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1 Introduction.

The two-dimensional stationary Broadwell model in a square is

∂ x F 1 = F 3 F 4 -F 1 F 2 , F 1 (0, •) = f b1 , -∂ x F 2 = F 3 F 4 -F 1 F 2 , F 2 (1, •) = f b2 , ∂ y F 3 = F 1 F 2 -F 3 F 4 , F 3 (•, 0) = f b3 , -∂ y F 4 = F 1 F 2 -F 3 F 4 , F 4 (•, 1) = f b4 , (1.1) 
with unknown (F i ) 1≤i≤4 defined on [0, 1]2 , and given (f bi ) 1≤i≤4 defined on [0, 1]. It is a four velocity model for the Boltzmann equation, with F i (x, y) = f (x, y, v i ), v 1 = (1, 0), v 2 = (-1, 0), v 3 = (0, 1), v 4 = (0, -1).

The boundary value problem (1.1) is considered in L1 in one of the following equivalent forms, the exponential multiplier form:

F 1 (x, y) = f b1 (y)e -x 0 F 2 (s,y)ds +

x 0 (F 3 F 4 )(s, y)e -x s F 2 (τ )dτ ds, a.a. (x, y) ∈ [0, 1] 2 , (

and analogous equations for F i , 2 ≤ i ≤ 4, the mild form:

F 1 (x, y) = f b1 (y) + x 0 (F 3 F 4 -F 1 F 2 )(s, y)ds, a.a. (x, y) ∈ [0, 1] 2 , (1.3) 
and analogous equations for F i , 2 ≤ i ≤ 4, the renormalized form:

∂ x ln(1 + F 1 ) = F 3 F 4 -F 1 F 2 1 + F 1 , F 1 (0, •) = f b1 , (1.4) 
in the sense of distributions, and analogous equations for F i , 2 ≤ i ≤ 4.

The main result of the paper is the following.

1 Theorem 1.1 Given a non-negative boundary value f b with finite mass and entropy, there exists a stationary nonnegative renormalized solution in L 1 with finite entropy-dissipation to the Broadwell model (1.1).

Most mathematical results for discrete velocity models of the Boltzmann equation have been performed in one space dimension. An overview is given in [START_REF] Illner | Discrete velocity models of the Boltzmann equation: survey on the mathematical aspects of the theory[END_REF]. In two dimensions, special classes of solutions are given in [START_REF] Bobylev | Exact solutions of discrete kinetic models and stationary problems for the plane Broadwell model[END_REF], [START_REF] Bobylev | Two dimensional alf-space problems for the Broadwell discrete velocitry model[END_REF], and [START_REF] Ilyin | Symmetries, the current function, and exact solutions for Broadwell's twodimensional stationary kinetic model[END_REF]. [START_REF] Bobylev | Exact solutions of discrete kinetic models and stationary problems for the plane Broadwell model[END_REF] contains a detailed study of the stationary Broadwell equation in a rectangle with comparison to a Carleman-like system, and a discussion of (in)compressibility aspects.

The existence of continuous solutions to the two-dimensional stationary Broadwell model with continuous boundary data for a rectangle, is proven in [START_REF] Cercignani | A boundary value problem for the 2-dimensional Broadwell model[END_REF]. That proof starts by solving the problem with a given gain term, and uses the compactness of the corresponding twice iterated solution operator to conclude by Schaeffer's fixed point theorem.

The present paper on the Broadwell model is set in a context of physically natural quantities. Mass and entropy flow at the boundary are given, and the solutions obtained, have finite mass and finite entropy dissipation. Averaging techniques from the continuous velocity case [START_REF] Diperna | On the Cauchy problem for Boltzmann equations: Global existence and weak stability[END_REF] being unavailable, a direct compactness approach is used, based on the Kolmogorov-Riesz theorem. The plan of the paper is the following. An approximation procedure for the construction of solutions to (1.1) is introduced in Section 2. The passage to the limit in the approximations is performed in Section 3. Here a compactness property of the approximated gain terms in mild form is carried over to the corresponding solutions themselves, using a particular sequence of successive alternating approximations and the Kolmogorov-Riesz theorem [START_REF] Kolmogorov | Über Kompaktheit der Funktionenmengen bei der Konvergenz im Mittel[END_REF], [START_REF] Riesz | Sur les ensembles compacts de fonctions sommables[END_REF].

A common approach to existence for stationary Boltzmann like equations is based on the regularizing properties of the gain term. In the continuous velocity case an averaging propery is available to keep this study of the gain term within a weak L 1 frame as in [START_REF] Arkeryd | The stationary Boltzmann equation in the slab with given weighted mass for hard and soft forces[END_REF]. However, in the discrete velocity case, averaging is not available. Instead strong convergence of an approximating sequence is here directly proved from the regularizing properties for the gain term (cf Lemma 3.5 below). But the technique in that proof is restricted to two dimensional velocities, whereas the averaging technique in the continuous velocity case is dimension independent.

Approximations.

Denote by L 1 + ([0, 1] 2 ) the set of non negative integrable functions on [0, 1] 2 , and by a∧b the minimum of two real numbers a and b. Approximations to (1.1) to be used in the proof of Theorem 1, are introduced in the following lemma. Lemma 2.1 For any k ∈ N * , there exists a solution

F k ∈ L 1 + ([0, 1] 2 ) 4 to ∂ x F k 1 = F k 3 1 + F k 3 k F k 4 1 + F k 4 k - F k 1 1 + F k 1 k F k 2 1 + F k 2 k , (2.1) 
-∂ x F k 2 = F k 3 1 + F k 3 k F k 4 1 + F k 4 k - F k 1 1 + F k 1 k F k 2 1 + F k 2 k , (2.2) 
∂ y F k 3 = F k 1 1 + F k 1 k F k 2 1 + F k 2 k - F k 3 1 + F k 3 k F k 4 1 + F k 4 k , (2.3) 
-∂ y F k 4 = F k 1 1 + F k 1 k F k 2 1 + F k 2 k - F k 3 1 + F k 3 k F k 4 1 + F k 4 k , (x, y) ∈ [0, 1] 2 , (2.4) 
F k 1 (0, y) = f b1 (y) ∧ k 2 , F k 2 (1, y) = f b2 (y) ∧ k 2 , y ∈ [0, 1], (2.5) 
F k 3 (x, 0) = f b3 (x) ∧ k 2 , F k 4 (x, 1) = f b4 (x) ∧ k 2 , x ∈ [0, 1]. (2.6) Proof of Lemma 2.1.
The sequence of approximations (F k ) k∈N * is obtained in the limit of a further approximation with damping terms αF j and convolutions in the collision operator.

Step I. Approximations with damping and convolutions. Take α > 0 and set

c α = 1 α 1 0 4 i=1 f bi (u)du, K α = {f ∈ L 1 + ([0, 1] 2 ) 4 ; 4 i=1 f i (x, y)dxdy ≤ c α }. (2.7)
Let µ α be a smooth mollifier in (x, y) with support in the ball centered at the origin of radius α.

Let T be the map defined on K α by T (f ) = F , where F = (F i ) 1≤i≤4 is the solution of

αF 1 + ∂ x F 1 = F 3 1 + F 3 k f 4 * µ α 1 + f 4 * µα k - F 1 1 + F 1 k f 2 * µ α 1 + f 2 * µα k , (2.8 
)

αF 2 -∂ x F 2 = f 3 * µ α 1 + f 3 * µα k F 4 1 + F 4 k - f 1 * µ α 1 + f 1 * µα k F 2 1 + F 2 k , (2.9 
)

αF 3 + ∂ y F 3 = F 1 1 + F 1 k f 2 * µ α 1 + f 2 * µα k - F 3 1 + F 3 k f 4 * µ α 1 + f 4 * µα k , (2.10 
)

αF 4 -∂ y F 4 = f 1 * µ α 1 + f 1 * µα k F 2 1 + F 2 k - f 3 * µ α 1 + f 3 * µα k F 4 1 + F 4 k , (x, y) ∈ [0, 1] 2 ,
(2.11)

F 1 (0, y) = f b1 (y) ∧ k 2 , F 2 (1, y) = f b2 (y) ∧ k 2 , y ∈ [0, 1],
(2.12)

F 3 (x, 0) = f b3 (x) ∧ k 2 , F 4 (x, 1) = f b4 (x) ∧ k 2 , x ∈ [0, 1]. (2.13) F = T (f ) is obtained as the limit in L 1 ([0, 1]
2 ) of the sequence (F n ) n∈N defined by F 0 = 0 and

αF n+1 1 + ∂ x F n+1 1 = F n 3 1 + F n 3 k f 4 * µ α 1 + f 4 * µα k - F n+1 1 1 + F n 1 k f 2 * µ α 1 + f 2 * µα k , αF n+1 2 -∂ x F n+1 2 = f 3 * µ α 1 + f 3 * µα k F n 4 1 + F n 4 k - f 1 * µ α 1 + f 1 * µα k F n+1 2 1 + F n 2 k , αF n+1 3 + ∂ y F n+1 3 = F n 1 1 + F n 1 k f 2 * µ α 1 + f 2 * µα k - F n+1 3 1 + F n 3 k f 4 * µ α 1 + f 4 * µα k , αF n+1 4 -∂ y F n+1 4 = f 1 * µ α 1 + f 1 * µα k F n 2 1 + F n 2 k - f 3 * µ α 1 + f 3 * µα k F n+1 4 1 + F n 4 k , F n+1 
1 (0, y) = f b1 (y) ∧ k 2 , F n+1 2 (1, y) = f b2 (y) ∧ k 2 , y ∈ [0, 1], F n+1 3 (x, 0) = f b3 (x) ∧ k 2 , F n+1 4 (x, 1) = f b4 (x) ∧ k 2 , x ∈ [0, 1], n ∈ N.
The sequence (F n ) n∈N is monotone. Indeed, 

F 0 i ≤ F 1 i , 1 ≤ i ≤ 4 by the exponential form of F 1 i . Moreover, assume F n i ≤ F n+1 i , 1 ≤ i ≤ 4. It follows from the exponential form that F n+1 1 -F n+2 1 ≤ 0. The inequalities F n+1 i -F n+2 i ≤ 0, 2 ≤ i ≤ 4 can
F n+1 i + ∂ x (F n+1 1 -F n+1 2 ) + ∂ y (F n+1 3 -F n+1 4 ) = f 1 * µ α 1 + f 1 * µα k F n 2 -F n+1 2 1 + F n 2 k + f 2 * µ α 1 + f 2 * µα k F n 1 -F n+1 1 1 + F n 1 k + f 3 * µ α 1 + f 3 * µα k F n 4 -F n+1 4 1 + F n 4 k + f 4 * µ α 1 + f 4 * µα k F n 3 -F n+1 3 1 + F n 3 k ≤ 0, so that 4 i=1 F n+1 i (x, y)dxdy ≤ c α . ( 2 
F n+1 1 (x, y) = (f b1 (y) ∧ k 2 )e -αx-x 0 f 2 * µα (1+ F n 1 k )(1+ f 2 * µα k ) (X,y)dX + x 0 F n 3 1 + F n 3 k f 4 * µ α 1 + f 4 * µα k (X, y)e -α(x-X)-x X f 2 * µα (1+ F n 1 k )(1+ f 2 * µα k ) (r,y)dr dX ≤ (f b1 (y) ∧ k 2 )e -αx-x 0 f 2 * µα (1+ G 1 k )(1+ f 2 * µα k ) (X,y)dX + x 0 G 3 1 + G 3 k f 4 * µ α 1 + f 4 * µα k (X, y)e -α(x-X)-x X f 2 * µα (1+ G 1 k )(1+ f 2 * µα k ) (r,y)dr dX = G 1 (x, y), (x, y) ∈ [0, 1] 2 .
The same argument can be applied to prove that 

F n+1 i ≤ G i , 2 ≤ i ≤ 4. Consequently, F i ≤ G i , 1 ≤ i ≤ 4. ( 2 
(G i -F i )(x, y)dxdy + 1 0 (G 1 -F 1 )(1, y) + (G 2 -F 2 )(0, y) dy + 1 0 (G 3 -F 3 )(x, 1) + (G 4 -F 4 )(x, 0) dx = 0.
(2.17)

It results from (2.16)-(2.17) that G = F . The map T is continuous in the L 1 -norm topology (cf [START_REF] Arkeryd | On the stationary Povzner equation in R n[END_REF] pages 124-5). Namely, let a sequence

(f l ) l∈N in K α converge in L 1 ([0, 1] 2 ) to f ∈ K α . Set F l = T (f l ).
Because of the uniqueness of the solution to (2.8)-(2.13), it is enough to prove that there is a subsequence of (F l ) converging to F = T (f ). Now there is a subsequence of (f l ), still denoted (f l ), such that decreasingly (resp. increasingly) (G l ) = (sup m≥l f m ) (resp. (g l ) = (inf m≥l f m )) converges to f in L 1 . Let (S l ) (resp. (s l )) be the sequence of solutions to

αS l1 + ∂ x S l1 = S l3 1 + S l3 k G l4 * µ α 1 + G l4 * µα k - S l1 1 + S l1 k g l2 * µ α 1 + g l2 * µα k , (2.18) αS l2 -∂ x S l2 = G l3 * µ α 1 + G l3 * µα k S l4 1 + S l4 k - g l1 * µ α 1 + g l1 * µα k S l2 1 + S l2 k , (2.19 
)

αS l3 + ∂ y S l3 = S l1 1 + S l1 k G l2 * µ α 1 + G l2 * µα k - S l3 1 + S l3 k g l4 * µ α 1 + g l4 * µα k , (2.20) αS l4 -∂ y S l4 = G l1 * µ α 1 + G l1 * µα k S l2 1 + S l2 k - g l3 * µ α 1 + g l3 * µα k S l4 1 + S l4 k , (2.21) S l1 (0, y) = f b1 (y) ∧ k 2 , S l2 (1, y) = f b2 (y) ∧ k 2 , y ∈ [0, 1], (2.22) S l3 (x, 0) = f b3 (x) ∧ k 2 , S l4 (x, 1) = f b4 (x) ∧ k 2 , x ∈ [0, 1], (2.23) 
(resp.

αs l1 + ∂ x s l1 = s l3 1 + s l3 k g l4 * µ α 1 + g l4 * µα k - s l1 1 + s l1 k G l2 * µ α 1 + G l2 * µα k ,
(2.24)

αs l2 -∂ x s l2 = g l3 * µ α 1 + g l3 * µα k s l4 1 + s l4 k - G l1 * µ α 1 + G l1 * µα k s l2 1 + s l2 k , (2.25 
)

αs l3 + ∂ y s l3 = s l1 1 + s l1 k g l2 * µ α 1 + g l2 * µα k - s l3 1 + s l3 k G l4 * µ α 1 + G l4 * µα k , (2.26 
)

αs l4 -∂ y s l4 = g l1 * µ α 1 + g l1 * µα k s l2 1 + s l2 k - G l3 * µ α 1 + G l3 * µα k s l4 1 + s l4 k ,
(2.27)

s l1 (0, y) = f b1 (y) ∧ k 2 , s l2 (1, y) = f b2 (y) ∧ k 2 , y ∈ [0, 1],
(2.28)

s l3 (x, 0) = f b3 (x) ∧ k 2 , s l4 (x, 1) = f b4 (x) ∧ k 2 , x ∈ [0, 1]). (2.29) (S l
) is a non-increasing sequence, since that holds for the successive iterates defining the sequence. Then (S l ) decreasingly converges in L 1 to some S. Similarly (s l ) increasingly converges in L 1 to some s. The limits S and s satisfy (2.8)-(2.13). It follows by uniqueness that

s = F = S, hence that (F l ) converges in L 1 to F . The map T is also compact in the L 1 -norm topology. Indeed, let (f l ) l∈N be a sequence in K α and (F l ) l∈N = (T (f l )) l∈N . For any |h| < 1, denote by G l1 (x, y) = F l1 (x, y + h) -F l1 (x, y) and H l1 (x, y) = F l3 1 + F l3 k f l4 * µ α 1 + f l4 * µα k (x, y + h) - F l3 1 + F l3 k f l4 * µ α 1 + f l4 * µα k (x, y) - F l1 1 + F l1 k (x, y + h) f l2 * µ α 1 + f l2 * µα k (x, y + h) - f l2 * µ α 1 + f l2 * µα k (x, y) They satisfy α + f l2 * µ α 1 + f l2 * µα k G l1 + ∂ x G l1 = H l1 , G l1 (0, •) = 0, so that G l1 (x, y) = x 0 H l1 (X, y)e -α(x-X)-x X f l2 * µα 1+ f l2 * µα k (u,y)du dX, (x, y) ∈ [0, 1] 2 .
The boundedness by k 2 of the integrands in the r.h.s. of (2.8) and (2.10) induces uniform L 1equicontinuity of (F l1 ) l∈N (resp. (F l3 ) l∈N ) w.r.t. the x (resp. y) variable. Together with the L 1 -compactness of (f l * µ α ) l∈N , this implies uniform L 1 -equicontinuity w.r.t. the y variable of (H l1 ) l∈N , then of (F l1 ) l∈N . This proves the L 1 compactness of (F l1 ) l∈N . The L 1 compactness of (F li ) l∈N , 2 ≤ i ≤ 4 can be proven similarly.

Hence by the Schauder fixed point theorem there is a fixed point T (F ) = F , i.e. a solution F to

αF 1 + ∂ x F 1 = F 3 1 + F 3 k F 4 * µ α 1 + F 4 * µα k - F 1 1 + F 1 k F 2 * µ α 1 + F 2 * µα k ,
(2.30)

αF 2 -∂ x F 2 = F 3 * µ α 1 + F 3 * µα k F 4 1 + F 4 k - F 1 * µ α 1 + F 1 * µα k F 2 1 + F 2 k ,
(2.31)

αF 3 + ∂ y F 3 = F 1 1 + F 1 k F 2 * µ α 1 + F 2 * µα k - F 3 1 + F 3 k F 4 * µ α 1 + F 4 * µα k ,
(2.32)

αF 4 -∂ y F 4 = F 1 * µ α 1 + F 1 * µα k F 2 1 + F 2 k - F 3 * µ α 1 + F 3 * µα k F 4 1 + F 4 k , (x, y) ∈ [0, 1] 2
(2.33)

F 1 (0, y) = f b1 (y) ∧ k 2 , F 2 (1, y) = f b2 (y) ∧ k 2 , y ∈ [0, 1],
(2.34) 

F 3 (x, 0) = f b3 (x) ∧ k 2 , F 4 (x, 1) = f b4 (x) ∧ k 2 , x ∈ [0, 1]. ( 2 
, (F α ) α∈]0,1[ is weakly compact in L 1 ([0, 1] 2 )
. Denote by F k a limit of a subsequence for the weak topology of

L 1 ([0, 1] 2 ). Let us prove that the convergence is strong in L 1 ([0, 1] 2 ). Consider the approximation scheme (f α,l 1 , f α,l 2 ) l∈N of (F α 1 , F α 2 ), f α,0 1 = f α,0 2 = 0, αf α,l+1 1 + ∂ x f α,l+1 1 = F α 3 1 + F α 3 k F α 4 * µ α 1 + F α 4 * µα k - f α,l+1 1 1 + f α,l+1 1 k f α,l 2 * µ α 1 + f α,l 2 * µα k , f α,l+1 1 (0, y) = f b1 (y) ∧ k 2 , αf α,l+1 2 -∂ x f α,l+1 2 = F α 3 1 + F α 3 k F α 4 * µ α 1 + F α 4 * µα k - f α,l 1 * µ α 1 + f α,l 1 * µα k f α,l+1 2 1 + f α,l+1 2 k , f α,l+1 2 (1, y) = f b2 (y) ∧ k 2 , l ∈ N. (2.36)
By induction on l it holds that

f α,2l 1 ≤ f α,2l+2 1 ≤ F α 1 ≤ f α,2l+3 1 ≤ f α,2l+1 1 , f α,2l 2 ≤ f α,2l+2 2 ≤ F α 2 ≤ f α,2l+3 2 ≤ f α,2l+1 2 , α ∈]0, 1[, l ∈ N. (2.37) For every l ∈ N, (f α,l 1 ) α∈]0,1[ (resp. (f α,l 2 ) α∈]0,1[
) is translationnaly equicontinuous in the x-direction, since all integrands in its exponential form are bounded. It is translationnaly L 1 -equicontinuous in the y-direction by induction on l. Indeed, it is so for (F α 3 ) (resp. (F α 4 )) since ∂ y (e αy F α 3 ) ( resp. ∂ y (e αy F α 4 )) is bounded by ek 2 , and (

F α i 1+ F α i k ) α∈]0,1[ , i ∈ {3, 4}, is bounded by k. Consequently, it
is so for (

F α 3 1+ F α 3 k F α 4 * µα 1+ F α 4 * µα k ) α∈]0,1[ . There is a limit sequence (g l 1 , g l 2 ) in (L 1 ([0, 1] 2 )) 2 such that up to subsequences (f α,l 1 ) (resp. (f α,l 2 )) converges to g l 1 (resp. g l 2 ) in L 1 ([0, 1] 2 ) when α → 0. They satisfy 0 ≤ g 2l 1 ≤ g 2l+2 1 ≤ F k 1 ≤ g 2l+3 1 ≤ g 2l+1 1 , 0 ≤ g 2l 2 ≤ g 2l+2 2 ≤ F k 2 ≤ g 2l+3 2 ≤ g 2l+1 2 , l ∈ N, ∂ x g 2l+1 1 = G - g 2l+1 1 1 + g 2l+1 1 k g 2l 2 1 + g 2l 2 k , ∂ x g 2l 1 = G - g 2l 1 1 + g 2l 1 k g 2l-1 2 1 + g 2l-1 2 k , -∂ x g 2l+1 2 = G - g 2l 1 1 + g 2l 1 k g 2l+1 2 1 + g 2l+1 2 k , -∂ x g 2l 2 = G - g 2l-1 1 1 + g 2l-1 1 k g 2l 2 1 + g 2l 2 k , g l 1 (0, y) = f b1 (y) ∧ k 2 , g l 2 (1, y) = f b2 (y) ∧ k 2 , y ∈ [0, 1],
where G is the weak L 1 limit of (

F α 3 1+ F α 3 k F α 4 * µα 1+ F α 4 * µα k
) α∈]0,1[ when α → 0. In particular, (g 2l 1 ) l∈N and (g 2l 2 ) l∈N (resp (g 2l+1 1

) l∈N and (g 2l+1 2

) l∈N ) non decreasingly (resp. non increasingly) converge in L 1 to some g 1 and g 2 (resp. h 1 and h 2 ) when l → +∞. The limits satisfy

0 ≤ g 1 ≤ F k 1 ≤ h 1 , 0 ≤ g 2 ≤ F k 2 ≤ h 2 , ∂ x h 1 = G - h 1 1 + h 1 k g 2 1 + g 2 k , ∂ x g 1 = G - g 1 1 + g 1 k h 2 1 + h 2 k , -∂ x h 2 = G - g 1 1 + g 1 k h 2 1 + h 2 k , -∂ x g 2 = G - h 1 1 + h 1 k g 2 1 + g 2 k , (h 1 -g 1 )(0, y) = 0, (h 2 -g 2 )(1, y) = 0, y ∈ [0, 1]. Hence, (h 2 -g 2 )(x, y) = (h 1 -g 1 )(x, y) -(h 1 -g 1 )(1, y), (x, y) ∈ [0, 1] 2 ,
and

(h 1 -g 1 )(x, y) = -(h 1 -g 1 )(1, y) x 0 h 1 (1 + h 1 k )(1 + g 2 k )(1 + h 2 k ) (X, y) exp - x X h 2 (1 + g 2 k ) -h 1 (1 + g 1 k ) (1 + g 1 k )(1 + h 1 k )(1 + g 2 k )(1 + h 2 k ) (r, y)dr dX.
The non negativity of h 1 -g 1 , g 1 , g 2 , h 1 and h 2 implies that h 1 -g 1 = 0. The same holds for h 2 -g 2 . Consequently

g 1 = h 1 = F k 1 , g 2 = h 2 = F k 2 . (F α 1 ) α∈]0,1[ converges to F k 1 in L 1 ([0, 1] 2 ) when α → 0. Indeed, given η > 0, choose l 0 big enough so that g 2l 0 +1 1 -g 2l 0 1 L 1 < η and g 2l 0 1 -F k 1 L 1 < η, then α 0 small enough so that f α,2l 0 +1 1 -g 2l 0 +1 1 L 1 ≤ η and f α,2l 0 1 -g 2l 0 1 L 1 ≤ η, α ∈]0, α 0 [. Then split F α 1 -F k 1 L 1 as follows, F α 1 -F k 1 L 1 ≤ F α 1 -f α,2l 0 1 L 1 + f α,2l 0 1 -g 2l 0 1 L 1 + g 2l 0 1 -F k 1 L 1 ≤ f α,2l 0 +1 1 -f α,2l 0 1 L 1 +2η by (2.37) ≤ f α,2l 0 +1 1 -g 2l 0 +1 1 L 1 + g 2l 0 +1 1 -g 2l 0 1 L 1 + g 2l 0 1 -f α,2l 0 1 L 1 +2η ≤ 5η, α ∈]0, α 0 [. The L 1 convergence of (F α i ) k∈N to F k i , 2 ≤ i ≤ 4
, can be proven similarly. Passing to the limit when α → 0 in (2.30)-(2.35) is straightforward. And so, F k is a non negative solution to (2.1)-(2.6).

3 Passage to the limit when k → +∞.

The study of the passage to the limit when k → +∞ in (2.1)-(2.6) is split into six lemmas. In Lemma 3.1, uniform bounds are obtained for mass, entropy and entropy production term of the approximations. Lemma 3.2 splits [0, 1] 2 into 'large' sets of type 0 ≤ x ≤ 1 times a 'large' set in y for (

F k 1 , F k 2 ) (resp. a 'large' set in x times 0 ≤ y ≤ 1 for (F k 3 , F k 4 ))
, where the approximations are uniformly bounded in L ∞ , and their complements where the mass of the approximations is small. Lemma 3.3 proves uniform equicontinuity with respect to the x (resp. y) variable of the two first (resp. last) components of the approximations. In Lemma 3.4, L 1 -compactness of a truncated gain term of the approximations is proven. Lemma 3.5 proves that the approximations form a Cauchy sequence in L 1 ([0, 1] 2 ). Their limit is proven to be a renormalized solution to the Broadwell model in Lemma 3.6 . In this section, c b denotes constants that only depend on the given boundary value f b .

Lemma 3.1

There are constants c b such that

F k i (x, y)dxdy ≤ c b , (3.1) 
F k i (x,y)>k F k i (x, y)dxdy ≤ c b ln k , i ∈ {1, • • •, 4}, (3.2) 
F k 1 1 + F k 1 k F k 2 1 + F k 2 k - F k 3 1 + F k 3 k F k 4 1 + F k 4 k ln F k 1 F k 2 (1 + F k 3 k )(1 + F k 4 k ) (1 + F k 1 k )(1 + F k 2 k )F k 3 F k 4 (x, y)dxdy ≤ c b , k > 2.
(3.3)

Proof of Lemma 3.1. Adding (2.1)-(2.4), integrating the resulting equation on [0, 1] 2 and taking (2.5)-(2.6) into account, implies that total outflow equals total inflow. Also using 

∂ x (F k 1 + F k 2 ) = ∂ y (F k 3 + F k 4 ) =
F k 1 1+ F k 1 k (resp. ln F k 2 1+ F k 2 k
, resp. ln

F k 3 1+ F k 3 k
, resp. ln

F k 4 1+ F k 1 4 
), add the corresponding equations, and integrate the resulting equation on [0, 1] 2 . Denoting by D k the entropy production term for the approximation F k ,

D k = F k 1 1 + F k 1 k F k 2 1 + F k 2 k - F k 3 1 + F k 3 k F k 4 1 + F k 4 k ln F k 1 F k 2 (1 + F k 3 k )(1 + F k 4 k ) (1 + F k 1 k )(1 + F k 2 k )F k 3 F k 4 (x, y)dxdy, leads to F k 1 ln F k 1 -k(1 + F k 1 k ) ln(1 + F k 1 k ) (1, y)dy + F k 2 ln F k 2 -k(1 + F k 2 k ) ln(1 + F k 2 k
) (0, y)dy

+ F k 3 ln F k 3 -k(1 + F k 3 k ) ln(1 + F k 3 k ) (x, 1)dx + F k 4 ln F k 4 -k(1 + F k 4 k ) ln(1 + F k 4 k ) (x, 0)dx + D k ≤ c b .
Moreover,

k ln(1 + F k i k ) ≤ F k i ≤ c b , 1 ≤ i ≤ 4.
Hence

F k 1 ln F k 1 1 + F k 1 k (1, y) + F k 2 ln F k 2 1 + F k 2 k (0, y) dy + F k 3 ln F k 3 1 + F k 3 k (x, 1) + F k 4 ln F k 4 1 + F k 42 k (x, 0) dx + D k ≤ c b .
Consequently,

F k 1 (1,y)> k k-1 F k 1 ln F k 1 1 + F k 1 k (1, y)dy + F k 2 (0,y)> k k-1 F k 2 ln F k 2 1 + F k 2 k
(0, y)dy

+ F k 3 (x,1)> k k-1 F k 3 ln F k 3 1 + F k 3 k (x, 1)dx + F k 4 (x,0)> k k-1 F k 4 ln F k 4 1 + F k 4 k (x, 0)dx + D k ≤ c b , k > 2.
And so, (3.3) holds. Moreover, for any Λ > 2 and k > 2,

ln Λ 1 + Λ k F k 1 (1,y)>k F k 1 (1, y)dy + F k 2 (0,y)>k F k 2 (0, y)dy + F k 3 (x,1)>k F k 3 (x, 1)dx + F k 4 (x,0)>k F k 4 (x, 0)dx ≤ c b + F k 1 (1,y)< k k-1 F k 1 | ln F k 1 1 + F k 1 k | (1, y)dy + F k 2 (0,y)< k k-1 F k 2 | ln F k 2 1 + F k 2 k
| (0, y)dy

+ F k 3 (x,1)< k k-1 F k 3 | ln F k 3 1 + F k 3 k | (x, 1)dx + F k 4 (x,0)< k k-1 F k 4 | ln F k 4 1 + F k 4 k | (x, 0)dx ≤ c b + 2, k > 2. ( 3.4) 
In particular,

F k 1 (1,y)>k F k 1 (1, y)dy + F k 2 (0,y)>k F k 2 (0, y)dy + F k 3 (x,1)>k F k 3 (x, 1)dx + F k 4 (x,0)>k F k 4 (x, 0)dx ≤ c b ln k , k > 2. (3.5) Since (F k 1 + F k 2 )(x, y) = F k 1 (1, y) + f b2 (y) ∧ k 2 , (x, y) ∈ [0, 1] 2 , (3.6) 
it holds that

F k 1 (x, y) > k ⇒ F k (1, y) > k 2 , (x, y) ∈ [0, 1] 2 .
Consequently, for some subset

ω k of [0, 1] such that |ω k | < c k , F k 1 (x,y)>k F k 1 (x, y)dxdy ≤ F k 1 (1,y)> k 2 F k 1 (1, y)dy + ω k f b2 (y)dy ≤ c ln k , by (3.4 
) and the boundedness of the f b2 entropy.

Lemma 3.2 For > 0, Λ ≥ exp( 2c b ) and k ≥ exp( 3c b ), there is a subset Ω Λ k1 of [0, 1] with measure smaller than c b Λ such that F k 1 (x, y) ≤ Λ exp( 2Λ ), F k 2 (x, y) ≤ 2Λ exp( 2Λ ), x ∈ [0, 1], y ∈ [0, 1] \ Ω Λ k1 , (3.7 
)

1 0 Ω Λ k1 (F k 1 + F k 2 )(x, y)dy dx ≤ c b . (3.8) Proof of Lemma 3.2. Since f b2 ∈ L 1 ([0, 1]) and 1 0 (F k 1 (1, y) + F k 2 (0, y))dy + 1 0 (F k 3 (x, 1) + F k 4 (x, 0))dx ≤ c b ,
the measure of the set

Ω Λ k1 := {y ∈ [0, 1]; f b2 (y) ≥ Λ or F k 1 (1, y) ≥ Λ }, (3.9) is smaller than c b Λ . (F k 1 , F k 2 ) is uniformly bounded on [0, 1] × ([0, 1] \ Ω Λ k1 ), since F k 1 (x, y) ≤ F k 1 (1, y) exp( 1 0 F k 2 (X, y)dX) ≤ F k 1 (1, y) exp(F k 1 (1, y) + f b2 (y)) by (3.6) ≤ Λ exp( 2Λ ), and 
F k 2 (x, y) ≤ F k 2 (0, y) exp( 1 0 F k 1 (X, y)dX) ≤ (F k 1 (1, y) + f b2 (y)) exp(F k 1 (1, y) + f b2 (y)) ≤ 2Λ exp( 2Λ ), x ∈ [0, 1], y ∈ [0, 1] \ Ω Λ k1 .
Moreover, for any Λ ≥ exp( 2c b ) and k ≥ exp( 3c b ),

1 0 Ω Λ k1 (F k 1 + F k 2 )(x, y)dy dx = Ω Λ k1 (F k 1 (1, y) + f b2 (y))dy ≤ y∈Ω Λ k1 ;F k 1 (1,y)<Λ F k 1 (1, y)dy + F k 1 (1,y)>Λ F k 1 (1, y)dy + y∈Ω Λ k1 ,f b2 (y)<Λ f b2 (y)dy + f b2 (y)>Λ f b2 (y)dy ≤ 2Λ|Ω Λ k1 | + c b ln Λ 1+ Λ k + c b ln Λ
by (3.4) and the boundedness of the entropy of f b2 ≤ c b .

Lemma 3.3

There is c b > 0, and for > 0 given there is δ > 0 such that for |h| < δ, 1 in renormalized form (1.4) integrated on [x, x + h], where the integration from x + h > 1 tending to zero with h uniformly in k, is being omitted from the following computations;

uniformly in k ∈ N * , [0,1] 2 |F k i (x + h, y) -F k i (x, y)|dxdy ≤ c b , i ∈ {1, 2}, [0,1] 2 |F k i (x, y + h) -F k i (x, y)|dxdy ≤ c b , i ∈ {3, 4}. ( 3 
ln(1 + F k 1 (x + h, y)) -ln(1 + F k 1 (x, y)) = x+h x 1 1 + F k 1 F k 3 1 + F k 3 k F k 4 1 + F k 4 k - F k 1 1 + F k 1 k F k 2 1 + F k 2 k (X, y)dX. (3.11)
Denote by sgn the sign function,

sgn(r) = 1 if r > 0, sgn(r) = -1 if r < 0.

Multiply the previous equation by sgn ln(1 + F

k 1 (x + h, y)) -ln(1 + F k 1 (x, y)) and integrate on [0, 1] 2 . Uniformly w.r.t. k ∈ N * , |ln(1 + F k 1 (x + h, y)) -ln(1 + F k 1 (x, y))|dxdy ≤ h [0,1] 2 1 1 + F k 1 | F k 3 1 + F k 3 k F k 4 1 + F k 4 k - F k 1 1 + F k 1 k F k 2 1 + F k 2 k |(X, y)dXdy ≤ h F k 3 1+ F k 3 k F k 4 1+ F k 4 k < F k 1 1+ F k 1 k F k 2 1+ F k 2 k F k 1 (1 + F k 1 )(1 + F k 1 k ) F k 2 1 + F k 2 k
(X, y)dXdy

+ F k 1 1+ F k 1 k F k 2 1+ F k 2 k < F k 3 1+ F k 3 k F k 4 1+ F k 4 k <2 F k 1 1+ F k 1 k F k 2 1+ F k 2 k F k 3 (1 + F k 1 )(1 + F k 3 k ) F k 4 1 + F k 4 k
(X, y)dXdy

+ F k 3 1+ F k 3 k F k 4 1+ F k 4 k >2 F k 1 1+ F k 1 k F k 2 1+ F k 2 k F k 3 1 + F k 3 k F k 4 1 + F k 4 k (X, y)dXdy ≤ h 3 F k 2 (X, y)dXdy + 2 ln 2 D k ≤ c b h. (3.12) 
Recall that for any non negative real numbers

x 1 > x 2 , there is θ ∈]0, 1[ such that x 1 -x 2 = exp(ln(1 + x 1 )) -exp(ln(1 + x 2 )) = exp θ ln(1 + x 1 ) + (1 -θ) ln(1 + x 2 ) ln(1 + x 1 ) -ln(1 + x 2 ) .
And so the L 1 -norms of the translation differences of F k 1 and ln(1

+ F k 1 ), are equivalent on [0, 1] × ([0, 1] \ Ω Λ k1 ) since F k 1 and (x, y) → F k 1 (x + h, y) are bounded in L ∞ ([0, 1] × ([0, 1] \ Ω Λ k1 )
). There is also the small set [0, 1] × Ω Λ k1 with masses of F k 1 and F k 1 (• + h, •) bounded by c . Together with (3.12) this proves the translational equicontinuity in the x-direction for k ≥ exp( 3c b ). The proof for h ∈] -1, 0[ is similar.

Given > 0, Λ ≥ exp( 2c b ) and k ≥ exp( 3c b ), let Ω Λ k1 ⊂ [0, 1]
as defined in Lemma 3.2, and take χ Λ k1 as the corresponding cutoff function,

χ Λ k1 (y) = 1 if y / ∈ Ω Λ k1 , χ Λ k1 (y) = 0 if y ∈ Ω Λ k1 .
Lemma 3.4 Let (α k ) k∈N be a non negative sequence bounded in L ∞ and compact in L 1 . The sequences

χ Λ k1 (y) x 0 F k 3 1 + F k 3 k F k 4 1 + F k 4 k (X, y)e -x X α k (u,y)du dX k∈N *
and χ Λ k1 (y)

1 x F k 3 1 + F k 3 k F k 4 1 + F k 4 k (X, y)e -X x α k (u,y)du dX k∈N * , resp. χ Λ k1 (y) 1 0 F k 3 1 + F k 3 k F k 4 1 + F k 4 k (X, y)dX k∈N * , are compact in L 1 ([0, 1] 2 ) (resp. in L 1 ([0, 1])).
Proof of Lemma 3.4. For any γ > 1, using Lemmas 3.1-3.2,

χ Λ k1 (y)| x+h 0 F k 3 1 + F k 3 k F k 4 1 + F k 4 k (X, y)e -x+h X α k (u,y)du dX - x 0 F k 3 1 + F k 3 k F k 4 1 + F k 4 k (X, y)e -x X α k (u,y)du dX|dxdy ≤ χ Λ k1 (y)| x+h x F k 3 1 + F k 3 k F k 4 1 + F k 4 k (X, y)dX|dxdy + χ Λ k1 (y) x 0 F k 3 1 + F k 3 k F k 4 1 + F k 4 k (X, y)dX| x+h x α k (u, y)du|dxdy ≤ c b ln γ + γh χ Λ k1 (y)F k 1 F k 2 (x, y)dxdy ≤ c b ln γ + 2γh Λ 2 e 4Λ .
Choosing γ big enough, then h small enough, proves the translational L 1 equicontinuity in the x direction of χ Λ k1 (y)

x 0

F k 3 1+ F k 3 k F k 4 1+ F k 4 k (X, y)e -x X α k (u,y)du dX k∈N * . Let us prove its translational L 1 equicontinuity in the y direction. Given ˜ > 0, let γ > exp( 3c b ˜ ), 3 < ˜ 6c b γ Λ 2 e -4Λ , Λ 3 ≥ exp( 2c b 3 ). (3.13) 
Let Ω 3 Λ 3 k3 ⊂ [0, 1] as defined in Lemma 3.2 for (F k 3 , F k 4 ), and χ 3 Λ 3 k3 the corresponding cutoff function,

χ 3 Λ 3 k3 (x) = 1 if x / ∈ Ω 3 Λ 3 k3 , χ Λ k3 (x) = 0 if x ∈ Ω 3 Λ 3 k3 .
First,

X∈[0,x]; F k 3 1+ F k 3 k F k 4 1+ F k 4 k (X,y)>γ F k 1 1+ F k 1 k F k 2 1+ F k 2 k (X,y) F k 3 1 + F k 3 k F k 4 1 + F k 4 k (X, y)dX dxdy ≤ c b ln γ ≤ ˜ 3 .
Moreover,

χ Λ k1 (y) X∈[0,x]; F k 3 1+ F k 3 k F k 4 1+ F k 4 k (X,y)<γ F k 1 1+ F k 1 k F k 2 1+ F k 2 k (X,y) (1 -χ 3 Λ 3 k3 (X)) F k 3 1 + F k 3 k F k 4 1 + F k 4 k (X, y)dXdxdy ≤ 2c b γ Λ 2 e 4Λ 3 ≤ ˜ 3
, by definition of 3 .

Given the boundedness of (

F k 3 , F k 4 ) k≥exp( 3c b 3 ) on Ω 3 Λ 3 k3 c × [0, 1]
, and the statements of Lemmas

3.2-3.3 for (F k 3 , F k 4 ), there is h 3 > 0 such that x 0 χ 3 Λ 3 k3 (X)| F k 3 1 + F k 3 k F k 4 1 + F k 4 k (X, y + h) - F k 3 1 + F k 3 k F k 4 1 + F k 4 k (X, y)|dXdxdy ≤ ˜ 3 , for h ∈]0, h 3 [, uniformly with respect to k ≥ exp( 3c b 3 ). The proofs of the L 1 ([0, 1] 2 ) (resp. L 1 ([0, 1])) compactness of χ Λ k1 (y) 1 x F k 3 1 + F k 3 k F k 4 1 + F k 4 k (X, y)e -X x α k (u,y)du dX k∈N * , resp. χ Λ k1 (y) 1 0 F k 3 1 + F k 3 k F k 4 1 + F k 4 k (X, y)dX k∈N * are similar. Lemma 3.5 (F k ) k∈N * is compact in L 1 ([0, 1] 2 ).
Proof of Lemma 3.5. By (3.1)-(3.2), (F k ) k∈N * is weakly compact in (L 1 ([0, 1] 2 )) 4 . Denote by F the weak limit of a subsequence, still denoted by (F k ). Let us prove that (F k 1 ) k∈N * is strongly compact in L 1 ([0, 1] 2 ). It is by (3.8) enough to prove that up to a subsequence, given > 0, for Λ ≥ e 2c b , k ≥ e 3c b and

Ω Λ k1 as defined in Lemma 3.2, (χ Λ k1 F k 1 ) k∈N * is strongly compact in L 1 ([0, 1] 2 ).
For every F k in the subsequence, consider the approximation scheme (

f k,l 1 , f k,l 2 ) l∈N of (F k 1 , F k 2 ), defined by f k,-1 1 = f k,-1 2 = f k,0 1 = f k,0 2 = 0, f k,l+1 1 (x, y) = f b1 (y) + x 0 χ Λ k1 (y) F k 3 1 + F k 3 k F k 4 1 + F k 4 k - f k,l+1 1 1 + f k,l-1 1 k f k,l 2 1 + f k,l 2 k (X, y)dX, (3.14) 
f k,l+1 2 (x, y) = f b2 (y) + 1 x χ Λ k1 (y) F k 3 1 + F k 3 k F k 4 1 + F k 4 k - f k,l 1 1 + f k,l 1 k f k,l+1 2 1 + f k,l-1 2 k
(X, y)dX.

(3.15)

By induction on l, and using an exponential form of (f k,l+1

1 , f k,l+1 2 
), it holds that

f k,2l 1 ≤ f k,2l+2 1 , f k,2l+3 1 ≤ f k,2l+1 1 , f k,2l 2 ≤ f k,2l+2 2 , f k,2l+3 2 ≤ f k,2l+1 2 , (x, y) ∈ [0, 1] 2 , k ∈ N * , l ∈ N, (3.16) 
and

f k,2l 1 ≤ F k 1 ≤ f k,2l+1 1 , f k,2l 2 ≤ F k 2 ≤ f k,2l+1 2 , (x, y) ∈ [0, 1] × (Ω Λ k1 ) c , k ∈ N * , l ∈ N.
(3.17)

The sequence (χ Λ k1 f k,2l 1 )

k≥e 3c b (resp. (χ Λ k1 f k,2l 2 ) k≥e 3c b ) is bounded from above by (χ Λ k1 F k 1 ) k≥e 3c b (resp. (χ Λ k1 F k 2 ) k≥e 3c b ), hence by 2Λ exp( 2Λ ). The sequence (χ Λ k1 f k,2l+1 1 ) k≥e 3c b (resp. (χ Λ k1 f k,2l+1 2 ) k≥e 3c b ) is bounded by 2Λ exp( 2Λ )(1 + 2Λ exp( 2Λ )), since χ Λ k1 (y)f k,2l+1 1 (x, y) = χ Λ k1 (y)F k 1 (x, y) + χ Λ k1 (y) x 0 F k 1 1 + F k 1 k ( F k 2 1 + F k 2 k - f k,l 2 1 + f k,l 2 k )(X, y)e -x X f k,l 2 
(1+ f k,l 2 k )(1+ f k,l-1 1 k )(1+ F k 1 k ) (r,y)dr dX ≤ χ Λ k1 F k 1 (x, y) + χ Λ k1 (y) x 0 F k 1 F k 2 (X, y)dX.
By Lemma 3.4, there is a subsequence of χ Λ k1 (y)

1 0 F k 3 1+ F k 3 k F k 4 1+ F k 4 k
(X, y)dX k∈N * , still denoted by

χ Λ k1 (y) 1 0 F k 3 1+ F k 3 k F k 4 1+ F k 4 k
(X, y)dX k∈N * , converging in L 1 ([0, 1]) to some F1 . Given η > 0, there is a subset ω η of [0, 1] with measure smaller than η such that on ω c η the convergence of this sequence is uniform and ( F1 , f b1 , f b2 ) is bounded. It follows from (3.14)-(3.15) and the non-negativity of (f k,2l

1 , f k,2l 2 ) (k,l)∈N 2 that (f k,2l 1 , f k,2l 2 ) (k,l)∈N 2 is bounded on [0, 1] × ω c η .
Given these bounds, Lemma 3.4 and the expression of (f k,l 1 , f k,l 2 ) in exponential form, it holds by induction that for each l ∈ N, the sequence (f

k,2l 1 , f k,l 2 ) k≥e 3c b is strongly compact in L 1 ([0, 1] × ω c η ).
Denote by (g l 1 , g l 2 ) its limit up to a subsequence. By Lemma 3.4, let G (resp.

H) with ∂ x G = -∂ x H, be the limit in L 1 when k → +∞ of (χ Λ k1 (y) x 0 F k 3 1 + F k 3 k F k 4 1 + F k 4 k (X, y)dX) k≥e 3c b , resp. (χ Λ k1 (y) 1 x F k 3 1 + F k 3 k F k 4 1 + F k 4 k (X, y)dX) k≥e 3c b . (g 2l 1 , g 2l 2 , g 2l+1 1 , g 2l+1 2 
) satisfies

g 0 1 = g 0 2 = 0, g 2l 1 (x, y) = f b1 (y) + G(x, y) - x 0 g 2l 1 g 2l-1 2 (X, y)dX, l ∈ N * , g 2l+1 1 (x, y) = f b1 (y) + G(x, y) - x 0 g 2l+1 1 g 2l 2 (X, y)dX, l ∈ N, g 2l 2 (x, y) = f b2 (y) + H(x, y) - 1 x g 2l-1 1 g 2l 2 (X, y)dX, l ∈ N * , g 2l+1 2 (x, y) = f b2 (y) + H(x, y) - 1 x g 2l 1 g 2l+1 2 (X, y)dX, l ∈ N, (x, y) ∈ [0, 1] × ω c η . (3.18) 
By induction on l it holds that

0 ≤ g 2l 1 ≤ g 2l+2 1 ≤ g 2l+3 1 ≤ g 2l+1 1 , 0 ≤ g 2l 2 ≤ g 2l+2 2 ≤ g 2l+3 2 ≤ g 2l+1 2 , l ∈ N. (3.19) Moreover, [0,1]×ω c η g 2l j (x, y)dxdy ≤ 1 0 f bj (y)dy + [0,1]×ω c η (G + H)(x, y)dxdy, j ∈ {1, 2}, l ∈ N.
By the monotone convergence theorem, (g 2l ) l∈N (resp. (g 2l+1 ) l∈N ) increasingly (resp. decreasingly) converges in L 1 ([0, 1] × ω c η ) and almost everywhere on [0, 1] × ω c η to some g (resp. h). By the dominated convergence theorem,

lim l→+∞ g 2l 1 g 2l-1 2 = g 1 h 2 and lim l→+∞ g 2l+1 1 g 2l 2 = h 1 g 2 in L 1 ([0, 1] × ω c η ).
Consequently,

g 1 (x, y) = f b1 (y) + G(x, y) - x 0 g 1 h 2 (X, y)dX, h 1 (x, y) = f b1 (y) + G(x, y) - x 0 h 1 g 2 (X, y)dX, g 2 (x, y) = f b2 (y) + H(x, y) - 1 x h 1 g 2 (X, y)dX = g 2 (0, y) -G(x, y) + x 0 h 1 g 2 (X, y)dX, h 2 (x, y) = f b2 (y) + H(x, y) - 1 x g 1 h 2 (X, y)dX = h 2 (0, y) -G(x, y) + x 0 g 1 h 2 (X, y)dX, (x, y) ∈ [0, 1] × ω c η , and 
h 1 ≥ g 1 , h 2 ≥ g 2 , (x, y) ∈ [0, 1] × ω c η . (3.20) Hence (h 1 -g 1 )(1, y) = -(h 2 -g 2 )(0, y),
so that, by (3.20),

g 1 (1, y) = h 1 (1, y), g 2 (0, y) = h 2 (0, y). Consequently, h 1 -g 1 = h 2 -g 2 , g 1 h 2 -h 1 g 2 = (g 1 -g 2 )(h 1 -g 1 ) and (h 1 -g 1 )(x, y) = x 0 (g 1 -g 2 )(h 1 -g 1 )(X, y)dX. (3.21)
It follows from (h 1 -g 1 )(0, y) = 0 and the boundedness of (g 1 , g 2 ) on [0, 1] × ω c η that h 1 -g 1 = 0 and (g 1 , g 2 ) = (h 1 , h 2 ) on [0, 1] × ω c η . Hence the whole sequence (g l 1 , g l 2 ) l∈N converges to (g 1 , g 2 ) in L 1 ([0, 1] × ω c η ). Letting η → 0 and using (2.16), the convergence holds in L 1 ([0, 1] 2 ).

Given ¯ > 0, choose l 0 big enough so that g 2l 0 1 -g 2l 0 +1

1 And so (F k 1 ) is a Cauchy sequence in L 1 ([0, 1] 2 ) with the limit equal to the weak limit F 1 . Similarly, (F k j ) 2≤j≤4 is a Cauchy sequence in (L 1 ([0, 1] 2 )) 3 with the limit equal to the weak limit (F j ) 2≤j≤4 .

L 1 < ¯ , then k 0 big enough so that f k,2l 0 +1 1 -g 2l 0 +1 1 L 1 ≤ ¯ and f k,2l 0 1 -g 2l 0 1 L 1 ≤ ¯ , k ≥ k 0 . Hence f k,2l 0 +1 1 -f k,2l 0 1 L 1 ≤ 3¯ for k ≥ k 0 . Then F k 1 -F k 1 L 1 ≤ F k 1 -F k 1 L 1 ((Ω Λ k1 ) c ) +2c b by (3.8) ≤ F k 1 -f k,2l 0 1 L 1 ((Ω Λ k1 ) c ) + F k 1 -f k ,2l 0 1 L 1 ((Ω Λ k1 ) c ) + f k,2l 0 1 -f k ,2l 0 1 L 1 +2c b ≤ f k,2l 0 +1 1 -f k,2l 0 1 L 1 + f k ,2l 0 +1 1 -f k ,2l 0 1 L 1 + f k,2l 0 1 -f k ,

Lemma 3.6

The limit F of (F k ) k∈N * in L 1 ([0, 1] 2 ) is a renormalized solution to the Broadwell model (1.1).

Proof of Lemma 3.6.

Start from a renormalized formulation of (2.1), 

ϕ 1 (x, y) F k 1 F k 2 (1 + F k 1 )(1 + F k 1 k )(1 + F k 2 k ) (x, y)dxdy, (3.22) 
for test functions ϕ ∈ (C 1 ([0, 1] 2 )) 4 . Using the strong L 1 convergence of the sequence (F k ) to pass to the limit when k → +∞ in the left hand side of (3.22), gives in the limit, uniformly with respect to k, since

F 1 1 + F 1 ≤ 1, F k 1 (1 + F k 1 )(1 + F k 1 k )(1 + F k 2 k )
≤ 1, and lim

η→0 A c η F k 2 = 0,
uniformly with respect to k.

The gain term can be estimated as follows. The uniform boundedness of the entropy production term of (F k ) is given in Lemma 3.1. A convexity argument together with the L 1 convergence of (F k ) to F (see [START_REF] Diperna | On the Cauchy problem for Boltzmann equations: Global existence and weak stability[END_REF]), imply that This completes the proof of Theorem 2.1.

(F 1 F 2 -F 3 F 4 ) ln F 1 F 2 F 3

. 10 )

 10 Proof of Lemma 3.3. The four cases F k 1 ,..., F k 4 are analogous. The detailed estimates are carried out for F k 1 . The translational L 1 equicontinuity in the x-direction for ln(1 + F k 1 ) is obtained as follows from the ∂ xterm in the renormalized equation. Consider h ∈ [0, 1[. Write the equation for F k

2l 0 1 L 1

 11 +2c b by (3.17)≤ 8¯ + 2c b , k ≥ max{k 0 , exp( 3c b )}, k ≥ max{k 0 , exp( 3c b )}.

1 0ϕ 1 ( 1 , 1 0ϕ 1

 11111 y) ln 1 + F k 1 (1, y) dy -(0, y) ln 1 + f b1 (y)

1 0ϕ 1 ( 1 , 1 0ϕ 1 ln 1 +

 111111 y) ln 1 + F 1 (1, y) dy -(0, y) ln 1 + f b1 (y) dy -F 1 (x, y) ∂ x ϕ 1 (x, y)dxdy.For the passage to the limit when k → +∞ in the right hand side of (3.22), given η > 0 there is a subset A η of [0, 1] 2 with |A c η | < η, such that up to a subsequence, (F k ) k∈N * uniformly converges to F on A η and F ∈ L ∞ (A η ). Passing to the limit when k → +∞ on A η is straightforward. Moreover, lim

F 4 (F 1 F 2

 412 x, y)dxdy ≤ c b . (3.23) It follows that, for any γ > 1,A c η |ϕ| F 3 F 4 1 + F 1 (x, y)dxdy ≤ c ln γ + cγ A c η F 2 1 + F 1 (x, y)dxdy ≤ c ln γ + cγ A c η (x, y)dxdy,which tends to zero when η → 0. Similarly, using (3.3), y)dxdy, which tends to zero when η → 0, uniformly in k. It follows that the right hand side of (31 (x, y)dxdy, when k → +∞. Consequently, F 1 satisfies the first equation of (1.1) in renormalized form. It can be similarly proven that (F j ) 2≤j≤4 is solution to the last equations of (1.1).

  be reached in a similar way. Moreover,
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