12 , r 13 ] + [ r 12 , r 23 ] + [ r 13 , r 23 ] ∈ Λ3 g , (6.2)
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where the right hand side is invariant under the adjoint action of g . The condition (6.2)
is called a modified Yang–Baxter equation and the bracket

J−, − K : Λ2 g⊗ Λ2 g −→ Λ3 g

is a so-called Schouten–Nijenhuis bracket. This is the natural graded (or super-) Lie
algebra structure on the exterior algebra

Λ• g =
⊕
k

Λk g

Here r 12, to give an example, denotes an element r 12 = r ⊗ I 3 ∈ ( g ⊗ k )⊗ 3 ;
k ∈ {R, C } and r being usually called a classical r−matrix.

The condition (6.2) ensures that the bracket {− , −} ∗ on g∗ satisfies the Jacobi
identity. The corresponding Lie bi-algebra structure is calculated in the obvious way.
Namely, the co-bracket δ is given by

δ (x ) = d e π (x ) = Lx̄ π ( e ) = d
dt r ( e −t x ) ∗ π ( e t x )

∣∣∣∣
t= 0

= adx ( r ) ,

where d e π is the intrinsic derivative of a poly-vector field on G with π ( e ) = 0 , x̄ is
any vector field on G with x̄ ( e ) = x and L x̄ denotes the Lie derivative [8].

The Poisson structures of the form (6.1) are called co-boundary or r−matrix structures.
Since for a connected semi-simple or a compact Lie group G every 1−cocycle is a co-
boundary, one has the following

Proposition 6.1. . The Poisson–Lie structures on a connected semi-simple or a com-
pact Lie group G are in one-to-one correspondence with the solutions r ∈ Λ2 g of the
modified Yang–Baxter equation.

6.2. Manin triples

Let g be a Lie bi-algebra. There is a unique Lie algebra structure on the vector space
g⊕ g∗ such that

(1) g and g∗ are Lie sub-algebras.
(2) The symmetric bi-linear form on g⊕ g∗ given by the relation
〈 X + ξ , Y + ηY 〉 = 〈 X , η 〉 + 〈 Y , ξ 〉 , ∀X , Y ∈ g , ∀ ξ, η ∈ g∗

is invariant.
This structure is given by

{X , ξ } = − ad ∗X ( ξ ) + ad ∗ξ (X ) ,
for X ∈ g and ξ ∈ g∗ , where ad ∗ is the co-adjoint action. This Lie algebra is denoted by
g ./ g∗ and ( g ./ g∗, g, g∗ ) is an example of aManin triple. In general, aManin triple is a
decomposition of a Lie algebra g with a non-degenerate invariant scalar product 〈 , 〉 into
direct sum of isotropic with respect to 〈 , 〉 vector spaces, g = g+⊕g− such that g± are
Lie sub-algebras of g . It is well-known that there is one-to-one correspondence between
Lie bi-algebras and Manin triples. These triples were introduced by V. Drinfel’d [4]
and named after Yu. I. Manin.
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6.3. Poisson–Lie duality

Let G be a connected and simply connected Poisson–Lie group, g = Lie (G ) its
Lie algebra and

(
g ./ g∗, g, g∗

)
the Manin triple. By duality,

(
g∗ ./ g, g∗, g

)
is also

a Manin triple. Then g∗ is a Lie bi-algebra. This enables us to consider a connected and
simply connected Lie group G∗ with a Poisson–Lie structure π∗ and with the tangent
Lie bi-algebra g∗ . The Poisson–Lie group (G∗, π∗ ) is called the Poisson–Lie dual to
(G, π ) .

6.4. Example of non-Hamiltonian action

Let G be a Poisson–Lie group with a multiplicative Poisson tensor πg and M be a
smooth Poisson manifold with a Poisson structure given by πM . Then, the product
G×M can be considered as a Poisson manifold with the direct sum structure π̃ .

Proposition 6.2. An action σ : G ×M −→ M of a Poisson–Lie group G on a
Poisson manifold M is a Poisson–Lie action if and only if

πM ( g ·m ) = Λ2
(

(σ g ) ∗
) (

πM (m )
)

+ Λ2
(

(σm ) ∗
) (

πG ( g )
)
.

Remark 6.1. One can consider any Lie group G as a Poisson–Lie group with πG ≡ 0
then the action σ is a Poisson (action) if it gives a Poisson morphism πM ( g ·m ) =
(σ g ) ∗

(
πM (m )

)
.

Definition 6.2. The action σ : G ×M −→ M is called a Poisson–Lie action if
π∗ : C∞ (M ) −→ C∞ (G×M ) is a Poisson morphism:

π∗
(
{F , H } πM

)
= { π∗ (F ) , π∗ (H ) } π̃ .

Infinitesimally, a Poisson–Lie action of a Lie bi-algebra g on a Poisson manifold
(M, {− , −} ) is given by an action

ρ : g −→ X (M ) ,
X 7−→ VX ,

with X ∈ g such that

VX { f , g } (m ) = {VXf , g } (m) + { f , VX g } (m )
− {X , [ ρ∗ d f (m ) , ρ∗ d g (m ) ] } ,

where ρ∗ df (m ) ∈ g∗ and 〈 X , ρ∗ df (m ) 〉 = VXf (m ) . In other words,

〈 X , [ ρ̃ ( dF ) (m ) , ρ̃ ( dG ) (m ) ] ∗ 〉 = 〈 dF , dG 〉
(
ρ (X )

)
(m ) .

define a Lie algebroid structure on T∗M .
There are natural left and right actions of dual Poisson–Lie group G∗ on G . These

actions are called left (right) dressing transformations. The dressing transformations are
not Hamiltonian as Semenov-Tian-Shansky proved but these actions are genuine
Poisson–Lie actions [9].
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