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Stationary solutions to the two-dimensional Broadwell model.

Leif Arkeryd and Anne Nouri

Abstract

Existence of renormalized solutions to the two-dimensional Broadwell model with given indata
in L' is proven. Averaging techniques from the continuous velocity case being unavailable when
the velocities are discrete, the approach is based on direct L'-compactness arguments using the
Kolmogorov-Riesz theorem.

1 Introduction.

The two-dimensional stationary Broadwell model in a square is

0. I = F3Fy — F1 F, F1(0,°) = fur,
— 0,1 = F3Fy — F1 F, Fy(1,-) = fo2,
OyF3 = F1Fy — F3Fy, F5(-,0) = fs,
— OyFy = F1Fy — F3Fy, Fy(+,1) = foa, (1.1)

with unknown (F;)1<;<4 defined on [0,1]%, and given (fy;)1<i<4 defined on [0, 1]. It is a four velocity
model for the Boltzmann equation, with F;(z,y) = f(x,y,v;),

v = (1,0), Vo = (—1,0), V3 = (0, 1), Vg4 = (0, —1).
The boundary value problem (1.1) is considered in L' in one of the following equivalent forms,
the exponential multiplier form:

Fy(2,y) = fn(y)e I Polow)ds 4 / (F3Fy)(s,p)e 5 0T gs an (my) € 0,12, (1.2)
0

and analogous equations for Fj, 2 < i < 4,
the mild form:

Fl(x,y) = fbl(y) =+ /Ox<F3F4 — FlFQ)(S,y)dS, a.a. (.le‘,y) S [0’ 1]27 (13)

and analogous equations for F;, 2 <1 < 4,
the renormalized form:

F3Fy — F1 Iy

1+ F1 ’
in the sense of distributions, and analogous equations for F;, 2 < i < 4.
The main result of the paper is the following.

Oy In(1 + Fy) = Fi(0,7) = fo, (1.4)
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Theorem 1.1
Given a non-negative boundary value fi, with finite mass and entropy, there exists a stationary non-
negative renormalized solution in L' with finite entropy-dissipation to the Broadwell model (1.1).

Most mathematical results for discrete velocity models of the Boltzmann equation have been per-
formed in one space dimension. An overview is given in [9]. In two dimensions, special classes of solu-
tions are given in [4], [5], and [10]. [4] contains a detailed study of the stationary Broadwell equation
in a rectangle with comparison to a Carleman-like system, and a discussion of (in)compressibility
aspects.

The existence of continuous solutions to the two-dimensional stationary Broadwell model with
continuous boundary data for a rectangle, is proven in [7]. That proof starts by solving the prob-
lem with a given gain term, and uses the compactness of the corresponding twice iterated solution
operator to conclude by Schaeffer’s fixed point theorem.

The present paper on the Broadwell model is set in a context of physically natural quantities. Mass
and entropy flow at the boundary are given, and the solutions obtained, have finite mass and finite
entropy dissipation. Averaging techniques from the continuous velocity case [8] being unavailable,
a direct compactness approach is used, based on the Kolmogorov-Riesz theorem.

The plan of the paper is the following. An approximation procedure for the construction of solutions
to (1.1) is introduced in Section 2. The passage to the limit in the approximations is performed
in Section 3. Here a compactness property of the approximated gain terms in mild form is carried
over to the corresponding solutions themselves, using a particular sequence of successive alternating
approximations and the Kolmogorov-Riesz theorem [11], [12].

A common approach to existence for stationary Boltzmann like equations is based on the regulariz-
ing properties of the gain term. In the continuous velocity case an averaging propery is available to
keep this study of the gain term within a weak L' frame as in [2]. However, in the discrete velocity
case, averaging is not available. Instead strong convergence of an approximating sequence is here
directly proved from the regularizing properties for the gain term (cf Lemma 3.5 below). But the
technique in that proof is restricted to two dimensional velocities, whereas the averaging technique
in the continuous velocity case is dimension independent.

2 Approximations.

Denote by L1 ([0, 1]?) the set of non negative integrable functions on [0, 1]%, and by aAb the minimum
of two real numbers a and b. Approximations to (1.1) to be used in the proof of Theorem 1, are
introduced in the following lemma.



Lemma 2.1 For any k € N*, there exists a solution F* € (L ([0, 1]2))4

Fk Fk FFk Fk
O Ff = 2 — 1 2Fk : (2.1)
T S B
k k k k
— 0, FF = Fs . Fy L -, (2.2)
F. F F
T ST B
ok Fk Fk Fk
ayF:f - le 2 3 4Fk ) (23)
TSI B S
Fk Fk Fk Fk
- 8ny - 1Fk 2 2 4Fk’ ($>y) € [07 1]27 (24)
T B P
k k
Flk(oay> = fbl( ) 57 F2 (17y> = be(y) A 57 Yy e [Oa 1}7 (25)
F3 (.’IJ,O) fbg( ) 5, F4 (.ZL', 1) = fb4(l‘) A 5, WS [O, 1] (26)

Proof of Lemma 2.1.

The sequence of approximations (F¥)gen+ is obtained in the limit of a further approximation with
damping terms aF}; and convolutions in the collision operator.

Step 1. Approximations with damping and convolutions.
Take a > 0 and set

ca:/ 3" filw)du, Ko ={f € (L}([0,1]? Z/fzxydwdywa} (27)
0o =

Let po be a smooth mollifier in (z,y) with support in the ball centered at the origin of radius a.
Let 7 be the map defined on K, by T(f) = F, where F = (F;)1<i<4 is the solution of

F: F
OF 4 0,F = 0 e P e (2.8)
1+?31_|_ 4kua 1+?11_'_ Qkua
F, F:
aFy — 0, Fy f3>‘}l:a 4F B flﬂ;ﬁia 2F ’ (2.9)
1+ Sk://'ocl_‘_?zl 1+ lkﬂal_i_?Q
F; F:
aF; +8yF3 _ IF fo >|;,U*Oc B 3F fa ”}/:a : (210)
T+ 71 Bife 14 3214 ke
F: F,
alfy — 0ZJF4 = i ?/:Ot 2F - fs j/ia 4F , (zy) € [Oa 1]27 (2.11)
1+ 1]!‘041_*_?2 1+ Bkﬂ‘al_i_f
k k
Fl(ovy):fbl(y)/\§7 F2<17y):fb2(y)/\§, Yy e [0?1]7 (212)
k k
Fg(.%',()) = fbg(.%') A 5, F4(1‘, 1) = fb4<$) A 5, x € [0, 1] (213)



F = T(f) is obtained as the limit in L'([0, 1]?) of the sequence (F™),cn defined by F* = 0 and

QFP 4 9, FrH - Fef;n f4>;ua B FfJ:n fa* o
14 D814 fe g T 4 [ore
OéFQTl—Fl_angLJrl: f3 #;/:06 FZLFTL - fl ?/i’a Fgl—;ln7
L ke 2b 1 Ioke g 4 22

+1
aFgl+1+ayF§L+1: Fln fQ*Ma F?? f4*,uloc

1+%1+J02*% 1_*_%1_}_&21@
Frtl g pntl fixpa  FY f3 % Ha FZH
O[4 — Yyly - fi* o Fa*tia o
T

FIH0,9) = fu() A5 F3 (L) = fra(y) A

9

Y ye [071]?

F;H(m,O) = fos(x) A =, Ff“(w,l) = fu(x)AN=, x€]0,1], neN.

po| N

The sequence (F™),en is monotone. Indeed, F? < F!, 1 < i < 4 by the exponential form of F}.
Moreover, assume F* < FZ-”H, 1 <4 < 4. It follows from the exponential form that F’ 1”“—171"Jr2 <0.
The inequalities FZ-"Jrl — Fi”+2 <0, 2 <17 <4 can be reached in a similar way. Moreover,

4
aZFin+1 + ax(Fln—i-l _ F2'rL+1) + 8y(F3n+1 _ FZH—I)
i=1
Fona FR—FP foxpa FP—FT fyspe FP-FITN fiepe B - FPY

1_|_f1>;;}to¢ 1_'_% 1+f2”];/-’»a 1+% 1+f3"];#a 1+% 1_,_f4"];#a 1+%
<0,
so that
4
Z/Ff“(m,y)dmdy < cq. (2.14)
i=1

By the monotone convergence theorem, (F"),ecy converges in L([0,1]?) to some solution F of
(2.8)-(2.13). The solution of (2.8)-(2.13) is unique in the set of non negative functions. Indeed, let
G = (G;)1<i<a be a solution of (2.8)-(2.13) with G; > 0, 1 <14 < 4. Let us prove by induction that

VneN, F'<G;, 1<i<A4 (2.15)



(2.15) holds for n = 0, since G; > 0, 1 < i < 4. Assume (2.15) holds for n. Using the exponential
form of Fln+1 implies

Fi (w,y) = (fia () A ’;f T (XX
’ / x 1 ?Fs? 1& T 73/)e_a(m_X)_f;z m(mdrcﬂx
0 -+ Ta
< (fin () A ’;f e ()X
/x 1 st3 ﬁ e Xogpe O e e
0 - Ta

:Gl(xay)a (.Z',y) € [07 1]2
The same argument can be applied to prove that Fi"+1 < Gy, 2 <4 < 4. Consequently,
F;, <G, 1<i<4. (2.16)

Moreover, substracting the partial differential equations satisfied by G; from the partial differential
equations satisfied by Fj, 1 < i < 4, and integrating the resulting equation on [0, 1]?, it results

4 1
oy / (G — F)) (@, y)dady + / ((G1— F)(L,y) + (Go — F2)(0,1))dy
i=1 0

+ /01 ((G3 — Fg)(.%', 1) + (G4 — F4)($,0))d$ = 0. (2.17)

It results from (2.16)-(2.17) that G = F.

The map 7T is continuous in the L'-norm topology (cf [1] pages 124-5). Namely, let a sequence
(fi)ien in K, converge in L'([0,1]?) to f € K,. Set Fj = T(f;). Because of the uniqueness of
the solution to (2.8)-(2.13), it is enough to prove that there is a subsequence of (F}) converging
to F'= T(f). Now there is a subsequence of (f;), still denoted (f;), such that decreasingly (resp.
increasingly) (G;) = (sup,,>; fm) (resp. (1) = (infu>; fm)) converges to f in L. Let (S;) (resp.
(s1)) be the sequence of solutions to

Sz G * g S g2 * fa

045114-6955[1:1_’_%14_%—1_}_%14_%, (2.18)
aSjg — 0519 = 16—3:3;3;/1 ) fl%g]? - 19_11;1?}7& . fl%g;f , (2.19)
a3 + 0ySi3 = . ilg]? 1?}%% 1 fl?;;ég ﬂf;ﬁiga ) (2.20)
51 = Oyt = 1(1151,?52 1 im%; -1 Z’:Z‘ 1 f—lg}g ’ (2.21)
009 = fa@) A Sully) = fil) Ay, ve 1] (222)
S1a(2,0) = fua() A g Sua(w,1) = fra(w) A g ze01], (2.23)



(resp.

asi + dosin = frli’? 1911:‘;%“& -1 j_”slkl 1?2;2]?; : (2.24)
asjy — OS2 = 19_623%; 1 j_Ms? - 1611;1]?; 1 j_l2slk2 ; (2.25)
st + ysis = 5 jtlls;g 193 ;j:,i -1 f?’sl]f 16—;:4% : (2.26)
asyy — OySiy = 1?;%& 1 12? - 16_7:3;{:& 1 j—li}j , (2.27)
0.0 = fa@) A5 s =ful) A s yeb1) (2.25)
s13(2,0) = fys(x) A g su(.1) = fa(x) A g z € [0,1]). (2.29)

(S;) is a non-increasing sequence, since that holds for the successive iterates defining the sequence.
Then (5;) decreasingly converges in L' to some S. Similarly (s;) increasingly converges in L' to
some s. The limits S and s satisfy (2.8)-(2.13). It follows by uniqueness that s = F = S, hence
that (Fj) converges in L' to F.

The map 7 is also compact in the L'-norm topology. Indeed, let (f;);cn be a sequence in K, and
(F1)ien = (T (f1))ien- For any |h| < 1, denote by G (z,y) = Fiu(w,y + h) — Fi1(z,y) and

Fi3  fu* pa
1+ % 1+ fl4;;ﬂa

Fi3  fu* pa (2.7)
14_%14_]”14:#04 Y

Il Ji2 * pa Ji2 * pa
— x, +h(79€, +h) - ——(x, )
1 + F]il ( Y ) 1 + le;’;,Ufa ( Yy ) 1 + leZ/»la ( y)

Hy(z,y) = (z,y+h) -

They satisfy

fZQ*Moz

(a + 1+ flzzua

)G + 8:Gin = Hy,  Gu(0,:) =0,

so that

fro*
—a(z—X)—[% lfl;ﬁa (u,y)du
1 iz 7t

x
Gu(z,y) :/0 Hp(X,y)e dX, (z,y) € 0,12
The boundedness by k? of the integrands in the r.h.s. of (2.8) and (2.10) induces uniform L!-
equicontinuity of (Fj1)ieny (resp. (Fi3)en) w.r.t. the x (resp. y) variable. Together with the
L'-compactness of (f; * pia)ien, this implies uniform L'-equicontinuity w.r.t. the y variable of
(Hi1)ien, then of (Fjp)ien. This proves the L' compactness of (Fjj)en. The L' compactness of
(Fli)ien, 2 < i < 4 can be proven similarly.



Hence by the Schauder fixed point theorem there is a fixed point 7 (F')

= F, i.e. a solution F to

F: F, F F:
aF| + 0, F = 3F 1 ;I:/Cj — 1F1 2 j;;::é , (2.30)
L S e o
F: F. F F:
OFy — 0, Fy = ol A Jlihe f2 (2.31)
I =gk 1420 14 ke 1+ 2
Fl FQ*M F3 F4*M
aFs+ Oy = — — 5 =~ (2.32)
L T4 =53 L+ 7 14 ==
Fl*u F2 Fg*,u F4
aFy — 0,Fy = Fre T T T w0 (zy) €[0,1]? (2.33)
T+ =71+ 1+ =1+ 3
k k
F1(07y):fb1(y)/\§7 F2(17y):fb2(y)/\§v ye [0’1]7 (234)
k k
Fs5(x,0) = fpz(x) A BL Fy(x,1) = fpa(x) A 3 @ € [0,1] (2.35)

Step II. Removal of the damping and the convolutions in (2.30)-(2.35).

Let k > 1 be fixed. Denote by F* the solution to (2.30)-(2.35) defined in Step I. Each compo-
nent of F* being bounded by a multiple of k2, (F®),¢jo,1 is weakly compact in L'([0,1]%). Denote
by FF alimit of a subsequence for the weak topology of L' ([0, 1]2). Let us prove that the convergence
is strong in L'([0,1]2). Consider the approximation scheme (f™!, &) en of (F&, Fg),

,0 ,0
? = 2a =0,
o Fo « a,l+1 fa,l %«
41 J+1 1% 1% 41
aflOé+ +8If1a+ = 35 4F4*Za - ! a,l+1 2fal*a ? f1a+(0’y):fb1(y)/\7
1_|_ 1_|_ 1_|_ 1 1_|_ 2 *Ha
J+1 J+1 F:? Fi' = p f“l * M 5 H_l I+1
oz a a a a,
@ — Ol = 3 Fy *ua B Fols ol (Ly) = fey) A 5
L+ 51+ 14ty 4
leN. (2.36)
By induction on [ it holds that
042l < foz 2042 < Fla < f{)z,2l+3 < f{x,Ql—&—l7
5"” <[P F < TP < Y a0 leN. (2.37)

For every | € N, (f" ’l)ae]m[ (resp. (fy” )ae 0,1]) is translationnaly equicontinuous in the z-direction,
since all integrands in its exponential form are bounded. It is translationnaly L'-equicontinuous in
the y-direction by induction on /. Indeed it is so for (F§') (resp. (FY)) since Oy(e™VFs') ( resp.

9y (e®¥F{)) is bounded by ek?, and ( Jaclo,i[» © € {3,4}, is bounded by k. Consequently, it

Fa
k

Fi ito )acjo,i- There is a limit sequence (gi,g4) in (L([0,1]%))? such that up to

14 T ke F4 *ll«a

: Fg
is so for (—3=
1+



subsequences (fla’l) (resp. (an,l)) converges to g4 (resp. g) in L'([0,1]?) when o — 0. They satisfy
0< g2 < 242 < R < 243 < 241

0<g' <™ <Ff < 93”3 <gt, leN,

20+1 21 2 211
20+1 g 92 2l 91 9
O 9y =G ! 20+1 g2 Oegi =G — o2 2 20—1
1+ 38— 1+ 1+ 11+g2
20+1 20—1
! gi 9 ! 9 9
:ng H=G- 1g 2 2041 —azgg =G - ! 2921 )
1 + 1 1 + .‘]2 1 + .‘]1 1 + 2
! k k
gl(oay) :fbl(y)/\§7 92(17y) :be(y) 5 yE [071}7
where G is the weak L! limit of ( Fa HF‘;%) j0,1f When a — 0. In particular, (?")1en and

1
(93 1en (resp (927 1) e and (g2171), eN) non decreasingly (resp. non increasingly) converge in L!
)

to some g; and gy (resp. hi and hg) when | — +oo. The limits satisfy

0< g1 <FF<hy, 0<go<Fy<hy,

hy 92 g1 ha
Ouh1 = G — B g =G-
g1 ha h 92
Ohy =G — =G ,
(hl_gl)(ovy) :07 (h‘2_g2)(17y) :Oa [0 ]

Hence,

(ha = g2)(x,y) = (h1 — g1) (@, ) — (h —g1)(L,y), (z,y) € [0,1]?,
and

=) == 00 = 000.9) | (50

(L ho(1+ %) — hi(1+ %) o
p( /X (1+%)(1+%)(1+%)(1+%)( y)d )dX.

The non negativity of h1 — g1, g1, g2, h1 and ho implies that h; — g1 = 0. The same holds for hy — go.
Consequently

gi=h=F, g=h=F
(FT")ago,1] converges to FFin L'([0,1]?) when a — 0. Indeed, given 5 > 0, choose ly big enough so
that || g%lOH lo |L1< n and || gzlo FF ||;1< n, then ag small enough so that
| ff“’”‘)“ g™ < and | 70— gl <. €)0.a0l
Then split || Ff* — FF |1 as follows,
Py = Ff L < FE = f720 o+ 720 = gt o+ 1 gt = Ff
<A = 2 by (2.37)

<|| AR = gt I+ ) g = g i+ | g
< 5n, aE]O,ao[-

2o _ f2l0 | L1 2n



The L! convergence of (F)ken to F , 2 < i <4, can be proven similarly. Passing to the limit when
a — 01in (2.30)-(2.35) is Stralghtforward. And so, F* is a non negative solution to (2.1)-(2.6). m

3 Passage to the limit when £ — +o0.

The study of the passage to the limit when £ — +oo0 in (2.1)-(2.6) is split into six lemmas. In
Lemma 3.1, uniform bounds are obtained for mass, entropy and entropy production term of the
approximations. Lemma 3.2 splits [0,1]? into ‘large’ sets of type 0 < 2 < 1 times a ’large’ set in y
for (FF, F¥) (resp. a ’large’ set in = times 0 < y < 1 for (F¥, FF)), where the approximations are
uniformly bounded in L*°, and their complements where the mass of the approximations is small.
Lemma 3.3 proves uniform equicontinuity with respect to the x (resp. y) variable of the two first
(resp. last) components of the approximations. In Lemma 3.4, L'-compactness of a truncated gain
term of the approximations is proven. Lemma 3.5 proves that the approximations form a Cauchy
sequence in L1([0, 1]?). Their limit is proven to be a renormalized solution to the Broadwell model
in Lemma 3.6 .

In this section, ¢; denotes constants that only depend on the given boundary value f3.

Lemma 3.1
There are constants ¢, such that

[ Fpdody < e (3.1)

FF(zy) Ink

/ ( Flk sz Fy Fy ) In F{CF2 ( + 73)( )(:c y)dedy < cp, k> 2.
I T B T A

(3.3)

Proof of Lemma 3.1.

Adding (2.1)-(2.4), integrating the resulting equation on [0, 1]? and taking (2.5)-(2.6) into account,
implies that total outflow equals total inflow. Also using 0, (FF + F¥) = 0,(F¥ + FF) = 0 implies
boundedness of the total mass ZZ 1 | FF(z,y)dzdy. Multiply (2.1) (resp. (2.2), resp. (2.3), resp.
(2.4)) by In k (resp. In FFk , resp. In LFI“ resp. In FFk ), add the corresponding equations,

+T 1+ 14+ 4+

and integrate the resulting equation on [0, 1]2. Denoting by Dk the entropy production term for the
approximation F*,

Fk  Fk Fk  FF FFFF(1+ 22
Dk:/( le 2F 3 4 )ln ( + k)F( )(x,y)dxdy,
I+ 1+7 1+ 3 1+ 57 1+ )( f)F:fFLL
leads to

Fk k Fk k
/(Fflan—k(Hl 1)1ydy+/(F§lnF§—k<1+2 i)

k k k k

5 5 4 i
/(F3 In FF — k( —l—?)ln(l—i—?))(x 1)d:c+/<F4 In Ff = k(1+ =51 (1—1—?))@ 0)d

+ DF < ¢.



Moreover,

Fk
k/ln(1+kl)§/Ff§cb, 1<i<4

Hence
Ff F¥ F¥ Fy
/(Fl In —— (1,y) + F¥In k( ,y))dy—l—/(F3 In —=— (z,1) + F¥ lnw(l‘ O))dm
14+ 4 1422 14+ 4 1+ ==
+ Dk < Cp.
Consequently,
Ef F¥
/ FFln—1_ = (L y)dy +/ F¥ln —2__ = (0, 9)dy
Ff(Ly)>5ty 1+ - FF(0,9)> 55 1+ 72
F¥ Ey
+/ F¥ln 7Fk(x 1)dz +/ Ffln—4 =7 (x,0)dz + Dy,
Fl(2,1)> 2 14+ 4 Ff(2,0)> 22 14 2%
<c, k>2

And so, (3.3) holds. Moreover, for any A > 2 and k > 2,

A
n—-x (/ Ff(l,y)der/ FF(0,y)dy
I+ 2 NJFry)>k FE(0,9)>k

—|—/ F¥(x, 1)d:):—|—/ Ff(:c,O)d:r)
F¥(z,1)>k FF(z,0)>k

k Ff k Fy
<a+ | A, wag+ [ F | )y
FFy)<z% 1+ Tl FF09)<%5 2

Fk Fk
—I—/ Féc | In 3F’f | (z, 1)dx—|—/ Ff | In e | (x,0)dx
Ff (2, 1) <5y 14+ 4 F¥(2,0)< 25 145

<cp+2, k>2 (3.4)
In particular,

/ Flk(l,y)dy+/ F5(0,y)dy

FF(ly)>k FF(0,9)>k
+/ FF(z,1)dz +/ F(z,0)de < %, k>2. (3.5)
F(w,1) FF(2,0) Ink
Since
k
(FY + F§)(z,y) = F{ (Ly) + fie@) A 5, (2,m) € 0,17, (3.6)

it holds that

Ff(a,y) > k= F'(1,y) >

10



Consequently, for some subset wy, of [0, 1] such that |wy| < £,

/ Ff(x,y)dzdy S/ FF1,y)dy+ | froly)dy
FE(z,y)>k Flk(l,y)>§ Wik

< 70 ,

~—Ink

by (3.4) and the boundedness of the fio entropy. [ |

Lemma 3.2
Fore>0, A > exp(%) and k > exp(?%), there is a subset Q5 of [0, 1] with measure smaller than
%< such that

A 2A 9A  2A
Fi(z,y) < —ep(—), Fy(wy) < —exp(=—), z€[0,1], ye[0,1])\ Qe (3.7)

/01 (/QEA(F{“ + F(x, y)dy) dx < cpe. (3.8)

Proof of Lemma 3.2.
Since fy € L(]0,1]) and

1 1
/0 (FE(Ly) + FEO,y))dy + / (F¥(z,1) + F (2, 0))dz < ¢,

the measure of the set

A A
— or Flk<17y) Z -
€ €

05 = {y € [0,1]; finly) > %, (3.9)

is smaller than %<, (FF, F¥) is uniformly bounded on [0, 1] x ([0,1] \ Qf}), since

1
Fl(w,) < FF(1,y) exp( / FH(X,y)dX)

0
< Ff(Ly) exp(Ff(L,y) + fiely)) by (3.6)
A 27
S ;GXP(?),

and

1
F(w,) < FE(0,y) exp( /0 FF(X,)dX)

< (FF(Ly) + fr2(y)) exp(FF(L,y) + fr2(y))

2A 2A
? eXp(?)a YIS [07 1}7 Yy € [07 1] \ Qi‘/l\

IN
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Moreover, for any A > exp(@) and k > GXP(L?)»

€

/01 </Q€A(F1’“ + Ff)(,y)dy ) dr = /QEA(Ff(l,y) )y

S/ F{“(l,y)der/ Ff(1,y)dy
yeQY FF(Ly)<A FF(1y)>A

k1’

+ / Fny)dy + / Fra(y)dy
yeQ, fra(y) <A Jo2(y)>A

< 200 + CibA + -2 by (3.4) and the boundedness of the entropy of fyo
In . InA
< CpE.
]
Lemma 3.3
There is ¢, > 0, and for € > 0 given there is § > 0 such that for |h| < §, uniformly in k € N*,
/ \FF(x + h,y) — FF(2,y)|dvdy < cpe, i € {1,2},
[0,1]2
[ PRy ) = Ry ldndy < e i€ (3,4, (310)
[0,1]2

Proof of Lemma 3.3.

The four cases Flk,..., Ff are analogous. The detailed estimates are carried out for Flk The
translational L' equicontinuity in the 2-direction for In(1 4+ ) is obtained as follows from the 0,-
term in the renormalized equation. Consider h € [0, 1[. Write the equation for Ff in renormalized
form (1.4) integrated on [x,z + h|, where the integration from = + h > 1 tending to zero with h
uniformly in k, is being omitted from the following computations;

In(1+ Ff(z + h,y)) — In(1 + Ff(z,y))
z+h 1 Fk Fk; Fk Fk

_/ 1 Fk( 3Fk 4Fk - 1Fk 2Fk >(Xv y)dX- (3.11)
e A - I B S A

Denote by sgn the sign function,

sgn(r) =1ifr >0, sgn(r)=-1ifr<0.

12



Multiply the previous equation by sgn(ln(l + F¥(x + h,y)) — In(1 + F¥(x, y))) and integrate on
[0,1]?. Uniformly w.r.t. k& € N*,

/|1n(1 + Flk'(m +h,y)) —In(1+ Flk(x, y))|d:ndy

oap LHFF LB PR H B
Ff F’f
< h(/Fk Fk rk rk i ! F F’“ (X y)dXdy
< e (LHFR(+ ) 1+
+3 1+ bl 2
Fk Fk
+/F1k ok Fk gk koopk 2 FF (X, y)dXdy

< (L+ FR)(1+ 5 Byr4 i

ok 3 3 Iz

Fy  Ff
+/F’k wk FE Rk 3 Fk: (X, y)dXdy)

< h(3/F§( y)dXdy + mD'“)

< ch. (3.12)
Recall that for any non negative real numbers x1 > 9, there is 6 €]0, 1] such that

x1 — 22 = exp(In(l + z1)) — exp(In(1 + z2))
=exp (0In(1+ z1) + (1 — 6) In(1 + 22)) (In(1 + z1) — In(1 + z2)).

And so the L'-norms of the translation differences of Ff and In(1 + FF), are equivalent on [0, 1] x
([0,1] \ QA since FF and (x,y) — FF(z + h,y) are bounded in L>=([0, 1] x ([0,1] \ Q¢})). There
is also the small set [0, 1] x Q) with masses of Ff and Ff(- + h,-) bounded by ce. Together with
(3.12) this proves the translational equicontinuity in the z-direction for k > exp(gcb) The proof for
h €] —1,0[ is similar. [

Given e >0, A > eXp(ch) and k > exp(?’cb) let Q) C [0,1] as defined in Lemma 3.2, and
take X as the corresponding cutoff function,

XA =1if y¢0h,  xZ{@) =0if ye QP

Lemma 3.4
Let (ak)keN be a non negative sequence bounded in L™ and compact in L' . The sequences

. T Fk Fk " "
(o [ e e )
0 14+ 54

1 k k
F. F _ (X gk
and (Xijl\(y>/ 3}7*3{9 4Ff< 73/)6 fz “ (u,y)dud )
v 1431+

1 k k

(i) [ e (X y)dx)

resp. (Xz1(y — 7 (X, 9)dX) e )
01+ B

keN*

keN*’

are compact in L1([0,1]?) (resp. in L([0,1])).

13



Proof of Lemma 3.4. For any ~ > 1, using Lemmas 3.1-3.2,

k
/Xkl ‘/ FFk (X y) fX+h Oék(’wy)dudX
‘ FS Fk — % o (uy)du
- g (X ety
0 1+ 3 1+ =
F F’f
< [ / T (X, y)dxX |dady
1+ 581458
. T F Fk
+ [xidw) / X / (u, y)duldzdy
0 14+5
Ch
17 /Xkl Fl Fz z,y)dzdy

<7+ yh(= )2

Choosing v big enough, then h small enough, proves the translational L' equicontinuity in the x

direction of (X y) Jo Fk ( y)e~ Jx ot (wy)dug x )k " Let us prove its translational L'
I+—3 1+ eN*
equicontinuity in the y dlrectlon. Given € > 0, let
> ep(CD), < (92, Az oY) (3.13)
ex , € —)e e, > exp(—). .
i P € 3 665’)/ A 3 P €3

Let QZ%A?’ C [0, 1] as defined in Lemma 3.2 for (F¥, FF¥), and X63A3 the corresponding cutoff function,

X%A?’( )=1if x¢Q€3A3, X?z},( ) =0if xEQE3A3.
First,
Fk FF €
/(/ Fk gk FF Rk ’ Fk (X, y)dX)dxdy < 1 S %
X€[0,x]; ?:k k (X,y) ﬁ wk (Xy) 1+ 3 14+
1+ 1+—4 1+Tl 1+TZ
Moreover,
FF  Ff
5A
/X%\(y)/ rk Fk FF Fk (1- X233 (X)) 3Fk Vo (X, y)dXdzdy
Xel0,a] A (Xy)<y—L —25 (Xw) L+ 2145
+43 1+ 4 1+—L 142
ANZ aa
< 20b’7(*> e« €3
€
< % by definition of e3.

Given the boundedness of (F¥, FF) 3,y ON (QZ@AR’)C x [0,1], and the statements of Lemmas

k>exp(Z2
3.2-3.3 for (F¥, FF), there is hy > 0 such that

oa\mz

Fk Fk Fk Ff
// XZ?ESM : (X, y+h) - 3 (X, y)|dXdxdy <



for h €]0, hs[, uniformly with respect to k& > exp(3cb)
The proofs of the L'([0,1]?) (resp. L([0,1])) compactness of

1 k k
Ff F X
(xi?(y) o 4Ff (X, y)eJs o (@y)du dX)

keN*’

1 Fk Fk
(resp- (b ) | (X))

are similar.

Lemma 3.5
(F¥)ren+ is compact in L'([0,1]?).

Proof of Lemma 3.5.

By (3.1)-(3.2), (F*)gen+ is weakly compact in (L'([0,1]?))*. Denote by F the weak limit of a
subsequence, still denoted by (F¥). Let us prove that (FF)gen+ is strongly compact in L'(]0,1]?).

2
It is by (3.8) enough to prove that up to a subsequence, given € > 0, for A > e~

c

k>eeb and

QA as defined in Lemma 3.2, (x{A FF)ren- is strongly compact in L([0, 1]?). For every F* in the

subsequence, consider the approximation scheme ( f1 , k, l>l€N of (Flk, sz), defined by

k,—1 k,—1 k,0 k,0
f1 :fz :f1 :fz =0,

k41 YA Fy Ff For 3!

1 (z,y) :fbl(y)"‘/ (Xil(y) Fk - Bl—1 kl)(X y)dX,
0 3 1 + 1+ f1 1+ f2
1 k k kl kl+1

F. F fi

k,+1 €

f2 * (x,y):be(y)+/ (Xk/}(y) 3F 4 - ! Kl 2 kl— 1)(va)dX'
@ 1+ 1+ 5 ey

By induction on /, and using an exponential form of (f; k, ZH, 5 ’Hl), it holds that
k 21 k,214-2 k,2143 k,2l+1
< f 9 fl < f I

and
k.21 k.21 k.21 k.21 *
< FE < P P < EE < P (2,y) €10,1] x Q)6 ke N,

(3.14)

(3.15)

(3.16)

leN.
(3.17)

€

k 2l+1
) )

The sequence (Xklf{C 2l)k> 3cy (resp.  (X§ f§ 2l)k> 3¢, ) 18 bounded from above by (xlel) =
>ee
(resp. (XleQ) 35,,) hence by (TA) The sequence (Xklfk 2l+1) = (resp. (X3 fy
is bounded by 24 exp( Ayl 4 24 exp(%)), since -
k2141
Xkl(y) " (@, y) = Xia (y)Fl (z,y)
s w
— (ryy)dr
z gk k k,l Jx P fkl T Tk
i) [t - Leaye  eAoneoeth T ax
R O g -

< XA, y) - X () / FFEE(X, y)dX.
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F

-3 4
e 1t

By Lemma 3.4, there is a subsequence of (Xkl fo

KEN®) still denoted by

k

k ~
(szl fo ” F§ 1?% (X, y)dX)keN*, converging in Ll([O, 1]) to some F;. Given n > 0, there is a
%

subset wy, of [0,1] with measure smaller than 7 such that on wy the convergence of this sequence
is uniform and (Fi, fp1, fe2) is bounded. It follows from (3.14)-(3.15) and the non-negativity of
(ff’m,ff’m)(k,l)el\fz that (ff’m, ff’m)(k’l)eNz is bounded on [0, 1] X wy. Given these bounds, Lemma
3.4 and the expression of ( flk ’l, ff ’l) in exponential form, it holds by induction that for each | € N,
the sequence (ff’m, ff’l)k%s% is strongly compact in L'([0,1] x wy). Denote by (g4, gb) its limit
up to a subsequence. By Lemma 3.4, let G (resp. H) with 0,G = —0,H, be the limit in L' when
k — +o0 of

(X1 () Fk (X,9)dX) o, (resp. (x&1(v) Fk (X 9)dX) s ).
0 1+ 3 1 4 =4 >ee z 1 + 3 14+ B E>e <
(91 7951,95”1 92l+1) satisfies
gl =g3=0,

P (.y) = fn(y) + Cla,y) - /0 A X, )dX, e N,

g7 (@,y) = fuly) + G(z,y) — /0 gHg3 (X y)dX, 1eN,
1

9 (z,y) :fb2(y)+H(m,y)—/ P1g2(X, y)dX, €N,
X

@2 (2, y) = fly) + H(z,y) / 97y T (X, y)dX, 1€EN, (z,9)€[0,1] xwS.  (3.18)

By induction on [ it holds that

0< gl <gft? < gitt® < git,
0<gs <g3t?<g™ <gg™!, leN (3.19)

Moreover,

1
/ g3 (w,y)dady < / Joi (y)dy +/ (G + H)(2,y)dedy, je€{l,2}, leN
[0 1}ch 0 [O,l}xw%

By the monotone convergence theorem, (g2!);en (resp. (¢%*1)en) increasingly (resp. decreasingly)
converges in L'([0,1] x wf) and almost everywhere on [0,1] X wf to some g (resp. h). By the
dominated convergence theorem,

20 20—1

hm 919, ~ =gihs and hm ngH 2

=higo in Ll([O,l]wal).

16



Consequently,

g1(7,y) = fur(y) + G(z,y) — [ giha(X,y)dX,

hi(z,y) = fu(y) + G(x,y) — h192(X y)dX,

92(z,y) = froly) + H(z,y) — [ h1g2(X,9)dX = g2(0,y) — G(z,y) +/0 h1g2(X, y)dX,

haey) = Finly) + H(z,y) — | giha(X,9)dX = ha(0,) — Glay) + /0 giha(X, y)dX,

(z,y) € [0,1] X wy,
and
h1> g1, ha>g2, (z,y)€[0,1] x wy. (3.20)
Hence
(h1 —g1)(L,y) = —(h2 — 92)(0,y),
so that, by (3.20),
91(1,y) = h1(L,y), 92(0,y) = ha(0,y).

Consequently, h1 — g1 = ha — g2, g1ha — h1ga = (91 — 92)(h1 — g1) and
(=)o) = [ o1 = (ks ~ ) (X)X, (3:21)

It follows from (h1 — ¢1)(0,y) = 0 and the boundedness of (g1, g2) on [0,1] x wy that hy — g1 =0

and (g1, 92) = (h1,h2) on [0,1] x wy. Hence the whole sequence (¢4, gb)ien converges to (g1, ge) in
LY([0,1] x w i) Letting n — 0 and using (2.16), the convergence holds in LY([0,1)?).

Given € > 0, choose [y big enough so that || g210 2l°+1 |1 < € then kg big enough so that

| froott — gt i<e and || fP0 — g |n<ée k> ko

Hence || fk 2o+l _ f’zlo |lz1< 3€ for k > kg. Then
k /
| FY = FT I
ﬂﬁ—ﬁwmmm+m6wm&
k,21 K’ 21 k,21 K’ 21
<IFF = 1% lpagdyey + I EY = S50 paghye + I = A7 o +2cpe
k2lo+1 k2l K 200+1 k21 k,21 k' 21
SIAP = A0 N+ AP = AP M+ AT = f770 Ml +2ee by (3.17)

< B+ 2cpe, k> max{ko,exp(ﬁ)}, K > max{ko,exp(gc )}
€

And so (FY) is a Cauchy sequence in L!([0, 1]?) with the limit equal to the weak limit Fy. Similarly,
(F]k)2§j§4 is a Cauchy sequence in (L1([0,1]))3 with the limit equal to the weak limit (F})a<j<4. B
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Lemma 3.6
The limit F' of (F*)pen+ in L'([0,1]?) is a renormalized solution to the Broadwell model (1.1).

Proof of Lemma 3.6.
Start from a renormalized formulation of (2.1),

k
f)dy

1 1
/w1(1,y)1n(1+Ff(1,y))dy—/ 901(0,y)1n(1+fb1(y)A2
0 0

1 1
—/ / In (14 Ff(z,y)) 01 (z, y)dady
0 0

k k
= / / @1(33,.@) F3 F4 F’“ (m,y)dxdy
0o Jo (1+F1k)(1+ )(1+ =)

1 1
—/ / p1(z,y) i F2 (@, y)dady, (3.22)
0o Jo (1+F1k)(1+ )(1+ =)

for test functions ¢ € (C([0,1]2))%. Using the strong L' convergence of the sequence (F*) to pass
to the limit when k& — +o00 in the left hand side of (3.22), gives in the limit,

1 1
/0 or(Ly)In (1 + Fi(L,y))dy — /0 21(0,9) I (14 fin(y))dy

1 1
_ / / In (14 Fi(z,y))dx¢1(z, y)dady.
o Jo

For the passage to the limit when k& — o0 in the right hand side of (3.22), given 1 > 0 there is a
subset A, of [0,1]% with [AS| < », such that up to a subsequence, (F ¥)pen+ uniformly converges to
F on A, and F € L*°(A,). Passing to the limit when k¥ — +o00 on A, is straightforward. Moreover,

F\F. FYFY
1im/ cplilil (x,y)dzdy =0 and lim 1-2

@ (z,y)dzdy = 0,
n—0 n—0 Ag (1+Fk)(1+ )(1+Fk)

uniformly with respect to k, since

F FF , .
T F <1, o7 o <1, and hr% Fy =0,
h L+ FHA+ )0+ ) 0

uniformly with respect to k.

The gain term can be estimated as follows. The uniform boundedness of the entropy production
term of (F*) is given in Lemma 3.1. A convexity argument together with the L! convergence of
(F¥) to I (see [8]), imply that

F
2 (w,y)dwdy < . (3.23)

13
FFy — F3Fy)In
JICEE

It follows that, for any v > 1,

F\F,
dedy < —— dxd
(xy)wy o +7/%1+F1($,y)wy

<—+ cv/ Fy(z,y)dzdy,
lnfy e
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which tends to zero when n — 0. Similarly, using (3.3),

FEFpk
/ |30‘ . 4 ;k Pk (a:,y)dxdy
A7 A+ )0+ )0+ )

FkFE
<ec / S = (@, y)dzdy
A5 L+ FR)(1+ 451+ F)

c FkEE
< F+C’7 ) ! }gk oz
v A L+ FP)(A+ 75+ 3)

k
< S Cv/ Fy (z,y)dzdy,
In~y Ag

(z,y)dzdy

which tends to zero when n — 0, uniformly in k. It follows that the right hand side of (3.22)
converges to

1,1 1
F3F4 F1F2
dzdy — dxd
/0 /0 @(xay)l F (m,y) ray /0 90(55’3/)1 P (xvy) ray,

when k — +oo. Consequently, F} satisfies the first equation of (1.1) in renormalized form. It can
be similarly proven that (F})2<j<4 is solution to the last equations of (1.1). |

This completes the proof of Theorem 2.1.
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