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Experimental Evidence for Heavy Tailed
Interference in the loT

Laurent Clavier, Troels Pedersen, Ignacio Rodriguez, Madsidsen and Malcolm Egan

Abstract—5G and beyond sees an ever increasing density of Section[I] sets up the notation and give the necessary
connected things. As not all devices are coordinated, there are packground on interference models. Sectlod Il describes
limited opportunities to mitigate interference. As such, it is the expected properties of impulsive interference. Sedid

crucial to characterize the interference in order to understand .
its impact on coding, waveform and receiver design. While presents the measurement setup, states the main results and

a number of theoretical models have been developed for the Open the discussion for the appropriate model.
interference statistics in communications for the loT, there is

very little experimental validation. In this paper, we address this

key gap in understanding by performing statistical analysis on Il. THEORETICAL INTERFERENCEMODELS

recent measurements in the unlicensed 863 MHz to 870 MHz 0 farence is the consequence of concurrent, at least
band in different regions of Aalborg, Denmark. In particular, we

show that the measurement data suggests the distribution of the Partially, transmissions from different devices (calleteifer-
interference power is heavy tailed, confirming predictions from €rs) on the same channel observed by a given receiver. As

theoretical models. Fig. [1 illustrates, we consider a situation where a receiver
Index Terms—Interference, loT, statistical models, subexpo- IS surrounded by a set of interferers, the locations of which
nential distributions, heavy tails. forms a point process denoted 8s Interfereri € Q sits

I. INTRODUCTION

Fifth generation sees an ever increasing density of wisbles o .
connected devices as the Internet of Things (IoT) emerges. . ﬂ

Combined with the recent trends towards non-orthogonat mul
tiple access (NOMA), stringent constraints on cost, enargy
computational capabilities and grant free access scheritles w
low coordination between devices, interference managemen
is a key challenge. However, characterizing the interfegenrig. 1. Receiver (Rx) surrounded by interferers (dots)erfierer i is at
in unlicensed bands is a non-trivial issue. One reason is tfganced; from the receiver and sits outside the guard zone of ragdius
high level of heterogeneity within the network, rangingnfro ) . .
access protocols to PHY-layer design. In particular, timé‘-t d'Stan(_:(?di fro_m the receiver. Furthgrmore, the S|g_r1gl of
on-air, symbol duration, bandwidth and waveform selectidRt€"fereri is subject to a path los§d;) given by the positive
can significantly differ from one radio access technology N 0SS functiort. At a particular time-frequenc, f) bin,
another. To address this issue, a number of different pitityab 1€ interference can be expressed as a complex number
models for the interference have been proposed sharing a key _ NN
observationadditive Gaussian noise is a poor model Xy = ZE(dZ)Q”’f' @)

In this paper, we analyze recent measurements in Aalborg
of interference in the unlicensed European ISM 863 MHz @ity includes propagation effects (e.g., multipath and shad-
870 MHz band, which is duty cycle limited and not baseBWing) as well as the baseband emission of interfereit
on listen before talk([1]. Our analysis validates key feasur time ¢ and frequencyf. In existing work, the path loss
of interference statistics predicted from theoretical eisd function £(-) takes many different forms, but is often given
In particular, analysis via the converging variance test a®y £v.c(d) = d" 714>, wherey is the path loss exponent
of the empirical survival function shows that the empiricatnd € is the guard zone radius; that is, no interferer can be
distribution of the interference from the measurement datacloser thane from the given receiver.
heavy tailed. An important family of tractable heavy tailed A key challenge is to characterize the probability distribu
models are thew-stable models and we also provide evidendéon of the interferenceX ; or the corresponding interference

a; i

1€Q

to suggest these models are consistent with the measurenf@yer Z ;= |X; ¢|>. Here, we characterizd; ; by its
data. probability distribution functionF(z) = P(X < z) or
equivalently its survivalS(z) = 1 — F(x).
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homogeneous Poisson point process, and non-Gaussian irdéthe underlying distribution is finite can be tested usihg t
ference distributions naturally arise. For example, whas tconverging variance tegfll, Section 5.5]. Assuming that the
network radius is finite and the guard zone radiydss non- process is a first order stationary and ergodic time-frequen
zero, the interference distribution is known to be Middfetoprocess, we estimate the variance by computing the sample
[2], [3]. While exact, the Middleton model is difficult to work variance using all available time and frequency measur&mnen
with analytically (e.g., for the purpose of receiver degyignd as

n

a number of approximate models have been proposed; e.g., 1 _

. . . 2
the Gaussian mixture modell[4] or thecontaminated model = E (Ik —In) ) 3)
[51. =1

On the other hand, when interferers are located accordiwhere Z,, = %Zzzllk. If Z has finite variance, then,
to a binomial point process, Weber and Andrews have showhould rapidly converge to a finite value asincreases. On
that the resulting interference amplitude is subexpoab[ﬁﬂ the other hand, if the variance is infinite or very large, the
In this case, the tail behaviour is dominated by the strange®nvergence should not be obvious and features such as large
interferer: ' is subexponential if for independent and identijumps can be present asincreases.
cally distributed (i.i.d.)X; with common survival functiort, ] )
S(X14 Xo+---+X,,) = nS (Xy) asz — +oo. B. Subexponential Tail Decay

In the case of the interference power, a detailed study hasAnother class of heavy tailed distributions are those with
been carried out by Haenggi and Gaiti [8]. In particular fubexponential tail decayin particular, a distributionf is
interferers located according to a Poisson point prochgy, t said to have subexponential tail decay if there exists some
showed that the distribution is heavily dependent on thé pat > 0 such that its survival function satisfies
loss at_tenuatio_n coefficient qu e>_<ample, als_o shown by Win S(z) = a:*%L(a:), for & > 0, (4)
and Pinto [[9], in a network with infinite radius and no guard
zone ¢ = 0), the interference power has the totally skeweyhere« is called the tail index and. is a slowly varying

a-stable distribution, where: depends ony. function satisfying tlgn;%fg) = 1. Plotting S(xz) against
log(x) yields, for subexponentially decaying, a straight
Ill. CLASSES OFHEAVY TAILED DISTRIBUTIONS line with slope—1/x for = large. An exponentially decaying

. . distribution hask = 0 which leads to an abrupt decrease in
Several important performance metrics, such as out

probability, strongly depend on the probability that the in e curve adogz Increases.

terf is | That i s in the tail of t Again, assuming that the interference process is first or-
werierence 1S large. That 1S, raré events in the tail o hbeer stationary and ergodic, we estimate the marginal distri
interference power distribution play a key role. One reas

. o ; Yltion by computing the empirical distribution function as
that the Gaussian distribution fails to be a good model fer t A(:c) _ %22;1 1(x, <o) and the empirical survival function

interference amplitude is that the tail probability decapidly. o\
On the other hand, models such as thatable distribution as5(z) =1 - F(z).
have much slower decay in the tails. C. Non-Gaussiam-Stable Distributions

Heavy talled distributions are defined in general as dis- The «-stable distributions are a special case of fat tailed

tributions with tails that decay slower than the exponelznti%ismbutions wherD < o < 2 where the Gaussian is obtained
distribution [10]. Formally, a distribution is heavy tailéf for With o — 2. The distribution function of am-stable random
any M > 0 andt > 0, the survival function does not satisfy variable is described by four parameters: the charadterist
S(z) < M exp(—tz), Yo > 0. (2) exponent) < o < 2; the scale parameter € R, ; the skew
- ) _parameterg € [—1,1]; and the shift parametef € R. As
Failing to satisfy [(2) means that the moment generating,ch, a common notation for anstable random variabl# is
function does not exist, and hence some higher order moments.., s (~, 3, §). In general a-stable random variables do not
even sometimes the variance or the mean are not finite.  have closed-form PDFs, but are usually represented by their
.A natural question is whet.her measurements are consistgRracteristic functiorf [12, Eq. 1.1.6]. As noted in Secfib
with heavy tailed models, which are able to capture slow ylecghe -stable distributions arise as the interference distidiut
of the tails. That is, are these models—predicted in certagy poisson point process models with no guard zdaes 0).
regimes by theory—good approximations of the real behaviorthe parameters of the-stable can be estimated using
of the interference, despite some moments not being finde? diassical methods, such as fitting the four parameters to
address this question we consider three subclasses of he@é/ empirical characteristic function estimated from dasa

tailed models and their corresponding statistical tests. proposed by Koutrouveli$ [13]. The quality of the fit between
the measurement data and the estimatestable distribution
A. Fat Tailed Distributions can be evaluated by generating samples fromaastable

distribution based on the estimated parameters. The dggnti
of the measurement samples are then plotted against those of
MRe generated samples, i.e. a quantile-quantile (QQ) fflot.

lwe also note that the subexponential family has been used telrtioel the mee_lsu_rem_em data and the Qe”erated samples_ are from the
transmit power distribution i ]7]. same distribution, the QQ plot will be close to the lipe= z.

A distribution with infinite variance is said to be fat tailed
Given a set of observations, the hypothesis that the varia
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IV. MEASUREMENTDATA ANALYSIS 10 1018
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We now turn to analyze the measured interference data fi § § N F |
reported in [[1], where received power measurements we 53 §3
performed at five distinct locations in Aalborg (Denmark) g 1.8-Stable g Chi-Square
1) downtown shopping area, 2) a business park with offic ) )
buildings, 3) hospital complex, 4) industrial area corisgst 5Samp}£|engtﬁsxl ’ SSamp}eolengfxl ”
of industrial production facilities and office buildingsd5) o x10%7 o x10%
residential area with single-family houses. At each laogti § § 1 "J\/‘V‘\W
measurements were performed at street level by using a ra =2 >
network scanner equipped with an omni-directional anten 2 1.2-Stable 205 Shopping
for a period of 2 hours. The entire on-air RF activity in thi & 2

o

868 MHz ISM band (863 MHz to 870 MHz) was recordec 55 }Ol f 55 }OI r1]5
with a 7 kHz bin resolution in frequency and 200 ms samplir amele length x1* ample length »1¢*
time yielding a sensitivity level of approximately —115 dBm
The setup and measurements are further detailed in [1].
We reduce the data by aggregating data in time-frequer
windows of 200 ms and 126 kHz which fits a LoRe
scheme. This yields a sequence of interference samp
Ti1,---5IN, Ny, With N and Ny being the number of time

x1077 %1077

Hospital

Business park

Sample variance
[6)]
Sample variance
(9}

O - F e A w——
5 10 15 5 10 15
Sample length | 194 Sample length , 1%

o

and frequency samples, respectively. Examples of meast g x1072 g  x10?
ments in a particular frequency band as a function of time & 34 &g !
presented in Fid.]2. > , 2 o5
% Industrial % residential
x10° x10° “o 2 0
2 Business Park Hospital 5 10 15 5 10 15
‘g gl Sample length | 194 Sample length | 194
o1 s}
o o
0 0
0 200 400 600 800 O 200 400 600 800 Fig. 3. Converging variance test for chi-square andtable distributions
(1glo  Time(s) (1glo  Time(s) along with the measured data set (shopping area, bussingsshoapital,
Industrial 4 Residential industrial and residental areas).
32 5}
g g2
a1l o
0 0 respectively. To highlight the slow decay of the tails, wsoal
0 200 400 600 800 0 200 400 600 800 H H H 0 H
Time (5) Time (5) plot curves corresponding to the Gaussian distributiopdex

nential decay) and three-stable distributions (subexponential

Fig. 2. Example of interference samples measured in the difereas. decay). Although the tests in Figs. 4 are only visual tebsy t
clearly confirm that, on the measurement sets, interference
consistent with subexponentially decaying tails, evehéfénd

A. Fat Tails: Converging Variance Test of the decay in the residential case requires further ssudie

We first test whether the data set is consistent with fat;tail'gh'.S is also _con_S|stent with the results of the converging

. L . L ariance test in Fid.]3.

i.e., infinite variance, or at least some infinite moments. To

illustrate the variance convergence test, we plot in Eighes t

results on one finite variance distributions (chi-squaréhwiC. Non-Gaussiam-Stable Models

two degrees of freedom) and two subexponential distribstio The fit between the measurement data set and estimated

from thea-stable family (one withy = 1.8, slightly impulsive, a-stable models is examined by means of the QQ plots in

and one witha = 1.2, more impulsive). For the Chi-square Figs.[5 andb. It appears that thestable model fits well the

as expected, the estimated variance converges rapidlyeas dhta as shown for two different locations. Other locatiores a

sample size increases. For the two non-Gaussisstable not presented due to space constraints but give similaltsesu

distributions, there is no clear convergence even for vamyel  Slight deviations can appear for quantiles under 5% or above

sample sizes up te = 200 000. For measured data obtained a95%, but are difficult to interpret: only few samples are pris

all five locations, the convergence tests also reportedgri¥i and these are affected mostly by the particular measurement

shows no clear convergence. This is observation consistentvironment nearby the receiver.

with fat tailed models.

D. Discussion

B. Subexponentail Tail Decay Our analysis is only based on a visual inspection. It clearly
In Figs.[4, we plot the log empirical survival functionshows that heavy tail models have a role to play in modeling
versuslog(z) for the shopping, business and residential areasterference in ISM bands. Distributions with some infinite
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N Fig. 6. QQ plot of interference samples from the industri@aar nearly
1 2 hours (35911 instants), in the band from 863 MHz to 865.5 MBW =
SN 126 MHz (19 bands)— versus simulated fromastable ¢ = 1.7, 8 = 1).

V. CONCLUSIONS

We find that the measurement data, obtained at five different
locations, confirm the hypothesis of the heavy tailed nature
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Fig. 4. Log empirical survival functiotog S () as a function oflog(z) in
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function obtained from the measurement data.

x 1020
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+

of the distribution of interference power. While there is an
abundance of theoretical studies of interference stedisthe
measurements in Aalborg are—to the best of our knowledge—
the first to clearly validate the heavy tailed nature of the in
terference in the context of IoT communications. Intenfere
models are the key to designing efficient coding and decoding
strategies as well as efficiently adapting channel accebsthen
network topology. As such, the measurement data suggests th
there is a need to reconsider the utility of Gaussian models i
network design for the loT.
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