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Abstract—5G and beyond sees an ever increasing density of
connected things. As not all devices are coordinated, there are
limited opportunities to mitigate interference. As such, it is
crucial to characterize the interference in order to understand
its impact on coding, waveform and receiver design. While
a number of theoretical models have been developed for the
interference statistics in communications for the IoT, there is
very little experimental validation. In this paper, we address this
key gap in understanding by performing statistical analysis on
recent measurements in the unlicensed 863 MHz to 870 MHz
band in different regions of Aalborg, Denmark. In particular, we
show that the measurement data suggests the distribution of the
interference power is heavy tailed, confirming predictions from
theoretical models.

Index Terms—Interference, IoT, statistical models, subexpo-
nential distributions, heavy tails.

I. I NTRODUCTION

Fifth generation sees an ever increasing density of wirelessly
connected devices as the Internet of Things (IoT) emerges.
Combined with the recent trends towards non-orthogonal mul-
tiple access (NOMA), stringent constraints on cost, energyand
computational capabilities and grant free access schemes with
low coordination between devices, interference management
is a key challenge. However, characterizing the interference
in unlicensed bands is a non-trivial issue. One reason is the
high level of heterogeneity within the network, ranging from
access protocols to PHY-layer design. In particular, time-
on-air, symbol duration, bandwidth and waveform selection
can significantly differ from one radio access technology to
another. To address this issue, a number of different probability
models for the interference have been proposed sharing a key
observation:additive Gaussian noise is a poor model.

In this paper, we analyze recent measurements in Aalborg
of interference in the unlicensed European ISM 863 MHz to
870 MHz band, which is duty cycle limited and not based
on listen before talk [1]. Our analysis validates key features
of interference statistics predicted from theoretical models.
In particular, analysis via the converging variance test and
of the empirical survival function shows that the empirical
distribution of the interference from the measurement datais
heavy tailed. An important family of tractable heavy tailed
models are theα-stable models and we also provide evidence
to suggest these models are consistent with the measurement
data.
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Section II sets up the notation and give the necessary
background on interference models. Section III describes
the expected properties of impulsive interference. Section IV
presents the measurement setup, states the main results and
open the discussion for the appropriate model.

II. T HEORETICAL INTERFERENCEMODELS

Interference is the consequence of concurrent, at least
partially, transmissions from different devices (called interfer-
ers) on the same channel observed by a given receiver. As
Fig. 1 illustrates, we consider a situation where a receiver
is surrounded by a set of interferers, the locations of which
forms a point process denoted asΩ. Interferer i ∈ Ω sits
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Fig. 1. Receiver (Rx) surrounded by interferers (dots). Interferer i is at
distancedi from the receiver and sits outside the guard zone of radiusǫ.

at distancedi from the receiver. Furthermore, the signal of
interfereri is subject to a path lossℓ(di) given by the positive
path loss functionℓ. At a particular time-frequency(t, f) bin,
the interference can be expressed as a complex number

Xt,f =
∑

i∈Ω

ℓ(di)Qi,t,f . (1)

Qi,t,f includes propagation effects (e.g., multipath and shad-
owing) as well as the baseband emission of interfereri at
time t and frequencyf . In existing work, the path loss
function ℓ(·) takes many different forms, but is often given
by ℓγ,ǫ(d) = d−γ

1{d≥ǫ}, whereγ is the path loss exponent
and ǫ is the guard zone radius; that is, no interferer can be
closer thanǫ from the given receiver.

A key challenge is to characterize the probability distribu-
tion of the interference,Xt,f or the corresponding interference
power It,f = |Xt,f |

2. Here, we characterizeIt,f by its
probability distribution functionF (x) = P(X < x) or
equivalently its survivalS(x) = 1− F (x).

Dating back to Middleton [2], stochastic geometry has
played an important role in characterizing interference statis-
tics. In this approach, interferers are located according to a
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homogeneous Poisson point process, and non-Gaussian inter-
ference distributions naturally arise. For example, when the
network radius is finite and the guard zone radius,ǫ, is non-
zero, the interference distribution is known to be Middleton
[2], [3]. While exact, the Middleton model is difficult to work
with analytically (e.g., for the purpose of receiver design) and
a number of approximate models have been proposed; e.g.,
the Gaussian mixture model [4] or theǫ-contaminated model
[5].

On the other hand, when interferers are located according
to a binomial point process, Weber and Andrews have shown
that the resulting interference amplitude is subexponential [6]1

In this case, the tail behaviour is dominated by the strongest
interferer:F is subexponential if for independent and identi-
cally distributed (i.i.d.)Xi with common survival functionS,
S (X1 +X2 + · · ·+Xn) → nS (X1) asx → +∞.

In the case of the interference power, a detailed study has
been carried out by Haenggi and Ganti [8]. In particular for
interferers located according to a Poisson point process, they
showed that the distribution is heavily dependent on the path
loss attenuation coefficientγ. For example, also shown by Win
and Pinto [9], in a network with infinite radius and no guard
zone (ǫ = 0), the interference power has the totally skewed
α-stable distribution, whereα depends onγ.

III. C LASSES OFHEAVY TAILED DISTRIBUTIONS

Several important performance metrics, such as outage
probability, strongly depend on the probability that the in-
terference is large. That is, rare events in the tail of the
interference power distribution play a key role. One reason
that the Gaussian distribution fails to be a good model for the
interference amplitude is that the tail probability decay rapidly.
On the other hand, models such as theα-stable distribution
have much slower decay in the tails.

Heavy tailed distributions are defined in general as dis-
tributions with tails that decay slower than the exponential
distribution [10]. Formally, a distribution is heavy tailed if for
anyM > 0 and t > 0, the survival function does not satisfy

S(x) ≤ M exp(−tx), ∀x > 0. (2)

Failing to satisfy (2) means that the moment generating
function does not exist, and hence some higher order moments,
even sometimes the variance or the mean are not finite.

A natural question is whether measurements are consistent
with heavy tailed models, which are able to capture slow decay
of the tails. That is, are these models—predicted in certain
regimes by theory—good approximations of the real behavior
of the interference, despite some moments not being finite? To
address this question we consider three subclasses of heavy
tailed models and their corresponding statistical tests.

A. Fat Tailed Distributions

A distribution with infinite variance is said to be fat tailed.
Given a set of observations, the hypothesis that the variance

1We also note that the subexponential family has been used to model the
transmit power distribution in [7].

of the underlying distribution is finite can be tested using the
converging variance test[11, Section 5.5]. Assuming that the
process is a first order stationary and ergodic time-frequency
process, we estimate the variance by computing the sample
variance using all available time and frequency measurements
as

σ2
n =

1

n

n
∑

k=1

(

Ik − In

)2
, (3)

where In = 1
n

∑n
k=1 Ik. If I has finite variance, thenσn

should rapidly converge to a finite value asn increases. On
the other hand, if the variance is infinite or very large, the
convergence should not be obvious and features such as large
jumps can be present asn increases.

B. Subexponential Tail Decay

Another class of heavy tailed distributions are those with
subexponential tail decay. In particular, a distributionF is
said to have subexponential tail decay if there exists some
γ > 0 such that its survival function satisfies

S(x) = x− 1

κL(x), for x > 0, (4)

where κ is called the tail index andL is a slowly varying
function satisfying lim

t→∞

L(tx)
L(t) = 1. Plotting S(x) against

log(x) yields, for subexponentially decayingF , a straight
line with slope−1/κ for x large. An exponentially decaying
distribution hasκ = 0 which leads to an abrupt decrease in
the curve aslog x increases.

Again, assuming that the interference process is first or-
der stationary and ergodic, we estimate the marginal distri-
bution by computing the empirical distribution function as
F̂ (x) = 1

n

∑n
k=1 1{Xk≤x} and the empirical survival function

as Ŝ(x) = 1− F̂ (x).

C. Non-Gaussianα-Stable Distributions

The α-stable distributions are a special case of fat tailed
distributions when0 < α < 2 where the Gaussian is obtained
with α = 2. The distribution function of anα-stable random
variable is described by four parameters: the characteristic
exponent0 < α ≤ 2; the scale parameterγ ∈ R+; the skew
parameterβ ∈ [−1, 1]; and the shift parameterδ ∈ R. As
such, a common notation for anα-stable random variableX is
X ∼ Sα(γ, β, δ). In general,α-stable random variables do not
have closed-form PDFs, but are usually represented by their
characteristic function [12, Eq. 1.1.6]. As noted in Section II,
theα-stable distributions arise as the interference distribution
for Poisson point process models with no guard zones(ǫ = 0).

The parameters of theα-stable can be estimated using
classical methods, such as fitting the four parameters to
the empirical characteristic function estimated from dataas
proposed by Koutrouvelis [13]. The quality of the fit between
the measurement data and the estimatedα-stable distribution
can be evaluated by generating samples from anα-stable
distribution based on the estimated parameters. The quantiles
of the measurement samples are then plotted against those of
the generated samples, i.e. a quantile-quantile (QQ) plot.If
the measurement data and the generated samples are from the
same distribution, the QQ plot will be close to the liney = x.
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IV. M EASUREMENTDATA ANALYSIS

We now turn to analyze the measured interference data first
reported in [1], where received power measurements were
performed at five distinct locations in Aalborg (Denmark):
1) downtown shopping area, 2) a business park with office
buildings, 3) hospital complex, 4) industrial area consisting
of industrial production facilities and office buildings, and 5)
residential area with single-family houses. At each location,
measurements were performed at street level by using a radio
network scanner equipped with an omni-directional antenna
for a period of 2 hours. The entire on-air RF activity in the
868 MHz ISM band (863 MHz to 870 MHz) was recorded
with a 7 kHz bin resolution in frequency and 200 ms sampling
time yielding a sensitivity level of approximately –115 dBm.
The setup and measurements are further detailed in [1].

We reduce the data by aggregating data in time-frequency
windows of 200 ms and 126 kHz which fits a LoRa
scheme. This yields a sequence of interference samples
I1,1, . . . , INt,Nf

, with Nt andNf being the number of time
and frequency samples, respectively. Examples of measure-
ments in a particular frequency band as a function of time are
presented in Fig. 2.
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Fig. 2. Example of interference samples measured in the different areas.

A. Fat Tails: Converging Variance Test

We first test whether the data set is consistent with fat tails;
i.e., infinite variance, or at least some infinite moments. To
illustrate the variance convergence test, we plot in Fig. 3 the
results on one finite variance distributions (chi-square with
two degrees of freedom) and two subexponential distributions
from theα-stable family (one withα = 1.8, slightly impulsive,
and one withα = 1.2, more impulsive). For the Chi-square,
as expected, the estimated variance converges rapidly as the
sample size increases. For the two non-Gaussianα-stable
distributions, there is no clear convergence even for very large
sample sizes up ton = 200 000. For measured data obtained at
all five locations, the convergence tests also reported in Fig. 3
shows no clear convergence. This is observation consistent
with fat tailed models.

B. Subexponentail Tail Decay

In Figs. 4, we plot the log empirical survival function
versuslog(x) for the shopping, business and residential areas,
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Fig. 3. Converging variance test for chi-square andα-stable distributions
along with the measured data set (shopping area, bussiness park, hospital,
industrial and residental areas).

respectively. To highlight the slow decay of the tails, we also
plot curves corresponding to the Gaussian distribution (expo-
nential decay) and threeα-stable distributions (subexponential
decay). Although the tests in Figs. 4 are only visual tests, they
clearly confirm that, on the measurement sets, interferenceis
consistent with subexponentially decaying tails, even if the end
of the decay in the residential case requires further studies.
This is also consistent with the results of the converging
variance test in Fig. 3.

C. Non-Gaussianα-Stable Models

The fit between the measurement data set and estimated
α-stable models is examined by means of the QQ plots in
Figs. 5 and 6. It appears that theα-stable model fits well the
data as shown for two different locations. Other locations are
not presented due to space constraints but give similar results.
Slight deviations can appear for quantiles under 5% or above
95%, but are difficult to interpret: only few samples are present
and these are affected mostly by the particular measurement
environment nearby the receiver.

D. Discussion

Our analysis is only based on a visual inspection. It clearly
shows that heavy tail models have a role to play in modeling
interference in ISM bands. Distributions with some infinite
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Fig. 4. Log empirical survival functionlog Ŝ(x) as a function oflog(x) in
the shopping, business and residential areas, whereŜ is the empirical survival
function obtained from the measurement data.
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Fig. 5. QQ plot of interference samples from the residential area— more
than 1.5 hours (28140 instants) and in the band 863 MHz to 868 MHz, BW =
126 MHz (39 bands)— versus simulated from anα-stable (α = 1.69, β = 1).

moments of order two or larger could also be attractive and
accurate solutions because they can represent some sudden
changes in the interference that is more difficult to capture
with distributions having all their moments finite. For instance,
theα-stable distributions appear to fit well the measured data.

However, further measurements are required to properly
explain the deviations in the tails and identify the best adapted
models. Besides the data set is limited (one city, five locations
and a receiver at the ground level). In IoT network it is to be
expected that the access point will more likely be at higher
altitudes which could impact the interference statistics.Finally
we did not analyze time or frequency dependence which is
another important issue for future study.
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Fig. 6. QQ plot of interference samples from the industrial area— nearly
2 hours (35911 instants), in the band from 863 MHz to 865.5 MHz, BW =
126 MHz (19 bands)— versus simulated from anα-stable (α = 1.7, β = 1).

V. CONCLUSIONS

We find that the measurement data, obtained at five different
locations, confirm the hypothesis of the heavy tailed nature
of the distribution of interference power. While there is an
abundance of theoretical studies of interference statistics, the
measurements in Aalborg are—to the best of our knowledge—
the first to clearly validate the heavy tailed nature of the in-
terference in the context of IoT communications. Interference
models are the key to designing efficient coding and decoding
strategies as well as efficiently adapting channel access and the
network topology. As such, the measurement data suggests that
there is a need to reconsider the utility of Gaussian models in
network design for the IoT.

REFERENCES

[1] M. Lauridsen, B. Vejlgaard, I. Z. Kovacs, H. Nguyen, and P. Mogensen,
“Interference measurements in the European 868 MHz ISM Band with
focus on LoRa and SigFox,” in2017 IEEE Wireless Commun. and Netw.
Conf. (WCNC), pp. 1–6, March 2017.

[2] D. Middleton, “Statistical-physical models of electromagnetic inter-
ference,” IEEE Tran. Electromagnetic Compatibility, vol. EMC-19,
pp. 106–127, Aug. 1977.

[3] D. Middleton, “Non-Gaussian noise models in signal processing for
telecommunications: new methods and results for class A and class B
noise models,”IEEE Trans. Inf. Theory, vol. 45, pp. 1129–1149, May
1999.

[4] N. Guney, H. Deliç, and M. Koca, “Robust detection of ultra-wideband
signals in non-gaussian noise,”IEEE Trans. Microwave Theory Tech.,
vol. 54, pp. 1724–1730, June 2006.

[5] O. Alhussein, I. Ahmed, J. Liang, and S. Muhaidat, “Unifiedanalysis
of diversity reception in the presence of impulsive noise,”IEEE Trans.
Veh. Technol., vol. 66, pp. 1408–1417, Feb. 2017.

[6] S. Weber and J. Andrews, “Transmission capacity of wireless networks,”
in Foundations and Trends in Networking, no. 2-3 in 5, NOW Publishers,
2012.

[7] A. J. Ganesh and G. L. Torrisi, “Large deviations of the interference
in a wireless communication model,”IEEE Trans. Inf. Theory, vol. 54,
pp. 3505–3517, Aug. 2008.

[8] M. Haenggi and R. Ganti, “Interference in large wirelessnetworks,”
Foundations and Trends in Networking, vol. 3, no. 2, pp. 127–248, 2009.

[9] M. Win, P. Pinto, and L. Shepp, “A mathematical theory of network
interference and its applications,”Proc. IEEE, vol. 97, pp. 205–230,
Feb. 2009.

[10] G. Peters and P. Shevchenko,Advances in Heavy Tailed Risk Modeling:
A Handbook of Operational Risk. Hoboken, Wiley, 2015.

[11] C. L. Nikias and M. Shao,Signal processing with alpha-stable distri-
butions and applications. Wiley-Interscience, 1995.

[12] G. Samorodnitsky and M. Taqqu,Stable Non-Gaussian Random Pro-
cesses : Stochastic Models with Infinite Variance. Chapmann and Hall,
1994.

[13] I. A. Koutrouvelis, “Regression-type estimation of theparameters of
stable laws,”J. Am. Stat. Assoc., vol. 75, pp. 918–928, 1980.


	Introduction
	Theoretical Interference Models
	Classes of Heavy Tailed Distributions
	Fat Tailed Distributions
	Subexponential Tail Decay
	Non-Gaussian -Stable Distributions

	Measurement Data Analysis
	Fat Tails: Converging Variance Test
	Subexponentail Tail Decay
	Non-Gaussian -Stable Models
	Discussion

	Conclusions
	References

