
HAL Id: hal-02521783
https://hal.science/hal-02521783

Submitted on 24 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Q-routing: from the algorithm to the routing protocol
Alexis Bitaillou, Benoît Parrein, Guillaume Andrieux

To cite this version:
Alexis Bitaillou, Benoît Parrein, Guillaume Andrieux. Q-routing: from the algorithm to the routing
protocol. Second IFIP International Conference on Machine Learning for Networking, Dec 2019, Paris,
France. �10.1007/978-3-030-45778-5_5�. �hal-02521783�

https://hal.science/hal-02521783
https://hal.archives-ouvertes.fr


Q-routing: from the algorithm to the routing
protocol⋆

Alexis Bitaillou1, Benoît Parrein1, and Guillaume Andrieux2

1 University of Nantes, LS2N, Polytech Nantes, Nantes, France
2 University of Nantes, IETR, IUT La Roche-sur-Yon, France

Abstract. Routing is a complex task in computer network. This func-
tion is mainly devoted to the layer 3 in the Open Standard Interconnec-
tion (OSI) model. In the 90s, routing protocols assisted by reinforcement
learning were created. To illustrate the performance, most of the litera-
ture use centralized algorithms and ”home-made” simulators that make
difficult i) the transposition to real networks; ii) the reproducibility. The
goal of this work is to address those 2 points. In this paper, we propose a
complete distributed protocol implementation. We deployed the routing
algorithm proposed by Boyan and Littman in 1994 based on Q-learning
on the network simulator Qualnet. Twenty-five years later, we conclude
that a more realistic implementation in more realistic network environ-
ment does not give always better Quality of Service than the historical
Bellman-Ford protocol. We provide all the materials to conduct repro-
ducible research.

Keywords: Routing protocol · Q-learning · Quality of Service · Qual-
net · reproducible research.

1 Introduction

Routing is a complex task in computer networks. A common solution uses the
shortest path algorithm as the Bellman-Ford routing protocol [2]. But the short-
est path is not necessarily the one that maximizes the Quality of Service (QoS),
especially in wireless networks. In order to solve routing problem, two original ap-
proaches appeared in the 90s: i) bio-inspired algorithm and ii) Q-routing. In bio-
inspired approaches, the idea is to model ant colonies as routing algorithm [11].
In 1992, a new reinforcement learning algorithm was created by Watkins and
Dayan: Q-learning [12]. Two years later, Boyan and Littman [3] experience Q-
Learning in routing algorithm named Q-routing. On their personal simulator,
Q-routing offers a better average end-to-end delay than the Bellman-Ford pro-
tocol in high load condition. In fact, in congestion state, the Q-routing proposes
alternative route based on the end-to-end delay while Bellman-Ford protocol is
focused on the shortest path in terms of hops count. Those results have many po-
tential applications especially for mesh and mobile ad hoc networks (MANET).
⋆ Supported by the COWIN project from the RFI Wize and Atlanstic 2020, Région

Pays de la Loire



2 Bitaillou et al.

But the work of Boyan and Littman is not complete. First, they do not su-
pervise other QoS metric like the Packet Delivery Ratio (PDR). Second, their
implementation is not totally specified. Even if their algorithm is distributable,
we don’t know if their implementation is really distributed. Third, their simu-
lator is ”home-made” and the simulation parameter is not highly depicted that
makes this work hard to reproduce.

In this paper, we propose to evaluate the performances of Q-routing in a
more realistic environment provided by a reference discrete event simulator like
Qualnet. All of our experiences are available in a public git repository that makes
this research reproducible and upgradable3. Furthermore, our implementation is
fully distributed that enables to consider deployments in MANET. In such re-
alistic conditions, we highlight that our Q-routing implementation over Qualnet
simulator experiences routing message flooding and routing loops that leads to
high packet loss rate in the original grid used by Boyan and Littman. We propose
some counter-measures at the end of the paper.

The organisation of the paper is the following. In Section 2, we summarize
some previous works about reinforced routing. In Section 3, we detail the imple-
mentation of our distributed Q-routing protocol. Section 4 provides results in
terms of QoS and a discussion. The last section concludes the work and draws
some perspectives.

2 Related works

In this section, we provide more details on Q-routing in the related works.

2.1 Q-routing

Watkins and Dayan [12] created Q-Learning, a reinforcement learning algorithm
in 1994. Two years later, Boyan and Littman proposed to integrate Q-Learning
in routing algorithm. They name their algorithm Q-routing in reference to Q-
Learning. In this algorithm, each node x looks for the lowest Q-value, defined
using the Q function. The estimated delivery time from node x to node d by
node y is noted: Qx(d, y). They define Q-value of function Q as:

Qx(d, y) = Qx(d, y) + η(q + s+ t−Qx(d, y)) (1)

where η is the step size α in Q-Learning (usually 0.5 in [3]) q the unit of time
spent in node x’s queue, s the unit of time spent during the transmission between
x and y and t as t = min

z∈neighbour of y
Qy(d, z). In this case, the effective delivery

time is the reward R and defined as: R = q + s+ t.
3 https://gitlab.univ-nantes.fr/ls2n-rio/qrouting-qualnet, it assume a valid Qualnet

license



Q-routing: from the algorithm to the routing protocol 3

The Q-value is initialized with 0. Q-routing is greedy. It always chooses the
lowest Q-value. Several networks topologies are tested in the work of [3]: 7-
hypercube, the 116-nodes LATA telephone network and a 6×6 irregular grid.
The authors argue that only local information is used to proceed. The presented
results of [3] concern only the 6×6 irregular grid. Q-routing is compared to
Bellman-Ford shortest path algorithm. The average latency is higher in the ex-
ploration phase because the packets are randomly sent. Then, the latency is
similar to the shortest path in low load condition. Q-routing is not always able
to find the shortest path under low network load. But Q-routing clearly outper-
forms the shortest path in high load condition (even if the high load condition is
not clearly defined). When the traffic load decreases, Q-routing keeps the high
load policy. The original approach is thus not adapted to dynamic changes.

2.2 Predictive Q-routing

Choi and Yeung [4] proposed an improvement for Q-routing in 1996. Their al-
gorithm is Predictive Q-routing (PQ-routing). It corrects the problem of sub-
optimal policy after a high network load. Unlike Q-routing, PQ-routing is not
memory-less. It keeps track of the best Q-value. Under low network load, PQ-
routing uses the shortest path algorithm to get the optimal policy. Under high
network load, PQ-routing uses the latency as main metric. Thanks to its mem-
ory, it can come back to the optimal policy when the network load decreases.
PQ-routing is composed of 4 tables: Q (estimation), B (best Q-value), R (recov-
ery), U (last update). Q is defined like in [3] (cf. equation 1). Each table can be
finely tuned by parameters. These tables are updated at each packet reception.

PQ-routing is compared to Q-routing. Two network topologies are tested:
a 15-nodes network and the 6×6 irregular grid from [3]. PQ-routing performs
better than Q-routing independently of the network load. Under high network
load, PQ-routing is quite similar to Q-routing. These results are also obtained on
a ”home-made” network simulator. The average delivery time is the only metric
provided. PQ-routing has higher memory requirements due to additional tables
and higher computational cost because the 4 tables need to be updated.

2.3 Dual Reinforcement Q-Routing

In 1997, Kumar and Miikkulainen [8] proposed to add backward exploration to
Q-routing. As there is forward and backward, they name their algorithm Dual
Reinforcement Q-Routing (DRQ-Routing). The evaluated network is the 6×6
irregular grid from [3]. They use once again a ”home-made” simulator. They
define low network load as 0.5 to 1.5 packets per simulation step, medium as
1.75 to 2.25 and high as 2.5 or more. DRQ-Routing is compared to Q-routing
and shortest path. The average delivery time is the unique metric of comparison.
According to their results, DRQ-Routing outperforms Q-routing in low network
load. It outperforms Q-routing and shortest path in medium and high network
load. Moreover, DRQ-Routing learns twice faster than Q-routing. They use un-
bounded FIFO queues. This means that a packet cannot be dropped by queue



4 Bitaillou et al.

overflow. This simplifies the simulation but it cannot be applied in realistic net-
work.

2.4 Other related works

There are several other related works about Q-routing. Many other extensions
of Q-routing have been proposed: Gradient Ascent Q-routing [9], Enhanced
Confidence-Based Q-routing [14], K-Shortest Paths Q-routing [7], Credence based
Q-routing [6]. There are also extensions for wireless networks for Q-probabilistic
routing [1] and for the Mobile Ad-hoc Networks (MANETs) [10]. Xia et al. [13]
propose to use Q-routing in cognitive radio context. The average delivery time is
the only metric used for most of those papers. Arroyo-Valles et al. do not use av-
erage delivery time. Instead, they prefer to use packet delivery ratio. Except [13]
on OMNET++, those related works use their own simulator. Unfortunately [13]
do not give any details about their implementation.

3 A distributed Q-routing implementation

In this section, we describe our implementation of Q-routing and the complete
experimentation set-up. Our experimental plan concerns two topologies: one
simple with two main paths and the 6× 6 grid of [3].

3.1 Implementation

We have implemented Q-routing based on the Bellman-Ford implementation of
Qualnet. The routing table has been replaced by the function Q (see equation 1).
We reuse some parameters from Bellman-Ford implementation such as the maxi-
mum route length (16 hops), the timeout delay (120 s), the maximum number of
routes per packet (32 routes per packets), and the periodic update delay (10 s).
Our protocol is totally distributed. As Bellman-Ford protocol, nodes have ac-
cess to local information only. Every 10 s, nodes broadcast their routing to their
1-hop neighbourhood. During a periodic updates, all routes are broadcast. Addi-
tionally, there are aperiodic updates. Aperiodic updates help to broadcast more
quickly new route for example. There are also triggered to broadcast new latency
value. During aperiodic updates, only the new or modified routes are sent.

The header of the routing packet contains a timestamp. Thanks to this infor-
mation, the receiver can know the delay thanks to this timestamp. This method
limits the network overhead but nodes have to use only one queue. The clock of
the nodes needs to be synchronized. The level of synchronization determines the
accuracy. The function Q is updated when the routes are updated, at least every
10 s. We define a route as a destination, a subnet mask, a next hop, a distance,
a latency, two timestamps (local and from the original node), the incoming and
outgoing interfaces. The first timestamp is defined when a node gets the latency
from its 1-hop neighbour. This timestamp is not modified when the information
is broadcast. The second timestamp is local and is used for checking the time



Q-routing: from the algorithm to the routing protocol 5

out. This timestamp is updated when the node receives an update for this route.
Q-routing has an exploration phase during 2 seconds. During the exploration
phase, the Q-values are not updated.

3.2 Simulation parameters

We use Qualnet 8.2 (from Scalable Networks Technology) as network simulator.
The networks are composed of symmetric 10 Mb/s wired links. In order to pre-
vent side effect, we used an abstract link layer. All links propagation delays are
set to 1 ms that defines the latency of one hop. Unlike Kumar [8], each node has
a finite FIFO queue of 150k packets. With Qualnet (and other discrete event
simulators), the seed of the pseudo-random generator has a high impact on the
results. For the same seed, the number of trials doesn’t have a significant im-
portance. Both foreground traffic and background traffic are constant bit rate
(CBR) traffic flow. All CBR messages are 512 bytes long. CBR messages are
sent in UDP packets. The CBR receiver drops disordered messages. We com-
pare Q-routing to Bellman-Ford protocol because it uses the shortest path. The
table 1 sums up the simulation parameters.

Element Parameter Value
Network Link Symmetric 10 Mb/s wired link

Link propagation 1 ms
Link layer Abstract MAC

Node Number of queue 1 FIFO queue
Queue size 150k packets

CBR Message size 512 bytes
Table 1. Simulation parameters

A toy example Before evaluating Q-routing on the topology of [3], we test it
first on a simple topology as depicted on Figure 1. Our test CBR is between
node 1 and node 4 which are the source and the destination respectively. In
this simple network, a large background traffic appears on the shortest path
between node 2 and node 3 as shown Figure 2. The goal is simply to verify that
our Q-routing implementation prefers the longer path (through node 5) as soon
as congestion occurs. The CBR source starts sending at 1 s and stop at the
end of the simulation. The interval between two messages is 1 s. Background
traffic appears at 15 minutes. The simulation time is only 60 minutes for this
toy example. We test 10 different and arbitrary seeds.

The irregular grid We evaluate then our implementation on the original 6×6
irregular grid from [3]. The Figure 3 illustrates this particular grid and the
Figure 4 shows the location of the CBR couples. The location of the CBR flow



6 Bitaillou et al.

1 2

5 6

3 4

7 8

Fig. 1. Simple topology to test our im-
plementation. Numbers correspond to
the node ID.

1 2

5 6

3 4

7 8

Fig. 2. CBR traffic flow location on the
simple topology at 15 min. Numbers
correspond to the node ID.

1 7

2 8

3 9

4 10

5 11

6 12

13 19

14 20

15 21

16 22

17 23

18 24

25 31

26 32

27 33

28 34

29 35

30 36

Fig. 3. The 6×6 irregular grid used by
Boyan and Littman [3]

1 7

2 8

3 9

4 10

5 11

6 12

13 19

14 20

15 21

16 22

17 23

18 24

25 31

26 32

27 33

28 34

29 35

30 36

Fig. 4. CBR location on the 6×6 irregu-
lar grid

is arbitrary because Boyan and Littman [3] don’t give so many details in their
works. However, we experience that the location of the couples has a great impact
on the results. As in [3], the CBR traffic flow will be alternatively ”horizontal”
and ”vertical” every 30 minutes. The ”vertical” CBR traffic flow (in red) will be
active then it will be the ”horizontal” CBR traffic flow (in blue). All CBR sources
have the same throughput for a given simulation as depicted on the 2nd column
of the Table 3. We used 36 different and arbitrary seeds in order to validate our
simulation. The simulation time is 180 minutes.

4 Results and discussion

In this section, we present the results of the experimentation. We focus on two
metrics: the average end-to-end delay (or average delivery time) and the packet
delivery rate (PDR). Both are measured at the application layer (layer 7).



Q-routing: from the algorithm to the routing protocol 7

Protocol Throughput Avg. EtE delay (ms) PDR (%)
of bg traffic Average SD Average SD

B-F 8.2 Mb/s 4.36 < 0.01 100 0
B-F 10.2 Mb/s 82.9 < 0.01 66.6 0.07
B-F 11.7 Mb/s 67.7 0.01 50.3 0.08
B-F 13.7 Mb/s 67.9 0.11 50.1 0.09
Q-r 8.2 Mb/s 4.37 < 0.01 100 0
Q-r 10.2 Mb/s 6.57 0.02 100 0.04
Q-r 11.7 Mb/s 6.57 0.02 100 0.04
Q-r 13.7 Mb/s 6.58 0.05 100 0.07

Table 2. Comparison between Q-routing (Q-r) and Bellman-Ford protocol (B-F) with
background traffic on the toy example, 10 seeds.

Fig. 5. Average End-to-End delay over
the simulation, measured by the CBR
between node 1 and node 4.

Fig. 6. PDR over the simulation, mea-
sured by the CBR between node 1 and
node 4.

Fig. 7. Average hop count over the sim-
ulation, measured by the CBR between
node 1 and node 4.

Results on the toy example The Table 2 sums up the results with different
throughput of background traffic for the simple grid of Figure 1. On average



8 Bitaillou et al.

we experience low delay and the highest PDR for Q-routing for the considered
traffic pattern. The singularity at 10.2 Mb/s for BF protocol means that we
are in a congested status with relative good PDR but a degraded end-to-end
delay. This singularity disappears for Q-routing. Figures 5 to 7 give a temporal
representation of the simulation. The background traffic is 10.2 Mb/s. The dotted
line represents the appearing of the congestion. With Q-routing, the average
delivery time stays low compared to Bellman-Ford protocol (Figure 5) when the
congestion occurs at 15 minutes (900 seconds). Moreover, Q-routing drops only
few packets as depicted on Figure 6. Finally, the average hop count (Figure 7)
shows that Q-routing bypass the congested path through a longer way. There is
no more than 1 packet lost. The throughput is 1 packet per second. The results
do not show clearly the convergence time. If we consider that dropped messages
are due to congestion, we estimate it no higher than 2s. Q-routing performs
pretty well on our simple test. But Q-routing uses a greedy strategy. Even if the
congestion disappears, the packets will continue to pass by the longest route.

Protocol Throughput Avg. EtE delay (ms) PDR (%) Avg. drop of IP packets (number of packets)
Average Median SD Average Median SD No route to host Expired TTL Queue overflow

B-F 4.1 kb/s 9.27 9.27 < 0.01 100 100 < 0.01 2 0 0
B-F 41 kb/s 9.27 9.27 < 0.01 100 100 < 0.01 3 0 0
B-F 410 kb/s 9.27 9.27 < 0.01 100 100 < 0.01 18 0 0
B-F 4.1 Mb/s 9.27 9.27 < 0.01 100 100 < 0.01 164 0 0
B-F 8.2 Mb/s 51.0 51.4 7.70 88.0 88.5 0.74 49.0×103 0 10.4×106

B-F 10.2 Mb/s 242 242 12.9 75.3 75.4 1.17 295×103 14 26.8×106

B-F 13.7 Mb/s 254 255 14.1 56.5 56.5 0.96 398×103 3 62.8×106

Q-r 4.1 kb/s 9.33 9.33 < 0.01 99.9 99.9 < 0.01 14 32 0
Q-r 41 kb/s 9.33 9.33 < 0.01 99.9 99.9 < 0.01 102 318 0
Q-r 410 kb/s 9.79 9.70 0.38 99.9 99.9 < 0.01 980 2776 0
Q-r 4.1 Mb/s 11.8 11.7 0.84 99.7 99.8 0.20 10×103 10×103 140×103

Q-r 8.2 Mb/s 129 135 91.6 82.7 79.7 9.74 21×103 54×103 17×106

Q-r 10.2 Mb/s 680 674 32.6 65.1 66.7 8.12 115×103 258×103 45×106

Q-r 13.7 Mb/s 673 675 42.4 47.1 48.2 5.73 141×103 280×103 85×106

Table 3. Comparison between Q-routing and Bellman-Ford on the irregular grid, 36
seeds.

Results on the irregular grid Boyan and Littman [3] expressed their results
in the unit of their ”home-made” simulator. The time is in simulator time. The
network load and its unit are not defined. We express the duration in seconds
and the network load in bytes per second. Thus, we cannot compare directly
their results to ours. The Table 3 sums up the results for the irregular grid. We
experience many packet drops. We add to this table the origin of those drops: 1)
route starvation i.e. the ”no route to host” message; 2) abnormal route length
(monitored by the Time-To-Leave parameter); 3) queue overflow. For Q-routing,
the number of packets dropped due to expired TTL is relatively high even at low
throughput. Routing loops can only explain the number of packets dropped due
to expired TTL. Performance under low network load is similar to Bellman-Ford
protocol. The behaviour of the Q-routing protocol changes between 410 kb/s and
4.1 Mb/s values. The average delivery time increases and the PDR decreases up



Q-routing: from the algorithm to the routing protocol 9

52 64

114 133

159 204

303 354

217 41

175 139

50 50

120 131

220 251

574 574

66 44

118 113

63 51

134 122

187 159

330 276

40 189

124 151

Fig. 8. Policy summary: Bellman-Ford
under 4.1 Mb/s (medium load).

53 77

114 140

165 203

276 301

216 64

187 167

64 59

148 142

242 254

515 513

77 72

157 157

70 50

134 106

205 165

297 281

67 218

168 188

Fig. 9. Policy summary: Q-routing un-
der 4.1 Mb/s (medium load).

to reach 47.1 % at 13.7 Mb/s. The number of dropped packets by queue overflow
reaches 140×103 packets at 4.1 Mb/s. At 13.7 Mb/s, the number of dropping
by queue overflow is very high, around 85×106 dropped packets for 144×106

messages sent. From a topological point of view, the Figures 8 and 9 resume the
routing policies by showing the average number of routes passing by each node
under medium load at the end of the simulation. For Bellman-Ford protocol, the
distribution of routes is very similar to [3]. However, the Figure 9 gives a different
result compared to [3]. With Q-routing, nodes 16 and 22 are less solicitate but
the number of routes is not so balanced as in [3].

We extract the number of routing packets sent and received. With the Bellman-
Ford protocol, there are not so much aperiodic updates because the minimal
distance to a destination is constant in our scenario. For example, under low
network load, aperiodic updates represent 7 packets per hour and per node.
The situation is different with Q-routing. The average number of packets sent
for periodic updates is around 15×103 packets over the simulation. The aver-
age number of packets sent for aperiodic updates is around 661×103 packets.
Aperiodic updates represent about 90 % of routing packets. At 4.1 kb/s, on the
irregular grid, there are about 190 routing packets per seconds for 4 data packets
per seconds.

4.1 Discussion

Although the test over a simple topology is very encouraging, our test on the
irregular grid doesn’t give a similar result to [3]. As the authors of this work, we
expected Q-routing to outperform Bellman-Ford protocol under high network
load condition. The implementation of the Q-routing in a real packet simulator
in a distributed manner is the main reason from our point. Traffic that needs



10 Bitaillou et al.

to pass through those links will be penalized. The quantity of packets dropped
by queue overflow is really important. This is not considered in [3]. We made
some additional tests with a larger queue in order to give more chance to have
a higher latency but the results have not changed significantly.

Packets dropped by expired TTL are the main cause of dropping under low
network load. An additional mechanism is needed in order to prevent routing
loops. For example, source routing or tracking packet’s ID can be used period-
ically to check the route. Another possibility is to change the reward in the Q
function. Indeed, the distance (in hop count) could be considered in order to help
the choice of the best route. The reward can also take account of the number of
dropped packets.

Moreover, Q-routing has a higher memory requirement than Bellman-Ford
protocol. Indeed, Q-routing needs memory to store all destinations by all the
next hops whereas Bellman-Ford protocol stores also all destinations only once.
Furthermore, computational costs are higher with Q-routing due to data struc-
ture and the quantity of data. For example, on the grid, a node with 4 neighbours
like node 16 has to store 144 routes. When it broadcasts all routes, it needs 5
packets. With the Bellman-Ford protocol, nodes have 36 routes. They need to
send just 2 packets to broadcast all routes. The network overhead is also higher
with Q-routing. The value of the latency changes a lot so the number of aperiodic
updates can be very high. In order to limit the number of aperiodic updates,
several solutions are possible. For example, the aperiodic update can be schedule
only if the difference between the old and the new value is greater than a thresh-
old. Moreover, we can introduce partial flooding mechanism as it is proposed
in MANET protocol as OLSR [5]. In this protocol, Multi-Point Relays reduce
drastically routing message flooding.

5 Conclusion
In this paper, we presented a distributed implementation of the Q-routing algo-
rithm. We experienced it on the professional packet driven simulator Qualnet.
Q-routing works well on a simple topology composed of 8 nodes. However, the
Quality of Service parameter as the end-to-end delay and the packet delivery
ratio are degraded as soon as Q-routing protocol is deployed on the irregular
grid proposed in [3]. High network overhead and routing loops are the main ex-
planation in real networks conditions. They also explain routing starvation. We
provide all the materials to conduct reproducible research. Auxiliary functions
to prevent flooding, the integration to existing MANET protocols (as OLSR)
and the extension of Q function are the perspective of this work.

References
1. Arroyo-Valles, R., Alaiz-Rodriguez, R., Guerrero-Curieses, A., Cid-Sueiro, J.: Q-

Probabilistic Routing in Wireless Sensor Networks. In: Sensor Networks and In-
formation 2007 3rd International Conference on Intelligent Sensors. pp. 1–6 (Dec
2007). https://doi.org/10.1109/ISSNIP.2007.4496810



Q-routing: from the algorithm to the routing protocol 11

2. Bellman, R.: On a routing problem. Quarterly of Applied Mathematics 16(1),
87–90 (1958). https://doi.org/10.1090/qam/102435

3. Boyan, J.A., Littman, M.L.: Packet routing in dynamically changing networks: A
reinforcement learning approach. In: Advances in neural information processing
systems. pp. 671–678 (1994)

4. Choi, S.P., Yeung, D.Y.: Predictive Q-routing: A memory-based reinforcement
learning approach to adaptive traffic control. In: Advances in Neural Information
Processing Systems. pp. 945–951 (1996)

5. Clausen, T.H., Jacquet, P.: Optimized Link State Routing Protocol (OLSR).
RFC 3626 (Oct 2003). https://doi.org/10.17487/RFC3626, https://rfc-
editor.org/rfc/rfc3626.txt

6. Gupta, N., Kumar, M., Sharma, A., Gaur, M.S., Laxmi, V., Daneshtalab, M.,
Ebrahimi, M.: Improved Route Selection Approaches Using Q-learning Framework
for 2d NoCs. In: Proceedings of the 3rd International Workshop on Many-core
Embedded Systems. pp. 33–40. MES ’15, ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2768177.2768180, event-place: Portland, OR, USA

7. Hoceini, S., Mellouk, A., Amirat, Y.: K-Shortest Paths Q-Routing: A New QoS
Routing Algorithm in Telecommunication Networks. In: Lorenz, P., Dini, P. (eds.)
Networking - ICN 2005. pp. 164–172. Lecture Notes in Computer Science, Springer
Berlin Heidelberg (2005)

8. Kumar, S.: Dual Reinforcement Q-routing : An On-line Adaptive Routing Algo-
rithm. Proceedings of the Articial Neural Networks in Engineering Conference,
1997 (1997)

9. Peshkin, L., Savova, V.: Reinforcement learning for adaptive routing. In: Pro-
ceedings of the 2002 International Joint Conference on Neural Networks.
IJCNN’02 (Cat. No.02CH37290). vol. 2, pp. 1825–1830 vol.2 (May 2002).
https://doi.org/10.1109/IJCNN.2002.1007796

10. Santhi, G., Nachiappan, A., Ibrahime, M.Z., Raghunadhane, R., Favas, M.K.: Q-
learning based adaptive QoS routing protocol for MANETs. In: 2011 International
Conference on Recent Trends in Information Technology (ICRTIT). pp. 1233–1238
(Jun 2011). https://doi.org/10.1109/ICRTIT.2011.5972411

11. Schooenderwoerd, R., Holland, O., Bruten, J., Rosenkrantz, L.: Ants for load
balancing in telecommunication networks. Tech. Report 96-35, HP Labs, Bristol
(1996)

12. Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8(3), 279–292 (May
1992). https://doi.org/10.1007/BF00992698

13. Xia, B., Wahab, M.H., Yang, Y., Fan, Z., Sooriyabandara, M.: Rein-
forcement learning based spectrum-aware routing in multi-hop cognitive ra-
dio networks. In: 2009 4th International Conference on Cognitive Ra-
dio Oriented Wireless Networks and Communications. pp. 1–5 (Jun 2009).
https://doi.org/10.1109/CROWNCOM.2009.5189189

14. Yap, S.T., Othman, M.: An Adaptive Routing Algorithm: Enhanced Confidence-
Based Q Routing Algorithm in Network Traffic. Malaysian Journal of Computer
Science 17(2), 21–29 (Dec 2004)


