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φ-FEM: a finite element method on domains defined by level-sets

We propose a new fictitious domain finite element method, well suited for elliptic problems posed in a domain given by a level-set function without requiring a mesh fitting the boundary. To impose the Dirichlet boundary conditions, we search the approximation to the solution as a product of a finite element function with the given level-set function, which is also approximated by finite elements. Unlike other recent fictitious domain-type methods (XFEM, CutFEM), our approach does not need any nonstandard numerical integration (on cut mesh elements or on the actual boundary). We consider the Poisson equation discretized with piecewise polynomial Lagrange finite elements of any order and prove the optimal convergence of our method in the H 1 -norm. Moreover, the discrete problem is proven to be well conditioned, i.e. the condition number of the associated finite element matrix is of the same order as that of a standard finite element method on a comparable conforming mesh. Numerical results confirm the optimal convergence in both H 1 and L 2 norms.

Introduction

We consider the Poisson-Dirichlet problem -∆u = f on Ω, u = 0 on Γ, [START_REF] Anders | Automated Solution of Differential Equations by the Finite Element Method[END_REF] in a bounded domain Ω ⊂ R d (d = 2, 3) with smooth boundary Γ assuming that Ω and Γ are given by a level-set function φ: Ω := {φ < 0} and Γ := {φ = 0}.
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Such a representation is a popular and useful tool to deal with problems with evolving surfaces or interfaces [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF]. In the present article, the level-set function is supposed to be known on R d , smooth, and to behave near Γ as the signed distance to Γ. We propose a finite element method for the problem above which is easy to implement, does not require a mesh fitted to Γ, and is guaranteed to converge optimally. Our basic idea is very simple: one cannot impose the Dirichlet boundary conditions in the usual manner since the boundary Γ is not resolved by the mesh, but one can search for the approximation to u as a product of a finite element function w h with the level-set φ itself: such a product obviously vanishes on Γ. In order to make this idea work, some stabilization should be added to the scheme as outlined below and explained in detail in the next section. We coin our method φ-FEM in accordance with the tradition of denoting the level-sets by φ. More specifically, let us assume that Ω lies inside a simply shaped domain O (typically a box in R d ) and introduce a quasi-uniform simplicial mesh T O h on O (the background mesh). Let T h be a submesh of T O h obtained by getting rid of mesh elements lying entirely outside Ω (the definition of T h will be slightly 1 changed afterwords). Denote by Ω h the domain covered by the mesh T h (so that typically Ω h is only slightly larger than Ω). Our starting point is the following formal observation: assuming that the righthand side f is actually well defined on Ω h , and the solution u can be extended to Ω h so that -∆u = f on Ω h , we can introduce the new unknown w ∈ H1 (Ω h ) such that u = φw and the boundary condition on Γ is automatically satisfied. An integration by parts yields then

Ω h ∇(φw) • ∇(φv) - ∂Ω h ∂ ∂n (φw)φv = Ω h f φv, ∀v ∈ H 1 (Ω h ). (3) 
Given a finite element approximation φ h to φ on the mesh T h and a finite element space V h on T h , one can then try to search for w h ∈ V h such that the equality in [START_REF] Burman | Ghost penalty[END_REF] with the subscripts h everywhere is satisfied for all the test functions v h ∈ V h and to reconstruct an approximate solution u h to (1) as φ h w h . These considerations are very formal and, not surprisingly, such a method does not work as is. We shall show however that it becomes a valid scheme once a proper stabilization in the vein of the Ghost penalty [START_REF] Burman | Ghost penalty[END_REF] is added. The details on the stabilization and on the resulting finite element scheme are given in the next section.

Our method shares many features with other finite elements methods on non-matching meshes, such as XFEM [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF][START_REF] Moës | Imposing dirichlet boundary conditions in the extended finite element method[END_REF][START_REF] Sukumar | Modeling holes and inclusions by level sets in the extended finite-element method[END_REF][START_REF] Haslinger | A new fictitious domain approach inspired by the extended finite element method[END_REF] or CutFEM [START_REF] Burman | Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method[END_REF][START_REF] Burman | Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method[END_REF][START_REF] Burman | Fictitious domain methods using cut elements: III. a stabilized Nitsche method for Stokes' problem[END_REF][START_REF] Burman | Cutfem: discretizing geometry and partial differential equations[END_REF]. Unlike the present work, the integrals over Ω are kept in XFEM or CutFEM discretizations, which is cumbersome in practice since one needs to implement the integration on the boundary Γ and on parts of mesh elements cut by the boundary. The first attempt to alleviate this practical difficulty was done in [START_REF] Lozinski | CutFEM without cutting the mesh cells: a new way to impose Dirichlet and Neumann boundary conditions on unfitted meshes[END_REF] with method that does not require to perform the integration on the cut elements, but needs still the integration on Γ. In the present article, we fully avoid any non trivial numerical integration: all the integration in φ-FEM is performed on the whole mesh elements, and there are no integrals on Γ. We also note that an easily implementable version of φ-FEM is here developed for P k finite elements of any order k ≥ 1. This should be contrasted with the situation in CutFEM where some additional terms should be added in order to achieve the optimal P k accuracy if k > 1, cf. [START_REF] Burman | A cut finite element method with boundary value correction[END_REF]. An alternative approach avoiding non trivial quadrature is presented in a recent work on the shifted boundary method [START_REF] Main | The shifted boundary method for embedded domain computations. part i: Poisson and Stokes problems[END_REF]. The optimal convergence with piecewise linear finite elements (k = 1) on a non-fitted mesh is achieved there by introducing a truncated Taylor expansion on the approximate boundary.

The article is structured as follows: our φ-FEM method is presented in the next section. We also give there the assumptions on the level-set φ and on the mesh, and announce our main result: the a priori error estimate for φ-FEM. We work with standard continuous P k finite elements on a simplicial mesh and prove the optimal order h k for the error in the H 1 norm and the (slightly) suboptimal order h k+1/2 for the error in the L 2 norm. 1 The proofs of these estimates are the subject of Section 3. We contend ourselves with the error analysis pertinent to the h-refinement only, i.e. we do not attempt to track the dependence of the constants, appearing in our estimates, on the polynomial degree. In Section 4, we prove that the linear system produced by our method has the condition number of order 1/h 2 , the same as that of a standard finite element method. Numerical illustrations are given in Section 5, including a test case covered by our theory that confirms the theoretical predictions and other test cases going slightly beyond the theoretical framework. Finally, conclusions and perspectives are presented in Section 6.

Definitions, assumptions, description of φ-FEM, and the main result

We recall that we work with a bounded domain Ω ⊂ O ⊂ R d (d = 2, 3) with boundary Γ given by a level-set φ as in [START_REF] Brenner | The mathematical theory of finite element methods[END_REF]. We assume that φ is sufficiently smooth and behaves near Γ as the signed distance to Γ after an appropriate change of local coordinates. More specifically, we fix an integer k ≥ 1 and introduce the following Let T O h be a quasi-uniform simplicial mesh on O of mesh size h, meaning that h T ≤ h and ρ(T ) ≥ βh for all simplexes T ∈ T O h with some mesh regularity parameter β > 0 (here h T = diam(T ) and ρ(T ) is the radius of the largest ball inscribed in T ). Consider, for an integer l ≥ 1, the finite element space

V (l) h,O = {v h ∈ H 1 (O) : v h | T ∈ P l (T ) ∀T ∈ T O h }
where P l (T ) stands for the space of polynomials in d variables of degree ≤ l viewed as functions on T .

Introduce an approximate level-set

φ h ∈ V (l) h,O by 
φ h := I (l) h,O (φ) (4) 
where

I (l) h,O is the standard Lagrange interpolation operator on V (l)
h,O . We shall use this to approximate the physical domain Ω = {φ < 0} with smooth boundary Γ = {φ = 0} by the domain {φ h < 0} with the piecewise polynomial boundary Γ h = {φ h = 0}. We employ φ h rather than φ in our numerical method in order to simplify its implementation (all the integrals in the forthcoming finite element formulation will involve only the piecewise polynomials). This feature will also turn out to be crucial in our theoretical analysis.

We now introduce the computational mesh T h as the subset of T O h composed of the triangles/tetrahedrons having a non-empty intersection with the approximate domain {φ h < 0}. We denote the domain occupied by T h by Ω h , i.e.

T h := {T ∈ T O h : T ∩ {φ h < 0} = ∅} and Ω h = (∪ T ∈T h T ) o .
Note that we do not necessarily have Ω ⊂ Ω h . Indeed some mesh elements can be cut by the exact boundary {φ = 0} but not by the approximate one {φ h = 0}. In such rare occasions, a mesh element containing a small portion of Ω will not be included into T h . Fix an integer k ≥ 1 (the same k as in Assumption 1) and consider the finite element space

V (k) h = {v h ∈ H 1 (Ω h ) : v h | T ∈ P k (T ) ∀ T ∈ T h }.
The φ-FEM approximation to (1) is introduced as follows: find

w h ∈ V (k) h
such that:

a h (w h , v h ) = l h (v h ) for all v h ∈ V (k) h , (5) 
where the bilinear form a h and the linear form l h are defined by

a h (w, v) := Ω h ∇(φ h w) • ∇(φ h v) - ∂Ω h ∂ ∂n (φ h w)φ h v + G h (w, v) (6) 
and

l h (v) := Ω h f φ h v + G rhs h (v),
with G h and G rhs h standing for

G h (w, v) := σh E∈F Γ h E ∂ ∂n (φ h w) ∂ ∂n (φ h v) + σh 2 T ∈T Γ h T ∆(φ h w)∆(φ h v) , G rhs h (v) := -σh 2 T ∈T Γ h T f ∆(φ h v) ,
where σ > 0 is an h-independent stabilization parameter, T Γ h ⊂ T h contains the mesh elements cut by the approximate boundary Γ h = {φ h = 0}, i.e.

T Γ h = {T ∈ T h : T ∩ Γ h = ∅}, Ω Γ h := ∪ T ∈T Γ h T o . (7) 
and F Γ h collects the interior facets of the mesh T h either cut by Γ h or belonging to a cut mesh element

F Γ h = {E (an internal facet of T h ) such that ∃T ∈ T h : T ∩ Γ h = ∅ and E ∈ ∂T }.
The brackets inside the integral over E ∈ F Γ h in the formula for G h stand for the jump over the facet E. The first part in G h actually coincides with the ghost penalty as introduced in [START_REF] Burman | Ghost penalty[END_REF] for P 1 finite elements.

We shall also need the following assumptions on the mesh T h , more specifically on the intersection of elements of T h with the approximate boundary Γ h = {φ h = 0}.

Assumption 2. The approximate boundary Γ h can be covered by element patches {Π i } i=1,...,NΠ having the following properties:

• Each patch Π i is a connected set composed of a mesh element T i ∈ T h \ T Γ
h and some mesh elements cut by Γ h . More precisely,

Π i = T i ∪ Π Γ i with Π Γ i ⊂ T Γ h containing at most M mesh elements; • T Γ h = ∪ NΠ i=1 Π Γ i ; • Π i and Π j are disjoint if i = j.
Assumption 2 is satisfied for h small enough, preventing strong oscillations of Γ on the length scale h. It can be reformulated by saying that each cut element T ∈ T Γ h can be connected to an uncut element T ∈ T h \ T Γ h by a path consisting of a small number of mesh elements adjacent to one another; see [START_REF] Lozinski | CutFEM without cutting the mesh cells: a new way to impose Dirichlet and Neumann boundary conditions on unfitted meshes[END_REF] for a more detailed discussion and an illustration (Fig. 2).

In what follows, • k,D (resp. | • | k,D ) denote the norm (resp. the semi-norm) in the Sobolev space H k (D) with an integer k ≥ 0 where D can be a domain in R d or a (d -1)-dimensional manifold.

Theorem 2.1. Suppose that Assumptions 1 and 2 hold true, l ≥ k, the mesh T h is quasi-uniform, and f ∈ H k (Ω h ∪ Ω). Let u ∈ H k+2 (Ω) be the solution to (1) and w h ∈ V (k) h be the solution to [START_REF] Burman | Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method[END_REF]. Denoting

u h := φ h w h , it holds |u -u h | 1,Ω∩Ω h ≤ Ch k f k,Ω∪Ω h (8) 
with a constant C > 0 depending on the C 0 , m, M in Assumptions 1, 2, on the maximum of the derivatives of φ of order up to k + 1, on the mesh regularity, and on the polynomial degrees k and l, but independent of h, f , and u.

Moreover, supposing Ω ⊂ Ω h u -u h 0,Ω ≤ Ch k+1/2 f k,Ω h (9) 
with a constant C > 0 of the same type.

Proof of the a priori error estimate

The proof of Theorem 2.1 is preceded with auxiliary lemmas in Sections 3.1 and 3.2, followed by the proof of coercivity of the form a h in Section 3.3.

A Hardy-type inequality

Lemma 3.1. We assume that the domain Ω is given by the level-set φ, cf. ( 2), and satisfies Assumption 1. Then, for any u ∈ H k+1 (O) vanishing on Γ,

u φ k,O ≤ C u k+1,O
with C > 0 depending only on the constants in Assumption 1.

Proof. The proof is decomposed into three steps:

Step 1. We start in the one dimensional setting and adapt the proof oF Hardy's inequality from [START_REF] Montgomery-Smith | Hardy's inequality for integrals[END_REF]. Let u : R → R be a C ∞ function with compact support such that u(0) = 0. Set w(x) = u(x)/x for x = 0 and w(0) = u (0). We shall prove that w is a C ∞ function on R and, for any integer s ≥ 0, [START_REF] Evans | Partial differential equations[END_REF] with C depending only on s.

∞ -∞ |w (s) (x)| 2 dx 1/2 ≤ C ∞ -∞ |u (s+1) (x)| 2 dx 1/2
Observe, for any x > 0,

w(x) = u(x) x = 1 x x 0 u (t)dt = 1 0 u (xt)dt.
Hence,

w (s) (x) = 1 0 u (s+1) (xt)t s dt. (11) 
It implies lim x→0 + w (s) (x) = u (s+1) (0)/(s + 1). The same formula holds for the limit as x → 0 -. This means that w is continuous (the special case s = 0), and w (s) (0) exists for all s ≥ 1.

We have now by [START_REF] Haslinger | A new fictitious domain approach inspired by the extended finite element method[END_REF] and the integral version of Minkowski's inequality

∞ 0 |w (s) (x)| 2 dx 1/2 = ∞ 0 1 0 u (s+1) (xt)t s dt 2 dx 1/2 ≤ 1 0 ∞ 0 |u (s+1) (xt)| 2 dx 1/2 t s dt = C ∞ 0 |u (s+1) (x)| 2 dx 1/2 with C = 1 0 t s-1/2 dt = 1/(s + 1/2).
Applying the same argument to negative x, we get (10).

Step 2. Let now u : R d → R be a compactly supported C ∞ function vanishing at x d = 0 and set

w = u/x d . We shall prove |w| k,R d ≤ C|u| k+1,R d (12) 
with C depending only on k.

To keep things simple, we give here the proof for the case d = 2 only (the case d = 3 is similar but would involve more complicated notations). Take any integers t, s ≥ 0 with t + s = k, apply [START_REF] Evans | Partial differential equations[END_REF] 

to ∂ t w ∂x t 1 = 1 x2 ∂ t u ∂x t 1 treated as a function of x 2 (note that ∂ t u ∂x t 1
vanishes at x 2 = 0) and then integrate with respect to x 1 . This gives

∂ k w ∂x t 1 ∂x s 2 0,R d ≤ C ∂ k+1 u ∂x t 1 ∂x s+1 2 0,R d .
Thus, 12) is proved.

|w| 2 k,R d = k s=0 ∂ k w ∂x k-s 1 ∂x s 2 2 0,R d ≤ C 2 k s=0 ∂ k+1 u ∂x k-s 1 ∂x s+1 2 2 0,R d ≤ C 2 |u| 2 k+1,R d so that (
Step 3. Consider finally the domains Ω ⊂ O as announced in the statement of this Lemma, let u be a C ∞ function on O vanishing on Γ, and set w = u/φ. Assume first that u is compactly supported in O l , one of the sets forming the cover of Γ as announced in Assumption 1. Recall the local coordinated ξ 1 , . . . , ξ d on O l with ξ d = φ and denote by û (resp. ŵ) the function u (resp. w) treated as a function of ξ 1 , . . . , ξ d . Since ŵ = û/ξ d , (12) implies ŵ k,R d ≤ C û k+1,R d . Passing from the coordinates x 1 , . . . , x d to ξ 1 , . . . , ξ d and backwards we conclude w k,O l ≤ C u k+1,O l with a constant C that depends on the maximum of partial derivatives ∂ α x/∂ξ α up to order k and that of ∂ α ξ/∂x α up to order k + 1. Introducing a partition of unity subject to the cover {O l } we can now easily prove

w k,O ≤ C u k+1,O noting that 1/φ is of class C k outside ∪ l {O l }. This estimate holds also true for u ∈ H k+1 (O) by density of C ∞ in H k+1 .

Some technical lemmas

This Section regroups some technical results to be used later in the proofs of the coercivity of a h (Section 3.3) and the a priori error estimates (Sections 3.4 and 3.5). The most important contribution here is Lemma 3.3 which extends to finite elements of any degree a result from [START_REF] Lozinski | CutFEM without cutting the mesh cells: a new way to impose Dirichlet and Neumann boundary conditions on unfitted meshes[END_REF]. This lemma will be the keystone of the proof of coercivity by allowing us to handle the non necessarily positive terms on the cut elements. It shows indeed that the H 1 norm of a finite element function on Ω Γ h can be bounded by its norm on the whole computational domain Ω h multiplied by a number strictly smaller than 1, modulo the addition of stabilization terms. We recall that our stabilization is strongly inspired by that of [START_REF] Burman | Ghost penalty[END_REF] but differs from it by some extra terms involving the Laplacian on mesh elements. The proof that such a stabilization is sufficient in Lemma 3.3 relies on a simple observation on polynomials, announced and proven in Lemma 3.2. Lemma 3.2. Let T be a triangle/tetrahedron, E one of its sides and p a polynomial on T of degree s ≥ 0 such that p = ∂p ∂n = 0 on E and ∆p = 0 on T . Then p = 0 on T . Proof. Let us consider only the 2D case (3D is similar). Without loss of generality, we can assume that E lies on the x-axis in (x, y) coordinates. Let p = p ij x i y j with i, j ≥ 0, i + j ≤ s as above. We shall prove by induction on m = 0, 1, . . . , l that p im = 0, ∀i. Indeed, this is valid for m = 0, 1 since p(x, 0) = i p i0 x i = 0 and ∂p ∂y (x, 0) = i p i1 x i = 0. Now, ∆p = 0 implies for all indices i, j ≥ 0 (i + 2)(i + 1)p i+2,j + (j + 2)(j + 1)p i,j+2 = 0 so that p im = 0, ∀i implies p i,m+2 = 0, ∀i.

Lemma 3.3. Under Assumption 2, for any β > 0 and s ∈ N * one can choose 0 < α < 1 depending only on the mesh regularity and s such that, for each

v h ∈ V (s) h , |v h | 2 1,Ω Γ h ≤ α|v h | 2 1,Ω h + βh E∈F Γ h ∂v h ∂n 2 0,E + βh 2 T ∈T Γ h ∆v h 2 0,T . (13) 
Proof. Choose any β > 0, consider the decomposition of Ω Γ h in element patches {Π k } as in Assumption 2, and introduce

α := max Π k ,v h =0 |v h | 2 1,Π Γ k -βh E∈F k ∂v h ∂n 2 0,E -βh 2 T ⊂Π k ∆v h 2 0,T |v h | 2 1,Π k , ( 14 
)
where the maximum is taken over all the possible configurations of a patch Π k allowed by the mesh regularity and over all the piecewise polynomial functions on Π k (polynomials of degree ≤ s). The subset F k ⊂ F Γ h gathers the edges internal to Π k . Note that the quantity under the max sign in ( 14) is invariant under the scaling transformation x → hx and is homogeneous with respect to v h . Recall also that the patch Π k contains at most M elements. Thus, the maximum is indeed attained since it is taken over a bounded set in a finite dimensional space.

Clearly, α ≤ 1. Supposing α = 1 would lead to a contradiction. Indeed, if α = 1 then we can take Π k , v h yielding this maximum and suppose without loss of generality |v h | 1,Π k = 1. We observe then

|v h | 2 1,T k + βh E∈F k ∂v h ∂n 2 0,E + βh 2 T ⊂Π k ∆v h 2 0,T = 0 since |v h | 2 1,Π k = |v h | 2 1,T k + |v h | 2 1,Π Γ k . This implies v h = c = const on T k , ∂v h ∂n = 0 on all E ∈ F k , and ∆v h = 0 on all T ⊂ Π k . Thus applying Lemma 3.2 to v h -c, we deduce that v h = c on Π k , which contradicts |v h | 1,Π k = 1.
This proves α < 1. We have thus

|v h | 2 1,Π Γ k ≤ α|v h | 2 1,Π k + βh E∈F k ∂v h ∂n 2 0,E + βh 2 T ⊂Π k ∆v h 2 0,T
for all v h ∈ V h and all the admissible patches Π k . Summing this over Π k , k = 1, . . . , N Π yields [START_REF] Main | The shifted boundary method for embedded domain computations. part i: Poisson and Stokes problems[END_REF].

Lemma 3.4. For all v h ∈ V (k) h , it holds φ h v h 0,Ω Γ h ≤ Ch |φ h v h | 1,Ω Γ h , (15) 
φ h v h 0,Ω h \Ω ≤ Ch |φ h v h | 1,Ω h , (16) 
with a constant C > 0 depending only on the regularity of T h and k.

Proof. It is easy to see that the supremum

C = sup p h =0,T p h 0,T h T |p h | 1,T
over all the polynomials p h ∈ P k+l (T ) vanishing at a point of T and all the simplexes T satisfying the regularity assumption h T /ρ(T ) ≥ β is attained so that C is finite. Taking any T ∈ T Γ h and putting

p h = φ h v h , this implies φ h v h 0,T ≤ Ch T |φ h v h | 1,T for any V h ∈ V (k)
h . Summing over all T ∈ T Γ h concludes the proof of [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF]. Estimate ( 16) is proven similarly, adding, if necessary, neighbour elements to

T ∈ T Γ h . Lemma 3.5. For all v h ∈ V (k) h E∈F Γ h φ h v h 2 0,E ≤ Ch|φ h v h | 2 1,Ω h (17) 
and

φ h v h 2 0,∂Ω h ≤ Ch|φ h v h | 2 1,Ω h (18) 
with a constant C > 0 depending only on the regularity of T h .

Proof. Let E ∈ F Γ h . Recall the well-known trace inequality

v 2 0,E ≤ C 1 h v 2 0,T + h|v| 2 1,T (19) 
for each v ∈ H 1 (E). Summing this over all E ∈ F Γ h gives

E∈F Γ h φ h v h 2 0,E ≤ C 1 h φ h v h 2 0,Ω Γ h + h|φ h v h | 2 1,Ω Γ h
leading, in combination with [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF], to [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF]. The proof of ( 18) is similar.

Lemma 3.6. Under Assumption 1, it holds for all v ∈ H s (Ω h ) with integer

1 ≤ s ≤ k + 1, v vanishing on Ω, v 0,Ω h \Ω ≤ Ch s v s,Ω h \Ω . (20) 
Proof. Consider the 2D case (d = 2). For simplicity, we can assume that v is C ∞ regular and pass to v ∈ H s (Ω h ) by density. By Assumption 1, we can pass to the local coordinates ξ 1 , ξ 2 on every set O k covering Γ assuming that ξ 1 varies between 0 and L and, for any ξ 1 fixed, ξ 2 varies on Ω h \ Ω from 0 to some b(ξ 1 ) with 0 ≤ b(ξ 1 ) ≤ Ch. We observe using the bounds on the mapping (

x 1 , x 2 ) → (ξ 1 , ξ 2 ) v 2 0,(Ω h \Ω)∩O k ≤ C L 0 b(ξ1) 0 v 2 (ξ 1 , ξ 2 )dξ 2 dξ 1 (recall that ∂ α v ∂ξ α 2 (ξ 1 , 0) = 0 for α = 0, . . . , s-1 and b ≤ Ch) = C L 0 b(ξ1) 0 ξ2 0 (ξ 2 -t) s-1 (s -1)! ∂ s v ∂ξ s 2 (ξ 1 , t)dt 2 dξ 2 dξ 1 ≤ C L 0 h 2s b(ξ1) 0 ∂ s v ∂ξ s 2 (ξ 1 , t) 2 dtdξ 1 ≤ Ch 2s |v| 2 s,(Ω h \Ω)∩O k .
Summing over all neighbourhoods O k gives (20). The proof in the 3D case is the same up to the change of notations.

Coercivity of the bilinear form a h

Lemma 3.7. Under Assumption 2, the bilinear form a h is coercive on

V (k) h
with respect to the norm

|||v h ||| h := |φ h v h | 2 1,Ω h + G h (v h , v h ) i.e. a h (v h , v h ) ≥ c|||v h ||| 2 h for all v h ∈ V (k) h
with c > 0 depending only on the mesh regularity and on the constants in Assumption 2.

Proof. Let v h ∈ V (k) h

and B h be the strip between Γ h and ∂Ω h , i.e.

B h = {φ h > 0} ∩ Ω h . Since φ h v h = 0 on Γ h , ∂Ω h ∂(φ h v h ) ∂n φ h v h = ∂B h ∂(φ h v h ) ∂n φ h v h = T ∈T Γ h ∂(B h ∩T ) ∂(φ h v h ) ∂n φ h v h - T ∈T Γ h E∈F cut h (T ) B h ∩E ∂(φ h v h ) ∂n φ h v h ,
where T Γ h is defined in [START_REF] Burman | Fictitious domain methods using cut elements: III. a stabilized Nitsche method for Stokes' problem[END_REF] and F cut h (T ) regroups the facets of a mesh element T cut by Γ h . By divergence theorem,

∂Ω h ∂(φ h v h ) ∂n φ h v h = B h |∇(φ h v h )| 2 + T ∈T Γ h B h ∩T ∆(φ h v h )φ h v h - E∈F Γ h E∩B h φ h v h ∂(φ h v h ) ∂n .
Substituting this into the definition of a h yields

a h (v h , v h ) = Ω h |∇(φ h v h )| 2 - B h |∇(φ h v h )| 2 - T ∈T Γ h B h ∩T ∆(φ h v h )φ h v h + F ∈F Γ h F ∩B h φ h v h ∂(φ h v h ) ∂n + σh 2 T ∈T Γ h T |∆(φv h )| 2 + σh E∈F Γ h E ∂(φ h v h ) ∂n 2 . (21) Since B h ⊂ Ω Γ h (cf. (7)), applying Lemma 3.3 to φ h v h ∈ V (k+l) h gives B h |∇(φ h v h )| 2 ≤ α|φ h v h | 2 1,Ω h + βh E∈F Γ h E ∂(φ h v h ) ∂n 2 + βh 2 T ∈T Γ h T |∆(φ h v h )| 2 .
Moreover, by Young inequality, ( 15) and ( 17), we obtain for any ε > 0

T ∈T Γ h B h ∩T ∆(φ h v h )φ h v h ≤ h 2 2ε T ∈T Γ h T |∆(φ h v h )| 2 + Cε|φ h v h | 2 1,Ω h and F ∈F Γ h F ∩B h φ h v h ∂(φ h v h ) ∂n ≤ h 2ε E∈F Γ h E ∂(φ h v h ) ∂n 2 + Cε|φ h v h | 2 1,Ω h .
Thus, putting the last 3 bounds into (21) we arrive at

a(v h , v h ) ≥ (1 -α -Cε) |φ h v h | 2 1,Ω h + σ -β - 1 2ε h E∈F Γ h ∂(φ h v h ) ∂n 2 0,E + σ -β - 1 2ε h 2 T ∈T Γ h T |∆(φv h )| 2 .
This leads to the conclusion taking ε sufficiently small and σ sufficiently big.

Proof of the H 1 error estimate in Theorem 2.1

Since the bilinear form a h is coercive, it remains to construct a good interpolant of the exact solution u in the form of a product of a function from V (k) h with φ h . The details of such a construction are given below together with the appropriate interpolation estimates. An additional difficulty will come from the extra terms in the Galerkin orthogonality relation (24) with f resulting from the extension of u from Ω to Ω h . These terms turn out to be of optimal order since f differs from f only on a narrow strip of width ∼ h, cf. Lemma 3.6 and (26).

We now proceed with the detailed proof. Since f ∈ H k (Ω), the solution u of (1) belongs to H k+2 (Ω) (see [10, p. 323]) and can be extended by a function ũ in H k+2 (O), cf. [10, p. 257], such that ũ = u on Ω and

ũ k+2,Ω h ≤ ũ k+2,O ≤ C u k+2,Ω ≤ C f k,Ω . (22) 
Let w = ũ/φ. By Lemma 3.1,

|w| k+1,Ω h ≤ C u k+2,O ≤ C f k,Ω . (23) 
Introduce the bilinear form āh , similar to a h as defined in (6) but with φ instead of φ h multiplying the trial function:

āh (w, v) = Ω h ∇(φw) • ∇(φ h v) - ∂Ω h ∂ ∂n (φw)φ h v + σh E∈F Γ h ∂ ∂n (φw) ∂ ∂n (φ h v) + σh 2 T ∈T h T ∆(φw)∆(φ h v).
Since φw = ũ ∈ H 2 (Ω h ), an integration by parts yields āh (w, v h ) =

Ω h f φ h v h -σh 2 T ∈T Γ h T f ∆(φ h v h ), ∀v h ∈ V h with f = -∆ũ on Ω h . Hence, a h (w h , v h ) -āh (w, v h ) = Ω h (f -f )φ h v h -σh 2 T ∈T Γ h T (f -f )∆(φ h v h ). ( 24 
) Put v h = w h -I h w and r h = φw -φ h I h w
with the nodal interpolator I h . Eq. ( 24) can be rewritten as

a h (v h , v h ) = āh (w, v h ) -a h (I h w, v h ) + Ω h (f -f )φ h v h -σh 2 T ∈T Γ h T (f -f )∆(φ h v h ) = Ω h ∇r h • ∇(φ h v h ) - ∂Ω h ∂r h ∂n φ h v h + σh E∈F Γ h ∂r h ∂n ∂ ∂n (φ h v h ) + σh 2 T ∈T Γ h T ∆r h ∆(φ h v h ) + Ω h (f -f )φ h v h -σh 2 T ∈T h T (f -f )∆(φ h v h ).
By Lemma 3.7, Young inequality, and recalling f = f on Ω, we now get

c|||v h ||| 2 h ≤ 1 2ε |r h | 2 1,Ω h + h 2ε ∂r h ∂n 2 0,∂Ω h + σ 2 h 2ε E∈F Γ h ∂r h ∂n 2 0,E + σ 2 h 2 2ε T ∈T Γ h ∆r h 2 0,T + (1 + σ 2 )h 2 2ε f -f 2 0,Ω h \Ω + ε 2   |φ h v h | 2 1,Ω h + 1 h φ h v h 2 0,∂Ω h + h E∈F Γ h ∂ ∂n (φ h v h ) 2 0,E +2h 2 T ∈T Γ h ∆(φ h v h ) 2 0,T + 1 h 2 φ h v h 2 0,Ω h \Ω   .
The terms above multiplied by ε/2 can be absorbed by the left-hand side. Indeed, the first contribution 16) and [START_REF] Sukumar | Modeling holes and inclusions by level sets in the extended finite-element method[END_REF]. Taking ε small enough, we thus conclude

|φ h v h | 2
|||v h ||| 2 h ≤ C |r h | 2 1,Ω h + h ∂ ∂n (φw -φ h I h w) 2 0,∂Ω h +h 2 T ∈T Γ h ∆r h 2 0,T + h E∈F Γ h ∂r h ∂n 2 0,E + h 2 f -f 2 0,Ω h \Ω   . ( 25 
)
We now estimate each term in the right-hand side of (25). By triangular inequality,

|r h | 1,Ω h ≤ |(φ -φ h )w| 1,Ω h + |φ h (w -I h w)| 1,Ω h ≤ ∇(φ -φ h ) L ∞ (Ω h ) w 0,Ω h + φ -φ h L ∞ (Ω h ) |w| 1,Ω h + ∇φ h L ∞ (Ω h ) w -I h w 0,Ω h + φ h L ∞ (Ω h ) |w -I h w| 1,Ω h .
We continue using the classical interpolation bounds (see for instance [START_REF] Brenner | The mathematical theory of finite element methods[END_REF])

|r h | 1,Ω h ≤ Ch k (|φ| W k+1,∞ (Ω h ) w 0,Ω h + |φ| W k,∞ (Ω h ) |w| 1,Ω h + |φ| W 1,∞ (Ω h ) |w| k,Ω h + φ L ∞ (Ω h ) |w| k+1,Ω h ) ≤ Ch k φ W k+1,∞ (Ω h ) w k+1,Ω h .
Similarly,

T ∈T h |r h | 2 2,T 1 2 ≤ Ch k-1 φ W k+1,∞ (Ω h ) w k+1,Ω h . and ∂r h ∂n 2 0,∂Ω h + E∈F Γ h ∂r h ∂n 2 0,E ≤ Ch 2k-1 φ 2 W k+1,∞ (Ω h ) w 2 k+1,Ω h .
Finally, we get by Lemma 3.6 applied to f -f which vanishes on Ω,

f -f 0,Ω h \Ω ≤ Ch k-1 f -f k-1,Ω h \Ω ≤ Ch k-1 ( f k-1,Ω h + ũ k+1,Ω h ) (26) since f = -∆ũ.
Using all the bounds above in (25), we get

|φ h (w h -I h w)| 1,Ω h ≤ |||v h ||| h ≤ Ch k ( w k+1,Ω h + f k-1,Ω h + ũ k+1,Ω h ) ( 27 
)
with a constant C > 0 that has absorbed φ W k+1,∞ (Ω h ) . Applying again the the triangle inequality and the interpolation bounds,

|u -φ h w h | 1,Ω∩Ω h ≤ |ũ -φ h w h | 1,Ω h ≤ |(φ -φ h )w| 1,Ω h + |φ h (w -I h w)| 1,Ω h + |φ h (I h w -w h )| 1,Ω h ≤ Ch k ( w k+1,Ω h + f k-1,Ω h + ũ k+1,Ω h ).
We have thus proven [START_REF] Burman | A cut finite element method with boundary value correction[END_REF] taking into account the bounds ( 22) and (23).

Proof of the L 2 error estimate in Theorem 2.1

As usual, the L 2 error estimate will be proven here by Aubin-Nitsche trick. However, the discrepancy between Ω and Ω h , as well as between φ and φ h , gives rise to numerous terms, which should be bounded through rather tedious calculations. We shall skip some repetitive technical details as they are similar to those in the proof of the H 1 error estimate above. We also recall that we do not track explicitly the dependence of constants on the norms of φ.

Let z ∈ H 3 (Ω) be solution to

-∆z = u -u h on Ω, z = 0 on Γ.
Extend it to Ω h by z ∈ H 3 (Ω h ) using an extension operator bounded in the H 3 norm. Set y = z/φ. Then

|y| 2,Ω h ≤ C|z| 3,Ω h ≤ C u -u h 1,Ω and y 1,Ω h ≤ C z 2,Ω h ≤ C u -u h 0,Ω . (28) 
thanks to Lemma 3.1 and to the elliptic regularity estimate. We also have By Lemma 3.1 from [START_REF] Lozinski | CutFEM without cutting the mesh cells: a new way to impose Dirichlet and Neumann boundary conditions on unfitted meshes[END_REF], we have for any

v ∈ H 1 (Ω Γ h ) v 0,Ω Γ h ≤ C √ h v 0,Γ + h|v| 1,Ω Γ h . ( 29 
)
Putting v = ∇z, (29) gives

|z| 1,Ω Γ h ≤ C √ h ∇z 0,Γ + h|z| 2,Ω Γ h ≤ C √ h z 2,Ω h ≤ C √ h u -u h 0,Ω . (30) 
By integration by parts,

u -u h 2 0,Ω = Ω (u -u h )(-∆z) = - Γ (u -u h ) ∂z ∂n + Ω ∇(u -u h ) • ∇z. ( 31 
)
To treat the first term in (31), we remark first

- Γ (u -u h ) ∂z ∂n ≤ u -u h 0,Γ ∂z ∂n 0,Γ ≤ C u -u h 0,Γ u -u h 0,Ω .
Furthermore, since the distance between Γ and Γ h is of order h k+1 , we have

u -u h 0,Γ ≤ C( ũ -u h 0,Γ h + h (k+1)/2 |ũ -u h | 1,Ω h ) = C( (φ -φ h )w 0,Γ h + h (k+1)/2 |ũ -u h | 1,Ω h ) ≤ C(h k+1 w 0,Γ h + h (k+1)/2+k f k,Ω h ).
We have used here the already proven bound on |ũ -u h | 1,Ω h and the interpolation error bound for φ -φ h .

We have thus thanks to Lemma 3.1,

u -u h 0,Γ ≤ Ch k+1 ( w 1,Ω h + f k,Ω h ) ≤ Ch k+1 ( ũ 2,Ω h + f k,Ω h ) ≤ Ch k+1 f k,Ω h . Hence, - Γ (u -u h ) ∂z ∂n ≤ Ch k+1 f k,Ω h u -u h 0,Ω . (32) 
The second term in (31) is treated by Galerkin orthogonality (24): for any

y h ∈ V (k) h Ω ∇(u -u h ) • ∇z = Ω h ∇(φw -φ h w h ) • ∇(φy -φ h y h ) I - Ω h \Ω ∇(φw -φ h w h ) • ∇(φy) II + ∂Ω h ∂ ∂n (φw -φ h w h )(φ h y h ) III -σh E∈F Γ h E ∂ ∂n (φw -φ h w h ) ∂ ∂n (φ h y h ) -σh 2 T ∈T Γ h T ∆(φw -φ h w h )∆(φ h y h ) IV + Ω h (f -f )φ h y h -σh 2 T ∈T Γ h T (f -f )∆(φ h y h ) V . (33) 
We now estimate term by term the right-hand side of the above inequality taking y h = Ĩh y with Ĩh the Clément interpolation operator on T h . Term I: by Cauchy-Schwartz, the already proven bound on |ũ -u h | 1,Ω h , and (28),

|I| ≤ C|ũ -u h | 1,Ω h |φy -φ h y h | 1,Ω h ≤ Ch k+1 f k,Ω h y 2,Ω h ≤ Ch k+1 f k,Ω h u -u h 1,Ω .
Term II: using (30) for z = φy,

|II| ≤ |ũ -u h | 1,Ω h |z| 1,Ω h \Ω ≤ Ch k+1/2 f k,Ω h u -u h 0,Ω .
Term III: applying the trace inequality (19) on the mesh elements adjacent to ∂Ω h yields

|III| ≤ C   T ∈T Γ h 1 h |ũ -u h | 2 1,T + |ũ -u h | 2 2,T   1/2 φ h y h 0,∂Ω h .
The term in parentheses can be further bounded using the triangle inequality, interpolation estimates, and the bound (27

) on v h = φ h (w h -I h w) as (• • • ) 1/2 ≤ 1 h |ũ -φ h I h w| 2 1,Ω Γ h + h|ũ -φ h I h w| 2 2,T 1/2 + 1 √ h |||v h ||| h ≤ Ch k-1/2 f k,Ω h .
Moreover, since Ω Γ h is a strip around Γ h of width ∼ h, we have

φ h L ∞ (Ω Γ h ) ≤ Ch ∇φ h L ∞ (∂Ω h ) ≤ Ch (34) 
and, by (28),

φ h y h 0,∂Ω h ≤ Ch y 1,Ω h ≤ Ch u -u h 0,Ω so that |III| ≤ Ch k+1/2 f k,Ω h u -u h 0,Ω .
Term IV: by Cauchy-Schwarz and trace inequalities, together with the interpolation estimates,

|IV | ≤ (Ch k f k,Ω h + |||v h ||| h )G h (y h , y h ) 1/2 ≤ Ch k f k,Ω h G h (y h , y h ) 1/2
and by ( 30) and (34),

G h (y h , y h ) 1/2 ≤ C h φ h y h 0,Ω Γ h ≤ C y 0,Ω Γ h ≤ C|z| 1,Ω Γ h ≤ C √ h u -u h 0,Ω . (35) Hence, |IV | ≤ Ch k+1/2 f k,Ω h u -u h 0,Ω .
Term V: by an inverse inequality and (26),

|V | ≤ C f -f 0,Ω h \Ω φ h y h 0,Ω h \Ω ≤ Ch k-1 f k,Ω h φ h y h 0,Ω h \Ω .
Proceeding as in (35) we conclude

|V | ≤ Ch k+1/2 f k,Ω h u -u h 0,Ω .
Combining the bounds for the terms I-V in (33) with (32) and putting all this into (31), we obtain by Young inequality

u -u h 2 0,Ω ≤ Ch k+1 f k,Ω h u -u h 1,Ω + Ch k+1/2 f k,Ω h u -u h 0,Ω ≤ C ε h 2k+1 f 2 k,Ω h + εh u -u h 2 1,Ω + ε u -u h 2 0,Ω .
By the already established estimate for |u -

u h | 1,Ω , u -u h 2 0,Ω ≤ C 1 ε + ε h 2k+1 f 2 k,Ω h + (ε + εh) u -u h 2 0,Ω
which proves (9) taking sufficiently small ε.

Conditioning of the system matrix

We are now going to prove that the condition number of the finite element matrix associated to the bilinear form a h of φ-FEM does not suffer from the introduction of the multiplication by φ h : it is of order 1/h2 on a quasi-uniform mesh of step h, similar to the standard FEM on a fitted mesh.

Theorem 4.1 (Conditioning). Under Assumptions 1 and 2 and recalling that the mesh T h is supposed to be quasi-uniform, the condition number defined by κ(A) := A 2 A -1 2 of the matrix A associated to the bilinear form a h on V (k) h , as in ( 6), satisfies

κ(A) ≤ Ch -2 .
Here, • 2 stands for the matrix norm associated to the vector 2-norm | • | 2 .

Proof.

Step 1 (a lower bound on a h ). We shall prove for all w h ∈ V

(k) h a h (w h , w h ) ≥ C w h 2 0,Ω h . ( 36 
)
By Lemma 3.7, it holds for each

w h ∈ V (k) h a h (w h , w h ) ≥ c|||w h ||| 2 h ≥ c|φ h w h | 2 1,Ω h .
We now denote u h = φ h w h and apply Lemma 3.1 with k = 0 and φ h instead of φ to w h = u h /φ h :

w h 0,Ω h ≤ C u h 1,Ω h . (37) 
This is justified by a possible relaxation of the hypotheses of Lemma 3.1. The constant in (37) depends on φ h W 1,∞ (Ω h ) which is bounded uniformly in h. Moreover, the local coordinates around Γ evoked in Assumption 1 can be reused to build the same around Γ h . Applying Poincaré inequality on the domain Ω in h := {φ h < 0} yields, as

u h = 0 on Γ h = ∂Ω in h , u h 0,Ω in h ≤ C|u h | 1,Ω in h
with a constant that depends only on the diameter of Ω in h and can be thus assumed h-independent. Moreover, invoking Lemma 3.4 and observing Ω h \ Ω in h ⊂ Ω Γ h we conclude that

u h 0,Ω h ≤ C|u h | 1,Ω h .
Combining this with (37) we finish the proof of (36) as follows:

a h (w h , w h ) ≥ c|u h | 2 1,Ω h ≥ C u h
Step 2 (an upper bound on a h ). We shall prove for all w h ∈ V

(k) h a h (w h , w h ) ≤ C h 2 w h 2 0,Ω h . (38) 
By definition of a h and Lemma 3.5,

a h (w h , w h ) ≤ C|φ h w h | 2 1,Ω h + C √ h ∂(φ h w h ) ∂n 0,∂Ω h |φ h w h | 1,Ω h + Ch 2 T ∈T Γ h |φ h w h | 2 2,T .
Using the inverse inequalities on

V (k+l) h ∂(φ h w h ) ∂n 0,∂Ω h ≤ C √ h φ h w h 0,Ω h , |φ h w h | 1,Ω h ≤ C h φ h w h 0,Ω h ,
and |φ h w h | 2,T ≤ C h 2 φ h w h 0,T yields a h (w h , w h ) ≤ C φ h w h 2 0,Ω h ,
which entails (38) since φ h is bounded uniformly in h.

Step 3. Denote the dimension of V with the vector v ∈ R N contaning the expansion coefficients of v h in the standard finite element basis. Recalling that the mesh is quasi-uniform and using the equivalence of norms on the reference element, we can easily prove that

C 1 h d/2 |v| 2 ≤ v h 0,Ω h ≤ C 2 h d/2 |v| 2 . (39) 
The bounds (39) and (38) imply

A 2 = sup v∈R N (Av, v) |v| 2 2 = sup v∈R N a(v h , v h ) |v| 2 2 ≤ Ch d sup v h ∈V h a(v h , v h ) v h 2 0 ≤ Ch d-2 .
Similarly, (39) and (36) imply

A -1 2 = sup v∈R N |v| 2 2 (Av, v) = sup v∈R N |v| 2 2 a(v h , v h ) ≤ C h d sup v h ∈V h v h 2 0 a(v h , v h ) ≤ C h d .
These estimates lead to the desired result.

Numerical results

We have implemented φ-FEM in FEniCS Project [START_REF] Anders | Automated Solution of Differential Equations by the Finite Element Method[END_REF] and report here some results using uniform Cartesian meshes on a rectangle O as the backgound mesh T O h . The level-sets φ are approximated in all the tests by the same finite elements as w h , i.e. we take l = k in (4). All the integrals in a h are computed exactly by using quadrature rules of sufficiently high order.

st test case

Let Ω be the circle of radius √ 2/4 centered at the point (0.5, 0.5) with φ(x, y) = 1/8-(x-1/2) 2 -(y-1/2) 2 and the surrounding domain O = (0, 1) 2 . We use φ-FEM to solve numerically Poisson-Dirichlet problem [START_REF] Anders | Automated Solution of Differential Equations by the Finite Element Method[END_REF] with the exact solution given by u(x, y) = φ(x, y) × exp(x) × sin(2πy). The errors in L 2 and H 1 norms for φ-FEM with P 1 finite elements are reported in Fig. 1. Taking the stabilization parameter σ = 20, the numerical results confirm the theoretically predicted optimal convergence orders (in fact, the convergence order in the L 2 norm is 2 and is thus better than in theory). We also observe that the ghost stabilization is crucial to ensure the convergence of the method, cf. the results with σ = 0. The condition numbers are reported in Fig. 2. We observe that the ghost stabilization (again σ = 20 here) is necessary to obtain the nice conditioning. The results with higher order P k finite elements, k = 2, 3 are reported in Fig. 3. The optimal convergence orders under the mesh refinement are again observed (with the order (k + 1) in the L 2 norm, better than in theory). The influence of the stabilization parameter σ on the accuracy of φ-FEM with P 1 and P 2 finite elements is investigated at Fig. 4: the method is robust with respect to the value of σ at least in the range [0.1, 20].

nd test case

We now set Ω as the rectangle with corners 2π 2 π 2 +1 , π 3 -π π 2 +1 , (0, π), -2π 2 π 2 +1 , -π 3 -π π 2 +1 , (0, -π) and φ(x, y) = -(y -πx -π) × (y + x/pi -π) × (y -πx + π) × (y + x/pi + π). We use φ-FEM to solve numerically Poisson-Dirichlet problem [START_REF] Anders | Automated Solution of Differential Equations by the Finite Element Method[END_REF] in Ω with the right-hand f = 1. This test case is not consistent with Assumption 1. We want here to test φ-FEM outside of the setting where it is theoretically justified. The results with P 1 and P 2 finite elements are reported in Fig. 5. We observe the optimal convergence in the case k = 1 and somewhat close to optimal convergence in the case k = 2.

rd test case

To get further outside of the theoretically comfortable playground, we consider the problem

-div(A∇u) + u = f on Ω, u = gon Γ, (40) 
with a smooth positive coefficient A, assumed to be known on O ⊃ Ω. In order to apply the φ-FEM idea to the non-homogeneous boundary conditions in (40), we assume that g is actually defined and is sufficiently smooth on O. We consider then the ansatz u h = φ h w h + g h , where

g h ∈ V (k) h is an interpolant of g on T h and w h ∈ V (k) h
is the solution to the following problem generalizing ( 5)

Ω h [A∇(φ h w h + g h ) • ∇(φ h v h ) + (φ h w h + g h )φ h v h ] - ∂Ω h A ∂ ∂n (φ h w h + g h )φ h v h +σh E∈F Γ h E ∂ ∂n (φ h w h + g h ) ∂ ∂n (φ h v h ) + σh 2 T ∈T Γ h T L(φ h w h + g h )L(φ h v h ) = Ω h f φ h v h -σh 2 T ∈T Γ h T f L(φ h v h ), ∀v h ∈ V (k) h (41) with L(v) = -div(A∇v) + v.
We use φ-FEM (41) to solve numerically Problem (40) on the domain Ω defined by the level-set function φ given in the polar coordinates (r, θ) by φ(r, θ) = r 4 (5 + 3 sin(7θ + 7π/36))/2 -0.47 4 , taking O = (-1, 1) 2 as the surrounding domain (see [START_REF] Haslinger | A new fictitious domain approach inspired by the extended finite element method[END_REF][START_REF] Lozinski | CutFEM without cutting the mesh cells: a new way to impose Dirichlet and Neumann boundary conditions on unfitted meshes[END_REF] for pictures of Ω). We choose A(x, y) = (1 + x 2 + y 2 ), adjust f so that the exact solution is given by u(x, y) = sin(x) exp(y), and take the Dirichlet data as g(x, y) = φ(x, y) exp(x) sin(y) + u(x, y) so that u = g on Γ only. The results are presented in Figure 5. We observe that the Ghost-penalty part is essential and ensures the optimal convergence of the method.

Conclusions and outlook

The numerical results from the last section confirm the theoretically predicted optimal convergence of φ-FEM in the H 1 semi-norm. The convergence in the L 2 norm turns out to be also optimal, which is better than the theoretical prediction. We have thus an easily implementable optimally convergent finite element method suitable for non-fitted meshes and robust with respect to the cuts of the mesh with the domain boundary. This comes at the expense of augmenting the polynomial degrees in the finite element formulation in comparison with the standard FEM and thus necessitating higher order quadrature rules. It would be interesting to investigate the effect of "under-integrating", i.e. lowering the quadrature order, on the accuracy of the method. Of course, the scope of the present article is very limited and academic: we only consider here the Poisson equation with homogeneous boundary conditions. An extension to non-homogeneous Dirichlet condition u = g on Γ and to a more general second order equation (40) is straightforward. It is presented (without any theoretical analysis) in the 3 rd test case above. On the other hand, treating Neumann or Robin boundary conditions is a completely different matter. We announce here an ongoing work [START_REF] Duprez | φ-FEM, a finite element method on domains defined by level-sets: the Neumann boundary case[END_REF], where a Neumann problem is discretized in the φ-FEM manner by introducing some auxiliary unknowns on Ω Γ h . Future endeavors should also be devoted to more complicated governing equations and boundary conditions.
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 1 Figure 1: Relative errors of φ-FEM for the 1 st test case and k = 1. Left: φ-FEM with ghost penalty σ = 20; Right: φ-FEM without ghost penalty (σ = 0).
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 2 Figure 2: Condition numbers for φ-FEM in the 1 st test case and k = 1. Left: φ-FEM with ghost penalty σ = 20; Right: φ-FEM without ghost penalty (σ = 0).

Figure 3 : 1 σh 3 10 - 5 4 σh

 31354 Figure 3: Relative errors of φ-FEM for the 1 st test case. Left: k = 2; Right: k = 3.
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 45 Figure 4: Influence of the ghost penalty parameter σ on the relative error |u -u h | 1,Ω /|u| 1,Ω for φ-FEM in the 1 st test case. Left: k = 1; Right: k = 2.
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 6 Figure 6: Relative errors of φ-FEM for the 3 th test case and k = 1. Left: φ-FEM with ghost penalty σ = 20; Right: φ-FEM without ghost penalty (σ = 0).

  Assumption 1. The boundary Γ can be covered by open sets O i , i = 1, . . . , I and one can introduce on every O i local coordinates ξ 1 , . . . , ξ d with ξ d = φ such that all the partial derivatives ∂ α ξ/∂x α and ∂ α x/∂ξ α up to order k + 1 are bounded by some C 0 > 0. Moreover, φ is of class C k+1 on O and |φ| ≥ m on O \ ∪ i=1,...,I O i with some m > 0.

  1,Ω h and the sums over F Γ h and T Γ h are evidently controlled by |||v h |||

	2 h . The remaining terms are
	controlled by |φ h v h | 2 1,Ω h and hence by |||v h ||| 2 h thanks to (

Our approach can also be realized using Q k finite elements on a mesh consisting of rectangles/cubes. The convergence results and proofs can be straightforwardly passed over to this case.

1,Ω h ≥ C w h 2 0,Ω h .