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Non-linearity of the Carlet-Feng function,

and repartition of Gauss sums

François Rodier∗

Abstract

The search for Boolean functions that can withstand the main crypyographic at-
tacks is essential. In 2008, Carlet and Feng studied a class of functions which have
optimal cryptographic properties with the exception of nonlinearity for which they
give a good but not optimal bound. Carlet and some people who have also worked on
this problem of nonlinearity have asked for a new answer to this problem. We pro-
vide a new solution to improve the evaluation of the nonlinearity of the Carlet-Feng
function, by means of the estimation of the distribution of Gauss sums. This work is
in progress and we give some suggestions to improve this work.

Keywords: Carlet-Feng function, nonlinearity, Gaussian sums, equidistribution, discrep-
ancy

1 Introduction

Boolean functions on the space F
m
2 are not only important in the theory of error-correcting

codes, but also in cryptography, where they occur in stream ciphers or private key systems.
In both cases, the properties of systems depend on the nonlinearity of a Boolean function.
The nonlinearity of a Boolean function f : Fm2 −→ F2 is the distance from f to the set
of affine functions with m variables. The nonlinearity is linked to the covering radius of
Reed-Muller codes. It is also an important cryptographic parameter. We refer to [1] for a
global survey on the Boolean functions.
It is useful to have at one’s disposal Boolean functions with highest nonlinearity. These
functions have been studied in the case where m is even, and have been called “bent”
functions. For these, the degree of nonlinearity is well known, we know how to construct
several series of them.
The problem of the research of the maximum of the degree of nonlinearity comes down to
minimize the Fourier transform of Boolean functions.

1.1 The Carlet-Feng function

Let n be a positive integer and q = 2n. In 2008, Carlet and Feng [2] studied a class of
Boolean functions f on F2n which is defined by their support

{0, 1, α, α2 , . . . , α2n−1−2}

where α is a primitive element of the field F2n . In the same article they show that these
functions when n varies have optimum algebraic immunity, good nonlinearity and optimum
algebraic degree. These computations are very good but still not good enough: in fact
these bounds are not enough for ensuring a sufficient nonlinearity. Some works have been
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done on that by Q. Wang and P. Stanica [10] and other authors (cf. Li et al [7] and Tang
et al. [9]). They find the bound

2n−1 − nl(f) ≤ 1

π
q1/2

(

n ln 2 + γ + ln

(

8

π

)

+ o(1)

)

where γ is the Euler’s constant. Nevertheless, there is a gap between the bound that they
can prove and the actual computed values for a finite numbers of functions which are very
good, of order 2n−1 − 2n/2. Carlet and some authors cited above [7, 9, 10] who have also
worked on this nonlinearity asked for new answer to this problem. In this paper we bring a
new solution to improve the evaluation of the nonlinearity of the Carlet-Feng function, by
means of the estimation of the distribution of Gauss sums. We will find a slightly better
asymptotic bound (see (2)) but this work is in progress and we give some suggestions to
improve this work and hopefully to get a result closer to what expected. It will be the
same for other classes of Boolean functions which are based on Carlet-Feng construction.

1.2 The nonlinearity

The nonlinearity of these functions is given by

nl(f) = 2n−1 − max
λ∈F

∗

2n

|Sλ| where Sλ =

2n−2
∑

i=2n−1−1

(−1)Tr(λα
i). (1)

We define ζ = exp
(

2iπ
2n−1

)

, χ be the multiplicative character of F2n such that χ(α) = ζ.

For a ∈ F
∗
q let us define the Gaussian sum G(a, χ) by

G(a, χ) =
∑

x∈F∗q

χ(x) exp(πiTr(ax))

and G(χ) = G(1, χ). By Fourier transformation of (1) we get

Sλ =
1

q − 1





q−2
∑

µ=1

G(χµ)ζ−µℓ ζ
−µ( q

2
−1) − 1

1− ζ−µ
− q

2



 .

Carlet and Feng deduced from that the bound

|Sλ| ≤
1

q − 1





q−2
∑

µ=1

√
q

∣

∣

∣

∣

∣

ζ−µ( q
2
−1) − 1

1− ζ−µ

∣

∣

∣

∣

∣

+
q

2



 .

The upperbound of |Sλ| is attained if the arguments of G(χµ)ζ−µℓ are the opposite of the

ones of ζ−µ(
q
2−1)−1

1−ζ−µ . I will show that this situation is impossible and that will lead us to a
better bound.

2 Equidistribution of the arguments of Gauss sums

2.1 A result of Nicolas Katz

Nicolas Katz (chapter 9 in [5]) has proved that

Proposition 2.1 For a fixed in F
∗
2n the arguments of G(a, χµ) for 1 ≤ µ ≤ q − 2 are

equidistributed on the segment [−π, π].
For l fixed in F

∗
2n the arguments of G(χµ)ζ−µl for 1 ≤ µ ≤ q−2 are also equidistributed on

the segment [−π, π] since by [8] theorem 5.12, they satisfy: G(χµ)ζ−µl = G((−1)Tr(α
l), χµ).



2.2 Discrepancy

To get a result a little more precise than Katz’s we need the notion of discrepancy. We
define the discrepancy (see [4] or [6]) of a sequence of N real numbers x1, . . . , xN ∈ [0, 1[
by

DN (xN ) = max
0≤x≤1

|A(x,N)

N
− x|

where A(x,N) = number of m ≤ N such that xm ≤ x.

Proposition 2.2 A sequence (xN )N≥1 is uniformly distributed mod 1 if and only if

lim
N→∞

DN (xN ) = 0.

We have an estimate of the discrepancy thanks to Erdös-Turan-Koksma’s inequality.

Lemma 2.3 (Erdös-Turan-Koksma’s inequality) There is an absolute constant C
such that for every H ≥ 1,

DN (xN ) < C

(

1

H
+

H
∑

h=1

1

h

∣

∣

∣

∣

∣

1

N

N
∑

m=1

exp(2πihxm)

∣

∣

∣

∣

∣

)

We will use also a result of Deligne obtained by using Algebraic Geometry “à la Grothendieck”.

Proposition 2.4 (Deligne [3]) For ψ an additive character of Fq and a ∈ F
∗
q, we have

|
∑

x1x2...xr=1

ψ(x1 + x2 + · · ·+ xr)| ≤ rq(r−1)/2.

With this proposition, we can show that, for a 6= 0 one has |∑1≤µ≤q−2G(a, χ
µ)r| ≤

1 + rq(r+1)/2. So we can show more than Katz’s result with the help of proposition (2.2).

Proposition 2.5 For l fixed in F
∗
2n the arguments arg(zµ) of zµ = G(χµ)ζ−µl for 1 ≤ µ ≤

q − 2 fulfill

Dq−2

(

arg(zµ)

2π

)

< O(q−1/4)

Proof: We use Erdös-Turan-Koksma’s inequality to evaluate this dicrepancy, and use
Deligne’s result to bound |∑1≤µ≤q−2G(a, χ

µ)r| which gives the result. Whence, if H ≤
q1/2

Dq−2

(

arg(zµ)

2π

)

< O





1

H
+

1

q − 2

H
∑

h=1

1

hqh/2

∣

∣

∣

∣

∣

∣

q−2
∑

µ=1

G((−1)Tr(α
l), χµ)h

∣

∣

∣

∣

∣

∣





< O

(

1

H
+

1

q − 2

H
∑

h=1

1

hqh/2
hq(h+1)/2

)

< O

(

1

H
+
Hq1/2

q − 2

)

If H = q1/4, then Dq−2

(

arg(zµ)
2π

)

< O
(

q3/4+q3/4

q−2

)

= O
(

q−1/4
)

. �

Lemma 2.6 If the am is an increasing sequence and if the discrepancy of am is D, then

|ai − i
m | ≤ D.



Let A(I,N) = number of m ≤ N such that xm ∈ I. Let I1 the interval [0, i
m −D[ and Iǫ

the interval [0, i
m −D − ǫ] where ǫ is a positive real number, then

∣

∣

∣

∣

A(Iǫ,m)

m
− (

i

m
−D − ǫ)

∣

∣

∣

∣

≤ D

hence

A(Iǫ,m) ≤ mD +m(
i

m
−D − ǫ) = i−mǫ

therefore the interval Iǫ contains less than i−mǫ elements, and does not contains ai which
is the i-th elements in the sequence. Therefore, since we can take ǫ as small as we want
one has ai /∈ Iǫ.
In the same way let I2 the interval [0, i

m +D], then

∣

∣

∣

∣

A(I2,m)

m
− (

i

m
+D)

∣

∣

∣

∣

≤ D

hence

i ≤ m(
i

m
+D)−D ≤ A(I2,m)

therefore ai ∈ I2 − I1 = [ i
m −D, i

m +D].

3 Distribution of the arguments of aµ

Let

aµ =
ζ−µ( q

2
−1) − 1

1− ζ−µ

Proposition 3.1 The aµ are on the singular plane cubic which is the image of the unit

circle by the map

z → 1

z + z2

with |z| = 1. The absolute value is |aµ| = (2 cos( πµ
2(q−1)))

−1. The argument is arg aµ =
3πµ

2(q−1) for µ even or π/2 + 3πµ
2(q−1) for µ odd. The complex conjugate of aµ is aq−1−µ.

Proof: If µ is even, let us take z = exp(− πµi
q−1). One has z2 = ζ−µ. And one has also

zq−1 = exp(−πµi) = exp(−2πiµ/2) = 1.

Thus zq−2 = z−1, hence

aµ =
z2(

q
2
−1) − 1

1− z2
=
z(q−2) − 1

1− z2
=
z−1 − 1

1− z2
=

1− z

z − z3
=

1

z + z2

If µ is odd, let us take

z = − exp(− πµi

q − 1
) = exp(iπ − πµi

q − 1
) = exp(− iπ

q − 1
(µ+ q − 1))

Then q ≤ (µ+ q − 1) ≤ 2q − 2. And we still have

aµ =
z2(

q
2
−1) − 1

1− z2
=
z(q−2) − 1

1− z2
=
z−1 − 1

1− z2
=

1− z

z − z3
=

1

z + z2



So the set of aµ is on a cubic with double point of complex parametric equation

z 7−→ 1

z + z2

for |z| = 1.
Now we consider the lozenge of vertices 0, z, z + z2, z2. For µ even the angle between the
axis Ox and z is the same as between z and z2 and is − πµ

q−1 . The absolute value of z+ z2

is the length of the diagonal 0, z + z2. It is easy to find 2 cos πµ
2(q−1) . The angle between

the x-axis and z + z2 is − 3πµ
2(q−1) . The angle between the x-axis and 1

z+z2
is 3πµ

2(q−1) . For µ
odd, the reasoning is the same.

�

4 Applications

So we conclude from the preceding sections that for a fixed ℓ the arguments of G(χµ)ζ−µℓ

are equidistributed on [−π, π], and the arguments of aµ are equidistributed on [−3π/2, 3π/2]
so, as we said before, it is impossible to have arg(G(χµ)ζ−µℓ)+arg(aµ) = 0 (mod 2π) and
the upperbound of |Sλ| is not attained.
The preceding proposition implies

q−2
∑

µ=1

G(χµ)ζ−µℓaµ ≤ 2max
σ

(

ℜe
q−2
∑

µ=2
µeven

(hσ(µ)aµ)

)

where {hµ} is the set of Gauss sums and σ is some permutation of this set. Let us
number increasingly the hµ (with multiplicities) for µ even from 0 to 2π. Let kx =

q1/2 exp
(

i
(

2πx
q−1

))

.

Lemma 4.1 For 2 ≤ µ ≤ q − 2 and µ even, we have

∣

∣

∣

∣

ℜe(hσ(µ)aµ − kσ(µ)aµ)

∣

∣

∣

∣

= O

(

q1/4

cos πµ
2(q−1)

)

Proof: We have

ℜe(hσ(µ)aµ − kσ(µ)aµ)

= −q1/2
(cos (3πµ

2(q−1) − arg hσ(µ))− (cos (3πµ
2(q−1) − arg kσ(µ))

2 cos πµ
2(q−1)

= −q1/2
(sin

arg kσ(µ)−arghσ(µ)

2 ) sin( (3πµ
2(q−1) −

arg kσ(µ)+arg hσ(µ)

2 )

cos πµ
2(q−1)

Thus

∣

∣

∣

∣

ℜe(hσ(µ)aµ − kσ(µ)aµ)

∣

∣

∣

∣

≤ q1/2
|(sin arg kσ(µ)−arg hσ(µ)

2 )|
cos πµ

2(q−1)

≤ q1/2
|(arg kσ(µ) − arghσ(µ))|

2 cos πµ
2(q−1)

from the proposition 2.5 and the lemma 2.6:



≤ q1/2
O(q−1/4)

2 cos πµ
2(q−1)

≤ O(q1/4)
1

2 cos πµ
2(q−1)

.

�

From the proposition 2.5, we get the following lemma.

Lemma 4.2 The sums ℜe
q−2
∑

µ=2
µeven

(hσ(µ)aµ) satisfy

max
σ

(

ℜe
q−2
∑

µ=1

(hσ(µ)aµ)

)

≤ 2ℜe
q/2
∑

µ=2
µeven

(kµ/2aµ) + 2ℜe
2q/3
∑

µ=q/2
µeven

(k3µ/2−q/2aµ) + 2ℜe
q−2
∑

µ=2q/3
µeven

(k3µ/4aµ) +O(q5/4 log q).

Proof: We first have from the lemma 4.1

max
σ

(

ℜe
q−2
∑

µ=1

(hσ(µ)aµ)

)

= max
σ

(

ℜe
q−2
∑

µ=1

(kσ(µ)aµ)

)

+O(q5/4 log q)

because

∣

∣

∣

∣

ℜe
q−2
∑

µ=1

(hσ(µ)aµ)−ℜe
q−2
∑

µ=1

(kσ(µ)aµ)

∣

∣

∣

∣

= O



q1/4ℜe
q−2
∑

µ=1

1

cos πµ
2(q−1)





and [2] gives an upper bound of the last sum.
We denote by bµ the following numbers for µ even and 2 ≤ µ ≤ q−2: if 2 ≤ µ ≤ q/2, then
bµ = kµ/2, if q/2 < µ ≤ 2q/3, then bµ = k3µ/2−q/2, if 2q/3 < µ ≤ q − 2, then bµ = k3µ/4.
So that we have

2ℜe
q/2
∑

µ=2
µeven

(kµ/2aµ) + 2ℜe
2q/3
∑

µ=q/2
µeven

(k3µ/2−q/2aµ) + 2ℜe
q−2
∑

µ=2q/3
µeven

(k3µ/4aµ) = 2ℜe
q/2
∑

µ=2
µeven

(bµaµ).

Then we want to compare the sum ℜe
q−2
∑

µ=2
µeven

(kσ(µ)aµ) with the sum ℜe
q−2
∑

µ=2
µeven

(bµaµ). Let β

be the largest integer such that kσ(β) 6= bβ. Let τ be the transposition between β and
σ(β). Then one can check that

ℜe(bβaβ + kσ(β)aσ(β)) > ℜe(kσ(β)aβ + bβaσ(β))

therefore

2ℜe
q−2
∑

µ=1
µeven

(kσ(µ)aµ) < 2ℜe
q−2
∑

µ=1
µeven

(kσ◦τ(µ)aµ).

Thus, if there exists such a β, the sum is not maximal. �



Remark 4.3 The condition ℜe(bβaβ + kσ(β)aσ(β)) > ℜe(kσ(β)aβ + bβaσ(β)) is equivalent

to ℜ((bβ − kσ(β))(aβ − aσ(β))) > 0, which may be easier to check.

Then we consider the sum ℜe∑q−2
µ=1
µeven

(bµaµ). For 2 ≤ µ ≤ q/2 and µ even, then bµ = kµ/2,

which imply that these bµ’s form a set with q/4 elements uniformly distributed in the
interval [0, q/4]. For q/2 < µ ≤ 2q/3 and µ even, then bµ = k3µ/2−q/2, which imply that
these bµ’s form a set with [q/12] elements uniformly distributed in the interval [q/4, q/2].
For 2q/3 < µ ≤ q − 2 and µ even, then bµ = k3µ/4, which imply that these bµ’s form a set
with [q/6] elements uniformly distributed in the interval [q/2, 3q/4]. Let B be the set of
all bµ’s.
Now we have to take also in consideration the µ odd. When you make the same reasoning,
you end up with a set B which is just the complex conjugate of B. When you take the
union B ∪B, you get q elements uniformly distributed in the interval [0, 2π].

Proposition 4.4 The upper bound of

q−2
∑

µ=1

G(χµ)ζ−µℓaµ is at most equal to

q3/2

π
(ln q − 0.3786 + o(1)).

Proof: Up to O(q5/4 log q) it is enough to compute:

max
σ

(

ℜe
q−2
∑

µ=1

(kσ(µ)aµ)

)

≤ 2ℜe
q/2
∑

µ=1
µeven

(kµ/2aµ) + 2ℜe
2q/3
∑

µ=q/2
µeven

(k3µ/2−q/2aµ) + 2ℜe
q−2
∑

µ=2q/3
µeven

(k3µ/4aµ)

≤ 2q1/2
q/2
∑

µ=1
µeven

1

2
− 2q1/2

2q/3
∑

µ=q/2
µeven

cos 3πµ
2(q−1)

2 cos πµ
2(q−1)

+ 2q1/2
q−2
∑

µ=2q/3
µeven

1

2 cos πµ
2(q−1)

≤ q3/2

4
− 2q1/2

2q/3
∑

µ=q/2
µeven

(

2 cos2
πµ

2(q − 1)
− 3/2

)

+ 2q1/2
q−2
∑

µ=2q/3
µeven

1

2 cos πµ
2(q−1)

≤ q3/2

2
− 4q1/2

2q/3
∑

µ=q/2
µeven

cos2
πµ

2(q − 1)
+ 2q1/2

q−2
∑

µ=2q/3
µeven

1

2 cos πµ
2(q−1)

.

Since the function 1
2 cos(xπ/2) − 1

π(1−x) is continuous on [2/3, 1], and since the µ
q−1 are

uniformly distributed on [2/3, 1] we get by [6, theorem 1.1]:

2

q − 2

q−2
∑

µ=2q/3
µeven

1

2 cos πµ
2(q−1)

− 2

π

q−2
∑

µ=2q/3
µeven

1

q − µ

= (1 + o(1))

∫ 1

2/3

(

1

2 cos xπ
2

− 1

π

1

1− x

)

dx

= (1 + o(1)) [((ln(sin(1/2πx) + 1)− ln(− sin(1/2πx) + 1))/2π + log(1− x)/π]12/3

=
ln 2 − lnπ + ln 3

π
− ln(7 + 4

√
3)

2π
+ o(1).



Then, using Euler’s formula on harmonic series:

2

q1/2(q − 2)
ℜe

q−2
∑

µ=2q/3
µeven

(σ(hµ)aµ)

≤







2

q − 2

q−2
∑

µ=2q/3
µeven

1

2 cos πµ
2(q−1)

− 2

π

q−2
∑

µ=2q/3
µeven

1

q − µ






+

2

π

q−2
∑

µ=2q/3
µeven

1

q − µ

≤ log q − lnπ + γ

π
− ln(7 + 4

√
3)

2π
+ o(1).

Now it is easy to compute

2q/3
∑

µ=q/2
µeven

cos2
πµ

2(q − 1)
=

q

12

(π + (3
√
3)− 6)

12π
(1 + o(1)).

Finally, the upper bound of
∑q−2

µ=1G(χ
µ)ζ−µℓaµ is at most equal to

q3/2

2
− 4q1/2

2q/3
∑

µ=q/2
µeven

cos2
πµ

2(q − 1)
+ 2q1/2

q−2
∑

µ=2q/3
µeven

1

2 cos πµ
2(q−1)

+O(q5/4 log q)

=
q3/2

2
− 4q1/2

q

12

(π + (3
√
3)− 6)

12π
+ q3/2

log q − lnπ − ln(7+4
√
3)

2 + γ

π
+ o(q3/2)

=
q3/2

π

(

log q − lnπ − ln(7 + 4
√
3)

2
+ γ + π/2− π/36 −

√
3/12 + 1/6 + o(1)

)

<
q3/2

π
(ln q − 0.3786 + o(1)).

�

4.1 Final result

We get finally

Theorem 4.5 The nonlinearity of the Carlet-Feng function fulfills

2n−1 − nl(f) ≤ q1/2

π
(log q − 0.3786 + o(1)) . (2)

5 Conclusion

The improvement is not very important, but this argument may be optimised by

• taking in account the invariance of Gauss sums under the Frobenius automorphism;

• making it possible to make our argument work for all n instead of having an asymp-
totic result;

• taking in account the irregularity of the distribution of Gauss sums (one way to do
this might be to look at the equidistribution of several Gauss sums simultaneously);

• improving the bound of nonlinearity for other classes of Boolean functions which are
based on Carlet-Feng construction.
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