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Dynamic of assemblies of neural networks with elapsed
time neural model and learning processes

Delphine Salort∗, Nicolas Torres†

Abstract

We introduce and study a new model of interacting neural networks, incorporating the spatial dimen-
sion (e.g. position of neurons across the cortex) and some learning processes. The dynamic of each neural
network is described via the elapsed time model, that is, the neurons are described by the elapsed time
since their last discharge and the chosen learning processes are essentially inspired from the Hebbian rule.
We then obtain a system of integro-differential equations, from which we analyze the convergence to sta-
tionary states by the means of entropy method and Doeblin’s theory in the case of weak interconnections.
We also consider the situation where neural activity is faster than the learning process and give conditions
where one can approximate the dynamics by a solution with a similar profile of a steady state. For stronger
interconnections, we present some numerical simulations to observe how the parameters of the system can
give different behaviors and pattern formations.

Keywords: Mathematical Biology, Neural network, Elapsed time, Renewal equation, Learning rule, Con-
nectivity kernel, Weak interconnections, Convergence to equilibrium, Entropy method, Doeblin Theory.

Mathematics Subject Classification (2010): 35B40, 35F20, 35R09, 92B20.

1 Introduction

The study and modeling of neural networks have been expanded significantly in the past years and still
lead to several stimulating open problems. In the case of homogeneous networks, evolution equations
describing neural assemblies derived from stochastic processes and microscopic models have become a
very active area. Among them, the elapsed time model, has known a growth interest and has been studied
by several authors such as Cañizo et al. in [3], Chevalier et al. in [4], Ly et al. in [14], Mischler et al. in [16]
and Pakdaman et al. in [17, 18, 19].

However, the incorporation of spatial dimension, using those homogeneous models for each unit has not
been investigated much yet. Recent works of J. Crevat et al. in [5, 6, 7] consider the case with spatial
dimension, where each neuron is described via a kinetic PDE derived from FitzHugh-Nagumo model. Else,
the main models used for the incorporation of space variable via integro-differential equations are inspired
from the Wilson-Cowan [22] and Amari [2] models, where several theoretical and numerical results has
been obtained, see Faye et al. in [8, 9, 10].

Here, we consider the evolution of interacting neural networks, where each neural network is governed by
the time elapsed model and has a position x ∈ Ω, where Ω is a bounded domain of Rd (with d the dimen-
sion), which models the cortex. Neurons undergo some charging process and then a sudden discharge takes
place in response to certain stimulus and this causes other neighboring neurons to discharge, depending on
the strength of interconnections in the network. The time variations of these interconnections determine
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the learning process of the neural network. For simplicity we assume that for each position x we have a
homogeneous network that is considered as a single neuron.

Let n = n(t, s, x) be the probability density of finding a neuron at time t, such that the elapsed time since
its last discharge is s ≥ 0 and its position is x ∈ Ω. We model the neural network through the following
nonlinear renewal system

∂tn(t, s, x) + ∂sn(t, s, x) + p(s, S(t, x))n(t, s, x) = 0 t > 0, s > 0, x ∈ Ω,

N(t, x) := n(t, s = 0, x) =
∫∞

0
p(s, S(t, x))n(t, s, x) ds t > 0, x ∈ Ω,

S(t, x) =
∫

Ω
w(t, x, y)N(t, y)dy + I(t, x) t > 0, x ∈ Ω,

∂tw(t, x, y) = −w(t, x, y) + γG(N(t, x), N(t, y)) t > 0, x, y ∈ Ω,

n(t = 0, s, x) = n0(s, x) ≥ 0, w(t = 0, x, y) = w0(x, y) ≥ 0 s ≥ 0, x, y ∈ Ω.

(1)

The equation for n and the integral boundary condition correspond to the renewal equation, where the
function p : [0,∞) × R represents the firing rate of neurons. This function p depends on the elapsed time s
and S(t, x), which is the amplitude of stimulation received by the network at time t and position x, and we
denote I(t, x) an external input. For the firing rate p, we deal with the two following cases.

p∗ ≤ p ≤ p∞, for some constants p∗, p∞ > 0. (2a)

p∗1{s>s∗} ≤ p ≤ p∞, for some constants p∗, p∞, s∗ > 0. (2b)

The hypothesis (2b) is an extension of (2a), since it allows p to vanish for values of s lying on some interval.
We mainly deal with the case (2b) in subsection 4.2.

The function N(t, x) is the activity of a neuron at time t and position x. This corresponds to integrate with
respect to s the term with firing rate in the first equation of (1). The integral boundary condition of n at
s = 0, states that the elapsed time is reset to zero after a discharge.

The function w ∈ Cb([0,∞) × Ω × Ω) is the connectivity kernel, which depends on the location of neurons.
The third equality of (1) establishes that the amplitude of stimulation received by the network is the result
of connectivity among discharging neurons plus the external input I ∈ Cb([0,∞)× Ω).

Figure 1: A neuron located at position x discharges and sends N(t, x) to rest of the network. At the same time this
neuron in x receives I(t, x) from the external input and w(t, x, y)N(t, y) dy from a discharging neuron located at y.

Furthermore this kernel evolves in time following a learning rule that depends on the smooth function
G : R2 → R and the activity N at locations x, y. The impact of the learning is studied in the fourth equation
of (1), where γ > 0 is called the connectivity parameter. If γ and ‖ ∂p∂S ‖∞ are small, we say that the system
(1) is under a weak interconnection regime.

As an example of a learning rule we have G(N(t, x), N(t, y)) = N(t, x)N(t, y), inspired from the Hebbian
learning which has been introduced by Hebb in his seminal work in [12]. This means that if two neurons
have simultaneously high activity their connection becomes stronger. Mathematical formulations of this
rule have been studied for example by Gerstner and Kistler in [11].

Another example is to take G(N(t, x), N(t, y)) = φ(N(t, x)N(t, y)) exp
(
−(N(t, x)−N(t, y))2

)
, with φ a sig-

moid function. This is inspired from the works of Abbassian et al. in [1] and Amari in [2] on neural fields
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and membrane potentials. This means that the interconnection of two neurons becomes stronger if their
activities are similar and large enough.

Finally, (n0, w0) denotes the initial configuration of the system with

n0 ∈ Cb(Ω, L1
s), w0 ∈ Cb(Ω× Ω). (3)

Observe that equation (1) is formally mass-conservative, i.e. for a given g ∈ Cb(Ω)

g(x) :=

∫ ∞
0

n0(s, x) ds =

∫ ∞
0

n(t, s, x) ds ≥ 0 ∀t > 0, x ∈ Ω,

∫
Ω

g(x) dx = 1. (4)

The rest of the article is organized as follows. In section 2 we prove that system (1) is well-posed in a suitable
space when the interconnections are weak. Under the same regime of connectivity, we prove in section 3
the existence of stationary states and in section 4 we prove the exponential convergence to equilibrium
in two different ways: via the entropy method and via Doeblin’s theory. Furthermore in section 5 we
study a variant of system (1) where the time scale for learning is much slower than that of elasped time
dynamics. Finally in section 6 we present some examples of numerical simulations for different external
inputs, connectivity parameters and learning rules.

2 Well-posedness for the weak interconnection case

We prove that system (1) is well-posed under the weak interconnection regime. In order to do so, we start
by studying an auxiliary linear problem where the amplitude of stimulation is fixed and then we proceed
to prove well-posedness of system (1) via a contraction argument.

2.1 The linear problem

Given S ∈ Cb([0,∞)× Ω), we consider the following linear problem
∂tn+ ∂sn+ p(s, S(t, x))n = 0 t > 0, s > 0, x ∈ Ω,

N(t, x) := n(t, s = 0, x) =
∫∞

0
p(s, S(t, x))nds t > 0, x ∈ Ω,

n(t = 0, s, x) = n0(s, x) ≥ 0 s ≥ 0, x ∈ Ω.

(5)

We look for weak solutions satisfying n ∈ Cb([0,∞)×Ω, L1
s), so thatN ∈ Cb([0,∞)×Ω). Furthermore, in this

linear system the variable x is simply a parameter, since there is no derivative or integral term involving the
position.

Lemma 1. Assume that n0 ∈ Cb(Ω, L1
s) and p satisfies (2b). Then for a given S ∈ Cb([0,∞) × Ω), the equation (5)

has a unique weak solution n ∈ Cb([0,∞)× Ω, L1
s) with N ∈ Cb([0,∞)× Ω). Moreover n is non-negative and mass

conservative, i.e. ∫ ∞
0

n0(s, x) ds =

∫ ∞
0

n(t, s, x) ds ∀t > 0, x ∈ Ω.

Proof. We start by noticing that a solution of the linear system (5) satisfies the following fixed point equation

n(t, s, x) = Ψ[n](t, s, x) := n0(s− t, x) exp

(
−
∫ t

0

p(τ + s− t, S(τ, x)) dτ

)
1{s>t}

+N(t− s, x) exp

(
−
∫ s

0

p(τ, S(t− s+ τ, x)) dτ

)
1{0<s<t},

(6)

with N(t, x) =
∫∞

0
p(u, S(t, x))n(t, u, x) du, which depends on n.
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Let T > 0 and XT := {n ∈ Cb([0, T ] × Ω, L1
s) : n(0) = n0}, it readily follows that Ψ maps XT → XT . We

prove by the contraction principle that Ψ has a unique fixed point in XT for T > 0 small enough, i.e. there
exists a unique weak solution of (5) defined on [0, T ]. Consider n1, n2 ∈ XT so we have∫ ∞

0

|Ψ[n1]−Ψ[n2]|(t, s, x) ds ≤
∫ t

0

|N1(t− s, x)−N2(t− s, x)| ds

≤ T sup
(t,x)∈[0,T ]×Ω

|N1 −N2|(t, x)

≤ T p∞ sup
(t,x)∈[0,T ]×Ω

‖n1(t, x)− n2(t, x)‖L1
s
,

(7)

thus for T < 1
p∞

, we have proved that Ψ is a contraction and there exists a unique n ∈ XT such that Ψ[n] = n.
Since the choice of T is independent of n0, we can reiterate this argument to get a unique solution of (5),
which is defined for all t ≥ 0.

Next we prove the mass conservation property. Since n satisfies the fixed point equation in (6), it also verifies
the following equality

n(t, s, x) = n0(s− t, x)1{s>t}−
∫ t

0

p(s− t+ τ, S(τ, x))n(τ, s− t+ τ, x)1{s>t−τ} dτ +N(t− s, x)1{0<s<t}, (8)

hence we get the property by integrating with respect to s on (0,∞).

Finally, since n0 is non-negative then Ψ preserves positivity, so by uniqueness of fixed point the correspond-
ing solution n must be non-negative.

2.2 The non-linear problem

We are now ready to prove that system (1) is well-posed in the case of weak interconnection.

Theorem 1 (Well-posedness for weak interconnections). Assume (3)-(4) and that p ∈W 1,∞((0,∞)×Ω) satisfies
(2b). Then for

‖g‖∞|Ω| ‖ ∂p∂S ‖∞max
{
‖w0‖∞, γ

∥∥∥G∣∣[0,p∞‖g‖∞]2

∥∥∥
∞

}
< 1,

the system (1) has a unique solution with n ∈ Cb([0,∞) × Ω, L1
s), N ∈ Cb([0,∞) × Ω), S ∈ Cb([0,∞) × Ω) and

w ∈ Cb([0,∞)× Ω× Ω). Moreover, the system (1) is mass-conservative and n is non-negative for all t > 0.

Proof. Consider T > 0. We fix a function S ∈ Cb([0,∞) × Ω) and define the functions n ∈ Cb([0,∞) ×
Ω, L1

s), N ∈ Cb([0,∞) × Ω) which are solutions of (5) by lemma 1. Furthermore, the solution of this linear
system is mass-conservative and preserves positivity.

The solution w ∈ Cb([0,∞)× Ω× Ω) is obtained through the formula

w(t, x, y) = e−tw0(x, y) + γ

∫ t

0

e−(t−τ)G(N(τ, x), N(τ, y)) dτ. (9)

So we have a solution of system (1) defined on [0, T ] if S satisfies for all 0 ≤ t ≤ T and x ∈ Ω, the following
fixed point condition

S(t, x) = T [S](t, x) :=

∫
w(t, x, y)

(∫ ∞
0

p(s, S(t, y))n(t, s, y) ds

)
dy + I(t, x). (10)

We prove that T defines for all T > 0 an operator that maps XT → XT with XT := Cb([0, T ]× Ω). First, we
observe the following estimate for the activity

|N(t, x)| ≤ p∞‖g‖∞, ∀(t, x) ∈ [0, T ]× Ω. (11)
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From the equation for w, we can restrict the domain of G and its derivatives to the set [0, p∞‖g‖∞]2 and we
get the following uniform estimate for w

|w(t, x, y)| ≤ max{‖w0‖∞, γ‖G‖∞}, ∀(t, x, y) ∈ [0, T ]× Ω× Ω. (12)

This implies that for any S ∈ XT we have

‖T [S]‖∞ ≤ max{‖w0‖∞, γ‖G‖∞} p∞ ‖g‖1 + ‖I‖∞,

and it is immediate that T [S] is a continuous function, thus T [S] ∈ XT .

We now prove that for T small enough, T is a contraction. Consider S1, S2 ∈ XT and observe that the
difference between w1 and w2 satisfies, by using (9),

|w1(t, x, y)− w2(t, x, y)| ≤ 2γT‖∇G‖∞‖N1 −N2‖∞. (13)

Next, for the difference between N1 and N2 we have

|N1 −N2|(t, x) ≤
∫ ∞

0

|p(s, S1(t, x))n1(t, s, x)− p(s, S2(t, x)n2(t, s, x)| ds

≤
∫ ∞

0

|p(s, S1(t, x))− p(s, S2(t, x))|n1(t, s, x) ds+

∫ ∞
0

p(s, S2(t, x))|n1 − n2|(t, s, x) ds

≤ ‖g‖∞ ‖ ∂p∂S ‖∞ ‖S1 − S2‖∞ + p∞‖n1 − n2‖L∞t,xL1
s
.

(14)

Now we have to estimate the difference between n1 and n2. From (8) and estimate (14), we get

‖n1 − n2‖L∞t,xL1
s
≤ 2T‖g‖∞ ‖ ∂p∂S ‖∞ ‖S1 − S2‖∞ + 2Tp∞‖n1 − n2‖L∞t,xL1

s
.

Then, for T < 1
2p∞

we obtain

‖n1 − n2‖L∞t,xL1
s
≤

2T‖g‖∞‖ ∂p∂S ‖∞
1− 2Tp∞

‖S1 − S2‖∞. (15)

Finally by combining the estimates (11)-(13), the operator T satisfies

|T [S1]− T [S2]|(t, x) ≤
∫
|w1 − w2|(t, x, y)N1(t, y) dy +

∫
|w2|(t, x, y) |N1 −N2|(t, y) dy

≤ 2γT‖∇G‖∞p∞‖g‖1‖N1 −N2‖∞ + |Ω|max{‖w0‖∞, γ‖G‖∞}‖N1 −N2‖∞
≤ C ‖S1 − S2‖∞,

(16)

with C > 0 given by

C := ‖g‖∞ ‖ ∂p∂S ‖∞ (2γT‖∇G‖∞p∞‖g‖1 + |Ω|max{‖w0‖∞, γ‖G‖∞})
(

1 +
2Tp∞

1− 2Tp∞

)
.

Hence for ‖g‖∞|Ω| ‖ ∂p∂S ‖∞max{‖w0‖∞, γ‖G‖∞} < 1 and T small enough we getC < 1, so T is a contraction.

From Picard’s fixed point we get a unique S ∈ XT such that T [S] = S, and this implies the existence of a
unique solution of (1) defined on [0, T ]. Since estimates (11) and (12) are uniform in T , we can iterate this
argument to get a unique solution of (1) defined for all t > 0.

Furthermore, we conclude from this construction that the non-linear system (1) is mass-conservative and
preserves positivity like the linear system (5).

The condition on p can be relaxed to wider class of functions, as we see in the following example.
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Theorem 2. Consider p = p∞1{s>σ(S)} with σ : R → R a Lipschitz function. Assume in addition that n0 ∈ L∞s,x
and w0 ∈ Cb(Ω× Ω), then the same result holds if

p∞‖σ′‖∞|Ω|max
{
‖w0‖∞, γ

∥∥∥G∣∣
[0,p∞‖g‖∞]2

∥∥∥
∞

}
(‖n0‖∞ + p∞‖g‖∞) < 1.

Proof. The proof is the same as for the previous theorem. Let T be the operator defined before, we have to
verify the contraction principle. The estimates (11)-(13) for N and w remain unchanged.

Now, from the solution of linear problem (5) we get for n the uniform estimate

|n(t, s, x)| ≤ ‖n0‖∞ + p∞‖g‖∞, ∀(t, s, x) ∈ [0, T ]× (0,∞)× Ω.

In this case the difference between N1 and N2 in (14) is replaced by

|N1 −N2|(t, x) ≤
∫ ∞

0

|p(s, S1(t, x))− p(s, S2(t, x))|n1(t, s, x) ds+

∫ ∞
0

p(s, S2(t, x))|n1 − n2|(t, s, x) ds

≤ p∞

∣∣∣∣∣
∫ σ(S2)

σ(S1)

n1(t, s, x) ds

∣∣∣∣∣+

∫ ∞
0

p(s, S2(t, x))|n1 − n2|(t, s, x) ds

≤ p∞‖σ′‖∞(‖n0‖∞ + p∞‖g‖∞)‖S1 − S2‖∞ + p∞‖n1 − n2‖L∞t,xL1
s
.

And from (8) the difference between n1 and n2 satisfies

‖n1 − n2‖L∞t,xL1
s
≤ 2Tp∞‖σ′‖∞(‖n0‖∞ + p∞‖g‖∞)‖S1 − S2‖∞ + 2Tp∞‖n1 − n2‖L∞t,xL1

s
.

Then, for T < 1
2p∞

we conclude similarly

‖n1 − n2‖L∞t,xL1
s
≤ 2Tp∞‖σ′‖∞(‖n0‖∞ + p∞‖g‖∞)

1− 2Tp∞
‖S1 − S2‖∞.

Hence, by combining the estimates for N1 −N2 and n1 − n2, the operator T verifies

|T [S1]− T [S2]|(t, x) ≤
∫
|w1 − w2|(t, x, y)N1(t, y) dy +

∫
|w2|(t, x, y) |N1 −N2|(t, y) dy

≤ 2γT‖∇G‖∞p∞‖g‖1‖N1 −N2‖∞ + |Ω|max{‖w0‖∞, γ‖G‖∞}‖N1 −N2‖∞
≤ C ‖S1 − S2‖∞,

with C > 0 given by

C := p∞‖σ′‖∞(‖n0‖∞ + p∞‖g‖∞) (2γT‖∇G‖∞p∞‖g‖1 + |Ω|max{‖w0‖∞, γ‖G‖∞})
(

1 +
2Tp∞

1− 2Tp∞

)
.

Thus for p∞‖σ′‖∞|Ω|max{‖w0‖∞, γ‖G‖∞}(‖n0‖∞ + p∞‖g‖∞) < 1 and T small enough we get that T is a
contraction and this implies the existence of a unique solution defined on [0, T ]. Finally, we can iterate this
argument to get a unique globally defined solution, like we asserted in the previous theorem.

3 Stationary states

Assume the input I depends only on position. We now study the stationary solutions of (1), i.e. the system
given by 

∂sn(s, x) + p(s, S(x))n(s, x) = 0 s > 0, x ∈ Ω,

N(x) := n(s = 0, x) =
∫∞

0
p(s, S(x))n(s, x) ds x ∈ Ω,

S(x) =
∫

Ω
w(x, y)N(y)dy + I(x) x ∈ Ω,

w(x, y) = γG(N(x), N(y)) x, y ∈ Ω,

(17)
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where n ∈ L1
s,x, N, S ∈ Cb(Ω) and w ∈ Cb(Ω× Ω).

If the amplitude S is given, we can determine n,N and w through the formulas

n(s, x) = N(x)e−
∫ s
0
p(τ,S(x)) dτ ,

N(x) = g(x)
(∫∞

0
e−
∫ u
0
p(τ,S(x)) dτ du

)−1

,

w(x, y) = γG
(
g(x)F (S(x)), g(y)F (S(y))

)
.

(18)

We define F : R→ R+ given by

F (S) :=

(∫ ∞
0

e−
∫ s
0
p(τ,S) dτ ds

)−1

, (19)

and we get that (n,N, S,w) in (18) corresponds to a stationary solution of (1) if S satisfies the following fixed
point condition

S(x) = T [S](x) := γ

∫
G
(
g(x)F (S(x)), g(y)F (S(y))

)
g(y)F (S(y)) dy + I(x). (20)

The following result asserts that there exists a unique steady state for a given g ∈ Cb(Ω), under weak inter-
connection regime.

Theorem 3. Assume that p ∈ W 1,∞((0,∞) × Ω) satisfies (2b) and g ∈ Cb(Ω). For γ small enough, the system
(1) has a unique stationary state (n∗, N∗, S∗, w∗), with n∗ ∈ Cb(Ω, L1

s) satisfying
∫∞

0
n∗(s, x) ds = g(x) and

N∗ ∈ Cb(Ω), w∗ ∈ Cb(Ω × Ω), which are determined by a unique amplitude of stimulation S∗ ∈ Cb(Ω) satisfying
T [S∗] = S∗.

To prove the result we first show the following lemma about the function F .

Lemma 2. Under the hypothesis of theorem 3, F is a bounded and Lipschitz function.

Proof. It readily follows that F is bounded since it satisfies the following estimate

0 < F (S) ≤
(∫ ∞

0

e−p∞s ds

)−1

= p∞.

On the other hand, F ′ is given by the formula

F ′(S) = F (S)2

[∫ ∞
0

e−
∫ s
0
p(τ,S) dτ

(∫ s

0

∂p

∂S
(τ, S) dτ

)
ds

]
,

so we have the following estimate

|F ′(S)| ≤ p2
∞

∥∥∥∥ ∂p∂S
∥∥∥∥
∞

[∫ ∞
0

e−
∫ s
0
p(τ,S) dτs ds

]
≤ p2
∞

∥∥∥∥ ∂p∂S
∥∥∥∥
∞

[∫ ∞
0

e−p∗(s−s∗)+s ds

]
≤ p2
∞

∥∥∥∥ ∂p∂S
∥∥∥∥
∞

[
s2
∗
2

+
s∗
p∗

+
1

p2
∗

]
.

Hence F is Lipschitz.

Remark 1. In the case of p = p∞1{s>σ(S)} we get

F (S) =
1

p−1
∞ + (σ(S))+

,

so F bounded and Lipschitz assuming σ is. Hence the theorem is also valid for this case.
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Next, we conclude the proof of our main theorem.

Proof. It is straightforward that in (20) T defines an operator that maps Cb(Ω)→ Cb(Ω). Since F is bounded
and Lipschitz we get for S1, S2 ∈ Cb(Ω)

|T [S1]− T [S2]|(x) ≤ 2γ‖g‖1‖g‖∞‖F‖∞‖F ′‖∞‖∇G‖∞‖S1 − S2‖∞ + γ‖g‖1‖F ′‖∞‖G‖∞‖S1 − S2‖∞,

where ‖G‖∞, ‖∇G‖∞ are considered in the set [0, p∞‖g‖∞]2. Thus for γ satisfying

γ‖g‖1‖F ′‖∞
(
2‖g‖∞‖F‖∞‖∇G‖∞ + ‖G‖∞

)
< 1,

the operator T is a contraction and there exists a unique S∗ ∈ Cb(Ω) such that T [S∗] = S∗. Therefore we get
a unique stationary state determined through the formulas in (18).

4 Convergence to equilibrium

Our next result about system (1) is the convergence to equilibrium when t → ∞, under the weak intercon-
nection regime i.e. with γ and ‖ ∂p∂S ‖∞ small enough. For the proof of this result we present two different
approaches: the relative entropy method and the Doeblin theory applied to stochastic semi-groups.

4.1 Entropy method approach

Firstly we prove the convergence result when the firing rate p is strictly positive by means of the relative
entropy method studied in [15, 20] and following the ideas in [13].

Theorem 4 (Long term behavior for the weak interconnection regime). Assume (3)-(4) and that p ∈W 1,∞((0,∞)×
Ω) satisfies (2a). For γ and ‖ ∂p∂S ‖∞ small enough let (n∗, N∗, S∗, w∗) be the corresponding stationary state of (1).
Then there exist C, λ > 0 such that the solution of (1) satisfies

‖n(t)− n∗‖L1
s,x

+ ‖w(t)− w∗‖L1
x,y
≤ Ce−λt

(
‖n0 − n∗‖L1

s,x
+ ‖w0 − w∗‖L1

x,y

)
, ∀t ≥ 0. (21)

Moreover ‖S(t)− S∗‖L1
x

and ‖N(t)−N∗‖L1
x

converge exponentially to 0 when t→∞.

In other words, if interconnections are weak then solutions converge exponentially to equilibrium.

Proof. Observe that n− n∗ and w − w∗ satisfy

∂t(n− n∗) + ∂s(n− n∗) + p(s, S)(n− n∗) = −(p(s, S)− p(s, S∗))n∗,
∂t(w − w∗) = −(w − w∗) + γG(N(t, x), N(t, y))− γG(N∗(x), N∗(y)),

so we have the following inequalities

∂t|n− n∗|+ ∂s|n− n∗|+ p(s, S)|n− n∗| ≤
∥∥∥ ∂p∂S∥∥∥∞ |S − S∗|n∗,

∂t|w − w∗| ≤ −|w − w∗|+ γ‖∇G‖∞
(
|N(t, x)−N∗(x)|+ |N(t, y)−N∗(y)|

)
,

withG restricted to the set [0, p∞‖g‖∞]2 as usual. By integrating with respect to the corresponding variables
we get

∂

∂t

∫∫ ∞
0

|n− n∗| ds dx+

∫∫ ∞
0

p(s, S)|n− n∗| ds dx ≤
∫
|N −N∗| dx+ ‖g‖∞

∥∥∥ ∂p∂S∥∥∥∞
∫
|S − S∗| dx,

∂

∂t

∫∫
|w − w∗| dx dy ≤ −

∫∫
|w − w∗| dx dy + 2γ|Ω| ‖∇G‖∞

∫
|N −N∗| dx.

(22)
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Thus we have to estimate the terms in the right-hand side of both inequalities. For the difference between
N and N∗ we get∫

|N −N∗| dx ≤ ‖g‖∞
∥∥∥ ∂p∂S∥∥∥∞

∫
|S − S∗| dx+

∫ ∣∣∣∣∫ ∞
0

p(s, S)(n− n∗) ds
∣∣∣∣ dx. (23)

Next, for the difference between S and S∗ we obtain∫
|S − S∗| dx ≤

∫∫
w∗|N(t, y)−N∗(y)| dx dy +

∫∫
N(t, y)|w − w∗| dx dy

≤ γ|Ω| ‖G‖∞
∫
|N −N∗| dx+ p∞‖g‖∞

∫∫
|w − w∗| dx dy,

Hence from (23), the following inequality holds∫
|S − S∗| dx ≤ γ|Ω| ‖G‖∞‖g‖∞

∥∥∥ ∂p∂S∥∥∥∞
∫
|S − S∗| dx+ γ|Ω| ‖G‖∞p∞

∫∫ ∞
0

|n− n∗| ds dx

+ p∞‖g‖∞
∫∫
|w − w∗| dx dy,

and if α := γ|Ω| ‖G‖∞‖g‖∞
∥∥∥ ∂p∂S∥∥∥∞ < 1, we deduce the following estimate∫

|S − S∗| dx ≤ p∞
1− α

(
γ|Ω| ‖G‖∞

∫∫ ∞
0

|n− n∗| ds dx+ ‖g‖∞
∫∫
|w − w∗| dx dy

)
. (24)

Thus from (22) we get

∂

∂t

∫∫ ∞
0

|n− n∗| ds dx ≤ −
∫∫ ∞

0

p(s, S)|n− n∗| ds dx+

∫ ∣∣∣∣∫ ∞
0

p(s, S)(n− n∗) ds
∣∣∣∣ dx

+
2p∞‖g‖∞‖ ∂p∂S ‖∞

1− α

(
γ|Ω| ‖G‖∞

∫∫ ∞
0

|n− n∗| ds dx+ ‖g‖∞
∫∫
|w − w∗| dx dy

)
(25)

Since
∫∞

0
(n− n∗) ds = 0 and p ≥ p∗ we may use the argument from [16, 20] to get∫ ∣∣∣∣∫ ∞

0

p(s, S)(n− n∗) ds
∣∣∣∣ dx =

∫ ∣∣∣∣∫ ∞
0

(p(s, S)− p∗)(n− n∗) ds
∣∣∣∣ dx ≤ ∫∫ ∞

0

(p(s, S)− p∗)|n− n∗| ds dx.

Therefore we deduce the following inequality for n− n∗

∂

∂t

∫∫ ∞
0

|n− n∗| ds dx ≤ −

(
p∗ −

2γ|Ω| ‖G‖∞p∞‖g‖∞‖ ∂p∂S ‖∞
1− α

)∫∫ ∞
0

|n− n∗| ds dx

+
2p∞‖g‖2∞‖

∂p
∂S ‖∞

1− α

∫∫
|w − w∗| dx dy.

(26)

On the other hand from the second inequality in (22) and estimate (23) we get for w − w∗

∂

∂t

∫∫
|w − w∗| dx dy ≤ −

∫∫
|w − w∗| dx dy + 2γ|Ω| ‖∇G‖∞

p∞‖g‖2∞‖
∂p
∂S ‖∞

1− α

∫∫
|w − w∗| dx dy

+ 2γ|Ω| p∞‖∇G‖∞

(
γ|Ω| ‖G‖∞‖g‖∞‖ ∂p∂S ‖∞

1− α
+ 1

)∫∫ ∞
0

|n− n∗| ds dx.
(27)

If we add these two inequalities we get an expression of the form

∂

∂t

(∫∫ ∞
0

|n− n∗| ds dx+

∫∫
|w − w∗| dx dy

)
≤ −

(
p∗ − C1(γ, ‖ ∂p∂S ‖∞)

)∫∫ ∞
0

|n− n∗| ds dx

− (1− C2(γ, ‖ ∂p∂S ‖∞))

∫∫
|w − w∗| dx dy,

(28)
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with C1, C2 > 0 given by

C1 = 2γ|Ω|p∞

(
‖G‖∞‖g‖∞‖ ∂p∂S ‖∞

1− α
+ ‖∇G‖∞

(
γ|Ω| ‖G‖∞‖g‖∞‖ ∂p∂S ‖∞

1− α
+ 1

))
,

C2 =
2p∞‖g‖2∞‖

∂p
∂S ‖∞

1− α
(1 + γ|Ω| ‖∇G‖∞) .

If γ and ‖ ∂p∂S ‖∞ are such that C1 < p∗ and C2 < 1, we conclude, by solving the corresponding differential
inequality, the existence of C, λ > 0 satisfying the estimate (21). Furthermore the convergence of N,S and w
readily follows from estimates (23) and (24).

4.2 Doeblin theory approach

The previous convergence result for the system (1) can be extended when the firing rate p satisfies the
hypothesis (2b). In order to get the convergence result, we follow the ideas of Cañizo et al. in [3] to study
the asymptotic behavior of the linear system (29) by means of Doeblin’s theory.

4.2.1 The linear case

Given S ∈ Cb(Ω), we consider the linear problem given by
∂tn+ ∂sn+ p(s, S(x))n = 0 t > 0, s > 0, x ∈ Ω,

N(t, x) := n(t, s = 0, x) =
∫∞

0
p(s, S(x))nds t > 0, x ∈ Ω,

n(t = 0, s, x) = n0(s, x) s ≥ 0, x ∈ Ω.

(29)

From lemma 1 we know that this system has a unique solution n ∈ Cb([0,∞) × Ω, L1
s). Since the variable x

is just a parameter, for a fixed x ∈ Ω we define from equation (29) the stochastic semi-group Pt : L
1
s → L1

s

given by
Ptn0(s, x) = n(t, s, x).

A key property on the solutions of this system is the exponential convergence to equilibrium as we state in
the following theorem:

Theorem 5. Consider n0 ∈ Cb(Ω, L1
s) with its corresponding g ∈ Cb(Ω) and that p satisfies (2b). Then there exists

a unique stationary solution n∗ of equation (29) satisfying
∫∞

0
n∗(s, x) ds = g(x). Moreover the corresponding

solution of (29) satisfies

‖n(t, ·, x)− n∗(·, x)‖L1
s
≤ 1

1− α
e−λt‖n0(·, x)− n∗(·, x)‖L1

s
∀t ≥ 0, x ∈ Ω.

with α = p∗s∗e
−2p∞s∗ and λ = − log(1−α)

2s∗
> 0.

By completeness of the argument we include the proof of this result done by Cañizo et al. in the theorem
3.12 of [3]. In our case, functions have mass g(x) instead of having mass 1 with respect to L1

s. We start by
reminding some concepts on stochastic semi-groups and Doeblin’s theorem.

Definition 1. Let X be a measure space and Pt : L1(X) → L1(X) be a linear semi-group. We say that Pt is a
stochastic semi-group if Ptf ≥ 0 for all f ≥ 0 and

∫
X
Ptf =

∫
X
f for all f ∈ L1(X). In other words, (Pt) preserves

the subset of probability densities P(X).

Definition 2. Let Pt : L1(X)→ L1(X) be a stochastic semi-group. We say that (Pt) satisfies Doeblin’s condition if
there exists t0 > 0, α ∈ (0, 1) and ν ∈ P(X) such that

Pt0f ≥ αν ∀f ∈ P(X)with.
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Theorem 6 (Doeblin’s Theorem). Let Pt : L1(X) → L1(X) be a stochastic semi-group that satisfies Doeblin’s
condition. Then the semigroup has a unique equilibrium n∗ in P(X). Moreover, for all n ∈ P(X) we have

‖Pt(n− n∗)‖L1(X) ≤
1

1− α
e−λt‖n− n∗‖L1(X) ∀t ≥ 0,

with λ = − ln(1−α)
t0

> 0.

Next, we continue with the proof of theorem 5.

Proof. Let n be the solution of (29). For fixed x ∈ Ω, we claim n satisfies the following inequality

n(2s∗, s, x) = P2s∗n0(s, x) ≥ p∗e−2p∞s∗ 1[0,s∗](s) g(x) ∀(s, x) ∈ (0,∞)× Ω. (30)

This means that the semi-group Pt associated to equation (29) satisfies Doeblin’s condition with t0 =
2s∗, α = p∗s∗e

−2p∞s∗ and ν = 1
s∗
1[0,s∗](s) for functions n0(·, x) ∈ L1

s with g(x) = 1.

Let x ∈ Ω be fixed and consider P̃t : L1
s → L1

s the semi-group associated with the problem
∂tñ+ ∂sñ+ p(s, S(x))ñ = 0 t > 0, s > 0,

ñ(t, s = 0, x) = 0 t > 0,

ñ(t = 0, s, x) = n0(s, x) s ≥ 0.

In this case the solution is given by

P̃tn0(s, x) = n0(s− t, x) exp

(
−
∫ t

0

p(s− t+ τ, S(x)) dτ

)
1{s>t}. (31)

Then the solution of (29) satisfies

n(t, s, x) = P̃tn0(s, x) +

∫ t

0

P̃t−τ (N(τ, x)δ0(s)) dτ.

Moreover we have the following inequalities

n(t, s, x) ≥ P̃tn0(s, x) = n0(s− t, x) exp
(
−
∫ t

0
p(s− t+ τ, S(x)) dτ

)
≥ n0(s− t, x)e−p∞t1{s>t}.

P̃t−τn0(s, x) ≥ n0(s− t+ τ, x)e−p∞(t−τ)1{s>t−τ}.

Then for t > s∗ we get

N(t, x) =

∫ ∞
0

p(s, S(x))n(t, s, x) ds

≥ p∗
∫ ∞
s∗

n(t, s, x) ds

≥ p∗
∫ ∞
t

n(t, s, x) ds

≥ p∗e−p∞t
∫ ∞
t

n0(s− t, x) ds

≥ p∗e−p∞tg(x).

In that case for any s > 0 and t > s+ s∗ we have that

n(t, s, x) ≥
∫ t

0

P̃t−τ (N(τ, x)δ0(s)) dτ

≥
∫ t

s∗

P̃t−τ (p∗e
−p∞τg(x)δ0(s)) dτ

≥ p∗
∫ t

s∗

δ0(s− t+ τ)e−p∞τe−p∞(t−τ)g(x)1{s−t+τ>0} dτ

≥ p∗e−p∞t1{0<s<t−s∗} g(x).
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Therefore we get the estimate (30) by choosing t = 2s∗. Finally, the exponential convergence to equilibrium
readily follows from Doeblin’s theorem with λ = − ln(1−α)

t0
> 0 and from normalizing by g(x).

Remark 2. Doeblin’s condition is also verified for the case p = p∞1{s>σ(S)}, even when σ is unbounded. Since the
amplitude S is uniformly bounded in the system (1), we can relax the condition (2b) for S lying in some bounded
interval instead of for all S ∈ R. Therefore the exponential convergence to equilibrium is valid as well.

4.2.2 The non-linear case

The linear theory allows to determine the asymptotic behavior of the non-linear system (1) for the weak
interconnection regime as well. By using Duhamel’s formula, it is possible to conclude the improved version
of theorem 4.

Theorem 7 (Improved convergence to equilibrium). Assume (3)-(4) and that p ∈ W 1,∞ ((0,∞)×R) satisfies
(2b). For γ and ‖ ∂p∂S ‖∞ small enough let (n∗, N∗, S∗, w∗) be the corresponding stationary state of (1). Then there
exist C, λ > 0 such that the solution n of (1) satisfies

‖n(t)− n∗‖L∞x L1
s

+ ‖w(t)− w∗‖∞ ≤ Ce−λt
(
‖n0 − n∗‖L∞x L1

s
+ ‖w0 − w∗‖∞

)
, ∀t ≥ 0.

Moreover ‖S(t)− S∗‖∞ and ‖N(t)−N∗‖∞ converge exponentially to 0 when t→∞.

Proof. Observe that n satisfies the evolution equation

∂tn = LS [n] := −∂sn− p(s, S)n+ δ0(s)

∫ ∞
0

p(u, S(t, x))n(t, u, x) du.

We can rewrite the evolution equation as

∂tn = LS∗ [n] + (LS [n]− LS∗ [n]) = LS∗ [n] + h. (32)

with h given by

h(t, s, x) =
(
p(s, S∗(x))− p(s, S(t, x))

)
n(t, s, x) + δ0(s)

∫ ∞
0

(
p(u, S(t, x))− p(u, S∗(x))

)
n(t, u, x) du. (33)

Let Pt be the linear semi-group associated to operator LS∗ . Since Ptn∗ = n∗ for all t ≥ 0, we get that n
satisfies

n− n∗ = Pt(n0 − n∗) +

∫ t

0

Pt−τh(τ, s, x) dτ, (34)

so we need find an estimate for the function h. Analogously to the proof of theorem 4, we have the following
inequalities:

‖S(t)− S∗‖∞ ≤ p∞‖g‖1‖w(t)− w∗‖∞ + γ|Ω| ‖G‖∞‖N(t)−N∗‖∞,

‖N(t)−N∗‖∞ ≤ ‖g‖1‖ ∂p∂S ‖∞‖S(t)− S∗‖∞ + p∞‖n(t)− n∗‖L∞x L1
s
,

where G is restricted to the set [0, p∞‖g‖∞]2. With C1 := γ|Ω|‖G‖∞‖g‖1‖ ∂p∂S ‖∞ < 1, we get from these
inequalities

‖S(t)− S∗‖∞ ≤
p∞

1− C1

(
‖g‖1‖w(t)− w∗‖∞ + γ|Ω| ‖G‖∞‖n(t)− n∗‖L∞x L1

s

)
,

‖N(t)−N∗‖∞ ≤
p∞

1− C1

(
‖g‖21‖

∂p
∂S ‖∞‖w(t)− w∗‖∞ + ‖n(t)− n∗‖L∞x L1

s

)
.

(35)

Thus for h we get

‖h(t)‖L∞x L1
s
≤ 2‖g‖∞‖ ∂p∂S ‖∞‖S(t)− S∗‖∞

≤
2p∞‖g‖∞‖ ∂p∂S ‖∞

1− C1

(
‖g‖1‖w(t)− w∗‖∞ + γ|Ω| ‖G‖∞‖n(t)− n∗‖L∞x L1

s

)
≤ C2

(
‖w(t)− w∗‖∞ + ‖n(t)− n∗‖L∞x L1

s

)
,

(36)
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with C2 :=
2p∞‖g‖∞‖

∂p
∂S ‖∞

1−C1
max{‖g‖1, γ|Ω| ‖G‖∞}. On the one hand, using theorem 5 and the fact that∫∞

0
h(t, s, x) ds = 0, we get from (34)

‖n(t)− n∗‖L∞x L1
s
≤ ‖Pt(n0 − n∗)‖L∞x L1

s
+

∫ t

0

‖Pt−τh(τ)‖L∞x L1
s
dτ

≤ e−λt

1− α
‖n0 − n∗‖L∞x L1

s
+

1

1− α

∫ t

0

e−λ(t−τ)‖h(τ)‖L∞x L1
s
dτ

≤ e−λt

1− α
‖n0 − n∗‖L∞x L1

s
+

C2

1− α

∫ t

0

e−λ(t−τ)
(
‖w(τ)− w∗‖∞ + ‖n(τ)− n∗‖L∞x L1

s

)
dτ,

with α = p∗s∗e
−2p∞s∗ , λ = − ln(1−α)

2s∗
> 0. On the other hand, from the second inequality in (35) we deduce

‖w(t)− w∗‖∞ ≤ e−t‖w0 − w∗‖∞ + 2γ ‖∇G‖∞
∫ t

0

e−(t−τ)‖N(τ)−N∗‖∞ dτ

≤ e−t‖w0 − w∗‖∞ + C3

∫ t

0

e−(t−τ)
(
‖w(τ)− w∗‖∞ + ‖n(τ)− n∗‖L∞x L1

s

)
dτ,

with C3 := 2γp∞‖∇G‖∞
1−C1

max{‖g‖21‖
∂p
∂S ‖∞, 1}. Hence we get

‖n(t)− n∗‖L∞x L1
s

+ ‖w(t)− w∗‖∞ ≤
e−λ̃t

1− α
(
‖n0 − n∗‖L∞x L1

s
+ ‖w0 − w∗‖∞

)
+ C4e

−λ̃t
∫ t

0

eλ̃τ
(
‖w(τ)− w∗‖∞ + ‖n(τ)− n∗‖L∞x L1

s

)
dτ,

with λ̃ := min{λ, 1}, C4 := max
{

C2

1−α , C3

}
. Therefore, by using Gronwall’s inequality we have

‖n(t)− n∗‖L∞x L1
s

+ ‖w(t)− w∗‖∞ ≤
e−(λ̃−C4)t

1− α
(
‖n0 − n∗‖L∞x L1

s
+ ‖w0 − w∗‖∞

)
.

So we get the result if γ and ‖ ∂p∂S ‖∞ are small enough so that C4 < λ̃. The exponential convergence of N
and S readily follows from the estimates in (35).

Remark 3. If in addition n0 ∈ L∞s,x, the result is also valid for p = p∞1{s>σ(S)} by replacing the estimates involving
‖ ∂p∂S ‖∞ by its equivalent with ‖σ′‖∞ small enough.

4.3 Effect of large inputs

We now study the asymptotic behavior for a large enough input in the system (1). For β > 0 consider
nβ(t, s, x) a solution of the system

∂tn+ ∂sn+ p(s, S(t, x))n = 0 t > 0, s > 0, x ∈ Ω,

N(t, x) := n(t, s = 0, x) =
∫∞

0
p(s, S(t, x))nds t > 0, x ∈ Ω,

S(t, x) =
∫

Ω
w(t, x, y)N(t, y)dy + βI(x) t > 0, x ∈ Ω,

∂tw = −w + γG(N(t, x), N(t, y)) t > 0, x, y ∈ Ω,

n(t = 0, s, x) = n0(s, x) ≥ 0, w(t = 0, x, y) = w0(x, y) ≥ 0 s ≥ 0, x, y ∈ Ω.

(37)

We prove by the means of Deoblin’s theroy that if β tends to infinity, then the solutions of (37) converge to
a solution of linear problem (5).
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Theorem 8. Assume (3)-(4) with p ∈W 1,∞ ((0,∞)×R) satisfying (2b) and such that p(s,∞) := limS→∞ p(s, S)
exists for all s ≥ 0. Moreover suppose that I(x) > 0 almost everywhere in Ω. Let n∞ be the solution of linear problem

∂tn+ ∂sn+ p(s,∞)n = 0 t > 0, s > 0, x ∈ Ω,

N(t, x) := n(t, s = 0, x) =
∫∞

0
p(s,∞)nds t > 0, x ∈ Ω,

n(t = 0, s, x) = n0(s, x) s ≥ 0, x ∈ Ω.

(38)

Then for all t > 0 we have nβ(t)→ n∞(t) in L1
s,x when β →∞.

Proof. Let LS be the operator defined in (32). In the same way we define the operator L∞ given by

L∞[n] := −∂sn− p(s,∞)n+ δ0(s)

∫ ∞
0

p(u,∞)n(t, u, x) du.

Thus we rewrite the evolution equation of nβ as

∂tn
β = L∞[n] + (LS [n]− L∞[n]) = L∞[n] + h.

with h given by

h(t, s, x) = (p(s,∞)− p(s, S(t, x)))n(t, s, x) + δ0(s)

∫ ∞
0

(p(u, S(t, x))− p(u,∞))n(t, u, x) du,

so we get

‖h‖L1
s,x
≤ 2

∫∫ ∞
0

|p(s,∞)− p(s, S(t, x))|n(t, s, x) ds dx.

Since S(t, x) ≥ βI(x) we get that for all t > 0 and a.e. x ∈ Ω that S(t, x)→∞ when β →∞ and thus for all
s ≥ 0 we have p(s, S(t, x))→ p(s,∞). From the fixed point condition in (6) we get that n satisfies

nβ(t, s, x) ≤ n0(t− s, x) + p∞g(x)1{0<s<t},

hence by Lebesgue’s theorem we conclude for all t > 0 that ‖h(t)‖L1
s,x
→ 0 when β →∞.

Let Pt be the semi-group associated to L∞. Since Pt[n0] = n∞ we get that nβ satisfies

nβ − n∞ =

∫ t

0

Pt−τh(τ, s, x) dτ.

Since
∫∞

0
h(t, s, x) ds = 0 we conclude by Doeblin’s theorem that

‖nβ(t)− n∞(t)‖ ≤
∫ t

0

‖Pt−τh(τ)‖L1
s,x
dτ

≤
∫ t

0

e−(t−τ)‖h(τ)‖L1
s,x
dτ.

And since ‖h(t)‖L1
s,x
≤ 4p∞‖g‖1, we conclude the result by Lebesgue’s theorem.

Remark 4. In the case of p = p∞1{s>S} the same result holds. This is straightforward from the fact that p(s,∞) = 0

and Nβ → 0 so n∞ is solution of a simple transport equation.

5 Slow learning dynamics

From a neuroscience viewpoint we can assume that the learning dynamics are much slower than the elapsed
time dynamics. This is represented by the rescaled system

ε∂tn+ ∂sn+ p(s, S(t, x))n = 0 t > 0, s > 0, x ∈ Ω,

N(t, x) := n(t, s = 0, x) =
∫∞

0
p(s, S(t, x))nds t > 0, x ∈ Ω,

S(t, x) =
∫
w(t, x, y)N(t, y)dy + I(t, x) t > 0, x ∈ Ω,

∂tw = −w + γG(N(t, x), N(t, y)) t > 0, x, y ∈ Ω,

n(t = 0, s, x) = n0(s, x) ≥ 0, w(t = 0, x, y) = w0(x, y) ≥ 0 s ≥ 0x, y ∈ Ω,

(39)
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with ε > 0 small enough. This means that the time scale for w is of order 1, while n relaxes very quickly
to equilibrium with time scale ε. Well-posedness and exponential convergence results are also valid for this
system.

Let nε(t, s, x) be the solution of (39), we are interested in the asymptotic behavior of nε when ε→ 0. In order
to do so, consider the formal limit system which corresponds to take ε = 0 in (39)

∂sn+ p(s, S(t, x))n = 0 s > 0, x ∈ Ω,

N(t, x) := n(t, s = 0, x) =
∫∞

0
p(s, S(t, x))nds t > 0, x ∈ Ω,

S(t, x) =
∫
w(t, x, y)N(t, y)dy + I(t, x) t > 0, x ∈ Ω,

∂tw = −w + γG(N(t, x), N(t, y)) t > 0, x, y ∈ Ω,

w(t = 0, x, y) = w0(x, y) x, y ∈ Ω.

(40)

The question here is to determine if nε, the solution of system (39), converges to some solution of (40) when
ε vanishes. In order to address this question, we first prove that problem (40) is well-posed under the weak
interconnection regime.

Theorem 9 (Existence for system (40)). Consider g ∈ Cb(Ω) and F be the function defined in (19). Then under the
condition

max
{
‖w0‖∞, γ

∥∥∥G∣∣
[0,p∞‖g‖∞]2

∥∥∥
∞

}
‖g‖1‖F ′‖∞ < 1

the system (40) has a unique solution satisfying
∫∞

0
n(t, s, x) ds = g(x) for all t ≥ 0.

To prove the result we need the following lemma.

Lemma 3. Consider w ∈ Cb([0,∞)×Ω×Ω) fixed. Then the operator T : Cb([0,∞)×Ω)→ Cb([0,∞)×Ω) defined
by

T [S](t, x) =

∫
w(t, x, y)g(y)F (S(t, y)) dy + I(t, x),

has a unique fixed point S̄ ∈ Cb([0,∞) if ‖w‖∞‖g‖1‖F ′‖∞ < 1. Moreover, S̄ is a locally-Lipschitz function of w.

Proof. We first notice that T is a contraction. In fact for S1, S2 ∈ Cb([0,∞)× Ω) we have

‖T [S1]− T [S2]‖∞ ≤ ‖w‖∞‖g‖1‖F ′‖∞‖S1 − S2‖∞.

Hence by Picard’s theorem there is a unique fixed point S̄[w] ∈ Cb([0,∞)× Ω).

Now consider S̄[w1], S̄[w2] the respective fixed points associated to w1, w2. Then we have the following
estimate

‖S̄[w1]− S̄[w2]‖∞ ≤ ‖g‖1‖F‖∞‖w1 − w2‖∞ + ‖w2‖∞‖g‖1‖F ′‖∞‖S̄[w1]− S̄[w2]‖∞

and hence

‖S̄[w1]− S̄[w2]‖∞ ≤
‖g‖1‖F‖∞

1− ‖w2‖∞‖g‖1‖F ′‖∞
‖w1 − w2‖∞

so S̄ is a locally Lipschitz function of w.

In this setting, we continue with the proof of theorem 9.

Proof. First observe that n satisfies

n(t, s, x) = N(t, x)e−
∫ s
0
p(τ,S(t,x)) dτ .

and by integrating with respect to s, we get the following expression for N

N(t, x) = g(x)

(∫ ∞
0

e−
∫ s
0
p(τ,S(t,x)) dτ ds

)−1

= g(x)F (S(t, x)).

15



Hence the problem is reduced to the following system for (S,w)
S(t, x) =

∫
w(t, x, y)g(y)F (S(t, y))dy + I(t, x) t > 0, x ∈ Ω,

∂tw = −w + γG (g(x)F (S(t, x)), g(y)F (S(t, y))) t > 0, x, y ∈ Ω,

w(t = 0, x, y) = w0(x, y) x, y ∈ Ω.

(41)

Since we have a uniform estimate for w in (12), we conclude that S̄[w] is a Lipschitz function restricted to
the set

U = {w ∈ Cb([0,∞)× Ω× Ω): ‖w‖∞ ≤ max{‖w0‖∞, γ‖G‖∞}}

if max{‖w0‖∞, γ‖G‖∞}‖g‖1‖F ′‖∞ < 1, with G restricted to the set [0, p∞‖g‖∞]2. So by applying the
Cauchy-Lipschitz-Picard theorem, we conclude that system (41) has a unique solution, defined in some
time interval [0, T ]. Finally, by noting again that w is uniformly bounded as in (12), we can iterate this
argument to get a solution globally defined in time.

By replicating the proof in theorem 4, we get for system (40) its asymptotic behavior when t→∞.

Theorem 10 (Long term behavior for system (40)). Assume (3)-(4) and that p ∈W 1,∞((0,∞)×Ω) satisfies (2a).
For γ and ‖ ∂p∂S ‖∞ small enough, consider (n∗, N∗, S∗, w∗) the corresponding stationary state of (1). Then there exist
C, λ > 0 such that the solution of (40) satisfies

‖n(t)− n∗‖L1
s,x

+ ‖w(t)− w∗‖L1
x,y
≤ Ce−λt‖w0 − w∗‖L1

x,y
, ∀t ≥ 0. (42)

Moreover ‖S(t)− S∗‖L1
x

and ‖N(t)−N∗‖L1
x

converge exponentially to 0 when t→∞.

Next we prove the convergence of nε for the case of weak interconnection when the firing rate is strictly
positive, by means of the entropy method.

Theorem 11 (Convergence for (39) as ε → 0). Assume (3)-(4) with n0 ∈ W 1,1
s,x and that p ∈ W 1,∞((0,∞) × Ω)

satisfies (2a). For max
{
‖w0‖∞, γ

∥∥∥G∣∣[0,p∞‖g‖∞]2

∥∥∥
∞

}
small enough, let (nε, Nε, Sε, wε) be the solution of system

(39) and let (n̄, N̄ , S̄, w̄) be the unique solution of system (40).

Then for all T > 0 we have nε → n̄ in L1((0, T ) × (0,∞) × Ω) and wε → w̄ in L1((0, T ) × Ω × Ω). Moreover
Nε → N̄ and Sε → S̄ in L1((0, T )× Ω).

Proof. Let (nε, Nε, Sε, wε) be the solution of system (39). We start by reminding the following uniform
estimates

‖Nε(t)‖∞ ≤ p∞‖g‖∞, ‖wε‖∞ ≤ max{‖w0‖∞, γ‖G‖∞}, ∀t ≥ 0, ε > 0, (43)

with G restricted to [0, p∞‖g‖∞]2.

The first step is to estimate u = ∂tn
ε, which satisfies the following equation

ε∂tu+ ∂su+ p(s, Sε)u+
∂p

∂S
(s, Sε) ∂tS

ε nε = 0,

thus we have the following inequality

ε∂t|u|+ ∂s|u|+ p(s, Sε)|u| ≤
∥∥∥∥ ∂p∂S

∥∥∥∥
∞
|∂tSε|nε.

By integrating with respect to all variables, we get∫ T

0

∫∫ ∞
0

p(s, Sε)|u| ds dx dt ≤ ε
∫∫ ∞

0

|u|(0, s, x) ds dx+

∫ T

0

∫
|∂tNε|(t, x) dx dt

+ ‖g‖1
∥∥∥ ∂p∂S∥∥∥∞

∫ T

0

‖∂tSε(t, ·)‖∞ dt.

(44)
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Thus we have to estimate each term in the right-hand side. For the first it readily follows that

ε

∫∫ ∞
0

|u|(0, s, x) ds dx ≤
∫∫ ∞

0

|∂sn0| ds dx+

∫∫ ∞
0

p(s, Sε(0, x))n0 ds dx ≤ ‖n0‖W 1,1
s,x

+ p∞‖g‖1. (45)

Next, for ∂tNε we have

∂tN
ε(t, x) = ∂tS

ε(t, x)

∫ ∞
0

∂p

∂S
(s, Sε(t, x))nε(t, s, x) ds+

∫ ∞
0

p(s, Sε(t, x)) ∂tn
ε(t, s, x) ds.

Thus for the second term we get∫ T

0

∫
|∂tNε|(t, x) dx dt ≤ ‖g‖1

∥∥∥ ∂p∂S∥∥∥∞
∫ T

0

‖∂tSε(t, ·)‖∞ dt+

∫ T

0

∫ ∣∣∣∣∫ ∞
0

p(s, Sε)u ds

∣∣∣∣ dx dt. (46)

On the other hand, for ∂tSε we get

∂tS
ε(t, x) =

∫
∂tw

ε(t, x, y)Nε(t, y) dy +

∫
wε(t, x, y)∂tN

ε(t, y) dy + ∂tI(t, x).

So by using the uniform estimates in (43), we obtain∫ T

0

‖∂tSε(t, ·)‖∞ dt ≤ ‖∂twε‖∞
∫ T

0

∫
Nε dy dt+ ‖wε‖∞

∫ T

0

∫
|∂tNε| dy dt+ ‖∂tI‖∞T

≤ max{‖w0‖∞, γ‖G‖∞}

(
2p∞‖g‖1T +

∫ T

0

∫
|∂tNε| dy dt

)
+ ‖∂tI‖∞T.

(47)

Let α := ‖g‖1‖ ∂p∂S ‖∞max{‖w0‖∞, γ‖G‖∞} < 1. Hence from (46) we conclude∫ T

0

‖∂tSε(t, ·)‖∞ dt ≤ 1

1− α

(
2 max{‖w0‖∞, γ‖G‖∞}p∞‖g‖1T + ‖∂tI‖∞T

+ max{‖w0‖∞, γ‖G‖∞}p∞
∫ T

0

∫∫ ∞
0

|u| ds dx dt

)
.

(48)

Therefore we can deduce from (44) the following estimate∫ T

0

∫∫ ∞
0

p(s, Sε)|u| ds dx dt ≤ ‖n0‖W 1,1
s,x

+ p∞‖g‖1 +
2‖g‖1‖ ∂p

∂S ‖∞T
1−α

(
2 max{‖w0‖∞, γ‖G‖∞}p∞‖g‖1 + ‖∂tI‖∞

)
+

2α

1− α
p∞

∫ T

0

∫∫ ∞
0

|u| ds dx dt+

∫ T

0

∫ ∣∣∣∣∫ ∞
0

p(s, Sε)u ds

∣∣∣∣ dx dt.
(49)

At this stage we can use again the entropy trick from [15, 20]. Since
∫∞

0
u ds = 0 and p ≥ p∗, we have the

following inequality∫ T

0

∫ ∣∣∣∣∫ ∞
0

p(s, Sε)u ds

∣∣∣∣ dx dt =

∫ T

0

∫ ∣∣∣∣∫ ∞
0

(p(s, Sε)− p∗)u ds
∣∣∣∣ dx dt ≤ ∫ T

0

∫∫ ∞
0

(p(s, Sε)− p∗)|u| ds dx dt.

As α is small enough, we conclude the L1 norm of u = ∂tn
ε is uniformly bounded in ε.

(
p∗ − 2α

1−αp∞

)∫ T

0

∫∫ ∞
0

|∂tnε| ds dx dt ≤
2‖g‖1‖ ∂p∂S ‖∞T

1− α
(2 max{‖w0‖∞, γ‖G‖∞}p∞‖g‖1 + ‖∂tI‖∞)

+ ‖n0‖W 1,1
s,x

+ p∞‖g‖1.
(50)
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The next step is to estimate nε − n̄, by using a similar argument. Let N̄ , S̄ and w̄ be the terms associated to
n̄ in the system (40), so that we have

∂s(n
ε − n̄) + p(s, Sε)(nε − n̄) = −ε∂tnε − (p(s, Sε)− p(s, S̄))n̄.

Hence we have the following inequality

∂s|nε − n̄|+ p(s, Sε)|nε − n̄| ≤ ε|∂tnε|+
∥∥∥∥ ∂p∂S

∥∥∥∥
∞
|Sε − S̄| n̄.

By integrating with respect to all variables we get∫ T

0

∫∫ ∞
0

p(s, Sε)|nε − n̄| ds dx dt ≤ ε
∫ T

0

∫∫ ∞
0

|∂tnε| ds dx dt+

∫ T

0

∫
|Nε − N̄ | dx dt

+ ‖g‖∞
∥∥∥∥ ∂p∂S

∥∥∥∥
∞

∫ T

0

∫
|Sε − S̄| dx dt.

(51)

So we have to estimate the respective terms involving N and S. For Nε − N̄ we have∫ T

0

∫
|Nε − N̄ | dx dt ≤ ‖g‖∞

∥∥∥ ∂p∂S∥∥∥∞
∫ T

0

∫
|Sε − S̄| dx dt+

∫ T

0

∫ ∣∣∣∣∫ ∞
0

p(s, Sε)(nε − n̄) ds

∣∣∣∣ dx dt. (52)

In order to estimate Sε − S̄, we need to estimate wε − w̄ first. By using formula (9) we obtain∫ T

0

∫∫
|w − w̄| dx dy dt ≤ 2γ|Ω| ‖∇G‖∞

∫ T

0

∫ t

0

e−(t−τ)‖Nε − N̄‖L1
x
(τ) dτ dt

≤ 2γ|Ω| ‖∇G‖∞
∫ T

0

∫ t

τ

e−(t−τ)‖Nε − N̄‖L1
x
(τ) dt dτ

≤ 2γ|Ω| ‖∇G‖∞
∫ T

0

‖Nε − N̄‖L1
x
(τ)

(∫ T

τ

e−(t−τ) dt

)
dτ,

so we conclude the following estimate∫ T

0

∫∫
|w − w̄| dx dy dt ≤ 2γ|Ω| ‖∇G‖∞

∫ T

0

∫
|Nε − N̄ | dx dt. (53)

Thus, for Sε − S̄ we get∫ T

0

∫
|Sε − S̄| dx dt ≤

∫ T

0

∫∫
|w − w̄|Nε(t, y) dx dy dt+ |Ω| ‖w̄‖∞

∫ T

0

∫
|Nε − N̄ | dy dt

≤ (2γ|Ω|‖∇G‖∞p∞‖g‖∞ + |Ω|max{‖w0‖∞, γ‖G‖∞})
∫ T

0

∫
|Nε − N̄ | dx dt.

Let β := 2γ|Ω|‖∇G‖∞p∞‖g‖∞ + |Ω|max{‖w0‖∞, γ‖G‖∞}. If β‖g‖∞
∥∥∥ ∂p∂S∥∥∥∞ < 1, from (52) we obtain∫ T

0

∫
|Sε − S̄| dx dt ≤ βp∞

1− β‖g‖∞
∥∥∥ ∂p∂S∥∥∥∞

∫ T

0

∫∫ ∞
0

|nε − n̄| ds dx dt. (54)

Then from (51) we deduce the following inequality∫ T

0

∫∫ ∞
0

p(s, Sε)|nε − n̄| ds dy dt ≤ ε
∫ T

0

∫∫ ∞
0

|∂tnε| ds dy dt+
2βp∞

1− β‖g‖∞
∥∥∥ ∂p∂S∥∥∥∞

∫ T

0

∫∫ ∞
0

|nε − n̄| ds dy dt

+

∫ T

0

∫ ∣∣∣∣∫ ∞
0

p(s, Sε)(nε − n̄) ds

∣∣∣∣ dy dt.
(55)
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Since
∫∞

0
(nε − n̄) ds = 0 and p ≥ p∗, we have the following inequality∫ T

0

∫ ∣∣∣∣∫ ∞
0

p(s, Sε)(nε − n̄) ds

∣∣∣∣ dy dt =

∫ T

0

∫ ∣∣∣∣∫ ∞
0

(p(s, Sε)− p∗)(nε − n̄) ds

∣∣∣∣ dy dt
≤
∫ T

0

∫ ∫ ∞
0

(p(s, Sε)− p∗)|nε − n̄| ds dy dt.

As γ is small enough, we finally conclude the following Poincaré-like estimate for nε − n̄p∗ − 2βp∞

1−β‖g‖∞
∥∥∥∥ ∂p∂S

∥∥∥∥
∞

∫ T

0

∫∫ ∞
0

|nε − n̄| ds dy dt ≤ ε
∫ T

0

∫∫ ∞
0

|∂tnε| ds dy dt. (56)

And we obtain the result by taking ε → 0, since the L1 norm of ∂tnε is uniformly bounded in ε. The
convergence of N,S and w is straightforward from estimates (52), (53) and (54).

Remark 5. For a firing rate p satisfying (2b) is not evident to apply Doeblin’s theory to deduce theorem 11. Indeed,
for a fixed S ∈ Cb(Ω), consider P εt the semi-group defined by the linear problem

ε∂tn+ ∂sn+ p(s, S(x))n = 0 t > 0, s > 0, x ∈ Ω,

N(t, x) := n(t, s = 0, x) =
∫∞

0
p(s, S(x))nds t > 0, x ∈ Ω,

n(t = 0, s, x) = n0(s, x) s ≥ 0, x ∈ Ω,

(57)

so that by replicating the proof of theorem 5 we can prove the following lower bound

P εt0n0 ≥ εp∗e−2p∞s∗ 1[0,s∗](s) g(x), t0 = 2εs∗.

And we loss Doeblin’s condition as ε vanishes.

For strong interconnections, we show in the next section two numerical simulations (see figures 9 and 12)
indicating that the behavior of systems (39) and (40) are different.

6 Numerical results

6.1 Elapsed time dynamics

We present numerical simulations of the system (1) in order to observe the dependence on parameters like
connectivity γ and the input I . For these simulations the domain for position x is Ω = (0, 1) and the firing
rate is given by p = 1{s>S}. We compute numerical solutions with a standard upwind scheme.

We focus in displaying the activityN(t, x) and the amplitude S(t, x) since these two elements determine the
general behavior of system (1). We explore a spatially-homogeneous case and an inhomogeneous one, both
with a different learning rule for w. In every example the initial connectivity kernel is given by

w0(x, y) = 10 exp
(
−10(x− y)2

)
.

6.1.1 A spatially-homogeneous example

We start with some examples when the external input I is constant and positive. For this sub-section the
initial probability density is given by n0(s, x) = (x + 1)e−s(x+1), so that g ≡ 1. Moreover, we consider a
learning rule of Hebbian type with the evolution of the kernel given by

∂tw = −w + γN(t, x)N(t, y).
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In this particular example there exists a unique steady state determined, through the formulas in (18), by a
unique amplitude of stimulation S∗, which is constant. This is given by the unique positive solution of the
equation

S =
γ

(1 + S)3
+ I.

Figure 2: Case γ = 1 and I = 1.

(a) Activity N(t, x). (b) Amplitude of stimulation S(t, x). (c) Variation of ‖w(t)− 〈w(t)〉‖∞.

In figure 2 we observe that for γ = 1 and I = 1 the activity N and the amplitude S stabilize very fast in time
and become spatially-homogeneous, this means that the numerical solution n of the system (1) converges
to the equilibrium which is independent of variable x. Moreover, we observe 2c that ‖w(t)−〈w(t)〉‖∞, with
〈w〉 := |Ω|−2

∫∫
w dxdy, decreases to 0 in time so the numerical connectivity kernel w is converging to a

constant. We essentially observe the behavior of theorem 7.

Figure 3: Case γ = 35 and I = 1.

(a) Activity N(t, x). (b) Amplitude of stimulation S(t, x). (c) Variation of ‖w(t)− 〈w(t)〉‖∞.

If we increase the value of γ numerical solutions present a different behavior. For γ = 35 and I = 1
we observe in figure 3 that N and S converge in time towards highly-oscillatory periodic patterns and
they become spatially-homogeneous. We observe in figure 3c that ‖w(t) − 〈w(t)〉‖∞ decreases to 0 with
time, so the connectivity kernel w is converging to a spatially-homogeneous periodic pattern as well. This
periodic solution is compatible with the results observed in the works of Pakdaman et al. in [17] for a
space-independent version of elapsed time model and some values of the connectivity parameter.

However if we also increase the value of input I , the numerical solution exhibits again convergence to-
wards equilibrium when the time is large enough. Like the previous cases the activity N and the amplitude
S become spatially-homogeneous, as it is presented in figure 4. For the connectivity kernel we have that
‖w(t) − 〈w(t)〉‖∞ decreases to 0 in time as we observe in figure 4c, so the numerical connectivity w is con-
verging to a constant. Moreover, this is also compatible with the large connectivity case studied in the
aforementioned article of Pakdaman et al. [17].
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Figure 4: Case γ = 35 and I = 5.

(a) Activity N(t, x). (b) Amplitude of stimulation S(t, x). (c) Variation of ‖w(t)− 〈w(t)〉‖∞.

More generally, we can conjecture that when g and the input I are constant, then N,S and w lose its spatial
dependence as time passes.

6.1.2 A spatially-inhomogeneous example

Now we present an example with a non-constant input to see the activity and the connectivity kernel
depending strongly on position. For this subsection the initial probability density is given by n0(s, x) =

exp(−s−(x−0.5)2)∫ 1
0

exp(−(z−0.5)2) dz
. We consider a learning rule with the evolution of the kernel given by

∂tw = −w + γ
exp

(
−(N(t, x)−N(t, y))2

)
1 + exp (−2N(t, x)N(t, y) + 2)

.

Consider first I(x) = sin2(2πx), so for γ = 1 we observe in figure 5 that both N and S converge in time to a
stationary state. Moreover in figure 5c, we observe that the connectivity kernel converges to a particular pat-
tern that exhibits a symmetric behavior in spatial variable. Like the corresponding spatially-homogeneous
example of figure 2, we observe again the behavior of theorem 7.

Figure 5: Case γ = 1 and I = sin2(2πx).

(a) Activity N(t, x). (b) Amplitude of stimulation S(t, x). (c) Connectivity w(t, x, y) at t = 25.

As in the example of constant input, if we increase γ the behavior of the activity N and the amplitude S
change in time towards a highly-oscillatory periodic pattern, as we can see in figure 6. The connectivity
kernel exhibits a periodic behavior in time which corresponds to some slight time variations of the pattern
shown in figure 7c.

Finally, in the case of γ = 20 and I = 5 sin2(2πx), the numerical solution exhibits convergence towards an
equilibrium when the time is large enough as it is presented in figure 7. The numerical connectivity kernel
w converge to pattern presented in figure 7c.

21



Figure 6: Case γ = 20 and I = sin2(2πx).

(a) Activity N(t, x). (b) Amplitude of stimulation S(t, x). (c) Connectivity w(t, x, y) at t = 25.

Figure 7: Case γ = 20 and I = 5 sin2(2πx).

(a) Activity N(t, x). (b) Amplitude of stimulation S(t, x). (c) Connectivity w(t, x, y) at t = 75.

These results allow to conjecture that when the input I is large enough, the time periodic regime for γ
large changes again to the convergence towards equilibrium. Theorem 8 states that solutions converge to a
solution of a simple linear problem when the external input is large enough in both spatially-homogeneous
and inhomogeneous cases, so this gives us an idea of how the periodicity is lost when the input is increased.

6.2 Limit system with ε = 0.

We present some numerical simulations of the limit system (40) under the same setting of domain, firing rate
and initial kernel. We show the homogeneous and inhomogeneous cases with the same respective initial
densities, learning rules and parameter combinations of their counterparts of system (1). We contrast the
numerical simulations with the convergence theorem 11 when ε vanishes.

6.2.1 Spatially-homogeneous case

In figure 8 we observe that for γ = 1 and I = 1 both N,S converge fast in time to equilibrium and become
spatially-homogeneous. Moreover the figure 8c shows that ‖w(t) − 〈w(t)〉‖∞ is converging to 0, so w is
converges to a constant. This corresponds essentially to the same behavior of the numerical simulations in
system (1) and it is compatible with the convergence result of theorem 11.

When we increase the value to γ = 35 numerical solutions keep the same behavior of convergence to equi-
librium and spatial homogeneity as we see in figure 9, unlike simulations of system (1) which presented
periodic solutions in time. From figure 9c we observe that the numerical connectivity kernel verifies that
‖w(t) − 〈w(t)〉‖∞ is converging to 0, so w converges to a constant. The highly-oscillatory periodic pattern
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Figure 8: Case γ = 1 and I = 1 for the limit system.

(a) Activity N(t, x). (b) Amplitude of stimulation S(t, x). (c) Variation of ‖w(t)− 〈w(t)〉‖∞.

observed for γ = 20 and I = 1 in system (1) suggests that theorem (11) is not true for strong interconnections
in general.

Figure 9: Case γ = 35 and I = 1 for the limit system.

(a) Activity N(t, x). (b) Amplitude of stimulation S(t, x). (c) Variation of ‖w(t)− 〈w(t)〉‖∞.

Figure 10: Case γ = 35 and I = 5 for the limit system.

(a) Activity N(t, x). (b) Amplitude of stimulation S(t, x). (c) Variation of ‖w(t)− 〈w(t)〉‖∞.

If in addition we increase the value of input to I = 5, we observe in figure 10 the same behavior forN,S and
w as in previous cases. Therefore we can conjecture that when g and the input I are constant then the sys-
tem (40) simply converges to a spatially-homogeneous equilibrium, like we observed in the corresponding
numerical simulations of system (1).
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6.2.2 Spatially-inhomogeneous case

Now we show some numerical simulations of the system (40) under the same previously presented non-
constant inputs.

If I = sin2(2πx) and γ = 1 we see in figure 11 that both N and S converge in time to a stationary state
as expected. With respect to the kernel w, we observe in figure 11c a similar pattern formation as in the
corresponding simulation for the system (1). Furthermore, this example is compatible with the result of
theorem 11.

Figure 11: Case γ = 1 and I = sin2(2πx) for the limit system.

(a) Activity N(t, x). (b) Amplitude of stimulation S(t, x). (c) Connectivity w(t, x, y) at t = 25.

Figure 12: Case γ = 20 and I = sin2(2πx) for the limit system.

(a) Activity N(t, x). (b) Amplitude of stimulation S(t, x). (c) Connectivity w(t, x, y) at t = 25.

Figure 13: Case γ = 20 and I = 5 sin2(2πx) for the limit system.

(a) Activity N(t, x). (b) Amplitude of stimulation S(t, x). (c) Connectivity w(t, x, y) at t = 25.

Next, when we increase the value to γ = 20 we still observe in figure 12 the convergence in time forN and S,
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unlike the corresponding solution of the system (1) which showed a periodic profile in time. Furthermore,
the numerical kernel w exhibits in figure 12c a similar pattern to that observed in the simulation of system
(1), which presented some slight changes along the period. This suggests that those oscillations are small
perturbations of the stationary kernel observed in figure 12c. Like the spatially-homogeneous example of
figure 9, we conjecture the convergence theorem (11) is not true in general.

Finally in the case of γ = 20 and I = 5 sin2(2πx), we observe in figure 13 that the numerical solutions
exhibits again a convergent behavior in the variables N and S, while the kernel shows essentially in figure
13c the same pattern as the corresponding simulation of the system (1). Hence we conjecture that the general
dynamic of the limit system (40) is simply a convergence to stationary state. Furthermore, we conjecture that
theorem 11 is also true for a strong interconnection with a large external input.

7 Perspectives

From the previous theoretical results and numerical simulations we observe that only the case with very
weak interconnection begins to be well understood for the Cauchy problem and the asymptotic behavior.
More complex dynamics, such as oscillations, that could emerge with stronger interconnections or even
convergence to a stationary state for a general case are far from being fully understood.

Concerning well-posedness in the system (1), it remains unsolved studying the case of a strong connec-
tivity and determine if multiple solutions arise. This means studying the number of solutions for S(t, x)
in the fixed point equation in (6). It also remains open the well-posedness for limit system (40) with its
corresponding fixed point problem.

Regarding convergence to equilibrium, it is necessary to give a more detailed description of how the size
of the kernel w affects the general behavior of system (1) in order to have a clearer idea of the bifurcation
diagram in the connectivity parameter γ.

Furthermore, it is pending to study the convergence to equilibrium of system (1) for a general large input in
order to improve theorem 8. This include to consider the case when the external input I goes to infinity in
localized regions of Ω. Moreover, it remains open to prove when the function g and the external input are
constant then the system approaches to spatially-homogeneous profile as it was observed in the numerical
simulations.

Finally for the system with slow learning (39), we expect the convergence theorem 10 for weak interconnec-
tion is also true when p satisfies the lower bound (2b). Furthermore, for the limit system (40) we expect a
simple convergence to equilibrium regardless the value of γ.
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