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Inverted flags – clamped-free elastic thin plates subjected to a fluid flowing axially and directed

from the free end towards the clamped end – have been observed experimentally and computa-

tionally to exhibit large-amplitude flapping beyond a critical flow velocity. The motivation for

further research on the dynamics of this system is partly due to its presence in some engineering

and biological systems, and partly because of the very rich dynamics it displays. In the present

paper, the goal is to develop a nonlinear analytical model for the dynamics and stability of high

aspect ratio (i.e. height to length ratio) flags. The inviscid fluid flow is modelled via the quasi-

steady version of Theodorsen’s unsteady aerodynamic theory, and the Polhamus leading-edge

suction analogy is utilized to model flow separation effects from the free end (leading edge)

at moderate angles of attack. Gear’s backward differentiation formula and a pseudo-arclength

continuation technique are employed to solve the governing equations. Numerical results suggest

that fluidelastic instability may be the underlying mechanism for the flapping motion of high

aspect ratio heavy inverted flags. In other words, flapping may be viewed as a self-excited vibration.

It was found from numerical results that the undeflected static equilibrium of the inverted flag is

stable at low flow velocities, prior to the occurrence of a supercritical pitchfork bifurcation. The

pitchfork bifurcation is associated with static divergence (buckling) of the flag. At higher flow

velocities, past the pitchfork bifurcation, a supercritical Hopf bifurcation materialises, generating

a flapping motion around the deflected static equilibrium. At even higher flow velocities, flapping

motion becomes symmetric, around the undeflected static equilibrium. Interestingly, it was also

found that heavy flags may exhibit large-amplitude flapping right after the initial static equilibrium,

provided that they are subjected to a sufficiently large disturbance. Moreover, inverted flags with

a non-zero initial angle of attack were found to be less stable than their perfectly flow-aligned

counterparts.
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1. Introduction

Exploring the dynamics of a thin, flexible plate-like structure subjected to axial flow has been

of constant interest to researchers as it can enhance our understanding of natural processes, such

as the reconfiguration of plants in wind (Gosselin et al. 2010), snoring in humans (Huang 1995a;

1995b) and flight of insects (Sane 2003). It can also help in the design of trouble-free engineering

systems, such as aircraft and paper handling machines. The body of literature on the subject is

enormous and cannot be fully covered in this paper. For a comprehensive reviews of the subject,

the reader is referred to Dowell (1975), Mei et al. (1999), Shelley & Zhang (2011) and Paı̈doussis

� Email address for correspondence: michael.paidoussis@mcgill.ca
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(2016). Here, we focus only on a subset of fluid-structure interaction (FSI) problems involving

a flexible thin plate in axial flow: a cantilevered thin plate (or a flag) of length L and height H

subjected to a fluid flowing axially with velocity U and directed from the free end towards the

clamped one, otherwise known as an ‘inverted flag’; see figure 1.

The first investigation on the dynamics and stability of inverted flags may be attributed to Guo &

Paı̈doussis (2000). They studied theoretically the linear stability of rectangular plates with various

boundary conditions, such as clamped-free, free-free and free-clamped, in inviscid, incompressible

two-dimensional (2D) flow. They found that a free-clamped (or inverted) plate flutters via a Hopf

bifurcation at a non-zero critical flow velocity which is inversely proportional to the fluid-to-plate

mass ratio defined as � D �fL=�ph; �f and �p being the mass density of the fluid and plate,

respectively, and h is the thickness of the plate.� This differs from the divergence instability

proposed by Kim et al. (2013), and reported by Sader et al. (2016b), Gurugubelli & Jaiman (2015)

and Goza et al. (2018). Recently, interest in the dynamics of inverted flags has been revived

mainly due to their potential application to small-scale energy harvesting; see, for example, the

experimental study by Orrego et al. (2017) on inverted piezoelectric flags. Moreover, exploring the

dynamics of inverted flags is expected to improve our understanding of the flapping of biological

structures, such as plant leaves in wind (Sader et al. 2016a; Fan et al. 2019).

Kim et al. (2013) explored the dynamics of inverted flags in an open-loop wind tunnel at high

Reynolds numbers Re � UL=� � 104 � 105, � being the kinematic viscosity of the fluid. They

identified three consecutive regimes/modes of dynamical behaviour, namely the stretched-straight

mode, the flapping mode and the fully deflected mode, as the flow velocity in the test-section was

increased. It was found that, in contrast to a typical flag which undergoes flapping beyond a critical

flow velocity, the inverted flag performs flapping only within a finite range of flow velocities,

somewhat analogously to vortex-induced vibration of a spring-supported cylinder in cross-flow.

It was also found that the inverted flag displays larger peak-to-peak flapping amplitude A (up

to A=L D 1:8) than the conventional flag.

Following the seminal work by Kim et al. (2013), several researchers employed fully computa-

tional approaches to solve the fluid-structure interaction problem of inverted flags. For example,

Ryu et al. (2015) used the immersed boundary method (IBM) to investigate the flapping dynamics

of 2D inverted flags at relatively low Reynolds numbers (up to Re D 250). For Re < 50, the

stretched-straight and flapping modes did not arise. For 100 � Re � 250, however, the stretched-

straight, flapping and deflected modes occurred in a regular sequence as the bending rigidity

parameter of the flag, which is the reciprocal of the dimensionless flow velocity, was decreased.

They found numerically that the deformation of the free end of the flag grows steadily, as the

bending rigidity is decreased in the range between the stretched-straight and the flapping modes.

They called this intermediate regime “the biased mode”.

vAlmost concurrently with Ryu et al. (2015), two other research groups performed compu-

tational investigations on the dynamics of inverted flags. Gilmanov et al. (2015) developed an

FSI solver by coupling the curvilinear immersed boundary method and a free-rotation finite

element model to solve systems undergoing arbitrarily large deformation. One of the case studies

they considered was an inverted flag of aspect ratioA D H=L D 1 and � � 0:31 flapping

in a high Reynolds number axial flow (Re � 105). They obtained excellent agreement with the

experimental results reported by Kim et al. (2013), particularly on the time history of the flag free-

end displacement and the maximum and mean values of the drag coefficient. Tang et al. (2015)

performed computational studies on the dynamics of 3D inverted flags in the Re D 100�500 flow

regime. In particular, they examined the effects of the aspect ratio of the flag and the incidence

angle of the oncoming flow. For zero incidence angle, they found that, as the dimensionless

� Throughout the present paper, including the Introduction, the mass ratio � is defined as fluid mass to
structure mass. Some other authors use the inverse definition.
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Figure 1: Two-dimensional inverted flag in axial flow: free at the upstream and clamped at the

downstream end. The flag is assumed to be infinitely wide (i.e. H=L ! 1); hence, the fluid flow

surrounding the flag is treated as two-dimensional.

flow velocity is increased (or the bending rigidity parameter is decreased) beyond the deflected

mode, the flag may undergo flapping motion about the deflected shape with the free end pointing

downstream. They called this behaviour the “deflected-flapping” mode. They also found that, as

the mass ratio or aspect ratio is increased, the flag starts flapping at a lower dimensionless flow

velocity, which also persists for a wider range of flow velocities. Bistability and hysteresis are

present in the range between the stretched-straight and flapping modes and between the flapping

and deflected modes. For small non-zero incidence angles, they found that the flapping motion

becomes asymmetric about the static equilibrium.

Shoele & Mittal (2016a) investigated interactions between a 2D inverted piezo-electric flag and

axial flow. The majority of their simulations were conducted at Re D 200. They found that the

inverted flag is dynamically nearly insensitive to the mass ratio for the range of dimensionless flow

velocities where low- or high-amplitude symmetric flapping occurs. This finding agrees with the

observations made by Kim et al. (2013), but contradicts the computational findings by Tang et al.

(2015). However, it was shown that at sufficiently high flow velocities the flag bends completely,

pointing downstream, and flapping becomes asymmetric. The dynamical behaviour shows a strong

correlation with the mass ratio in this flow regime. This latter configuration, in fact, behaves very

much like a conventional flag in axial flow – where the fluid flows from the clamped end towards

the free end – whose dynamical behaviour is known to be strongly dependent on the mass ratio;

see, for example, Kornecki et al. (1976), Tang & Paı̈doussis (2007), Connell & Yue (2007), Eloy

et al. (2008) and Howell et al. (2009). Finally, they attributed the mechanism of flapping of light

flags to vortex-induced vibration (VIV) and the lock-in phenomenon.

Yu et al. (2017) conducted experiments with an inverted flag in a relatively confined water

channel (W=L D 2, W being the width of the test-section) in the Re D 4660 � 7600 flow regime.

The inverted flag had an aspect ratioA D 3 and mass ratio � ' 143. The initially straight flag

buckled in the Re < 4940 flow regime, becoming slightly deflected (A=L < 0:3). Beyond the

buckling regime, while increasing (decreasing) the Reynolds number (the dimensionless bending

stiffness), three other modes were encountered: the biased mode, the flapping mode, and the

deflected mode. The biased mode corresponds to moderate-amplitude flapping (0:3 � A=L � 1:2)

about the buckled shape in the 5100 � Re � 6000 flow regime. The other two modes correspond,

respectively, to large-amplitude flapping (A=L � 1:8) in the 6000 < Re � 7122 flow regime,

and large-amplitude buckling beyond Re D 7400. The flapping motion was found to undergo
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a hysteresis loop when the Reynolds number was decreased from Re D 7600 down to Re D
4660. The existence of large-amplitude flapping and deflected modes, as well as the hysteresis

phenomenon, had previously been reported by Kim et al. (2013).

More recently, Gurugubelli & Jaiman (2019) computationally explored the mechanism for

large-amplitude flapping of 3D inverted flags, assuming spanwise periodicity while ignoring the

side-edge effects. They employed the arbitrary Lagrangian-Eulerian technique which allows the

deforming mesh used for solving the fluid system to adapt to the deforming body’s Lagrangian

mesh. Most simulations were conducted for a flag with � D 1 and at Re D 3 � 104. In particular,

they showed that flapping does not arise below a critical Re, presumably because vortex shedding

does not occur in the low-Re flow regime (Re . 40; refer to Blevins 1990 and Paı̈doussis

et al. 2010). They found that the flag undergoes divergence leading to large static deformation

instead, in that flow regime. However, most recently, Goza et al. (2018) showed that for sufficiently

heavy flags, i.e. � � 1, large-amplitude flapping arises even for Re < 50, but the mechanism of

instability is not classical VIV. Gurugubelli & Jaiman (2019) also found that the aspect ratio of the

flag (0:25 �A � 2) has a marginal effect on large-amplitude flapping. Finally, they attributed the

periodic flapping motion to a complex interplay between the unsteady shedding of leading-edge

vortices and the structural dynamics of the flexible flag; the trailing-edge vortices were found to

have an insignificant effect on the flapping.

In an elaborate study, Sader et al. (2016a) employed a combination of mathematical theory,

scaling analysis and experimental measurement to understand the underlying physical mechanisms

of flapping of inverted flags. They concluded that the large-amplitude flapping motion of an

inverted flag is a vortex-induced vibration, in contrast to flapping of a conventional flag, which is a

‘self-excited’ oscillation. They provided some observations and analyses to support this hypothesis,

e.g. that flapping occurred over the approximate range of Strouhal numbers St 2 Œ0:1 0:2� (the

Strouhal number being independent of the Reynolds number) and flapping occurred above a

minimum amplitude, accompanied by flow separation and periodic vortex shedding. The Strouhal

number was calculated by measuring the peak-to-peak amplitude of flapping and considering the

synchronization of vortex shedding and flag motion, as observed in experiments (refer also to Kim

et al. 2013). Adopting steady-state aerodynamic theory in the equations obtained by Kornecki

et al. (1976), they showed that the onset of flapping is due to a static divergence instability and is

thus independent of the mass ratio. In addition, they showed analytically (using lifting-line theory

and the vortex-lattice method) and experimentally that the critical dimensionless flow velocity at

which the zero-deflection equilibrium loses stability decreases as the aspect ratio is increased.

In a subsequent paper, Sader et al. (2016b) examined theoretically the stability of low aspect

ratio (or slender) flags and cylindrical beams (or ‘rods’ as they call them) in uniform steady axial

flow. Employing the Bollay (1939) quadratic normal force coefficient (i.e. CN D 2 sin2 ˛ for rigid,

rectangular, very low aspect ratio plates, ˛ being the incidence angle, or angle of attack), they

developed a theory to examine the static stability of slender flexible and flexibly supported rigid

inverted flags. They found that at low flow velocities the zero-deflection equilibrium is the only

possible stable state. However, at a critical flow velocity, a saddle-node bifurcation occurs, from

which a new deflected equilibrium state emanates and grows in amplitude as the flow velocity is

increased. Their experimental measurements for low aspect ratio (down toA D 0:033) inverted

flags agree well with their theoretical results, both qualitatively and quantitatively.

Sader et al. (2016b) also extended the theory to the case of inverted flexible cylinders and

produced some results by employing experimental system parameters in Rinaldi & Paı̈doussis

(2012). The normal force coefficient was taken as CD D 1:1 (Taylor 1952; Hoerner 1965) for

the theoretical calculations. They found that an inverted cylinder is stable at low flow velocities,

but undergoes a saddle-node bifurcation at higher flow velocities, leading to a large-amplitude

deflected equilibrium state, similarly to low aspect ratio inverted flags. This differs from Rinaldi

& Paı̈doussis’s observations of a ‘weak’ flutter-like instability at low flow velocities, followed by
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divergence at higher flow velocities. Moreover, the transition from zero-deflection equilibrium to

large-amplitude deflected equilibrium should normally occur abruptly, which is again different

from Rinaldi & Paı̈doussis’s observations of a steadily growing bow with increasing flow. On the

other hand, the very recent nonlinear model developed by Abdelbaki et al. (2018) for inverted

cylinders in confined axial flow corroborates qualitatively several aspects of the dynamics observed

by Rinaldi & Paı̈doussis (2012). All of the above call for fresh experimental studies with inverted

flexible cylinders. Interestingly, the theoretical predictions by Sader et al. (2016b) for the saddle-

node bifurcation point agree well with Rinaldi & Paı̈doussis’s experimental measurements of the

critical flow velocity for static divergence.

In a series of studies, Tavallaeinejad et al. (2020, 2018) developed nonlinear theoretical models

to explore the static and dynamic responses of flexible, low aspect ratio (mostlyA < 1) inverted

flags in axial flow. They used a Hamiltonian framework to derive the equations of motion. The

‘reactive’ fluid force – the fluid flow momentum change in the transverse direction due to the

immersed flag’s motion – was formulated using the large-amplitude elongated body theory

of Lighthill (1971), while the nonlinear or ‘vortex’ lift – due to strong vortex formation along

the lateral edges of the flag (Hoerner & Borst 1985) – was approximated by the nonlinear wing

theory proposed by Bollay (1939). They cast Bollay’s implicit equation for the normal force

coefficient of a finite aspect ratio plate-like wing into a closed-form equation similar to that given

by Polhamus (1966).

The nonlinear static response of the system was examined in Tavallaeinejad et al. (2018) by

considering steady fluid-related forces. It was found that a low aspect ratio flag undergoes a static

divergence via a subcritical pitchfork bifurcation followed by a saddle-node bifurcation. However,

beyond a critical aspect ratio, the subcritical bifurcation was replaced by a supercritical bifurcation.

Also, increasing the aspect ratio was found to have a destabilising effect, which is consistent with

the experimental/analytical observations of Sader et al. (2016a) and the computational results

of Tang et al. (2015). For initially curved flags (i.e. imperfect flags), the pitchfork bifurcation was

replaced by a saddle-node bifurcation. By increasing the aspect ratio, the bistable range between

the two saddle-node bifurcations was progressively diminished and eventually a supercritical

response appeared.

Tavallaeinejad et al. (2020) explored the nonlinear dynamics of low aspect ratio (A � 0:5),

relatively heavy (� � 0:4) inverted flags in axial flow. For a not too slender flag, they found the

following typical sequence of dynamical states, as the flow velocity is increased: (i) stable at the

position of rest, (ii) flapping about the position of rest via a supercritical Hopf bifurcation (i.e.

symmetric flapping mode), (iii) flapping about a deflected equilibrium (i.e. asymmetric flapping or

deflected-flapping mode) via two saddle-node bifurcations, and (iv) highly deflected state on one

side via a Hopf bifurcation. They also found that asA was increased fromA D 0:1 toA D 0:5,

the behaviour changed from a fully static response (as reported in Tavallaeinejad et al. 2018) to the

complex sequence of dynamical behaviour outlined above. In addition, it was shown that the fluid

flow with a non-zero incidence angle would break the symmetry of the response from essentially

zero flow. Increasing the incidence angle was found to change the dynamics dramatically. At a

sufficiently large incidence angle, the bistable regime vanishes altogether. Increasing the mass

ratio from � D 0:1 to � D 0:4 was found to lower the critical flow velocity for flapping and to

increase the flapping amplitude. The latter differs from the experimental observations by Kim et al.

(2013) (with only two data points, however) but agrees with the computational results of Tang et al.

(2015). Finally, increasing the skin friction coefficient, approximated by boundary layer solutions

(Anderson 2017), was found to lower the critical flow velocities for the secondary bifurcations, as

well as the flapping amplitude.

Finally, inspired by the planform of tree leaves, Fan et al. (2019) explored the effects of the

plan-view shape of the inverted flag on its stability and dynamics. Wind tunnel tests were carried

out with trapezoidal sheets ofA D 1:25, taper ratio 0 � �=H � 1:75 (� andH being the height
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Study Approach A � Re

Kim et al. (2013)
Experimental (air) 1:0 � 1:3 0:303 � 0:4 � 104 � 105

Experimental (water) 1:3 � 2:0 166:7 � 250 � 104 � 105

Ryu et al. (2015) Computational (IBM) ! 1 — � 250

Gilmanov et al. (2015) Computational (IBM) 1:0 0:31 � 105

Gurugubelli & Jaiman (2015) Computational (ALE) ! 1 0:1 � 10 1000

Tang et al. (2015) Computational (IBM) 0:5 � 2:0 0:2 � 1:0 100 � 500
Shoele & Mittal (2016a) Computational (IBM) ! 1 0:1 � 10 25 � 800

Sader et al. (2016a)
Experimental (air) 0.1-7.5 � 0:38 � 104 � 105

Analytical � 1 steady flow inviscid flow

Sader et al. (2016b)
Experimental (air) 0:033 � 0:13 � 0:38 � 104 � 105

Analytical ! 0 steady flow inviscid flow

Yu et al. (2017) Experimental (water) 3:0 143 � 4 � 7 � 103

Goza et al. (2018) Computational (IBM) ! 1 0.02-20 20, 200

Gurugubelli & Jaiman (2019) Computational (ALE) 0:25 � 2:0 1:0 0:1 � 50, 3 � 104

Tavallaeinejad et al. (2018) Analytical 0:067 � 1:7 steady flow inviscid flow

Tavallaeinejad et al. (2020) Analytical 0:1 � 0:5 0:1 � 0:4 N/A

Fan et al. (2019)
Experimental (air) 1:25 0:4, 0:61 � 104

Analytical � 1 steady flow inviscid flow

Present paper Analytical ! 1 0:1 � 5:0 inviscid flow

Table 1: Taxonomy of recent studies on inverted flags. IBM and ALE are the abbreviations for

‘immersed boundary method’ and ‘arbitrary Lagrangian-Eulerian’ scheme, respectively; N/A

stands for “not applicable”.

at the free and clamped ends, respectively) and two different thicknesses, yielding � D 0:40

and � D 0:61 (presumably for the rectangular sheets), in Re � 104 � 105 flow. They found

that as the taper ratio (or shape parameter) �=H is increased, the critical flow velocities for

both the onset and cessation of flapping and the flow speed range over which flapping occurs

decrease. Interestingly, the ratio of the two critical flow velocities (i.e. cessation to onset) for all

trapezoidal shapes tested was found to be about 4. In addition, they developed an extended form

of the analytical model developed in Sader et al. (2016a) for predicting the divergence instability

of an inverted flag of arbitrary shape, and good agreement with experimental results was achieved.

Moreover, they studied experimentally and analytically a new configuration of inverted flags,

where a rectangular sheet is attached to a slender elastic strip (to mimic a ‘petiole’ or the stalk

that attaches the leaf to the stem) which is clamped at its other end. Similar global dynamical

behaviour as for the flag with no petiole was observed, namely: undeflected equilibrium, flapping

and deflected equilibrium. It was also reported that it is the petiole which provides the primary

source of elasticity, while the elastic sheet undergoes rigid-body motion.

A summary and taxonomy of previous studies is presented in Table 1.�

The aim of the present paper is to investigate analytically the nonlinear dynamics and post-

critical behaviour of inverted flags in axial flow. In particular, we aim at deriving an analytical

model for the dynamics of high aspect ratio, heavy inverted flags by leveraging on inviscid flow

� This table strictly aims at reporting the range of system parameters investigated in each study and does
not assess the validity of their findings. The present paper explores the effect of mass ratio for � 2 Œ0:1 5:0�,
but the results may not match all features present in the experiments of Kim et al. (2013).
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aerodynamic theory. Despite recent advances in computational fluid dynamics (CFD) methods,

which make them practically viable for use in fully coupled fluid-structure interaction solvers,

analytical approaches are still attractive for solving complex FSI problems. Analytical solutions

are obtained in a faster fashion and thus are superior for parametric studies to, for example,

computational models based on direct numerical simulation (DNS) or large-eddy simulation (LES)

of the fluid flow. Moreover, analytical models often give valuable insight into the underlying

mechanisms of the dynamics of the system.

Thus, a continuum analytical representation of fluid forces is obtained and detailed based on

the quasi-steady version of the unsteady aerodynamic theory of Theodorsen (1949) to formulate

the reactive force, and the leading-edge suction analogy of Polhamus (1966) to deal with the

separated flow at the flag leading edge, with no account taken of periodicity of fluid dynamic

forces due to leading-edge vortex shedding. The analytical model will be used to predict, for

example, the onset of instabilities, frequency, and amplitude of flapping, as well as the physical

mechanisms involved in the transition from one regime to another.

The rest of the paper is organized as follows. In ÷ 2, the extended Hamilton’s principle is

employed to derive the equations of motion from the kinetic and potential energies of the system,

as well as the virtual work due to fluid-related forces. The resulting partial-integro-differential

equations are then discretized spatially by means of the Galerkin method and they are recast

as a set of nonlinear ordinary differential equations (ODEs). In ÷ 3, the linearised form of the

equations of motion is obtained, and the linear dynamics of the system is explored by solving

an eigenvalue problem. The nonlinear response of the system is examined in detail in ÷ 4, by

utilizing direct time integration and bifurcation analysis. The sensitivity of the dynamics to the

mass ratio and the angle of attack is also explored. The results are summarised in the form of

bifurcation diagrams to identify the transition between various regimes. It is shown that lighter

flags are more likely to exhibit hysteresis in their dynamical response. In ÷ 5, the effectiveness of

the model is demonstrated by comparing the obtained results with those available in the literature,

highlighting that the proposed model captures both the qualitative behaviour and the detailed

dynamics observed in previous studies.

2. Analytical modelling

In this section, a nonlinear model is developed for the inverted flag problem. First, the inverted

flag problem is defined mathematically. The kinetic and potential energies of the inverted flag,

idealized as a cantilevered elastic beam as shown in figure 2, are derived according to the nonlinear

Euler-Bernoulli beam theory. Next, expressions for fluid forces are formulated separately, and

the associated virtual work is derived. Finally, the nonlinear integro-partial-differential equations

governing the rotation of the mid-plane are derived via the extended Hamilton’s principle. These

equations are non-dimensionalised and then discretised via the Galerkin method.

2.1. Definitions and preliminaries

The system under consideration is shown schematically in figure 1, consisting of a vertical

cantilevered thin plate subjected to an inviscid axial flow impinging on its free end. The flag is

assumed to be infinitely wide (i.e.A! 1); hence, the fluid flow surrounding the flag is treated

as being two-dimensional. The spanwise variation of the fluid-related loads is neglected; the flag

is therefore idealized as a cantilevered Euler-Bernoulli beam. The inverted flag is of infinite span,

finite chord L, thickness h, and flexural rigidity D. The mechanical properties of the flag, i.e., the

mass density, Poisson ratio, Young’s modulus, and internal damping coefficient are represented

by �p, �p, E, and �, respectively; �f stands for the density of the fluid flowing with mean flow

velocity U . Two coordinate systems are defined: (i) a right-handed rectangular Cartesian reference

system .OIXZ/, with the X.eX / and Z.eZ/ axes being in the axial and transverse directions,
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Figure 2: (Left) The flag is idealised as an inextensible (i.e. e D 0) cantilevered beam. An arbitrary

infinitesimal element dx of the beam undergoes longitudinal u.X; t/ and transverse w.X; t/

displacements, related to each other by the rotation angle  .X; t/. (Right) Joukowski’s conformal

mapping of the plate into a circle of radius L=4 (i.e. NX NZ-plane); qr and q� are the radial

and circumferential velocities on the circle in the NX NZ-plane, respectively. The impermeability

condition is satisfied by considering a set of sources and sinks of strength � on the top and bottom

halves of the circle, respectively. The induced velocity due to a single bound vortex of strength �

and its image (i.e. the wake vortex of strength ��) at an arbitrary point on the circle satisfies the

Kutta condition.

respectively; (ii) a curvilinear coordinate system .OI xz/, with the x-axis being along the flag

centreline from its clamped end towards the free one. The unit vectors ex and ez are tangential

and normal to the centreline, respectively.

The rotation angle  .X; t/, the curvature �.X; t/, and the axial strain e.X; t/ are related to

the longitudinal and transverse motions, u.X; t/ and w.X; t/ respectively, of a generic point at a

distance Z from the mid-plane on the cross-section by

sin .X; t/ D @Xw.X; t/

1C e.X; t/
; cos .X; t/ D 1C @Xu.X; t/

1C e.X; t/
; �.X; t/ D @X .x; t/

1C e.X; t/
; (2.1)

where @X � @=@X denotes the first spatial derivative.� The inextensibility assumption

reads e.X; t/ D 0, which yields .1 C @Xu.X; t//
2 C .@Xw.X; t//

2 D 1 (Farokhi et al. 2018),

indicating that the length of the flag centreline remains constant during vibrations. This

condition allows us to express all physical quantities in terms of the curvilinear coordinate .x; t/

(refer to Nayfeh & Pai 2008 or Lopes et al. 2002). Additionally, it reduces the dependent

variables to one, and w.x; t/ and u.x; t/ may be expressed in terms of the rotation angle of the

cross-section  .x; t/. Hence, velocity components of an element may be formulated as

Pw.x; t/ D
Z s

0

P .s; t/ cos .s; t/ ds;

Pu.x; t/ D �
Z s

0

P .s; t/ sin .s; t/ ds;

(2.2)

where the overdot denotes the derivative with respect to time.

Considering a set of longitudinal and transverse displacements (i.e. u.x; t/ and w.x; t/,

respectively) of the element dx shown in figure 2, away from its undeflected static equilibrium,

the relative velocity between the structure and the incident flow in the tangential and normal

� In the remainder of this paper, @� is defined as the first derivative with respect to �, @�� denotes the
second derivative, and so on.
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directions may be written as

Vrel.x; t/ DV� .x; t/ex C Vn.x; t/ez

DŒ. PuC U/ cos C Pw sin �ex C Œ�. PuC U/ sin C Pw cos �ez :
(2.3)

In this paper, the governing equations are derived in a Hamiltonian framework. The extended

Hamilton’s principle may be expressed as

Z t2

t1

�

ıT .t/ � ıV.t/C ıWf.t/C ıWd.t/
�

dt D 0; (2.4)

with T .t/ and V.t/ denoting the kinetic and potential energies of the system, respectively,

and ıWf.t/ and ıWd.t/ the virtual work by the fluid forces acting on the inverted flag and

damping, respectively; here ı denotes the variational operator.

2.2. Kinetic and potential energies

In this study, the centreline rotation of the inverted flag  .x; t/, is taken as the primary variable

for describing the flag motion. This can be achieved with the aid of equations (2.1) and taking

into account the inextensibility assumption. Derivation of the equation of motion in terms of

the rotation angle allows predicting large-amplitude deformations even when the tip rotation

exceeds  =2 (refer to Tavallaeinejad et al. 2018). Thus, in what follows, the kinetic and potential

energies as well as the virtual work of fluid-related forces and damping are formulated as functions

of  .x; t/.

The kinetic energy of the system for translational and rotational motions of the inverted flag

may be written as

T .t/ D1

2
�ph

Z L

0

��Z x

0

sin .s; t/ P .s; t/ ds

�2

C
�Z x

0

cos .s; t/ P .s; t/ ds

�2�

dx

C 1

24
�ph

3

Z L

0

P .x; t/2 dx:

(2.5)

The potential strain energy of the inextensible inverted flag in terms of the rotation angle is

V.t/ D 1

2
D

Z L

0

.@x .x; t//
2 dx; (2.6)

in which D D Eh3=.12.1 � �2p // is the plane-strain flexural rigidity for plates of large aspect

ratios. The virtual work done by the Kelvin–Voigt structural damping� may be formulated as

ıWd.t/ D �D�
Z L

0

@xx P .x; t/ ı dx; (2.7)

where � denotes the viscoelastic damping coefficient. The virtual work done by the fluid-related

force normal to the flag is given by

ıWF.t/ D
Z L

0

.FN.x; t/ cos .x; t/ ıw � FN.x; t/ sin .x; t/ ıu/ dx; (2.8)

in which FN represents the normal force acting on the flag, and is derived in the following section.

� Material damping is introduced in the model since it is an inherent property of all materials; it provides
a way for modelling the dissipation of the energy pumped into the flag from the fluid flow. The structural
damping model utilized in the proposed model is more appropriate than a generic linear viscous damping
model.
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2.3. Aerodynamic model

The inviscid pressure-related forces are modelled in this section. The flow is assumed to be

inviscid and two-dimensional around a thin flat plate. The 2D quasi-steady thin airfoil theory,

involving large angles of attack, is employed to formulate the reactive fluid forces corresponding

to the relative motion of the inverted flag with respect to the incident flow; for details the reader is

referred to Bisplinghoff et al. (2013), Ramesh et al. (2013) and Yan et al. (2014). The influence

of leading edge separation is dealt with separately. First, the quasi-steady forces are derived

using a velocity potential approach in a way that the solution is divided into non-circulatory and

circulatory contributions; each part is obtained using a Joukowski conformal transformation. Next,

the separated flow at the leading edge is modelled utilizing the leading edge suction analogy

of Polhamus (1966).

We consider a two-dimensional perturbation velocity potential due to the motion of the

plate �.x; z; t/, which satisfies the Laplace equation (i.e. r2� D 0, with r being a first order

spatial differential operator). Following Theodorsen’s approach, the perturbation velocity potential

may be divided into two parts: � D �nc C�c, where �c is the circulatory component, fulfilling the

Kutta condition, and �nc denotes the non-circulatory component which satisfies the impermeability

boundary condition.

The pressure difference between the lower and upper surfaces may be formulated using the

unsteady Bernoulli equation (refer to Ramesh et al. 2013 and Yan et al. 2014),

�P.x; t/ D Pu.x; t/ � Pl .x; t/ D �2�
� P�u � .. PuC U/ cos C Pw sin / @x�u

�

: (2.9)

Following Theodorsen’s approach, the pressure difference over the flag is decomposed into two

contributions, namely non-circulatory and circulatory components. Hence, the total pressure may

be written as

�P.x; t/ D �P nc.x; t/C�P c.x; t/: (2.10)

The non-circulatory (or added mass) component, represented by �P nc.x; t/, contributes to the

perturbation pressure due to the displacement of the surrounding fluid (Bisplinghoff et al. 2013).

The circulatory contribution (vortex-induced pressure), denoted by �P c.x; t/, on the other hand,

dominates the perturbation pressure in the vicinity of the trailing edge due to shedding of vorticity

(Staubli & Rockwell 1989).

2.3.1. Non-circulatory contribution

In order to find the solution of the two-dimensional incompressible potential flow, the plate

is mapped into a circle with its centre at the origin and radius r D L=4, through the following

standard conformal mapping illustrated in figure 2:

x C iz D NX C L

2
C i NZ C L2

16. NX C i NZ/
: (2.11)

Given that NX D L=.4 cos �/ and NZ D L=.4 sin �/, the relation between points on the flag and

the circle may be found using (2.11) as x D .1C cos �/=2.

Considering a continuous distribution of source-sink of strength �.�; t/ and ��.�; t/ over the

upper and lower surfaces of the sheet (or on its circle counterpart in figure 2), which satisfies the

impermeability boundary condition, and after several manipulations, the strength per unit length

of the source sheet can be found as �.�; t/ D 4Vn.�; t/ sin � (refer to Bisplinghoff et al. 2013).

Considering an infinitesimal element of the source sheet .L=4/ d' on the circle at � D ', along

with its sink counterpart at � D �', and integrating over the half circle, the non-circulatory
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component of the resultant tangential velocity may be formulated as

qnc
� .�; t/ D 2

 

Z  

0

Vn.'; t/
sin2 '

cos' � cos �
d': (2.12)

Assuming that �nc
u .L=4; 0; t/ D 0 at the leading edge (i.e. � D 0), the non-circulatory perturbation

velocity potential in the NX NZ plane at r D L=4 may be found,

�nc
u .�; t/ D � L

2 

Z 0

�

Z  

0

Vn.'; t/ sin2 '

cos' � cos#
d' d#: (2.13)

Substitution of (2.13) into (2.9), changing the variables by making use of x D .1C cos �/=2, and

using the chain rule, the pressure distribution over the flag due to the non-circulatory contribution

of the flow in the NX NZ plane at r D L=4 may be written as

�P nc.�; t/ D � �
�

L

2
@t

�Z 0

�

Z  

0

Vn.'; t/ sin2 '

cos' � cos#
d' d#

�

� 1

sin �
.. PuC U/ cos C Pw sin /

Z  

0

Vn.'; t/ sin2 '

cos' � cos �
d'

�

:

(2.14)

2.3.2. Circulatory contribution

The Kutta condition enforces that the flow leaves smoothly the trailing edge of the inverted flag

and hence avoids an infinite velocity at the trailing edge (i.e. � D  ); see figure 3. It is known

that the non-circulatory solution by itself is unable to satisfy the Kutta condition. Theodorsen

(1949) fulfilled the condition by considering bound vortices, along with a wake of counter-vortices

continuously shedding from the trailing edge at the freestream velocity. The induced velocity due

to the bound vortices and their ‘images’ cancels the tangential velocity at the trailing edge due to

the non-circulatory component of the flow. Hence,

qnc
� .L=4; � D  ; t/C qc

� .L=4; � D  ; t/ D 0: (2.15)

Subsequently, Theodorsen obtained the induced velocity due to a single bound vortex of strength �

and its image (i.e. the wake vortex of strength ��) at an arbitrary point on the circle and formulated

the circulatory component of the tangential velocity as

qc
� .�;

NX; t/ D � �

2 

� NX2 � L2=4
NX2 C L2=4C NX.L=2/ cos �

�

: (2.16)

Applying the Kutta condition at the trailing edge (i.e. � D  ) and the quasi-steady assumption,�

which neglects only the influence of the wake vortices on the flow (refer to (Bisplinghoff

et al. 2013), the pressure distribution originating from the circulatory contribution of the flow may

be written as�

�P c.�; t/ D �2�
�

� P�c
u.�; t/C 2V�

L sin �
@��

c
u.�; t/

�

D �
�V�q

nc
�
. ; t/

sin �
: (2.17)

It ought to be noted that expression (2.17) ignores the effects of flow history in the wake behind

the trailing edge, and instead considers the forces generated by the instantaneous deformation,

velocity, and acceleration of the flag; the rationale for this is detailed in the following.

Direct numerical simulations by Gurugubelli & Jaiman (2019) for an inverted flag with a splitter

� This is an approximation of Theodorsen’s theory, in which C.k/ ! 1, with C.k/ being Theodorsen’s
function based on Hankel functions of the second kind, with k denoting the reduced frequency. The
quasi-steady theory can be used in the time domain for slow harmonic oscillations with small k, or slowly
varying motion that is not harmonic (Hodges & Pierce 2011).

� To see the full derivation, the interested reader is referred to Bisplinghoff et al. (2013).
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plate at the trailing edge reveal that, despite the total suppression of vortex shedding from the

trailing edge, the large-amplitude flapping persists, with only a minor change in the frequency and

amplitude of the oscillations. This suggests that the large-amplitude flapping of inverted flags may

not require wake-flag synchronization. In other words, the effects of wake flow unsteadiness on

the dynamical behaviour of the system seems to be insignificant, suggesting that a quasi-steady

modelling of fluid forces may be acceptable.

Nevertheless, future work ought to employ a nonlinear analytical model accounting for the

unsteady wake function (in the time domain) behind the trailing edge, to further investigate the

global dynamical behaviour of the inverted-flag system; this is not a trivial task and it is beyond

the scope of this paper.

2.3.3. Leading-edge suction force

The 2D quasi-steady aerodynamic model employed in this paper is based on inviscid potential

flow theory which, by definition, ignores any viscous effects such as flow separation or viscous

stresses acting on the inverted flag. Accounting for the effects of flow separation from the leading

edge is of particular importance for modelling the dynamics of inverted flags. As observed by Yu

et al. (2017), the flow separates from the leading edge, giving rise to a stable attached vortex above

the leading edge up to the angle of attack of about 22°, and a normal force stall at larger angles of

attack where reattachment fails to occur. The leading edge flow separation reduces the pressure

over the upper surface of the plate and its impact becomes typically stronger at high incidence

angles on thin sharp-edged plates. In fact, potential flow theories alone tend to underestimate

the normal force for thin sharp-edged plates at high angles, and they need to be modified either

by employing analytical models, such as the Polhamus suction analogy, or by employing fully

numerical schemes to model the actual flow field.

In the present work, in order to account for the effects of the leading edge vortices, the nonlinear

vortex force associated with the separated flow from the leading edge is formulated via the

Polhamus analogy (Polhamus 1966) as a correction to the quasi-steady pressure derived earlier.

This model formulates a nonlinear relation between the potential force and the angle of attack,

which acts normal to the flag, and thus modifies the normal force, as shown in figure 3. Thus, the

effect of leading edge vortices can be taken into account via superimposing linearly the nonlinear

vortex lift and the quasi-steady forces due to the attached flow (Sane 2003).�

In order to implement the method outlined above, the leading edge suction needs to be expressed

in terms of the quasi-steady force obtained earlier. Hence, the Blasius formula (Yan et al. 2014) is

employed to determine the leading edge suction. Integration of the pressure around a contour at

the leading edge (LE), and application of Bernoulli’s equation yields

Fx � iFz D � i�L

4

Z

LE

� q NX � iq NZ

1 � 2e�i�

�2

sin � d�; (2.18)

where Fx and Fz represent the aerodynamic forces acting on an immersed body. Assuming that

the contribution of the non-circulatory component in the induced velocity near the leading edge

outweighs the other contributions and recalling that q NX D �qnc
�

sin � and q NZ D qnc
�

cos � , the

leading edge suction force at r D L=4 is

Fp.t/ D  �L

16

�

qnc
� .0; t/

�2
: (2.19)

Although the suction analogy does not model the actual flow field, it has been shown to be

� A more comprehensive approach may be to determine all contributions together, via a direct utilization of
the Navier–Stokes equations, for instance. The approach employed here simplifies the analysis considerably
and has been shown to give acceptable results for a wide range of problems; for example, refer to the work
of Pedersen & Żbikowski (2006) on insect-like flapping wings in hover and Azuma & Okamoto (2005) on
deflected wings, among others.
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90ı

Rotated suction force

Quasi-steady

normal force
Leading edge

suction force

Separated region

Figure 3: Flow around the 2D inverted flag placed in an inviscid fluid. The Kutta condition

enforces a smooth, tangential flow leaving the trailing edge. However, according to Polhamus’s

leading edge suction analogy, the leading edge suction vanishes due to separation at the leading

edge, and it forms a leading edge vortex. This results in a normal force component of equal

magnitude to the leading edge suction. Effectively, the leading edge suction force is rotated by 90°

onto the low-pressure side of the flag.

remarkably accurate, especially at high angles of incidence. For instance, this model has been

used successfully in predicting the nonlinear vortex lift of delta wings (Purvis 1981, DeVoria

& Mohseni 2017) and in the theoretical modelling of flapping flight of insects (Pedersen &

Żbikowski 2006).

It ought to be emphasized that the leading-edge suction model used in the present paper fails to

include the effects of vortex-shedding from the leading edge. Thus, the time-variant fluid forces

acting on the flag model may not be truly representative of those in reality, which in turn may

result in inaccurate predictions of the dynamical behaviour (stability, amplitude and frequency

of oscillations). Nevertheless, how the vortex shedding load affects both the local and global

dynamics of the flag is not yet known and is yet to be understood. Accounting for such a load in

the analytical model is a very challenging task and is not attempted in this paper.

2.3.4. Total aerodynamic force

As mentioned in the last section, the nonlinear vortex lift can be superimposed linearly on the

quasi-steady pressure. Hence, the total quasi-steady normal force acting on the inverted flag is

obtained as

FN.�; t/ D ��P.�; t/ � 2Fp.t/ ıD.cos � � 1/; (2.20)

with the total quasi-steady pressure formulated as

�P.�; t/ D �

�

L

2
@t

�Z �

0

qnc
� .#; t/ d#

�

C V�

sin �
.qnc
� .�; t/ � qnc

� . ; t//

�

(2.21)

where ıD.x�L/ denotes the Dirac delta function. It is noted that dealing with a non-homogenous,

non-classical boundary condition is a more challenging task; hence, the end shear due to the

force that results from the Polhamus effect at the leading edge is transferred from the boundary

condition into the equation of motion via the Dirac delta function.

Substituting (2.21) into (2.8) and recalling that x D .1C cos �/=2 yields the virtual work done

by the fluid-related force normal to the flag.
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2.4. Equation of motion

Substituting equations. (2.5)-(2.8) into the generalized Hamilton’s principle given in (2.4) and

performing integration by parts yields the nonlinear governing equation of motion in terms of the

rotation angle  .x; t/:

1

12
�ph

3 R .x; t/ �D@xx.1C �@t / .x; t/

C �ph

�

cos .x; t/@tt

�Z L

x

Z s

0

sin .�; t/ d� ds

�

� sin .x; t/@tt

�Z L

x

Z s

0

cos .�; t/ d� ds

��

C cos .x; t/

Z x

L

FN.s; t/ cos .s; t/ ds C sin .x; t/

Z x

L

FN.s; t/ sin .s; t/ ds D 0: (2.22)

Utilizing the dimensionless parameters

x� D x

L
; t� D t

�
; ˇ D 1

12

� h

L

�2

; �s D �

�
; f � D f �; � D �fL

�ph
; … D

r

�fL

D
LU; (2.23)

in which f is the frequency of flapping and � D
p

�ph=DL
2, one obtains the following nonlinear

dimensionless equation of motion, in which the asterisk notation for x� and t� has been dropped

throughout for simplicity:

ˇ R .x; t/ � .@xx.1C �s@t // .x; t/

C cos .x; t/@tt

�Z 1

x

Z s

0

sin .�; t/ d� ds

�

� sin .x; t/@tt

�Z 1

x

Z s

0

cos .�; t/ d� ds

�

C cos .x; t/

Z x

L

Cf.s; t/ cos .s; t/ ds C sin .x; t/

Z x

L

Cf.s; t/ sin .s; t/ ds D 0; (2.24)

where

Cf D �

 

Z 0

�

Z  

0

�

. Rw � Pu P / cos � . RuC Pw P / sin � …
p
�

P cos 
�

f .'; #/ d' d#

� 2

  sin �

"

. Pu cos C Pw sin /

�Z  

0

.�. Pw cos � Pu sin / �…p
� sin /g.'; �/ d'

�

C… cos 

Z  

0

.
p
�. Pw cos � Pu sin / �… sin /g.'; �/ d'

�

#

� 1

16 
I1jI1jıD.s � 1/;

with

I1 D
Z  

0

.1C cos'/.…
p
� Pw cos � .…p

� PuC 1/ sin / d'

and

f .'; #/ D sin2 '

cos' � cos#
; g.'; �/ D .1 � cos'/.1C cos �/

cos' � cos �
;

in which D  .�; t/,w D w.�; t/ and u D u.�; t/ for simplicity. It is recalled that Cf D Cf.s; t/

via s D .1C cos �/=2 and � D .1C cos'/=2. The absolute operator is used in Cf to modify the

force, accounting for the inherent symmetry of deformations with respect to the longitudinal axis.

The clamped free boundary conditions read  .0; t/ D 0 and @x .L; t/ D 0.
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3. Linear stability analysis

In this section, typical linear dynamics of the system, the mechanism of instability, and the

sensitivity of the first two critical flow velocities to the mass ratio are explored. A linearised partial

differential equation is first derived in the vicinity of the position at rest and is then transformed

into an ordinary differential equation (ODE) via the Galerkin method, which may subsequently

be transformed to an eigenvalue problem. The stability analysis is performed by considering the

eigenvalues or equivalently eigenfrequencies of the system obtained by solving the eigenvalue

problem for given system parameters.

3.1. Linear equation of motion

The linearised form of the nonlinear equation presented in ÷ 2.4 is expressed in terms of the

transverse displacement w.x; t/. The resulting equation differs from that in Sader et al. (2016a)

in that the time-dependent terms in the fluid model adopted here have been retained. Assuming

a small and purely transverse deflection of the inverted flag (i.e. w.x; t/ � 1, u.x; t/ � 0),

equation (2.24) may be linearized as

Rw.x; t/C .1C �s@t /@xxxxw.x; t/

C 1

 

Z 0

�

Z  

0

.� Rw.�; t/ �…p
�@� Pw.�; t//f .'; #/ d' d#

C 2…

  sin �

Z  

0

.…@�w.�; t/ � p
� Pw.�; t//g.'; �/ d' D 0; (3.1)

where x D .1C cos �/=2 and � D .1C cos'/=2. The boundary conditions for the clamped-free

flag are expressed as

w.0; t/ D 0; @xw.0; t/ D 0 @xxw.1; t/ D 0; @xxxw.1; t/ D 0: (3.2)

The series expansion

w.x; t/ D
M
X

iD1

Wi .x/pi .t/ (3.3)

is introduced as an approximate solution for the linearised equation of motion of the inverted flag,

where pi .t/ are the time-dependent generalized coordinates, and Wi .x/ are the corresponding

mode shapes of a cantilevered beam in vacuo; M is the number of modes utilized in the solution.

It is noted that direct application of conventional eigenfunctions in the expansion (3.3) hinders

the development of the exact evaluation of the non-circulatory velocity potential due to the

presence of singular terms. In order to overcome this problem, an expansion of Chebyshev

polynomials of the first kind with a sufficiently large number of terms is utilized to approximate

each mode shape of the sheet. Polynomial representation of the mode shapes allows the integration

in (3.1) to be performed exactly over ' with the aid of Glauert’s integral given in Eq. (A 1).

Applying the Galerkin technique, equation (3.1) reduces to the well-known second-order

form M Rp CC Pp CKp D 0 (see Eq. (A 7)). Defining the following partitioned vector and matrices

of order 2M :

r D
�

Pp
p

�

; B D
�

0 M

M C

�

; E D
�

�M 0

0 K

�

; (3.4)

the problem reduced into the first-order form B Pr C Er D 0. Seeking periodic solutions in the

form of r.t/ D Qr exp.i!t/, where Qr is the modal amplitude and ! is the complex frequency, one

can obtain the following eigenvalue problem
�

i!B C E � Qr D 0.
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3.2. Numerical results

The dynamics of the linear system is examined by obtaining the eigenfrequencies of the

system as a function of the dimensionless flow velocity. The evolution of the generally complex

eigenfrequencies of the system with varying flow velocity is commonly displayed as an Argand

diagram. In the Argand diagram, the ordinate and the abscissa are associated with the imaginary

and real parts of the eigenfrequencies, i.e. Im.!/ and Re.!/, respectively. It is recalled that Im.!/

corresponds to the damping ratio, and Re.!/ represents the dimensionless frequency of the

oscillation. Instability materializes by the crossing of the eigenfrequency locus from the positive

to the negative half-plane in the Argand diagram (i.e. when Im.!/ < 0); refer to Paı̈doussis (2014)

for more details.

In this study, six modes are employed for numerical solutions (i.e. M D 6); this is sufficient

for obtaining converged solutions. The other system parameters utilized in the simulations are

as follows: L D 10 cm, h D 0:1 mm, � D 1200 kg m�3, �f D 1:2 kg m�3, D D 2454 N cm2

and �s D 0:0002.

Figure 4 is the Argand diagram for an inverted flag with � D 1:0, showing the evolution of the

lowest three eigenfrequencies of the system. The linear response can be interpreted as follows.

(i) Free motion of the inverted flag is damped at low flow velocities; this is evident from the

positive imaginary part of the eigenfrequencies.

(ii) At a sufficiently high flow velocity, the frequency of the first mode becomes purely

imaginary, and then bifurcates on the Im.!/-axis. One of the solution branches associated with

this mode eventually vanishes altogether (i.e. Re.!/ D 0, Im.!/ D 0) at … D 1:36 and crosses

from the positive to the negative half-plane, indicating the onset of static divergence (buckling)

via a pitchfork bifurcation.

(iii) At a higher flow velocity (… D 7:58), the negative and positive branches of the first

mode loci coincide and leave the imaginary axis, while Im.!/ < 0 (shown in the inset in this

figure). This indicates the onset of Paı̈doussis-type coupled-mode flutter (Done & Simpson 1977,
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Paı̈doussis 2014). This bifurcation emanates directly form a divergent state; hence, the frequency

of oscillation is zero at the onset of flapping.

(iv) The eigenfrequency of the first mode becomes purely imaginary once again as the flow

velocity is increased further, at … D 14:74, giving rise to a second buckling of the inverted flag in

the first mode.

(v) The frequency of the second mode diminishes, and it vanishes circa … D 15.

Let us now consider how well linear theory predicts the dynamics of the system as observed

in the experiments. For a physical system, the inverted flag loses its straight, undeformed

configuration and buckles similarly to a column under axial load. Thereafter, the flag exhibits

flapping motion. Increasing the flow velocity further, the flapping motion gradually diminishes

in magnitude, and the flag displays a buckled shape once again, but with a larger amplitude of

deformation (compared to the initial buckling) as the fluid dynamic forces grow with increasing

flow velocity. Thus, up to this point, the linear model succeeds in predicting, qualitatively at least,

the dynamics of the physical system.

It is worth mentioning that stability of the stretched-straight state of the inverted flag up to the

occurrence of divergence is not affected by the mass ratio parameter. Thus, for static divergence,

the mass ratio does not change the value of the critical flow velocity. This is evident from the

stability map shown in figure 5, which highlights the sensitivity of the foregoing bifurcations

to the mass ratio parameter. The onset of flapping, however, is sensitive to the mass ratio. More

specifically, the Paı̈doussis-type coupled-mode flutter occurs at considerably higher values of …

as � is decreased, in the range � 2 Œ0:1 0:6�. For larger values of �, the change becomes much

less significant, and the curve of the boundary of stability displays a near-plateau.

The divergence instability mechanism was originally suggested by the Kim et al. (2013)

experiments (where they argued that changing the mass ratio does not affect the onset of flapping),

and by Sader et al. (2016a) theoretically via a linear stability analysis. Sader et al. (2016a) argued

that the divergence instability of the inverted flag is a steady process, with steady aerodynamic

forces being involved. Then, unsteadiness in the flow comes into play and leads to flapping motion.

This is also predicted by the nonlinear model in the next section.

Before closing this section, an important note should be made. Since linear theory is valid only

up to the onset of the first instability, in this case divergence, the system must be analysed by the

nonlinear model to ascertain the reliability of the predicted post-divergence behaviour. Thus, the

loss of the stability of the original equilibrium predicted by the linear model is valid. However,

other states may be encountered once nonlinear effects are taken into account. The reason for this

is that, in the linear model, it is assumed that motions are small, remaining in the proximity of

the undeflected equilibrium. This is not the case for larger values of the flow velocity, where the

inverted flag diverges considerably, away from original equilibrium.

4. Post-divergence behaviour

The nonlinear aspects of the system dynamics, such as limit-cycle frequencies and amplitudes,

as well as the transition between the various dynamical states are studied numerically. The

nonlinear integro-partial-differential model of equation (2.24) is first discretized in space, and

then recast in a system of first-order ODEs. The resultant set of ODEs is solved using a pseudo-

arclength continuation technique. The Gear backward differentiation formula (BDF) is also used

to obtain the time histories of oscillation.

4.1. Nonlinear discretised model

The spatial discretisation of the nonlinear equation of motion (2.24) is made in a similar fashion

to that described in ÷ 3.1 by employing the Galerkin method. Hence, a linear combination of
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suitable comparison functions ‰i .x/ is selected to approximate the rotation of the flag
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M
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iD1

‰i .x/qi .t/; (4.1)

where qi .t/ represent the unknown time-dependent generalized coordinates; M denotes the

number of modes used.

As discussed in ÷ 3.1, Chebyshev polynomials of the first kind with a sufficient number of terms

are utilised to approximate the comparison functions ‰i .x/ (see Eq. (A 8)). Applying Galerkin’s
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with �p and fp denoting the dimensionless counterparts of �P and Fp, respectively; the prime

denotes a spatial derivative.

It is evident from (4.2) that sine and cosine terms have been retained intact in the discretisation

scheme and the numerical integration. Consequently, the number of terms in the discretised

system and, in turn, the computational cost, increase significantly. Nevertheless, this ensures

that reliable predictions are made when the flag deformation becomes very large, at high flow

velocities (Tavallaeinejad et al. 2018). In this study, six generalized coordinates are retained in

the series expansion of the rotation angle, resulting in 6 second-order ODEs. These equations are

then recast into state-space form, i.e. a set of twelve first-order ODEs, and are solved using the

pseudo-arclength continuation technique implemented in AUTO (Doedel et al. 1997) to construct
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the bifurcation diagrams. This technique enables us to perform continuation of both stable and

unstable branches of the solution. Direct time integration is also performed via Gear’s backward

differentiation formula (BDF) (Gear 1971) yielding the time-varying generalised coordinates qi .

Time histories of the amplitude of oscillation are used to plot phase-plane portraits, Fast Fourier

transforms (FFT), and (flapping) flag shapes at points of interest in the parameter space. In

some cases, where the change in the state of the system is sharp, the stable periodic solution

emerging from a saddle-node bifurcation is numerically traced via direct time integration, using

the calculated generalised coordinates at a given flow velocity as initial conditions for the next

flow velocity. In order to plot the flag shapes in various states, the transverse and longitudinal

motions (i.e. w.x; t/ and u.x; t/, respectively) are retrieved, making use of equation. (2.2).

4.2. Numerical results

The numerical results from the nonlinear model are shown in the form of bifurcation diagrams,

in which the ordinate is the maximum tip rotation of the inverted flag and the abscissa is the

dimensionless flow velocity …. The system parameters in ÷ 3.2 are again utilized in this section.

The convention in all bifurcation diagrams is as follows: continuous and dashed lines represent

stable and unstable branches of the solution, respectively. A stable solution represents either a

buckled state corresponding to static equilibrium, or the amplitude of oscillation for flapping. Each

colour used in the bifurcation diagrams corresponds to a specific regime of dynamical behaviour

in the considered range of flow velocities.

Figure 6 gives the bifurcation diagram for a two-dimensional inverted flag with � D 1:0,

demonstrating four distinct states/regimes, which can be summarized as follows.

(i) Stretched-straight state: as also expected from the linear analysis, the trivial solution

associated with the undeflected static equilibrium is stable at small flow velocities. Small

perturbations generate motions which ultimately die out, and the inverted flag remains stable at

its undeflected equilibrium, as illustrated in figure 7(a). This regime was first identified by Kim

et al. (2013) and its stability was characterized to some extent by Kim et al. (2013), Gurugubelli

& Jaiman (2015) and Sader et al. (2016a).

(ii) Buckled state: the undeflected static equilibrium loses stability at point A where … D 1:36

through a supercritical pitchfork bifurcation, in line with the linear model. This leads to divergence

(buckling) in the first mode, the amplitude of which increases with flow velocity (see figure 7(b)).

The existence of the buckled state was first reported by Gurugubelli & Jaiman (2015), observed

experimentally by Yu et al. (2017), and subsequently demonstrated to be an equilibrium of the

inverted flag system by Goza et al. (2018).

(iii) Deformed-flapping state: the deflected solution loses stability via a supercritical Hopf

bifurcation at point B where … D 1:70, leading to “deformed-flapping motions”, that is periodic

oscillation around the buckled state. The response is predominantly in the first mode of a

cantilevered beam. This motion lasts over the range of … 2 Œ1:70 1:82�, and the amplitude

of oscillation increases with …, as illustrated in figures 7(c)-(d). Additional features of the

system dynamics are given in figure 8, displaying the time history, phase-plane portrait and FFT

plot at … D 1:80, all indicating a periodic motion; the dimensionless frequency of oscillation

is f � D 0:33. The appearance of deformed flapping was identified by Yu et al. (2017), and its

emergence was reported to be via a supercritical Hopf bifurcation by Goza et al. (2018).

(iv) Large-amplitude flapping state: increasing the flow velocity further causes a transition from

the deformed-flapping regime to flapping around the undeflected equilibrium, the amplitude of

which increases with the flow velocity. The transition is accompanied by a jump in the amplitude

of flapping via two saddle-node bifurcations at points C and D, at … D 1:82 and … D 1:65,

respectively. This forms a region wherein the response of the system is attracted by either the

stable limit-cycle around the deflected equilibrium or that around the undeflected equilibrium.

Hence, the behaviour of the system is indeed subcritical. The existence of this bistable zone
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Figure 6: Bifurcation diagram for a two-dimensional inverted flag with � D 1:0, indicating

the minimum and maximum values of the leading edge rotation over a cycle of steady-state

oscillation of period T �. [ ] Undeflected stable equilibrium; [ ] deflected stable equilibrium

corresponding to buckling of the inverted flag to either side; [ ] stable periodic solutions

(oscillation around deflected equilibria) corresponding to deformed-flapping of the inverted flag

to either side; [ ] stable periodic solution (oscillations around undeflected equilibrium). This

colour scheme is also utilized in figures 7-10.

(a) (b) (c) (d) (e)

Figure 7: Shapes of the two-dimensional inverted flag studied in figure 6: (a) stretched-straight state

(… D 1:35), (b) buckled state (… D 1:40), (c) at the onset of deformed-flapping mode (… D 1:71),

(d) deformed-flapping mode (… D 1:75), and (e) large-amplitude flapping (… D 1:65). Colour

scheme as in figure 6.

implies the existence of an unstable repelling limit cycle (not shown in the bifurcation diagram as

AUTO was unable to find it) bounded by the two saddle-node bifurcations. Figure 9 shows the

time history, phase-plane portrait and FFT plot for … D 1:65, all displaying a periodic motion;

the dimensionless frequency of oscillation is f � D 0:52. This regime has been characterized in a

number of references (see, for instance, Gurugubelli & Jaiman 2015, Shoele & Mittal 2016a and

Goza et al. 2018).

The qualitative dynamical behaviour of the inverted flag with increasing flow velocity is

illustrated in figure 7, showing successively the stretched-straight, buckled, deformed-flapping,

and the large-amplitude flapping states.

Figure 10 shows the sensitivity of f � to the dimensionless flow velocity …. As depicted, f �

sharply decreases with increasing … in the deformed-flapping regime, while it increases only
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Figure 8: Response of the inverted flag, with � D 1:0 at … D 1:80, displaying a periodic motion

around the deflected equilibrium; (a) time history, (b) phase portrait, and (c) the frequency content

of the response, obtained from FFT. Colour scheme as in figure 6.
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Figure 9: Response of the inverted flag with � D 1:0 at … D 1:65, displaying a periodic motion

around the undeflected equilibrium; (a) time history, (b) phase-plane portrait, and (c) the frequency

content of the response, obtained from FFT. Colour scheme as in figure 6.
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Figure 10: Dimensionless frequency f � versus dimensionless flow velocity … for an inverted flag

with � D 1:0. Colour scheme as in figure 6.
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slightly in the large-amplitude flapping regime as … is increased. This latter aspect is in good

agreement with the experimental measurements by Sader et al. (2016a), which confirms that the

large-amplitude flapping frequency varies only slightly with flow velocity.

The model developed in the present study is believed to simulate fairly accurately the effect of

fluid flow on stability of the system, since it is capable of predicting reasonably well the dynamical

response of the system up to moderate angles of attack. It is nevertheless realised that the flag

exhibits highly curved shapes in the course of large-amplitude flapping (see figure 7), signalling

that the limit of applicability of inviscid flow theory may well have been surpassed.

At very large angles of attack, massive separation occurs at the leading edge of the flag,

resulting in a sharp drop in the normal force, which in turn causes a sudden oscillation decrease.

This phenomenon is not captured by inviscid flow theory which, in principle, cannot model

such viscous effects. Interestingly, nevertheless, the ‘qualitative route’ (i.e. stability, buckling,

deformed-flapping, and large-amplitude flapping), as well as the bifurcation values for … are

in very good agreement with the fully coupled computational study of Goza et al. (2018), who

conducted simulations using an immersed boundary method. For example, for a two-dimensional

inverted flag with � D 0:2 (which is the reciprocal of the dimensionless mass ratio used by Goza

et al., denoted by M� D 5:0), the present model predicts the onset of divergence (pitchfork

bifurcation) at …A D 1:36, the onset of deformed flapping (Hopf bifurcation) at …B D 1:71,

and the onset of large-amplitude flapping (saddle-node bifurcation) at …D D 1:80, while the

computational model of Goza et al. (2018) predicts …A D 1:42, …B D 1:55, and …D D 1:78,

respectively. A more complete comparison between the results of the present model and those

of Goza et al. (2018) is provided in ÷ 5. It should be noted that the simulations by Goza et al.

(2018) were performed in the Re D 200 flow regime, while the results obtained via the present

model correspond to a higher flow regime, Re � O.105/.

An additional comment is useful here. The buckled and deformed-flapping regimes predicted

by the proposed model and the simulations of Goza et al. (2018) have not been observed in the

experiments of Kim et al. (2013). Nevertheless, these two regimes are experimentally identified in

the measurements of Yu et al. (2017). � Additionally, the existence of the (unstable) deflected

equilibrium was observed experimentally by Sader et al. (2016b) via the introduction of additional

damping.

The numerical results in figure 6 offer a plausible explanation for the above-mentioned

discrepancy. It is known that there is a potential for hysteresis in the onset of flapping, resulting in

a bistable region. For a physical flag, the existence of this phenomenon gives rise to the possibility

of a sudden jump from quiescent undeflected equilibrium to large-amplitude flapping motion,

without encountering other states. Vortex shedding, overshoots during flow-speed increments, or

incoming flow turbulence may provide a sufficiently strong disturbance for the jump to occur.

The absence of unsteady vortex shedding in the model proposed in this paper could well explain

the discrepancy in the predicted sequence of displayed regimes and experimental observations.

However, it should be noted that in the low-Re simulations by Goza et al. (2018) and Ryu et al.

(2015) (Re D 200), as well as high-Re simulations by Gurugubelli & Jaiman (2019) (Re D 30 000),

vortex shedding is present, yet the deformed-flapping regime is observed in these studies over a

range of flow speeds, in contrast to experimental observations of Kim et al. (2013). Indeed, the

relationship between experimentally observed regime transitions and the predictions of low- and

high-Re simulations is an interesting avenue for further experimental and theoretical research.

The numerical results discussed here suggest that ‘fluid-elastic instabilities’ may be the

underlying mechanisms for the rich dynamical behaviour displayed by two-dimensional, strictly

� It is noted that Yu et al. (2017) used a channel with a half-width dimension equal to the flag length (and
hence, close to the flapping amplitude). Thus, the flow was partially blocked, which may have affected the
dynamics.
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Figure 11: Bifurcation diagram of an inverted flag subjected to steady-fluid forces showing

the leading edge rotation angle versus dimensionless flow velocity. [ ] Undeflected stable

equilibrium and [ ] deflected static equilibrium solutions corresponding to buckling of the

inverted flag to either side. No secondary bifurcation (dynamic or static) materializes. Colour

scheme as in figure 6.

speaking heavy inverted flags. Thus, the flapping motion may be viewed as a ‘self-excited

oscillation’, that is flutter. The same mechanism is responsible for flapping of conventional

flags in axial flow. More specifically, the proposed model is developed based on self-excited (or

movement-induced) vibration principles and does not include flow instability and its consequences,

such as vortex-shedding-induced fluctuating loads. Nevertheless, it does capture qualitatively the

bifurcations, as well as some detailed intricate dynamics (including the large-amplitude flapping

regime), observed in previous studies for small mass ratio flags.

4.3. Influence of mass ratio

As discussed in the foregoing, the undeflected equilibrium of the inverted flag loses stability

first via divergence, and the post-buckling response of the system remains static prior to the

occurrence of a Hopf bifurcation. As seen from equation (2.24), the mass ratio parameter � is

present only in the time-dependent terms. Thus, it is expected that � has no impact on the critical

point for divergence or the existence of the deflected equilibria. This conclusion agrees well with

experimental/theoretical findings of Sader et al. (2016a) for the onset of divergence. The existence

of a deflected equilibrium following the onset of divergence was realized in their experiments by

introducing additional damping by touching the flag with a slender rigid pole.

The mass ratio �, on the other hand, does affect the dynamical behaviour of the system and

significantly affects the stability of the associated solution branches. Setting the time-dependent

fluid forces to zero (all terms multiplied by � in equation (2.24) disappear) results in governing

equations equivalent to a model for an inverted flag subject only to steady-flow forces. As can be

seen from figure 11, the deflected static solutions branching off from the pitchfork bifurcation point

remain stable with increasing flow velocity. On the other hand, considering all time-dependent

fluid forces (with � ¤ 0) and performing a stability analysis leads to the detection of Hopf

bifurcations on each deflected static solution, giving rise to periodic solutions, i.e. flutter.

Figure 12 shows how � affects the nonlinear response of the system. It is seen that the stability

of the trivial solution, the critical flow velocities for divergence and virtually the Hopf bifurcation
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Figure 12: Bifurcation diagrams for a two-dimensional inverted flag with different mass ratios:

(a) � D 0:1, (b) � D 0:5, (c) � D 2:0, and (d) � D 5:0, indicating the minimum and maximum

values of the leading edge rotation over a cycle of steady-state oscillation of period T �. [ ]

Stable static solution (undeflected stable equilibria); [ ] stable static solutions (deflected

static equilibria) corresponding to buckling of the inverted flag to either side; [ ] stable

periodic solutions (oscillation around deflected equilibria) corresponding to deformed-flapping

of the inverted flag to either side; [ ] stable periodic solution (oscillations around undeflected

equilibrium). Colour scheme as in figure 6.

are not affected by �. The post-critical behaviour, on the other hand, is significantly altered.

For instance, for � D 0:5, the critical values of the flow velocity are …A D 1:36, …B D 1:70,

…C D 1:83, and …D D 1:75, while for � D 5:0 these values are …A D 1:36, …B D 1:70,

…C D 1:80 and …D D 1:40.

Two additional points should be made here about the effects of the mass ratio parameter on the

dynamics of the system. First, the critical flow velocity for the Hopf bifurcation, …B, obtained via

the nonlinear model is considerably lower than that obtained via the linearised model. This may be

explained by considering the fact that a linear model assumes that an instability emanates from the

position of rest where the deflections are vanishingly small. However, in reality, once a divergence

has developed, deflections away from the equilibrium state develop and grow with increasing flow
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velocity. As the deflection becomes larger, the nonlinear fluid-related forces become stronger. This

causes a Hopf bifurcation, leading to a limit cycle oscillation, to occur at appreciably different,

and in this case lower flow velocities, compared to the predictions of the linear model.

Secondly, as seen from figure 12, for sufficiently large � (i.e., for a light flag or a heavily

loaded flag), the transition to large-amplitude flapping becomes strongly subcritical. An unstable

periodic solution (not shown here as AUTO was unable to find it) which originates form the

periodic solution around the deflected equilibrium (i.e. at …C) goes backward and folds at a

flow velocity (i.e. …D) even lower than that for the onset of divergence.� The unstable solution

then becomes stable, generating the large-amplitude periodic solution. The existence of this

solution would give rise to the possibility of a sudden jump from static undeflected equilibrium to

large-amplitude flapping motion, without encountering other states. More specifically, considering

the case of � D 5:0 (figure 12(d)), two stable solutions coexist for … 2 Œ1:10 1:36�: the trivial

solution and a large-amplitude periodic one. For … D 1:20, for instance, small perturbations

about the undeflected equilibrium would die out and the inverted flag would come to rest at the

original static equilibrium. Perturbations of sufficiently large amplitude, on the other hand, could

lead the system to enter into the large-amplitude flapping state, without experiencing the usual

route outlined in ÷ 4.2. Interestingly, the results in figure 12 highlight that light flags are more

likely to exhibit hysteresis in the onset of large-amplitude flapping.

Figure 13 shows the variation of the reduced frequency as a function of the dimensionless flow

velocity for different values of mass ratio. Here, to be able to compare the numerical values for

flapping frequency with those obtained by Goza et al. (2018) and Shoele & Mittal (2016a), a fluid

time scale, defined as �f D L=U , is used to non-dimensionalize the flapping frequency f . Thus,

the reduced frequency is defined as fR D fL=U D f �p
�=….� As seen in the figure, for all

cases studied, fR decreases monotonically with increasing …. For heavier flags (and thus lower

mass ratios), the reduced frequency decreases approximately linearly with ….

As also seen in figure 13, the reduced frequency decreases as � is decreased. For example, for

the heaviest flag with � D 0:1, the reduced frequency is fR D 0:09 at … D 2:0, while for the

lightest flag with � D 5:0, fR D 0:43. The reduction of flapping frequency with mass ratio is in

line with Gurugubelli & Jaiman’s predictions. Strikingly, the results in figure 13 indicate that the

dimensionless flapping frequency lies in the range 0:1 . fR . 0:2, for � D 0:3, which agrees

well with predictions by Shoele & Mittal (2016a) and Goza et al. (2018), and measurements

by Kim et al. (2013). This suggests that the absence of unsteady vortex shedding in the model may

have a minimal impact on the dynamical behaviour of heavy flags. For lighter flags (or heavier

fluid forcing), on the other hand, the model overestimates the flapping frequency as compared

to the measurements of Yu et al. (2017) who reported that the dimensionless flapping frequency

reaches to fR D 0:18, with the shedding frequency of the vortices being twice the flapping

frequency of the inverted flag. Thus, the unsteady vortex shedding could well be central for light

flags by virtue of injecting another time scale into the problem, and therefore may not be ignored.

The reduced frequency may be considered as a measure of the unsteadiness of the flow.

It is generally acceptable to use quasi-steady-flow theory for a body oscillating with a low

value of reduced frequency in fluid flow (Hodges & Pierce 2011). Small values of the reduced

frequency allow sufficient time for vortex formation and shedding from the trailing edge (Shoele

& Mittal 2016a). Thus, the results shown in figure 13 suggest that the quasi-steady flow theory

may be more appropriate for predicting the dynamics of heavier flags.

� Refer to figure 6 for definitions of …C and …D.
� The notation adopted here can be linked to that used in the first footnote in ÷ 2.3.2 as fR D k= .
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Figure 13: Sensitivity of the large-amplitude flapping reduced frequency to the dimensionless flow

velocity … for inverted flags of different mass ratios: [ ] � D 0:1; [ ] � D 0:5; [ ] � D 2:0; and

[ ] � D 5:0.
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Figure 14: Inverted flag in axial flow with a small initial angle of attack  0

4.4. Influence of angle of attack

It is of interest to explore the dynamical behaviour of inverted flags when they are subject to

oncoming flow with a non-zero angle of attack  0, as illustrated in figure 14. Note that  0 is

constant with respect to temporal and spatial coordinates.

The projection of the undisturbed flow velocity onto the X and Z directions leads to UX D
U � eX D U cos 0 and UZ D U � eZ D U sin 0, respectively. Consequently, the normal and

tangential components of the relative flow velocity in equation (2.3), and in turn the fluid-related

forces, should be revised in order to take into account both components. Hence,

Vn.x; t/ D . Pw � U sin 0/ cos � . PuC U cos 0/ sin ; (4.3a)

V� .x; t/ D . PuC U cos 0/ cos C . Pw � U sin 0/ sin : (4.3b)

Inserting (4.3a) into (2.12) and substituting the resulting expression together with (4.3b) into (2.21)

and (2.19) gives the total normal force acting on the flag. On the structural dynamics side, the
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Figure 15: Nonlinear response of a two-dimensional inverted flag with � D 1:0 and  0 D 0:1.

(a) Bifurcation diagram indicating the minimum and maximum values of the leading edge rotation

over a cycle of steady-state oscillation of period T �: [ ] Stable static solution; [ ] unstable

and [ ] stable periodic solution (asymmetric oscillations). (b) Dimensionless frequency f �

versus dimensionless flow velocity ….

equations remain unchanged. The resulting equation of motion is solved using the techniques

discussed in ÷ 4.1.

The bifurcation diagram and the flapping frequency for a 2D inverted flag with � D 1:0,

and  0 D 0:1 � 5:7° are plotted in figure 15. Even such a seemingly small angle of attack gives

rise to asymmetric fluid loading on the inverted flag which consequently breaks the symmetry of

the nonlinear response. More specifically, the supercritical pitchfork bifurcation ‘point’ (point A

in figure 6) is replaced by a gradual transition from small to large deflections. In contrast to the

case of  0 D 0, the flag bends continuously more with increasing flow velocity. This behaviour is

followed by a Paı̈doussis-type Hopf bifurcation, giving rise to a stable limit cycle corresponding to

asymmetric flapping around the deflected equilibrium. This solution folds at the first saddle-node

bifurcation encountered (at … D 1:8) and becomes unstable. By tracing the unstable solution,

a second saddle-node bifurcation arises at … D 1:63, where the response of the system folds

once more. Following the second saddle-node bifurcation, the solution becomes stable, which is

physically manifested as asymmetric large-amplitude flapping around the origin.

As seen in figure 15(b), except for a sharp increase of f � within a short range in the bistable

regime, the behaviour is generally similar to that for the higher mass ratio � D 1:0 and  0 D 0

(see figure 10).

The bifurcation diagrams shown in figure 16 for  0 D 0:2 illustrate the effects of the resulting

symmetry breaking on the response of the system for various mass ratios (cf. figure 12 for 0 D 0).

Interestingly, the broken symmetry as a result of a non-zero initial angle of attack enables us to

obtain numerically the unstable solution branch connecting the two periodic solution branches – a

task which was not feasible for  0 D 0; see ÷ 4.2 and ÷ 4.3 and figures 6 and 12.

As discussed in ÷ 4.2, the periodic solution around the deflected equilibrium becomes unstable

through a saddle-node bifurcation and recovers stability via another saddle-node bifurcation at a

lower flow velocity. Different scenarios can be expected for flags of different mass ratios. While

the sequence of progressive bending ! asymmetric deformed-flapping ! asymmetric large-

amplitude flapping is more plausible for the inverted flag with a low mass ratio, e.g. � D 0:1, the
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Figure 16: Bifurcation diagrams for  0 D 0:2 and various mass ratios: (a) � D 0:1, (b) � D 0:5,

(c) � D 2:0, and (d) � D 5:0, indicating the minimum and maximum values of the leading edge

rotation over a cycle of steady-state oscillation of period T �. [ ] Stable static solution; [ ]

unstable and [ ] stable periodic solutions (asymmetric oscillations).

flag with the higher mass ratio � D 5:0may go directly from the buckled shape to large-amplitude

flapping due to the appearance of the limit cycle in the proximity of the static solution. This

behaviour was also observed for flags with zero initial angle of attack, where an abrupt jump may

occur from a static equilibrium to large-amplitude flapping (see ÷ 4.3). However, a non-zero  0
seems to facilitate the direct transition of light flags from the buckled shape to large-amplitude

flapping.

The effect of the mass ratio on the flapping frequency of inverted flags with an initial incidence

angle  0 D 0:2 is shown in figure 17. Here, the reduced frequency for both small- and large-

amplitude flapping is shown. The branch in the low-… region corresponds to small-amplitude

flapping, while that appearing in the high-… region corresponds to large-amplitude flapping.

It is seen that the reduced frequency generally decreases as the flow velocity is increased, for

both small- and large-amplitude flapping. However, in all the cases shown, a jump occurs in the

value of the reduced frequency, in the region where the asymmetric small-amplitude flapping is
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Figure 17: Reduced frequency of the asymmetric flapping motion as a function of the

dimensionless flow velocity … for  0 D 0:2 and different mass ratios: [ ] � D 0:1, [ ] � D 0:5,

[ ] � D 2:0, and [ ] � D 5:0. [ ] Unstable and [ ] stable periodic solutions.

0 0:5 1 1:5 2 2:5

�2

0

2

 0 D 0:1

 0 D 0:2

 0 D 0:3

 0 D 0:4

…

m
ax
=
m

in
t2
Œ0
;T
�.
 
.L
;t
//

Figure 18: Bifurcation diagram with � D 1:0 and various initial angles of attack  0.

transformed into large-amplitude flapping. Similarly to what was found for the flag with zero  0
(see figure 13), the reduced frequency decreases with decreasing mass ratio.

The sensitivity of the nonlinear response of the system to the initial angle of attack  0 is shown

in figure 18. The present numerical results are in fairly good agreement with the observations

provided by Cossé et al. (2014) who investigated experimentally the effect of flag orientation

to the impinging flow. In particular, they reported that the transition for cases with  0 ¤ 0

was gradual, as opposed to the case with  0 D 0, where an abrupt jump to large-amplitude

flapping was observed. Likewise, the numerical results show that the transition between the

two flapping motions becomes smoother as  0 is increased. Furthermore, varying  0 affects

the onset of flapping significantly. For inverted flags with larger initial angles of attack, the

asymmetric flapping motion around the buckled shape occurs at lower flow velocities. The
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amplitude of large-amplitude flapping also decreases correspondingly. This also agrees well with

measurements by Cossé et al. (2014) which reveal that, as the initial angle of attack is increased,

the transition from static equilibrium to the flapping mode occurs at lower flow velocities and

with smaller amplitudes of oscillation. Moreover, as seen in figure 18, the inverted flag undergoes

the asymmetric deformed-flapping motion at different critical flow velocities, which is consistent

with computational findings by Shoele & Mittal (2016b) and, again, the experimental observations

of Cossé et al. (2014).

These findings highlight the ability of inverted flags to perform a flapping motion even when

the oncoming flow is not parallel to their longitudinal axis. This is of practical importance for

designing robust energy harvesters in actual ambient conditions where the wind direction is not

necessarily parallel to the neutral plane of the inverted flag (Orrego et al. 2017).

5. Comparison with simulations of Goza et al. (2018)

Goza et al. (2018) examined the dynamical behaviour of two-dimensional inverted flags for

four different values of the mass ratio, defined as M� D ��1, at Re D 20 and Re D 200. They

performed computational investigations by solving strongly coupled 2D Navier-Stokes equations

and the geometrically nonlinear Euler-Bernoulli beam equation. The simulation results were

summarised in the form of bifurcation diagrams in which the peak values of tip displacement

of the flag were plotted as a function of the dimensionless bending stiffness of the flag, denoted

asKB D …�2. Here, the numerical results from the present model for the dynamics of an inverted

flag with � D 0:2 are compared with those obtained by Goza et al. (2018) for M� D 5:0 and at

the above two Reynolds numbers.

Figure 19 shows the peak values� of the tip deflection of the 2D inverted flag over a cycle of

steady-state oscillation of period T � as a function of the dimensionless flow velocity. The solid

lines show our model predictions, while symbols show the results from Goza et al. (2018). A good

agreement on the global dynamical behaviour between the two sets of results may be observed. In

particular, the type of instabilities and their sequence are identical across the two sets of results.

Interestingly, also the amplitudes for different dynamical regimes predicted by the present model

are comparable to those computed by Goza et al. (2018) at Re D 20.

A quantitative comparison is made in Table 2 where thresholds of divergence, deformed-

flapping motion, and large-amplitude flapping motion predicted by the present model and the

computational model of Goza et al. (2018) are given. As seen from the table, excellent agreement

was achieved. The maximum relative error is about 8%.

Moreover, large-amplitude flapping frequencies obtained by the two models are in the same

ballpark. For example, for � D 0:2 at … D 2:0, fR D 0:13 is obtained by our model, while fR '
0:09 is obtained by Goza et al. (2018) at Re D 200. The discrepancy may be explained by the

fact that viscous flow effects have not systematically been considered in our model. These effects

perhaps can produce a distributed compressive load along the plate which would tend to reduce

the effective stiffness of the fluid-structure system and thus to decrease the flapping frequency.

An additional point ought to be made here concerning the Reynolds-number independence

in the dynamics of inverted flags. Interestingly, the qualitative comparison between the results

obtained via the proposed model and the simulations of Goza et al. (2018) at low Reynolds

numbers (i.e. Re D 200 and Re D 20) suggests that the overall dynamical behaviour and

characteristic features of inverted flags is insensitive to the Reynolds number. This has been

shown by Shoele & Mittal (2016a) who performed direct numerical simulations at small Reynolds

� Two sets of values for each … can be seen for a range of flow velocities on either positive or negative
side of the bifurcation diagram, as indicated by [ ]. This is perhaps because the local maxima and minima
that appeared at the peak values of displacement (where tip transverse velocity goes thorough zero) have
been included in the bifurcation diagram (Goza et al. 2018, figure 14(a)).



Instability and post-critical behaviour of inverted flags 31

0 0:5 1 1:5 2 2:5
�1

�0:5

0

0:5

1

…

m
ax
=
m

in
t2
Œ0
;T
�.
w
.L
;t
//

0 0:5 1 1:5 2 2:5

(a) (b)

Figure 19: Bifurcation diagrams for inverted flags with � D 0:2 over a cycle of period T �

steady-state oscillation. [ ] stretched-straight state; [ ] buckled state; [ ] deformed-flapping

regime; and [ ] large-amplitude flapping around the origin. Lines show the results obtained

by the present model, while symbols [ ], [ ], and [ ] show the corresponding results obtained

by Goza et al. (2018). (a) Re D 200, and (b) Re D 20.

Studies
Buckling Deformed-flapping Large-amplitude flapping

(Pitchfork bifurcation) (Hopf bifurcation) (Saddle-node bifurcation)
…A …B …C

Present study 1.36 1.71 1.80

Goza et al. (2018)
1.42� 1.55� 1.78�
1.48� 1.61� 1.85�

Table 2: Dimensionless flow velocity for various bifurcation points: comparison between the

present model and simulations by Goza et al. (2018);� simulations for Re D 200, � simulations

for Re D 20. Values extracted from (Goza et al. 2018, figure 3).

numbers and reported that the frequency and the amplitude of large-amplitude flapping remain

almost unchanged in the range 100 � Re < 1000. Tang et al. (2015) explored the Reynolds

number effect in the range 100 � Re � 500 and found that the flag inertia dominates over the

viscous effects with increasing Re, leading to fairly similar results for Re > 100. Furthermore,

a comparison between the high Reynolds number simulations of Gurugubelli & Jaiman (2019)

at Re D 30 000 and those by others at small Reynolds numbers (i.e., Tang et al. 2015, Ryu

et al. 2015, Gurugubelli & Jaiman 2015, Gilmanov et al. 2015, Shoele & Mittal 2016a) shows

that the key features of the dynamics of the inverted flag do not change significantly with Re.

6. Conclusions

The main concern of the present paper is the mechanism for flapping of infinitely high aspect

ratio heavy inverted flags in axial flow. It is shown that it may well be a ‘fluidelastic instability’.

This means that flapping of two-dimensional inverted flags may be viewed as a self-excited
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(or movement-induced) vibration, similar to flutter of aircraft wings or of cantilevered pipes

conveying fluid.

Our numerical results show that two-dimensional inverted flags undergo multiple bifurcations

as the flow velocity is increased. Physically speaking, the flags exhibit four dynamical states

(or regimes) as the flow velocity is increased: (i) stretched-straight state, (ii) buckled state, (iii)

deflected-flapping state, and (iv) large-amplitude flapping state. Our findings suggest that the

system dynamics depends on the mass ratio as well as on the initial angle of attack. It was shown

that the mass ratio parameter does not affect the stability of the stretched-straight state and the

onset of divergence, as they are static phenomena; however, it controls the possibility of direct

transition from undeflected equilibrium to large-amplitude flapping motion and it affects the

amplitude of large-amplitude flapping. Furthermore, inverted flags of larger mass ratios are more

likely to exhibit hysteresis, and thus more prone to undergo flapping motion at lower flow velocities

due to the presence of a subcritical periodic solution. At a certain critical flow velocity (via a

saddle-node bifurcation), flow-induced disturbances may result in spontaneous large-amplitude

flapping of inverted flags of sufficiently large mass ratio.

In addition, it was shown that the symmetry of the system response breaks down when the

initial angle of attack is not zero. As this angle is increased, the system loses stability at lower

flow velocities, while the amplitude of large-amplitude flapping decreases. In addition, smoother

transitions ensue between the dynamical regimes. These results were found to be in qualitatively

good agreement with the experimental observations of Cossé et al. (2014). Where possible, the

predictions based on the present model were also compared with experimental observations

of Sader et al. (2016a), as well as computational results of Goza et al. (2018) In general, very good

agreement was achieved. In particular, the present analytical model predicts a similar sequence of

instabilities to that obtained computationally by Goza et al.. The values for critical flow velocities,

corresponding to the initiation of each regime, were also comparable. Interestingly, the qualitative

comparison made in ÷ 5 suggests that the global dynamics of inverted flags is independent of the

Reynolds number. However, the comparison for some aspects of the post-critical dynamics, such

as amplitudes of buckling/flapping, is less satisfactory. The discrepancy can probably be explained

by the fact that the analytical model does not accurately account for the effects of massive flow

separation from the leading edge of the inverted flag. These effects were considered to some extent

by employing the leading-edge suction analogy proposed by Polhamus (1966) for the calculation

of the vortex or nonlinear lift, but clearly not sufficiently well.

As evidenced from the review of previous work in the Introduction, many studies on the

dynamics of inverted flags proposed that vortex-induced vibration (VIV) is the underlying

mechanism for flapping (Sader et al. 2016a, for example).� Nevertheless, the model proposed

in the present paper, though totally ignoring vortex shedding excitation, does predict many of

the salient features of the dynamics of heavy inverted flags. Figure 19 bears witness to that,

convincingly. Furthermore, flapping has been found to arise in very low Reynolds number flows

(Re D 20) by Goza et al. (2018), where classical vortex shedding was not observed. Therefore,

although not casting doubts that VIV is important, or even determining, in the generation of

flapping in the case of light flags, the work in the present paper shows that self-excitation is the

principal underlying mechanism for heavy flags; even so, we recognize that further work should

be done to establish this unequivocally.

The findings of the present paper are based on several assumptions, such as that the flow over

the flag is a two-dimensional quasi-steady flow. These assumptions might limit the capability of

the model to accurately predict the dynamics of the flag, for example, when very large flapping

� There is also the possibility of a combined vortex-shedding (VIV) and self-excited (SEV) fluidelastic
excitation mechanism, or VIV-SEV, in a similar way as found for slender prismatic bodies with bluff
cross-section and sufficiently long afterbody by Nemes et al. (2012) and Mannini et al. (2014).
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motion occurs. Nevertheless, the findings of this paper will hopefully motivate further research on

the analytical modelling of inverted flags subject to axial flow. Such modelling can provide deep

insights into, for example, the underlying mechanisms for the various instabilities, and the impact

of different parameters on the global as well as local dynamics and stability of the system. They

can also be used to corroborate experimental and computational studies.

Finally, it ought to be mentioned also that the findings of this study should be of practical

importance for the design of small-scale energy harvesting systems.
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Appendix A. Analytical solution to the aeroelastic response

The pressure distribution along the inverted flag depends on the normal component of relative

velocity via the singular integral formulated in equation (2.12), which in turn is a function of flag

deformation. This integral may be evaluated using Glauert’s principal value integral given as

1

 

Z  

0

cosn'

cos' � cos#
d' D sinn#

sin#
; n D 0; 1; 2; : : : : (A 1)

To enable the use of (A 1), polynomial representation of exact solutions of a linear uniform

Euler-Bernoulli cantilevered beam is utilized, using Chebyshev polynomial expansions of the

first kind, which are used in the discretization procedure. It is noted that convergence and

accuracy of the solution obtained via the Galerkin method depend on the number and type of trial

functions in the expansion series. Hence, a sufficiently large number of terms in the Chebyshev

polynomial expansions are considered to guarantee that each polynomial-type comparison function

mimics its associated exact counterpart, even up to the fourth spatial derivative. The polynomial

eigenfunctions are written as

Wi .x/ D
Ji
X

jD1

aijx
j ; (A 2)

with aij being the constants of the j th term associated with the i th eigenfunction to be approx-

imated; Ji represents the maximum power needed for approximation of the i th eigenfunction.

Recalling that x D 1
2
.1C cos'/, and making use of the binomial theorem as well as the multiple

angle formula of the sine and cosine functions, the transverse displacement of the inverted flag

may be formulated as
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M
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j

m
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The perturbation pressure may be obtained analytically upon inserting (A 3) into (3.1), and

applying Glauert’s integral equality (A 1) to perform integrations over '. The resultant expression



34 M. Tavallaeinejad, M.P. Paı̈doussis, M. Legrand and M. Kheiri

may be decomposed into three terms, associated with three effects of the pressure force in (3.1):
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with PM .�/, PC .�/, and PK.�/ being the components of �P.�; t/ obtained by retaining terms

associated with Rpi .t/, Ppi .t/, and pi .t/ respectively. The values of †1i–†6i are defined as
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and k D m � 2n � r .

Hence, integrations over ' are performed exactly and the pressure distribution over the inverted
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Figure A.1: First six in vacuo comparison functions of a cantilevered beam utilized in the Galerkin

discretization of the nonlinear system. First [ ], second [ ], third [ ], fourth [ ], fifth [ ]

and sixth [ ] comparison function.

flag may be evaluated analytically. Applying the Galerkin technique to (3.1) yields
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For the nonlinear analysis, the following comparison functions are defined by their polynomial

successors to discretize the nonlinear equation of motion (2.24):

‰i .x/ D sin.�ix/C sinh.�ix/C cos.�i /C cosh.�i /

sin.�i /C sinh.�i /
.cos.�ix/ � cosh.�ix//; (A 8)

recalling that �i is the i th root of the transcendental equation 1C cosh.x/ cos.x/ D 0 (Bishop

& Johnson 2011). These functions are suitable since they satisfy the clamped-free boundary

conditions, and also convenient, as they are already known (note that  .x; t/ D @xw.x; t/ holds

for the linear equation of motion of the flag; hence ‰i .x/ D @xWi .x/ are chosen). Similarly to

equation (A 2), polynomial representations of these comparison functions are constructed with

the aid of a Chebyshev polynomial expansion of the first kind with a sufficiently large number of

terms (i.e. ‰i .x/ D
PJi

jD1 aij jx
j�1). The first six comparison functions are shown in figure A.1.

It is clear from (2.3) that the normal component of the relative velocity is a function of trigono-

metric expressions in terms of  .x; t/. For the problem at hand, retaining these trigonometric

terms intact hinders the evaluation of the exact solution of the non-circulatory velocity potential,

by virtue of the fact that the integral is singular and hence its principal value needs to be calculated.

In order to overcome this difficulty, the normal component of the relative velocity is expressed in

a succession of Taylor’s expansions. This results in a polynomial representation of the source/sink
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sheet strength in terms of the rotation angle. Hence,
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(A 9)

whereR is the order of truncation. Similarly to the procedure detailed earlier, inserting‰i .x; t/ D
PM
iD1 qi .t/

�
PJi

jD1 aij jx
j�1

�

into (A 9), the velocity potential given in (2.13) can be integrated

based on Glauert’s integral. This enables the analytical evaluation of the pressure distribution over

the flag, in a similar fashion to the discretization technique detailed for the linear model. In this

paper, terms up to third order are retained in the Taylor expansions in equation (A 9), resulting in
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p
�
h
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Z x
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2
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